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TKE EXPERIMENTAL DETERMINATION OF THE MOMENTS OF INERTIA
OF AIRPLANES

By HARTLEY A. SouLfiand MARVEL P. MLLLDR

SUMMARY

The application of the penddum meihod to the experi-
mental determination of the moments of in&”a of air-
planes 22 di.wumedin thti report. Particular reference
h made to the e$ects of the air, in whioh the airplane ti
immersed, on the swinging te-stsand to the procedure by
which these effea%are taken into account.

Con&at&m of t)k e$ects of the ambieniair ha-ssho-wn
that tti virtual momeni of imwtia of the airplau about
any ~“vena.ti of 08ciL?.aiionmud be regardedaad up
of three distinct pan%; namely, that of th structure, that
of the air &rapped within the stru.ciure,and that of the
apparent addition.! maw of externalair in$kenced by tb
airplands nwtwn. As the tm monwniof inertia c0n&t3
only of the momem%of inertia of the strudure and the
etirapped air, the appard additional mom of inertia
dtu to the in$uence of the tiernal air h ddermined and
akk-kw? from the virtim? mmneni of inertia. Th4 ap-
parent additional mmneni of inertia is obtained by
computatti utilizing the rewdt8 of eaperiment8 made
to determk theaddiliorud-musse$ectfor pties of variow
aspect ratios.

The proceduredescribedin this report has been u+wdfor
some tinw, and t?w&a on severalairplan+&forwhich the
mommts of inertia have beenfound are included. The
preci.swn i-s behved to be within limits of =t I?.6percent,
& 1.3 percen$ and k 0.8 percedfor ihaX, Y, and Z axw,
respectively.

INTRODUCTION

The necessity for preoisevaluespf momants of inertia
of airplanes has arisen, particularly in connection with
the study of S@llill& Because of the demands of this
problem, the National Advisory Committee for Aero-
nautic has developed apparatus and procedura for
adapting for airplanesthe familiar pendulum method of
determiningg the momenti of inertia of small dense
bodies. Two major difficultieswere encountered in the
application of this method ta the determination of the
moments of inertia of sirpJanes. The tit concerned
the development of a system of suspension whereby
the suspended body could be made to oscillate solely
about a single well-defined E&. Essential features of
the apparatus eventually found to be suitable and data

obtained by sm”nging tests with this apparatus have
been previously reported in referencw 1 and 2. The
second difficulty concerned the effect of the medium in
which the experiments were performed, an effect which
was large because of the low mass density of the air-
plane and hard to determine because of its irregular
shape.

The purpose of the present paper is to give a com-
plete discussion of the determination of the moments of
inertia of airplanes by the pendulum method, with
particular reference to the effects of the ambkmt air
on the moments of inertia, and the procedure by which
these effects are taken into account. A description of
the apparatus and test procedure used by the N.A.C.A.
and the data for several airplanes for which the mo-
ments of inertia have been found are included.

During the preparation of tbe paper, Mr. Miller, who
performed most of the experimental work, died, and
the paper waa completed by Mr. SoUM.

APPLICATION OF PENDULUM METHOD TO AIRPLANES

BASIC EQUATIONS

For an undamped pendulum oscillating with small
amplitude in a vacuum, the equation of motion is

(1)

where I is the moment of inertia about the axis of
oscillation

b is a constant depending on the dimensions and
w~cht of the pendulum

and o is the angular displacement of the pendulum.
From the solution of this equation, the period of oscil-
lation is found

T-%1
SOthat

(3)

The constant b depends upon different dimensions for
diiferent types of pendulums.

When detaninhg the momenti of inertia the bifilar
tomion type of pendulum is used for the Z axis and the
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compound type for the remainder of the axes (figs. 1
and 2). For the bifilar torsion pendulum, the axis of
oscillation is vertical, lies midway between the two
vertical filaments, and passes through the center of
gravity of the system. For the compound pendulum,
the axis of oscillation is horizontal and passes through
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the points of support but not through the center of
gravity of the pendulum.

For the bWir tomion pendulum

WA2
ib=~

and consequently
I== (4)

where W is the weight of the pendulum
A is the distance between the vertical fila-

ments
and 1is the length of the filaments.

For the compound pendulum

b=WL
and

(5)

where L is the distance between the center of gravity
and the axis of oscillation. When the compound
pendulum is used, the moment of inertia about au
axis passing through the center of gravi~ is given by
the equation

f’rl!2-

where M is the mass of the pendulum.

(6)

coilmTlmE FOR AJilRONAUTTCS

DAMPING

In any practical case the motion of a pendulum will
be damped by friction, whereas the theoretical case
assum”w no damping. Damping has the effect of
increasing the period over the theoretical value. It
can be shown that the effect of damping on the period
can be detedned by the observation of the decrease
in amplitude during the first oscillation. Observations
during the swinging experiments have shown that the
decrease of amplitude during the first oscillation never
exceeds one tenth the original amplitude. For this
amount of damping the error in the moment of inertia
will be less than 0.02 percent, and consequently crm
be neglected.

AMBIENT AIR

Equations (4) and (6), though derived for the motion
of a pendulum in a vacuum, apply to the case of the
pendulum oscillating in air but in this case I, W, and
M refer to the virtual values of the moment of inertia,
weight, and mass of the pendulum when i.mmemedin
air. The difkences between the values of I, W, and
M for motion in a vacuum and the cise where the pen-
dulum is immersed in air arise from three effects: the
buoyancy of the structure, the air entrapped within
the structure, and the auMMomzZ-nuzweffect. A &s-
cussion of thesa effects follows.

Buoyancy and entrapped air,-The weigh% ~
in equations (4) and (6) equals the true weight of the

I..~E=eyI=~ ari-on@for theMamdndon d the
by tbe compxmd-pmdtdnm methcd,

pendulum only for the case where the swinging is done
in a vacuum. In the practical case where the pendu-
lum is surrounded by a fluid medium, air, W equals
the virtual weight; that is, the true weight minus the
buoyancy of the structure. Weighing the pendulum
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in air gives the virtual weight so that the weighing
results can be applied directly for the determination of
the moments of inertia about the & of oscillation.
From the virtual weight, the mass of the structure,
for use in equation (6), can be found by the equation

(7)

where Ms is the mass of the structure
Vs is the volume of the structure

and p is the density of the air.

The total volume enclosed within the external
covering of the airplane, with the exception of the
volume taken up by the structure, is filled with air of
the same density as the surrounding air. This mass of
air should be considered as part of the airplane because
the major portion of it moves with the airplane,
although there is some leakage through the openings
in the fueselage and wings. Thus, the true mass of
the pendulum

MW=~+vsp+(v–vs)p

or

M=:+ Vp (8)

Where Vis the totalvolume of the airplane. Similarly,
the true moment of inertia of the pendulum about its
gravity asis is made up of two parts, a constant part IS
representingthe moment of inertia of the structure, and
a part IE representing the moment of inertia of the
entrapped air and vmying with the density of the air;
that is,

I= I.+-IE
where

IZKP (9)

Additional mass,—When a body is put in motion
in a fluid a flow about the body is immediaimlycreated.
The momentum of this flow is imparted by the body,
so it must be considered in dett~g the motion of
the body. Hence, the period of a pendulum vibrating
in air is to some extent dependent on the momentum
impan%d to the air by its motion through the air, a
fact noted and discussedby Green in 1836 (reference 3).
The momentum imparted to the air is proportional to
the momentum of the body. As the additional
momentum depends on the density of the ah as well as
on the size of the body and its shape relative to the
direction of motion, the extent to which the period of
a pendulum is tiectid by the surrounding air depends
on the relative densities of the air and the pendulum.
The late Mr. K. V. Wright (reference 4) fit demon-
strated that, because of the relatively low mass
density of the airplane, it is necessary to cmsider the
additional-mass effect when determining its moments

of inertia by the pendulum method. It is well to
note that although the effect of the surrounding
medium is commonly called the additional-mass effect,
the theory actually derdswith the additional momen-
tum, and it is only because the additional momentum
remains proportional to the momentum of the body for
a given motion that an equivalent additional mass may
be used.

The effective moment of inertia of the additional
mass of a pendulum about its axis of oscillation maybe
represented as

1A+ M~L2

where 1A is the additional moment of inertia about
the center of gravity- and MA is the additional m=
for the conditions under consideration, if the center
of the additional mass is assumed to coincide with that
of the pendulum. Thus, equations (4) and (6) may
be expanded to the following forms

I’=l’+l’+I’=W (lo)

for the bifilar torsion pendulum, and

T’ WLIV= I~+IE+IA=7–
(

:+ VP+M.JU (11)

for the compound pendulum, where Iv is the virtual
moment of inertia about the center of gravity.

VIRTUAL MOMENTS OF INETtTIA

Assuming that 1=, 14, VP, ~d MA Cm SU be evalu-
ated, three difIerent moments of inertia for each axis of
the airplane can be determined by swhging the air-
plane in air. These are: the virtual moment of inertia,
the true moment of inertia of the airplane consisting
of the momenti of inertia of the structure and the air
entrapped within the airplane, and the moment of .
inertia of the structure.

The virtual moments of inertia are obtained directly
with the biiilar pendulum. With the compound
pendulum they can be obtained either by evahating
VP and MA or by swinging tests with two pendulum
lengths. The term VP can be readily calculated from
consideration of the airpkme dimensions. The method
for calculating the term M.4 is discussed later in con-
nection with the general subject of determining ad-
ditional mass charm%eristics. The method for deter-
mining IV experimentally will be apparent from con-
sideration of equation (11), in which the unknown
terms are IV and (VP+MJ. Thus, by swinging with
two diilerent pendulum lengths, two simultaneous
equations in two unlmowus are obtained.

TRUE MOMENTS OF INERTIA

The true moments of inertia are obtained by comput-.
ing 1* for each of the body axes and subtracting the

.



. . .. ..— ——i-a! d:-= .’ - . =- L.. , —. .

FOR AERONAUTICS504 REPORT NATIONAL ADVISORY

values thus found from the virtual moments of inertia.
The method of computing I. is explained in the sec-
tion on additional mass. The true moments of in-
ertia vary slightly with altitude owing to the fact that
IB is dependent on density. The term IE is very small,
however, so that its variation with altitude can be
neglected.

SUPPORTING MECHANISfiI

Thus far the discussion has assumed a pendulum
made up solely of the airplane. In general, however,
the total mas of the pendulum includes the mass of
additional equipment required for supporting the air-
plane in the desired manner. Experience in swinging
airplanes has shown that it is practically impotible
to reduce the weight of the additional structure to rL
negligible amount. The use of a strong rigid swinging
gear has been found to be the best means of handling
the airplane. This gear is integral in itself and is
handled and swung as an independent pendulum. The
moment of inertia of this gear as an independent unit
is found so that it can be subtracted horn the moment
of inertia of the complete a-mbly consisting of
swinging gear and airplane. The equations when the
gear is used become, for the bifilar torsion pendulum,

(12)

and, for the compound pendulum

where the subscripts 1and *refer to the total pendulum
rmdgear, respectively.

ELLIPSOIDS OF INER’ITA

In the study of spinning it is necessary that the ellip-
soid of inertia of the airplane be known for the determi-
nation of the gy-rcscopic couples acting on the airplane
during a spin. It has been noted in practice that the
principal axes of the ellipsoid nearly coincide with the
body axes of the airplane. For every airplane swung,
however, it is well to determine the position of the
principal axes of the ellipsoid with respect to the body
axes rind, if there is an appreciable displacement
between them, to compute the moments of inertia
about the principal axes.

As the airplane is symmetrical about the XZ plane,
the Y body axis coincides with the Y principal axis
and it is only necessary to detemine the positions of
the principal axes in the XZ plane. The orientation
of the principal axes in the X2 plane is found bv deter-
-- the moment of inertia a~out a third & in this
plane at a known angle from the body axes. With
these data the product of inertia, D, about the X and
Z body axes can be computed by the formula,

D-A cos2-0+ Cs&2 O–I..
SiII20 (14)

COb13UT17ED

where A is the moment of inertia about the X body
axis

C is the moment of inertia about the Z body
asis

I.. is the moment of inertia about the third axis
in the X2 plane

and 0 is the angle between the X and the XZ axes.
The angle r between the X body axis and the X prin-
cipal axis can then be found

1 ‘] 2D
7=- tan2 F-2

(15)

The moments of inertia about the principal axes are
given by the following equations:

Am=A COS? T+c Sh2T+D Sk fi’T
BIV=B (16)
(Y=A Sb2 T+ CC082T-D Sk ~T

DETERMINATION AND DISCUSSION OF ADDITIONAL
MASS CHARACTERISTICS

An analoeg-with the momentum impartad to the rLir
by the motion of flat plates providea a basis for the
determination of the additional mass effect of the air-
plane. For a flat plate (or circular cylinder) of indnite
span moving with velocity V normal to its surface in
air, assumed to be an incompressible and frictionless
fluid, aerodynmnic theory gives the momentum of the
air per unit span as

@Tv

4 (17)

where p is the density of the air and c is the chord of
the plate (or diameter of the cylinder).

For finite plates with end flow, the total momentum
of the air for this type of motion can be expressed m

k$dV
4 (18)

where k is the- coefficient of additional momentum for
motion normal to the plate and 6 is the span of the
plate. The value of k depends on the aspect ratio of
the plate. For motion parallel to the plane of the
plate, the additional momentum is zero.

For rotation of the plate about an axis passing
through its center the additional angular momentum
can be expreesed by the introduction of a coe5cient
k’. Thus, for rotation about the mid chord, the rmgu-
lar momentum of the additional mass is

(19)

where k is the coefficient for rotation about the mid
chord of a plate of aspect ratio b/c, and Qis the angular
velocity.

A similar expression with a diilerent coefficient k“
may be written for rotation about an axis parallel to
the span and pawing through the center of the plate.
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If b and c are still regarded as the major and minor
d@ensions of the plate respectively, the corresponding
expression for this type of motion beeomes

k“pm%%t
48 (20)

rmd the aspect ratio to which k“ applies is c/b.
When the rotation is about an axis in the plane of

the plate parallel to either the chord or the span but
not passing through the center of the plate, the addi-
tional rmguhr momentum may be expressed as

k’pirc’b% + kdrbfil’
48 4 (21)

or
k“pirc’b% ~ kpc+:bol’

48 (22)

respectively, where 1is the distance from the center of
the plru%to the axis of rotation. It is worth noting
that, in general, the first term of equation (22) can be
neglected owing to” the small effective aspect ratio.

Aspecf rufio

FIGURES.-CdfMenb of addftionfd mass a

It is further apparent that the above expressions,
equations (21) and (22), also apply to the case in which
the axis of rotation lies outside the plane of the plate.
In that case, the displacement of the axis from the plate
results only in an additional component of motion
parallel to the plane of the plate, which imparts no
additional momentum to the air. Thus it can be
stated that the additional angular momenhm @
independent of the distance of the plane of the plate
from the ask of rotation. The additional moment of
inertia is found by eliminating $2. Then, if the fit
term of equation (22) is neglected, additional moments
of inertia become

k’pirc’b’ + kPm’bl’
48 4 (23)

for rotation about any axis parallel to the chord and

kpm’bl’
4

(~)

for rotation about any axis parallel to the span, where 1
is the distance in the plane of the plate from the center
of the plate to the axis of rotation.

4070s-3~3

The coeffioientak and k’ for use in equations (23) and
(24) are given in @ure 3. The values for k were
obtained from experimental data given by Pabst
(reference 5) for plates of aspect ratios up to 4. The
extrapolation to xpect ratio 10 was made through the
use of the approximate empirical formula for the curve

(25)

As Pabst’s experiments were performed with small
plates in water, it was desirable to check at least one
value of k under conditions similar to those met in the
sviinging tests of the airplane. For this purpose a
plate 20 by 5 feet was constructed of a wooden
framework covered with doped fabric. The plate.was
smng with its plane vertical about an axis parallel to
the span and 1% chord lengths above the center of the
plate and its virtual moment of inertia about the asis
of oscillation was detainined. The momant of inertia

A.yMciJ ruf%
MA

k-~
7

ndditionol moments of fnertfa for Eat plabss

of the structure was found by swinging the uncovered
framework, and adding to the moment thus obtained
the computed moment of inertia of the fabric. The
additional moment of inertia of the plate, the difference
between the virtual moment of inertia and the moment
of inertia of the structure, was divided by the square of
the pendulum length to tid the additional mass.
From the additional mass, k was computed. The
value of k obtained in this manner agreed within 1
percent of the value given by the curve for wpect
ratio 4.

As the additional mass of the fuselage is the most
importint additional-mass item in determiningg the
virtual moments of inertia about the center of gravity
from the swinging-test results, and as the fuselage
obviously is not similar to a flat plate, an attempt was
made to obtain a satisfactory value of k for fuselages
A box 20 by 5 by 5 feet was constructed and the
coefficient k found by swinging tests for motion nor-
mal to one of the faces, k being based only on the
dimensions of the face. The value obtained was 1.20,
whereas, as shown in figure 3, the value of k for a
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plate of aspect ratio 4 is 0.9. As fuselages uzually
have a depth greater than their width, k will have a
value between 0.9 and 1.20. In practica it was decided
to use 1.0.

The values for k’ were found by experiment. The
program for the experiments was arranged in such a
manner that it was possible, when obtaining check
observations, to verify the assumption that the addi-
tional moment of inertia of a plate about a given axis

Dihe&al mgle, &grees

FmuEE 4.-Variatlun of the addi%~wnt of InmtJaof a single plate Wltb

is independent of the distanca from the axis to the plane
of the plate. Four plates having aspect ratios of 2,4,
6, and 8 were used in the experiments. These plates
had a span of 4 feet and a thiclmess of one-fourth inch,
and consisted of light wooden frameworks covered
on both aides with paper. Each plate was swung at
four pendulum lengths with its plane horizontal and
its chord parallel to the axis of oscillation. In terms
of the chord the pendulum lengths were 1, 1?4,2, and
2%. The additional moments of inertia were found

Gqq/chard

FIGUREs.-Vmiation Of addIth#lm~manngertlg with gap-chard ratio fo

by deducting the computed moments of inertia of
the structure of the plate and of the entrapped air
from the virtual moments of inertia determined from
the swinging tests. The values of the additional
moments of inertia found in this manner for each plate
showed a slight amount of dispersion for the different
lengths, but the variation was riot consistent with
pendulum length and was within the precision of the
experiments. The curve for coefficient k’ (fig. 3)
represents the average values of the additional

COMMITTEE FOR AERONAUTICS

momenta of inertia obtained for the different aspect
ratios.

Additional experiments were performed to determine
the effect of dihedral on the coefficient k’ and the
manner of treating biplanes. The value of k’ was
found to decrease with dihedral, as shown in figure 4,
the decrease being in the order of 10 percent for 4°
dihedral. In the biplane experiments gap-chord ratios
of x, 1, and 1?4 were investigated for orthogonal
biplane cellules consisting of plates having aspect
ratios of 4 and 6. The results are given in figure 6.
From these results it is concluded that for normal gap-
chord ratios each wing of a biplane may be treated as
an independent plate.

In the application of the general e.spressionsfor the
additional moments of inertia of flat plates (equations
(23) and (24)) ti the airplane, the principal parts of
the airplane are considered independently on the basis
of their projected area in the ~, X2, and YZ planes.
Thus, in the determination of the additional moments
of inertia of the airplane about an axis of oscillation
parallel to the X body axis, the fuselage with length 6
and depth c and L— z feet below the axis of oscillation
will contribute an amount

kPc%b(L– Z)’ (26)
.4

ta the total moments of inertia, where z is the distance
in the X2 plane from the X body axis to the center of
the additional mass of the fuselage and is positive when
the center of the fuselage is above the center of gravity.
The distance z, however, is usually small and can be
neglected and the equation written

The verticaltailsurface of the airplane can be
treated similarly. The axis of oscillation lies in the
plane of symmetry of both the wings and the hori-
zontal tail surface so their additional moments of
inertia are independent of L.

In general it is necessary to consider only these
items. Thus, the totil additional moment of inertia
about the axis of oscillation equals

where the subcripts w, hi, j; and d refer to the wings,
horizontal tail surface, fuselage, and vertical tail
mrface, respectively, or

1A+ M*L’ (29)

where1Ais the additional moment of inertia about the
X h and AL, the additional mass for translation
flong the Y axis. Similar treatment may be applied
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tcthe Yaxisand Zaxis. Forthe Yaxis, .M4maybe
neglected and for the Z axis L is, of course, zero.

It should be notad that in special cases, as for float
seaplanes, it may be necessary to consider other items
than those mentioned and that z may not always be
neglected.

APPARATUSAND PROCEDUREFOR S~GING TESTS

SWINGING GEAR

The swinging gear is the apparatus used for support-
ing the airplanes during the swinging experiments. It
has been constructed so as to be adaptable for airplmw
UP to 6,000 pOUdS. When used for a compound
pendulum it consists of a cradle, tie rods, and knife-
edges assembled as shown in figure 2. The cradle is
a rectangular frame made of two I-beams for suppoti
ing the airplane and two light angle irons for spacera.
The spacers are drilled to permit the distance between
the I-beams to be changed to suit airplaneaof dHerent
sizes. The knife-edges (fig. 6) provide a definite axis
about which the pendulum oscillates with very little
friction. They are mounted on a track so that theti
spacing can be varied when necessary. The tie rods
are used to join the cradle to the Imife-edges. The
length and arrangement of the pendulum are varied by
use of different combinations of the tie rods.

.

When used as a biiilar torsion pendulum, the swing-
ing gear consists of the same essential parts as before,
with the addition of two universal joints (fig. 7) and
a spacer at the lower ends of the vertical members,
resembled as shown in figure 1. The universal joints
provide detite points of oscillation at the lower ends
of the flaments. The spacer between these joints
prevents a change in &tance between the lower end
of the vertical members when the pendulum is
oscillating.

The weight, length, and center-of-gravity location
of every part of the swinging gear are known so that
no matter what arrangement is used it is a relatively
simple process to compute the weight and center-cf-
gravity location of the assembly. The moment of
inertia of the gear is found by swinging it as an indi-
vidual pendulum.

DETERMINATION OF THE CENTER OF GRAVITY

As the center of gravity of the airplane is the origin
of the axes about which the moments of inertia are to
be found its location is determined before any swinging
is done. The method used for locating the center of
gravi~ is based on the principle that the center of
gravity of a body suspended from a single pivot lies
on a vertical line through the point of suspension.
In its simplest form the method consists of suspending
the airplane from two successive points in the X2
plane, and projecting a plumb line from each point of
suspension on the side of the fuselgge by means of a
transit set up with its optical axis in a plane contain-

ing the point of suspension sad perpendicukr to the
X2 plane of the airplane. The intersection of the
two lines locates the vertical and longitudinal position
of the center of gravity. Its lateral position is assumed
to be in the plane of symmetry.

In practice it is not usually convenient to follow
the simple method outlined above, because of the

fi

~dde;:d steel-.

knife-edge

Hwdened St~t?/
v’-- m /knife-edge -

T

Flm?FLEe.—xnuwaiga

di.fiiculty in iimling points of attachment on the air-
plane that do not endanger the structure. A satis-
factory method employing the usa of the swinging
gear assembled as a compound pendulum is therefore
usually followed.

Hmdened s feel

FKOJRE7.—uIlivI3l”djOiUk .

When the latter method is used the plumb line for
the entire mass, airplane and swinging gear, is found “
as previously described and a correction is made for
the effect of the swinging gear. Before the airplane
is placed on the gear the variation of angle of the cradle
with applied moment is determined by hanging know-n
weights on one side of the cradle. By this procedure
a calibration showing the moment corresponding to
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any position of the gear is obtained. The airplane
is then weighed and mounted on the gear with the X
axis parallel to and equidistmt from the I-beams, and
in such a position that the angle assumed by the
cradle is about 12° to 15°. The moment of the gear
about the knife-edge axis is then found from the cal-
ibration and, since the moments of the gear and airplane
are equal in magnitude, the moment of the airplane
is thus obtained. The horizontal distance between
the center of gravity of the entire maw and the center
of gravity of the airplane is found by dividing this
moment by the weight of the airplane. A vertical
line drawn on the side of the fuselage at the above-
calculated distance from the plumb line w-illthen pass
through the center of gravity. The fore-and-aft
position of the airplane relative tQ the gear is then
changed so that the inclination of the cradle is ap-
proximately as great as before, but in the opposite
direction, and a second vertical line is drawn through
the center of gravity. As by the &t method, the
intersection of these two lines locatas the vertical and
longitudinal position of the center of gravity of the
airplane. A check is obtained by moving the airplane
until the gear is level. A plumb line through the knife-
edge axis should then pass through the intersection of
the two lines previously established.

DETERMINATION OF PENDULUM CHARACI’EE19’lTCS

The second. method of determining the center of
gravity just described leaves the airplane suspended
level and in position for swinging about an axis par-
allel to the Y axis. Thus, it is usually convenient to
make this swinging test the next step in the procedure.
The characteristics of the compound pendulum that
must be mensured are the weight, pendulum length,
and period. The weight equals the sum of the weights
of the airplane and the gear. The pendulum length is
determined by measuring the difference in elevation
of the center of gravity of the airplane and the lmife-
edges by means of a transit. The center-of-gravity
location of the gear relative to the lmife-edges, as pre-
viously mentioned, is computed from a knowledge of
the constituents of the gear. From the centar-of-
gravity locations and weights of the airplane and gear,
the center of gravity of the system is found. The
period is found by timing 50 or more oscillations. The
change of length for the check swing@ is obtained by
adding an additional length of tie rod in each of the
four supports. When making this and other changes
the weight of the airplane is never taken off the cradle,
the cradle being temporarily supported by a chain
hoist. The detennimkion of the moment of inertia of
the gear is, for convenience, left until all minghgs
with the airplane in place have been completed.

In order to place the airplane in position for the
X-axis swinging, the cradle is discomected from the
tie rods, turned 90°, and again fastened to the tie rods.

The spacing of the lmife-edges is changed, if neces-
sary. I?or the X2 axis, additional tie rods are added
to either the two front or the two rear supports.

For the Z-axis swinging test the gear is assembled aa
ahown in figure 1. The filaments me made vertical
by proper spacing of the knife-edges. With the
bifilar torsion pendulum the necessary measurements
are the weight, the spacing and length of the il.lamenta,
and the period. Care must be taken in starting the
motion to obtain an oscillation about n vertical axis,
half-wrLy between the ii.laments. The weight rmd
period are obtained as before. The spacing and
length of the filaments are measured directly.

COMPUTATIONS

The virtual moment of inertia about the Z axis is
found by direct substitution of the pendulum chm-
acteristics in equation (12). When computing the
virtual moments of inertia about the X.P and X2
axes the buoyancy and additional mass are first crLl-
culated and substitution is made in equation (13).
The check computation is made by substituting the
values obtained from the swinging experiments for
the two pendulum lengths in equation (13) and solv-
ing simultaneously for Ir. Computation of 1A is
made on the basis of the equations given in the section
on additional mass. Sample computations for the
VE-7 airplane are given in the appendix.

PRECISION

The precision with which the moments about the
body axes of an airplane can be found depends upon
three items. The &at item is the precision with
which the virtual moments of inertia about the rmisof
oscillation can be found with the swinging gear and
by the procedure outlined. The second item is the
precision with which account is taken of the buoy-
ancy and additional mass in transposing the com-
pound pendulum results from the axis of oscillation
to the body ax-. The third item is the precision of
the computation of I., the additional moment of
inertia.

The precision with which the moments of inertia
about the axis of oscillation can be found was checked
by swinging a railroad rail at the pendulum lengths
usually used for airplanes. The rail was a dense
homogeneous body of regular dimensions, for which
the moment of inertia could be calculated and the
buoytm=y and additional mass neglected. The
moment of inertia of the rail was comparable to that
]f a small airplane. The magnitude of the disagree-
ment between the calculated and experimental values
~f the moments about the axis of oscillation for either
type of pendulum never exceeded an amount equal to
L percent of the moment of inertia of the mil about
ks center of gravity. Recent improvements in the
3winging gear have tended to improve the precision
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so that it seems permissible to assume that the error
in determining the virtual moment of inertia about
the knife-edge is less than 0.5 percent of the true
moment of inertia about the center of gravity.

& no transposition is necessary for the bifilar sus-
pension, the discussion of the second item refers only
to the determination of the moments of inertia about
the X rmd Y axes. The magnitude of the combined
effects of buoyancy and additional mass that must be
considered in determining the virtual momenti of
inertia about the body axes of the compound pendulum
is small in relation to the desired moments of inertia.
Consequently, fairly large errors in determining these
effects lead to but small errors in the fhal results.
Experience has shown that the correction attributable
to the buoyancy is about 3 percent of the moment of
inertia about the center of gravity. If reasonable
care is taken in computing the volume, the buoyancy
can be obtained with an error of less than 10 percent.
Such nn error will introduce an error of 0.3 percent in
the final result. For the X axis, the effect of the
ndditionol mass amounts to about 5 percent of the
desired rwmlt; for the Y axis it is negligible. Although
the effects of some parts of the airplane are neglected
in computing the additional mass, it is believed that
the error in the computation is not greater than 10
percent, hence that the error in the lid results attrib-
utable to the computation of the additional mass is
less than 0.5 percent. The maximum resultant error
attributable to these two causes would then be 0.8
percent.

Consideration of the above-enumerated items corJ-
cerning the precision with which the virtual moments
of inertia about the body axes are obtained leads to
the conclusion that for the X and Y body sxes the
precision is within + 1.3 percent and for the Z body
axis is within + 0.5 percent, the grater precision for
the Z axis arising from the fact that no transposition
of axes is required. In practice it is cu9tommy to
obtain check values by swinging the airplane at two
dMerent pendulum lengths and to average the results
if there is a discrepancy. On the basis of the small
magnitude of the discrepancies experienced it is
assumed that the precision thereby obtained, partic-
ularly for the compound pendulum, is slightly im-
proved so that the final error for the X and Y axes is
less than + 1 percent.

One remaining source of error in determining the
truo moments of inertia arises horn the possibility of
error in determining IA, the additional moment of
inertia. For the X body axis, owing to the influence
of the wings, this term has been found to be as great
as 20 percent of the true moment of inertia in one case
but has an average value of 16 percent for the remain-
ing case9. For the Y and .2 body axes this term
amounts to only about 3 percent. The values of Id
me believed to be precise to within + 10 percent. In

terms of the true moment9 of inertia, an error of th~ .
magnitude for the average case would amount to
+ 1.5 percent for the X axis and + 0.3 percent for the
Y and Z axes. Consideration of these possible errors
and those that may be incurred in determining the
titual moment9 of inertia leads to the conclusion
that errors in the true moments of inertia are less than
+2.5 percent for the X axis, &1.3 percent for the
Y axis, and + 0.8 percent for the Z axis.

Because of the nature of the airplane, the principal
axes of the ellipsoid of inertia are never more than a
few degrees from the body axes, and the product of
inertia is only a small percentage of C–A. Considera-
tion of these facts and the possible error in virtual
moments of inertia leads to the conclusion that the
limits of the precision with which the a@e of the
principal axes can be determined are + 1°.

There are several practical considerations in the ccm-
struction and operation of the swinging gear that have
been found by experience to have considerable bearing
upon the precision of the results obtained with it. In
the construction of the gear, care should be esercieed
in making absolutely certain that the osdlations take
place about the pivots provided for that purpose. The
knife-edge supporh should berigidlyplaced, and for the
compound pendulum the tierods from the corners of the
cradle should be carried directly to the knife-edges.
The importance of the latter requirement tvas brought
out during devalo~ment of the gear, when an arrange-
ment ei.milarto that for the bifilar torsion pendulum,
but with no universal joints at the lower ends of the
vertical members, was tried for the compound pendu-
lum. This arrangementgave erratic resultsand inspec-
tion showed that the vertical members were flexing for
a short distance from both ends. Similarly for the
bfiar torsion pendAunj the universal joints and spacer
bar are neces.wwyto obtain the motion desired.

Although t~e pendulum dimensions are governed
somewhat by the size and type of airplane to be swung,
it has been found by tests that they should also be gov-
erned as far as possible by other considerations. The
compound penduIum should be kept short so that the
moment of inertia about an axis through its center of
gravity will be a large percentage of the total moment
of inertia of the pendulum about the axis of oscillation.
Pendulum lengths of approximately 4 to 10 feet have
given satisfactmy results with airplanesweighing up to
5,000 pounds. In tests of the biii.lartorsion pendulum
with varied lengths of the vertical filaments and with
a iixed distance between them, it was found that the
most satisfactory resultswere obtained when the length
of the filaments was greater than the distance between
them. It has been found satisfactory and convenient
in swinging various airplanes to place the vertical f3la-
ments about 8 feet apart.

The oscillations of both the compound and bhilar
ndulums should have a small amplitude because the>
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pendulum formulas used apply only when the assumpt-
ion sin 0= tan O= 6 (where o equals one half the angle
of oscillation) is valid. In practice, this angle need
not exceed 2°.

The precision of the measurement of length of the
compound pendulum depends primarily upon the accu-
rate location of the center of gravity of the airplane.
If it is not located accurately, the pendulum dimensions
will be in error even though subsequent measurements
are very precise.

Swinging the airplane at two pendulum lengths about
each asis,not only is useful in checking the additional-
mms effect, but also provides a check on the winging
tests themselves. Siiarly, it is a good practice to
swing the &plane in both the nose-up and nose-down
attitudes to afford a check on the position of the prin-
cipal inertia axes of the airplane.

RESULTS OBTAINED FOR SEVERAL AIRPLANES

The method given in this report for the determhia-
tion of the moments of inertia has been used regulmly
by the Committee and, in all, the moments of inertia
have been found for 13 airplanes. These results are
listed in table I. The angle between the X body and
the X principal axis, being small, is omitted. The
additional moments of inertia about the three axes are
given. .

DETERMINATION OF MOMENTS ,OF INERTIA BY
CALCULATION

There me times when it is desired to estimate the
moments of inertia of airplanesnot available for swing-
ing tests. It is usual in these cases to compute the

COMMITTEE FOR AERONAUTS

I moments of inertia by a summation of the momenta
of inertia of the constituent parts. Aa the accuracy
of the results of such computations haa been ques- ,
tioned, it was decided to check the rcmdts by com-
puting the moments of inertia for an airplane for which
the moments of inertiahave been found experimentally.
The computations were made carefully; a balance
diagg was used to locate the parts relative to the
center of gravity, and the true weights of each part
were found by weighing the individual parts for the
airplane in question. On comparison of the com-
puted with the experimental values of true moments
of inertia, it was found that the computed value waa
in error by 6 percent for the X axis. For the other
axes the error was less.

CONCLUSIONS

1. The pendulum method for finding moments
of inertia can be successfully applied to airplanes.

2. Owing to the effect of the ambient air, the virtual
moments of inertia obtained directly through applica-
tion of the pendulum formulas are considerably greater
than th~ desired true moments of inertia.

3. The effects of the ambient air can be determined
with sufficient prectilon so that the true moments of
inertia may be obtained from swinging experiments
with an error of less than +2.5 percent, + 1.3 percent,
and &0.8 percent for theX, Y, and Z axes,respectively.

LANGLEi. MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITIIEE FOR ADRONAUTIOS

LANGLEY FmLD, VA., Jum 8, 1933.



APPENDIX

SAMPLE COMPUTATIONS

The following are sample data and computations for
determining the ellipsoid of inertia for the VE7
airplane.

VIRTUAL MOMENTS OF INEFt~

For the X body axis the compound pendulum is
used and the equation for the virtual moment of
inertia about the axis is

WIZ’?Lt_ W2TtL
Ivx= ~~ 4@ ( )

– ~+ VP+M* L2

The experimental data obtained by swinging the
airplane about axes parallel to the X axis are:

TV-..........
Tv,..........-
JJ..::::::-:l

L..::..........
b..-.........‘r,.............
!7’1-.........T

Shortsnspemtin

2JmWmm..-..-.--.-.-.-.----.
2&u Wti...-.-.-.----.-.-.--
3fL3.3 mm---------------------

l’”9.m wt-------------------------
9.613fat------------------------
6.3$2fret -------------------------
3.760-n~.-..-..----–...-----
3,2023ec0nd9---------------

Long swpemfon

The volume V is commted from the dimension of
the airplane. Only the’ fuselage and wings are con-
sidered. The fusekge is treated in three sections:

I Section
Ammm

w- Vohmm

7~1qugrd
Fed CfLbi#y

1— -------------------------------7.5 7.95
x------------------------------- 7.0 6.51 4i6
3—------------------------- 7.0 !LC3 14.6

Totaf V0]Ull18OffW3@T3j V/.i -.-–-i --------- 119.8

The volume of the wings ia determined by the equa~
tion

v.= 0.74S

where S’ is the wing area= 312 square feet
and t is the maximum ordinate of the wing= 0.298
feet from which

VU= O.74X312X0.298=69 cubic feat
then

V= VJ+ V.= 119.8+69= 188.8 cubic feet

The tests were made at sea level under approximately
standard conditions so that

p= 0.00238 alug per cubic feet

The additional masais computed only for the fuselage
and vertical tail surface. The fuselage is again divided

into three sections. The coefficient k is assumed to be
unity, so

where 6, d, and G are the mean values of the square
of the fuselage depths for each of the three sections.

I %3ifon b Idlw.1

Fed

M

%$ yuo
l-------------------------7.5 .
L------------------------- . Hs

. 3—----------------------- :: :: .W7

Total additional massfor fU6e@e ,M4,_ .31s

The vertical tail area of this airplane may be con-
sidered of circular shape and its additional mass as

M.,=?.

where D= 4 feet

so MA,=
TX (4)3X 0.00238

6 = 0.079 slug

~d MA =Md~+MAt= 0:318+ 0.079= 0.397 slug.

Substituting in the compound-pendulum formula:
Short suspension

Iv==
2591 X (3.759)2X 9.05 383.3X (3.209)1X 6.382

39.48 – 39.48

—
[. 1-+ (188.8 X 0.00238) +0.397 (9.513)2

= 1463 shg feet?

Long suspension

~ 2584x (4.378)1X 13.81 376.1X (3.931)’X 10.84
TX- 39.48 – 39.4s

-[ ~ 1- +(188.8X 0.00238)+ 0.397 (14.32)2

= 1474 slug feet2

The average value of IT= is 1469 slug feet?.
IVx is checked by solving the equations for the two

suspensionssimultaneously, ‘Ivx andVP+ Md be@ the

unknowns.

Ivx= 1545+ (vP+ikfA) (9.513)’
~Vx= 1649+ (vp+M.) (14.32)’
IVx= 1462 slug feet 2

The agreement is within 0.5 percent.
511
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The virtual moments of inertia about the Y axis and
the XZ axis are calculated in a similar manner frqm
the data obtained with the compound pendulum. In
the case of the Y axis, the additional mass is very small,
and therefore negIected. h the case of the ~ axes,
the additional mass is the same as for the X axis.

The equation for the b~ar pendulum which is used
for a determination of the virtual moments of inertia
about the Z axis is

Ivz = WIT?Af WZT~A2
~– 16+1

The experimental data obtained by swing@ are

I I Short msfmnHon I LOIIWIWJWIOn[

~,----:_-:_-. %S7spocmd2------------
lv2.._.-:-:... 307pmlnd2--------- 307

2WW67

T,--------- Zal -ds-------- 3
TL------- 323Ss2mnds.._–--_.- 338 easvmds.
A----------- 9.917feOt----------- 9.917fw.
1........----- 7.412f03t----------- 8.z&’f6k

From which is obtained:
Short suspension

Ivz =
2575X (3.622)’x (9.917)2

157.92X 7.412 –

367 X (3.238)2X (9.917)*
157.92X 7.412 =2515 slug feet2

Long suspension

I
2575 X (3.80S)2X (9.917)2

Vz- 157.92X 8.237
367X (3.398)JX (9.917)2—

157.92 X 8.237
=2505 slug feet2

the average of which is 2,510 slug feet’.
The average value of the moment of inertia about

each axis is as follows:

Iv== 1469 slug feets
17==1498 slug feet’
IVZ= 2510 slug feet2

IT= =1546 slug feet9 (from nose-up swinging,
X axis inclined 13.4°)

ITD = 1490 slug feetz (from nose-down swingigg,
X axis inclined 13°)

ADDITIONAL MOMENTS OF INERTIA

The additional moment of inertia about the X axis
is assumed to be contributed only by the wings and
the horizontal tail surface. The X afi is in the plane
of symmetry of both the wings and the tail surface.
The equation for the additional moment of inertia for
this case is

1A Ppl%l?.—
48

For the wings

c =4.62 feet b=34.33 feet aspect ratio= 7.4

COMKIITEE FOR AERONAUTICS

then, from iigure 3,
k’= 0.89

and

I.w =
2X 0.89X 0.00238X (4.62)2X 7X (34.33)3

48
= 241 slug feetz

For the horizonttd tail

c=4.08 feet b= 9.50 feet aspect ratio =2.6

then

k’= 0.62

and

~ = 0.62X 0.00238X (4.08)2X 7X (9.50)3
At 48

= 1.3 slug feet2

so that for the X axis

IAX = IAW + IAt =241.0 + 1.3= 242.3 slug feet2

The principal items that contribute to the additional
moment of inertia about the Y axis me the fuselage
and horizontal tail surface. For the horizontal area
of the fusekige an equivalent rectmgle is considered,
with length equal to that of the fuselage, and width
equaI to the square root of the mean square of the
fuselage width. The dimensions are

b= 18.3 feet c=2.07 feet aspect ratio= 8.8

for which
k’= 0.95

As the Y axis is parallel to the chord but is displaced
from the center of the additional mass of the fuselage
by a distance 1,

1 k’pc%rbs+kpc%rblz
Af

.— —
48 4

The constant k is assumed to be 1.0 and

1=4.1 feet
Thus

I 0.95 X 0.00238X (2.07)2X TX (18.3)3
Af= 48

+ 1.OXO.00238X (2.07)’xrX 18.3X (4.1)2
4

==6.3 slug feet2

The Y axis is parallel to the span
tail, so that

kpc%b~I -7At

where k= 0.78 and 1= 15.8 feet
md

of the horizontal

lA,= 0.78x 0.00238 X (4.08)’X TX 9.50 X (15.8)2
4

= 57.6 slug feet2
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Then for the Y axis

1.4=EIA,+IA,= 6.3+ 57.6= 63.9 slug fmtz

The determination of IAs is similar to that for lA=

with the difference that the vertical fuselsge and tail
areas are considered;

IAz= 31.6 slug feetz

TRUE MOMENTS OF INEETfA

The true moment of inertia. about any d is the
difference between the tiual moment of inertia and
the moment of inertia of the additional mass about
that axis. Thus

A= IVX—IA=U 1469—242E 1227 Slugf~t?
B= IVr —IAY= 1498— 64 = 1434 slug feet’
C=IVZ –.LZ =2510– 32 =2478 slug feeta

lXz(nose-up) = lV=z(nose-up) – .IAx= 1546 – 242

=1304 slug feetq

Ixz(nosedown) =lVXz(nosedown) – IA== 1490
– 242=1248 slug feet’

Locdion of Ptincipal A.M:
The product of inertia about the body ati is given

by
= -A do i- c .9i&e– Ixz

sin 20
where

NoeuP Nmedown
e= – 13. 4“ 13.0°

sin o= – 0.2317 0.2250
Cos0= .9728 .9744

sin 20= –. 4509 . 43s4

and the moments of inertia are as given above.
From the nose-up swinging

~ 1227X (0.9728)2+2478X (– 0.2317)2– 1304=21 s
– 0.4509

From the nose-down swinging
.
~= 1227X (0.9744)2+2478X (0.2250)2– 1248= 96 y

0.43s4

the average of which is D = 59.1

The tangent of twice the angle between the principal
tiandthe Xaxisis givenby

2x59.1
m 2’=2-478– 1227‘0”0945

7=2°42’

%ncipd Momenis OfInertia
The principal moments of inertia are given by

A~=Acos%+c siu’T+Dsin2T
BIv.B

w= Asin%+ccoe%-Dsin2T

then, since
r=2°42’

sin T= O.0471

COS r= O.9989

sin 27= 0.0941

and the other quantities axe as previously determined,
it follows that

Arv= 1227X (0.9989)2+2478X (0.0471)2+ 59.1 X 0.0941
=1236 slug feet2

Bm= 1434 slug feet2

~= 1227X (0.0471)2+2478X (0.9989)’– 59.1 X 0.0941
=2471 slug feet2
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TABLE I.—MOMENTS OF INERTIA OF SEVERAL AIRPLANES
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