REPORT No. 447

STATIC THRUST OF AIRPLANE PROPELLERS

By WALTER S. DIEHL

SUMMARY

Static thrust data from more than 100 airplane propeller tests are collected from various sources and combined in working charts, from which the static thrust coefficient K_{To} in the equation

$$T_0 = \frac{K_{T_0} \times b. hp}{r. p. m. \times diam.}$$

may be readily determined. The available data cover practically all types of propellers and are in good agreement. For extreme pitch ratios, or for very low and for very high blade settings, the values of K_{r_0} are shown to deviate considerably from the generally used linear relations based on data at moderate pitch ratios.

INTRODUCTION

The static thrust of a propeller was formerly of interest only in connection with proposed helicopter designs, but the advent of very high powers and corresponding high performance in recent airplane designs have made in necessary to consider the static thrust as a design factor. At present the chief applications of accurate static thrust data are in the calculation of nosing-over moments and the estimation of take-off runs.

The available methods of calculating static thrust are based on constants derived from Durand and Lesley's tests on wooden propellers. (Reference 4.) It is the purpose of this report to revise the constants and to extend the methods to include recent data on adjustable metal propellers.

Warner shows in reference 1 that the thrust per horsepower is obtained by division, from the coefficients

 $C_{P} = \frac{P}{\rho n^{3} D^{5}}$

$$C_T = \frac{T}{\rho n^2 D^4} \tag{1}$$

(2)

and

or

$$\frac{T}{P} = \frac{C_T}{C_P} \frac{1}{nD}$$

$$T = \frac{C_T}{C_P} \frac{P}{nD} \tag{3}$$

In Chapter XIV of reference 2, Mr. Warner states: "It can be shown from propeller theory that the static thrust per horsepower for a propeller is equal to a constant divided by the product of the r. p. m. of the propeller and its diameter, and experiments by Durand have shown that the average value of the constant ranges from 49,000 for propellers designed to work normally at a value of V/nD of 1.1 up to 79,000 when V/nD for maximum efficiency is 0.5 - - -. The variation of the coefficient is approximately linear between the points given."

In reference 3 the author gives the static thrust formula

$$T_0 = 6,000 \left(18.7 - 9.5 \frac{p}{D} \right) \frac{\text{b. hp}}{(\text{r. p. m.}) \times D}$$
 (4)

Where T_0 is the static thrust in pounds, p/D is the nominal pitch/diameter ratio and D is the diameter in feet. The value of the constant in equation (4) was based on Durand and Lesley's data and is substantially identical with Warner's values as quoted above.

It will be shown that the static thrust coefficient K_{r_o} in the equation

$$T_0 = \frac{K_{\tau_0} \times b. hp}{(r. p. m.) \times D}$$
(5)

can be determined with fair accuracy for any propeller from data usually available or readily obtained.

DURAND AND LESLEY'S TESTS

In Table V of reference 4, Durand and Lesley give the "standing thrust and power" for 67 propellers. these include a number of variations in blade section and blade form that are of academic interest only, since practically all propellers now in use are in the S_1 F_2 class. Table I lists the essential data including the static thrust coefficient K_{T_0} for all of the S_1 F_2 propellers. K_{T_0} is found from the relation

$$K_{T_o} = 33,000 \frac{C_T'}{C_P'}$$

the conversion factor 33,000 being required for the units of b. hp and r. p. m. in equation (5).

(6)

The values of K_{r_o} are plotted against p/D on Figure 1. The dashed line on this figure corresponds to equation (4) and may be represented by

 $K_{T_0} = 112,400 - 57,000 \frac{p}{D}$

or

$$K_{r_o} = 57,000 \left(1.97 - \frac{p}{D} \right)$$
 (6a)

both of which are identical with equation (4).

FIGURE 1.—Static thrust coefficients for 2-blade wooden propellers. Durand and Lesley's tests. N. A. C. A. Technical Report No. 30

N. A. C. A. TESTS

Three series of systematic tests on adjustable blade metal propellers have been made by the National Advisory Committee for Aeronautics in the propeller research tunnel at Langley Field. (References 5, 6, and 7.) Static thrust data from these reports are given in Tables II to V, inclusive, and the values of K_{T_0} are plotted against blade setting at 0.75 R in Figure 2. There is a considerable scattering of the points probably due to fuselage interference effects and to the method of obtaining the static values of C_{τ} and C_P by extrapolation but the trend of the variation is well defined. It is of considerable interest to note the reduction in static thrust at high pitch angles for propellers with the Clark Y section. This characteristic, which may be due to an early stalling of the blade sections, has been observed in flight tests to such an extent that a separate curve is apparently required for these propellers. As shown by the data from Technical Report No. 351 (reference 6), given in Table III, cutting off the tips to reduce the diameter does not appreciably affect the static thrust coefficient.

BRITISH TESTS

A very complete investigation of propeller characteristics is covered by Reports and Memoranda No. 829 of the British Aeronautical Research Committee. (Reference 8.) Static thrust data from this report are given in Tables VI and VII. The former covers propellers having constant pitch along the blade, while the latter have the variable pitch distribution obtained with the usual blade adjustment. Values of K_{To} are plotted against blade angle at 0.75 Ron Figure 3. The data are usually consistent due to care exercised in eliminating interference and fall very close to the three curves, the one for two blades being identical with that given on Figure 2.

THE CALCULATION OF STATIC THRUST

For any given set of design conditions the static thrust may be calculated from equation (5):

$$T_{0} = \frac{K_{\mathbf{r}_{0}} \times (\text{b.hp})}{(\text{r.p.m.}) \times (\text{diam.})}$$
(5)

the proper value of K_T being obtained from Figures 1, 2, or 3. In the case of adjustable blade metal propellers it is common practice to specify the blade setting in terms of the blade angle at the 42-inch radius. Figure 4 has been prepared for obtaining blade angles at 0.75 R from the values at the 42-inch radius, for conventional pitch distributions. This curve gives the correction $\Delta\theta$ to be added to or subtracted from the

126

blade angle at the 42-inch radius to obtain the blade angle at the 0.75 R.

In design studies it is more convenient to work with the V/nD for maximum efficiency than with the blade angle. Figure 5 is a plot of K_{r_0} against V/nD for maximum efficiency, using the data from Tables I to VII. The points appear to fall nearer to regular curves than when p/D or θ is used as the base.

In using equation (5), the full rated b.hp and r.p.m. may be used without appreciable error since the ratio b.hp/r.p.m. is substantially constant for full-throttle operation.

EIGURE 3.-Static thrust coefficients for metal propellers. British tests, R. & M. No. 829

CONCLUSIONS

A study of the collected data leads to the following conclusions:

- 1. In general, narrow blades give a higher static thrust coefficient than wide blades.
- 2. Thin blades appear to give a higher static thrust coefficient for low pitch setting and less static thrust at high pitch settings than thick blades.
- 3. Blade section may be very important in determining the static thrust coefficient at high pitch settings.
- 4. There is a decrease in the static thrust coefficient due to the use of 3 or 4 blades at low pitch settings but the curves converge into one curve at and above a blade setting of 23° at 0.75 R.
- 5. The effect of gearing an engine is to reduce the propeller r. p. m., to increase the diameter, and to increase the pitch or blade angle required. With large reduction ratios the effect of the increased diameter and the reduction in K_{T0} corresponding to the increased pitch may more than offset the effect of the change in r. p. m., and thus reduce the static thrust.

FIGURE 4.-Correction for obtaining blade angle at 0.75 radius from blade setting at 42" station. Positive (+) values of $\Delta \theta$ to be added to setting at 42" station, negative (-) values to be subtracted to get blade angle at 0.75 radius. Example: For 10 ft. dia. Prop. Δθ=-.9°. θ0.75R=θ42"-...9°

6. The variable pitch propeller will give a large increase in static thrust coefficient when the available blade setting change is sufficient to attain blade angles of 12° or less.

BUREAU OF AERONAUTICS,

NAVY DEPARTMENT,

WASHINGTON, D. C. Sept., 1932.

REFERENCES

- 1. Warner, Edward P.: The Problem of the Helicopter. T. N. No. 4, N. A. C. A., 1920. 2. Warner, Edward P.: Airplane
- P.: Airplane Design-Aerodynamics. McGraw-Hill Book Co., Inc., New (Chapter XIV.) McGraw-Hill Book Co., Inc., New York City, 1927.
 3. Dichl, W. S.: Engineering Aerodynamics. The Ronald

- Dirand, W. D., Englisching Actodynamics. The Robald Press Co., 1928.
 Durand, W. F., and Lesley, E. P.: Experimental Research on Air Propellers-II. T. R. No. 30, N. A. C. A., 1920.
 Weick, Fred E.: Full-Scale Wind-Tunnel Tests of a Series of Metal Propellers on a VE-7 Airplane. T. R. No. 306, N A C 4 1000
- of Metal Propellers on a VE-7 Airplane. T. R. No. 306, N. A. C. A., 1929.
 6. Wood, Donald H.: Full-Scale Wind-Tunnel Tests of a Propeller with the Diameter Changed by Cutting Off the Blade Tips. T. R. No. 351, N. A. C. A., 1930.
 7. Freeman, Hugh B.: Comparison of Full-Scale Propellers Having R. A. F.-6 and Clark Y Airfoil Sections. T. R. No. 378, N. A. C. A., 1931.
 8. Fage, A., Lock, C. N. H., Howard, R. G., and Bateman, H.: Experiments with a Family of Airscrews Including the Effect of Tractor and Pueher Bodies. Part I. Experi-
- Effect of Tractor and Pusher Bodies. Part I. Experiments with the Family of Airscrews Mounted in Front of a Small Body. R. & M. No. 829, British A. R. C., 1922.

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ł

- -

128

TABLE I

STATIC THRUST COEFFICIENTS FOR WOODEN PRO-PELLERS-DATA FROM DURAND AND LESLEY'S TESTS, TABLE V, N. A. C. A. TECHNICAL REPORT NO. 30

Prop. No.	ζο.	Ь	р	Max effic	imum iency	Thrust co- efficient	Power co- efficient	Static thrust coefficient
	Prop. P	<i>ב</i> ר	D	7m	V nD for 7=	$C_{\mathbf{T}'} = \frac{T_0}{g_{\rho} n^2 D^4}$	$C_{P'} = \frac{P_0}{g\rho n^3 D^3}$	$K_{T_0} = 33000 \frac{C_{T'}}{C_{P'}}$
	3 4 7 8 11 15 16 19 20 23 24 83	0.075 100 075 100 075 100 075 100 075 100 075 100 075 100	0.9 .9 .7 .5 .5 .9 .7 .7 .5 .1 1.1	0.810 .793 .778 .703 .670 .804 .803 .781 .772 .699 .680 .834 .818	0.83 785 653 497 47 80 654 482 .80 .654 .48 .48 .47 1.00 .96	0.0160 .0195 .0149 .0164 .0120 .0123 .0163 .0183 .0187 .0184 .0137 .0164 .0121 .0121 .0123 .0189	0.00340 0.01035 006632 00769 00490 00548 01000 00601 00491 00491 01021 01248	62500 62200 74300 70400 84300 82100 64300 64900 - 75100 67700 84800 81400 81400 51000 50000

TABLE II

STATIC THRUST COEFFICIENTS FOR METAL PRO-PELLERS N. A. C. A. TESTS, TECHNICAL REPORT NO. 306

Blade setting at 0.75R 0	Static thrust coefficient Cr _e	Static torque coefficient CP0	V nD for 7=	Static thrust coefficient Kr ₀
11°	0.079	0.026	0.48	100300
15°	.094	.038	.65	81400
19°	.101	.050	.77	66200
23°	.096	.067	.91	47200
27°	.099	.098	1.13	33000

TABLE III

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE METAL PROPELLERS WITH CUT-OFF TIPS N. A. C. A. TESTS, TECHNICAL REPORT NO. 351

Diam-	Blade angle at	Static	values	Maximu en	m effici- oy	Static	b
feet	0.78R	C_{T_0}	C_{P_0}	7-	V/nD for y=	efficient Kr.	D
10.0	° 12 17 23 28	0,066 .091 .080 .089	0. 026 . 041 . 072 . 101	0. 733 . 790 . 819 . 836	0.48 .05 .85 1.08	83700 73200 36700 29060	0. 0803
9,5	12 17 23 28	.080 .096 .096 .108	.031 .046 .083 .118	.714 .771 .808 .822	.48 .63 .85 1.05	85200 68900 38200 30200	. 0345
9.0	12 17 23 28	.093 .102 .110 .114	. 035 . 052 . 100 . 125	. 705 . 759 . 791 . 810	.48 .64 .87 1.05	87700 64600 36300 30100	. 0892
8,5	12 17 23 28	.098 .116 .125 .134	. 637 . 063 . 090 . 153	. 689 . 756 . 785 . 800	.47 .66 .89 1.11	87400 60700 46100 28900	. 0945
8.0	12 17 23 28	.099 .127 .149 .148	. 038 . 067 . 097 . 159	. 675 . 740 . 772 . 780	.47 .66 .92 1.10	86000 62500 50600 30700	. 1005

TABLE IV

.

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH PROPELLERS WITH NAVY STANDARD SEC-TION (MODIFIED R. A. F.-6) N. A. C. A. TESTS, TECHNICAL REPORT NO. 378

Camber	Blade setting at	6-	<i>C</i> -	Maximu en	ım effici- cy	Static
ratio	0.75R 0	07	UFq	7=	V/nD for η_{\pm}	efficient Kr.
0.06	11	0.081	0.028	0. 700	0.42	95600
	15	.083	.039	. 753	.57	70400
	19	.102	.067	. 795	.70	50100
	23	.113	.092	. 810	.86	40500
	27	.111	.112	. 820	1.02	33300
. 08	11	.081	.029	. 690	.42	92000
	15	.080	.041	. 740	.56	64700
	19	.098	.050	. 780	.71	64700
	23	.102	.062	. 805	.85	54100
	27	.115	.120	. 820	.99	31600
. 10	11	.075	.030	.660	.43	82400
	15	.088	.041	.732	.59	70900
	19	.101	.053	.782	.73	63000
	23	.106	.065	.802	.88	53600
	27	.116	.092	.805	1.00	41500

TABLE V

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH PROPELLERS WITH CLARK Y SECTION N. A. C. A. TESTS, TECHNICAL REPORT NO. 378

Blade	<i>C</i> -	<i>a</i> -	Maxim cler	um effi- lcy	Static thrust coeffi-
at 0.75Ř 8	070	0 P0	η=	V/nD for y=	cient K_{τ_0}
0					
11 15	0.031	0.028	0.725	0.46	95600 68200
19 23	.106	.035	.802	.π .90	41100 34800
27	. 097	.110	. 820	1.08	28800
11	. 078	. 029	.750	.48	88800 70400
19	.033	. 056	. 810	.76	43500
23 27	.088 .105	.085 .120	.820 .826	.93 1.09	34100 28800
11	. 075	. 030	. 746	.50	82400
15	.085	.040	.802	.77	57800
23	.098 .056	.079	.813 .828	.93 1.12	40900 25100
	Blade setting at 0.75 k θ • 11 15 19 23 27 11 16 19 23 27 11 15 19 23 27 27	$\begin{array}{c c} \begin{array}{c} \text{Blade} \\ \text{setting} \\ \text{at 0.75} R \\ \end{array} \\ \hline \\ \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

سفند سنت

TABLE VI

STATIC THRUST COEFFICIENTS FOR METAL PRO-PELLERS DATA FROM BRITISH A. R. C. R. & M. NO. 829

		Blad	83		Pitch	Mar effic	imum fency	Stati	c data	Static
from Table No.	No.	Width diam. D	Bla an at 0.	ade gle 75R	dlam. P D	7m	V/nD for y=	Thrust coeffi- cient K _{T0} '	Torque coeffi- cient Ko	thrust coeffi- cient K _{T0}
6(1) 6(3) 6(3) 6(4) 6(5) 6(3) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1	242424242424232224234622442346	0.052 .052 .052 .052 .052 .052 .052 .052	° 7771216623233212323232323232212121212121212	, 151003300033000000000000000000000000000	0.33557700055500000000555555555555555555	0.545 .444 .734 .630 .725 .83 .847 .857 .854 .852 .855 .855 .855 .855 .855 .855 .855	0.300 .2283 .456 .623 .925 .925 .925 .925 .925 .925 .920 .920 .920 .920 .920 .920 .920 .920	0.0622 .0928 .0910 .1400 .1460 .1860 .1200 .2180 .1330 .2440 .1210 .1210 .1210 .1210 .1210 .1210 .1235 .0538 .0758 .1305 .1305 .1305 .1305 .1305 .1315 .0502 .0502 .0502 .0502 .0502 .0502 .1135	0.00341 .00533 .00514 .0159 .0159 .0159 .0159 .0257 .0289 .0192 .0192 .0192 .0192 .0192 .0192 .01190 .0214 .00760 .01490 .02113 .00760 .01490 .00415 .00561 .00228 .00423 .00561 .00533	95900 78400 93000 73300 74220 61500 41700 25000 26200 80200 80200 80200 85800 85800 85800 837000 83200 83200 83200 94700 94700 91200 91200 91200 91200 85900

TABLE VII

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH METAL PROPELLERS-DATA FROM BRITISH A. R. C. R. & M. NO. 829

		Blade		Pitch	Maximum efficiency		Stati	Statio		
Data from Table No.	No.	Width dfam. D	Bh an at 0	ade glo .75R 9	diam. P D	7) m	V/nD for η=	Thrust coeffi- cient Kroʻ	Torquo coeffi- cient Keg	thrust coeffi- cient Kr ₀
7 (1) 7 (3) 7 (3) 7 (5) 7 (5)	222222222444444444444444444444444444444		° 7 12 16 23 28 32 35 34 7 5 32 7 12 16 23 28 35 7 12 12 16 23 28 35 34 7 5 32 7 12 12 35 34 7 5 32 7 12 16 32 35 34 7 5 32 35 34 7 5 32 35 34 7 5 32 35 32 35 34 7 5 32 35 32 35 34 7 5 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 32 35 35 32 35 32 35 35 32 35 32 35 35 35 32 35 35 35 35 35 35 35 35 35 35 35 35 35	, 15 0 30 0 30 30 30 15 15 30 30 30 30 30 30 30 30 30 30 30 30 30	0.33 .51 .700 1.25 1.63 .28 1.45 1.63 .28 1.40 .351 .700 1.25 1.45 1.64	0. 551 .715 .780 .853 .886 .886 .885 .837 .545 .445 .837 .725 .805 .805 .847 .845 .847 .855 .882	$\begin{array}{c} 0.320\\ .460\\ .624\\ .896\\ .1.127\\ 1.424\\ 1.583\\ 1.320\\ .320\\ .321\\ .400\\ .272\\ .480\\ .623\\ .896\\ .896\\ .136\\ 1.238\\ 1.560\\ \end{array}$	0.0859 .0950 .1145 .1225 .1332 .1332 .1345 .1445 .1445 .1445 .0528 .0528 .0528 .1333 .1860 .2345 .2330 .2395 .2470	0.00333 .00568 .00513 .01476 .0255 .0233 .0255 .0231 .00329 .00531 .00329 .00531 .0159 .0159 .0379 .6471 .0534	102500 89100 74200 233300 25000 25000 95000 95000 95000 82200 71600 82200 71600 82200 21300 24300

130