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AN ANALYSIS OF LONGITUDINAL STABILITY IN POWER-OFF FLIGHT
WITH CHARTS FOR USE IN DESIGN

By CrARLES H. Z1MMBRMAN

SUMMARY

This report presents a discussion of longitudinal
stability in gliding flight together with a series of charts
with which the stability characteristics of any airplane
may be readily estimated. .

The first portion of this report is intended, primarily,
for students of the subject. The relationships governing
stability characteristics are derived from equations of
equilibriuvm referred to moving axes that are tangent
and perpendicular to the instantaneous flight path. It
18 shown that instability of the motion can arise only
through an increase of linear and angular momentum in
the system during one complete cycle. The interaction
of events leading to increase or decrease of momentum
during a cycle 18 explained in detail. The construction
of charts showing the effects of the nondimensional
ac, dCp
de’ da’
the stability characteristics is explained and the effects
of the more important of the aerodynamic and mass
characteristics of the airplane, as revealed by the charts,
are discussed.

The latter portion of the paper is devoted to a series of
40 related charts with which the dynamic stability of any
airplane in power-off flight may be readily estimated.
The use of the charts 18 explained in detail so that
reference to the earlier discussion is unnecessary.

parameters Cp, Cp, —my, and —um. Upon

INTRODUCTION

The longitudinal stability of aircraft has received
very extensive and exhaustive treatment by able
writers (see references and bibliography), but the
classical treatment of the subject has been rather
difficult for those not familiar with higher mathematics.
The study reported herein was undertaken with the
purpose of making more understandable the mathe-
matical treatment and of preparing a method of esti-
mating stability characteristics that would be suffi-
ciently accurate and rapid to appeal to practical
designers.

The section preceding the group of charts for deter-
mining stability characteristics in power-off flight is
devoted to a derivation, in relatively simple terms,
of the mathematical relationships and to a discussion
of the formulas. The portion following the group of
charts consists of an explanation of the method of
using them. It is not necessary to read the first por-
tion in order to use the charts with satisfactory results.

All symbols not given in the report cover are defined
where used and are also listed in the appendix.

I. ANALYSIS AND DISCUSSION
DERIVATION OF MATHEMATICAL FORMULAS

Definition of stability characteristics.—The sta-
bility characteristics of an airplane are those qualities
which define the nature of the motion after a deviation
from an initial condition of equilibrium. The motion
may be periodic, consisting of a series of oscillations
having & certain period and rate of increase or decrease
in amplitude, or aperiodic with a certain rate of return
toward or deviation from the  equilibrium position.
In many stable sirplanes the return to a condition of
nonoscillating equilibrium is spoken of as aperiodic or
“dead beat’” when it is essentially oscillatory in
character but very heavily damped.

Fundamental conceptsand assumptions—The forces
and moments determining the motion of the airplane
‘are of two kinds: (1) Aerodynamic forces and moments
created by movement of the lifting and control sur-
faces relative to the surrounding air; (2) mass forces
and moments arising from the weight and acceleration,
angular as well as linear, of the airplane. The funda-
mental basis of the discussion presented in this report
is that at all times there exists a state of equilibrium
between the mass forces and moments and the aero-
dynamic forces and moments.

A complete treatment of the stability of airplanes
would be extremely lengthy and very complex. Cer-
tain assumptions have therefore been made. As the
motion of an airplane is three dimensional, it is to be
expected that any treatment of the subject will be
incomplete if it neglects certain of the components of
the motion. Fortunately, conventional airplanes are
symmetrical (within limits here applicable) with
respect to the plane that includes the fuselage axis and
is perpendicular to the span axis. It is obvious that a
longitudinal motion having no component of linear
velocity perpendicular to that plane or no component
of angular velocity about any axis lying in that plane
cannot introduce asymmetric forces or moments.
Such motion can therefore be treated as an independent
phenomenon.

The longitudinal-stability characteristics will neces-
sarily be affected by any deflection of the lifting or
control surfaces. The influence of wing elasticity and
of free longitudinal control will not be considered in
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the primary analysis because such a consideration
would complicate the relationships and obscure the
fundamental principles.

It is assumed that forces and moments acting upon
the wing and the horizontal tail surfaces vary as the
square of the air speed and the first power of the angle
of attack of the individual surfaces and that they are
not affected by the rate of change of either the air
speed or the angle of attack. Also the forces upon
the lifting surfaces are assumed not to be affected by
the rate of rotation of those surfaces (reference 1).

Each of the foregoing assumptions necessarily m-
volves a certain degree of approximation but they are
confirmed by comparison between measured and cal-
culated values of stability characteristics (reference 2

and unpublished date) and are justified by the simpli-

fication of the relationships they permit.

Equations of equilibrium.—As has been previously
stated, the course of the airplane in flight is determined
by the conditions necessary to maintain equilibrium
between mass and aerodynamic forces and moments
at all times. In steady flight the equilibrium may be
expressed by the equations (see fig. 1):

X torizontal

F1GURE 1.—Angular and vectorial relationships in filght, power off.
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where (1a) refers to forces tangent to the instantane-
ous flight path, (1b) to forces perpendicular to the
instantaneous flight path in the plane of symmetry,
and (1¢) to moments about an axis through the center
of gravity and perpendicular to the plane of symmetry.
After displacement from the steady-flight condition
the equations of equilibrium read:

W sin (v-+A7)+3 2p(V+AV)’s<0D+A0D)“—m‘f}t’

Weos(v+Av)— p(V +AV)2‘S'(0L+AOL)——"mV Tb)(@2)

§P(V+AV)’SC(C’,;+AC’m)=ka2§F c
where

%7, acceleration tangent to flight path.

Vd'y centrifugal acceleration normal to the flight
dt  path.

d?0 angular acceleration of airplane about the
di¥  lateral axis.

Since the effects of angular velocity and of acceleration
upon the forces are neglected, ACp may be written as

Aa@ and AC; as A tin'z,’ AC,, may be written as
dC’,, dCn

+Ag7dq— where Ag=¢q, the angular velocity in

pltch, since g is zero in the original condition; and
AV, Av, Aa, and ¢ are small quantities by assumption.
Terms involving products of two or more small quan-
tities will be neglected.

Also

W sin 7+%pV’SOD=O a sin (y+Ay)=sin v cos Ay+cos v sin Ay
; =sin v+ Ay cos v
W cos y—=pV3S8CL=0 by(1y | end
SR = @ cos (y-+Avy)=cos v cos Ay—sin y sin Avy
%pV’ScC’,,,=0 . Then: =¢08 y—Avy sin v
W sin y-= WAy cos 'y+lpV’SCD+pVSODAV+%pV28d%A =—mlY 2
W cos y— Wy sin y—2pV*SC,— pVSO,,AV_§pV25‘ffLAa= —de" bi(3)
-21-pvzsca,,+pvsc0,,AV+§pvzs o p ot 2pV25650m L 9O ik T c
Subtracting (1) from (3)
WA~ cos 'y—l-pVSODAV—I—%pV“’Sd GDAa—-—m(?t] ) a
— WAy sin 'Y—:pVSOz,AV—lpV’Sd-&Aa= —mV‘% . bi(4)
PVSeCnA VLo VSe ddi 0+s V?Scd—O—A —mk 20 ¢
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From equations (1)

w cos-7=-;:pV2.S'C’L

W sin y= —%—pV’SOD

C=0
Therefore,
1 1...dC av
%pV’SC’DA'y—pVSOLAV—lpWSdOLAa= —mV%'—; b(5)
Cu (7]
2pV’S dq -|-—-pV28' d Aa —ﬂlky% c
Dividing (52) and (5b) by £ pV2S and (5¢) by pSV
2 ‘
av
A AV dos m dt
. Oty =207y —pPha=2-cy; 3
do,,, mlcy’ %
dq q+ Vc Aa= SV aF
Let

ES%:-r (after Glauert, reference 3)

_T7=AV

av

a_dv'

Vo di
—OLM—zaDAV'_dODAa=2T%Tti' a
CpAy—2C, AV — dOLAa—— ‘Z bl(7)
1 dO’,,, ]
V + GE—-A(I_ yzgztz C

Equations (7&) and (7b) are nondimensional and the
only variables are Ay, AV’, and Aa. In order to re-

duce (7¢) to a comparable form it is necessary to
rewrite éd%’ which is the only constant in the
equations not in readily usable form, and to express
6 in terms of v and a.

The greater portion of the change in pitching mo-
ment produced by rotation occurs because the rota-
tion changes the angle of attack of the tail surfaces.
A positive rotation ¢ causes the tail to move downward
with a velocity, relative to the center of gravity, equa)
to gl where I is the distance from the center of gravity
to the mean quarter-chord point of the horizontal
surfaces. The tangent of the ‘change in angle of
attack at the tail is tan Aa,=¢l/V which may be re-
placed by Aa,=gl/V for the small angles under con-
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sideration. The change in moment due to the change
in the angle of attack at the tail is

AM,=%pV’lSm,%Aa,
} 4

dCs,

da,’
S, area of horizontal tail surfaces.
1., tail efficiency.

| or, in coefficient form,

18, dC;, gl

AO{{”‘—'c §mda, 1%

Introducing an empirical factor K to allow for wing
damping

dO .Kl S; doz, l
K S, v

Therefore (7¢) may be rewritten as
1 ¢ 73 d(}m zdﬂa
Lngle 8 Woroamrtrl  (8)

,q+ Lye
Dividing (8) through by ky* and multiplying by r to
make the expression nondimensional,

1 P _ dCy, S, 1 me dCy a0
"k T, § 1T A e AT @)
Leotting ——=p (reference 3)
12 _dCs, S, 1 le dCy a0
3P K Ta, § Mt ok g Ae=""gp
For convenience let

10 __do,,S,
MR da, 8 e

(10)

and
1 dCn
2 r _d_—m"

d?0

myrq+ pmaAa—‘r” T 48]

Since §=(a++v) and q=a¥ (see fig. 1), ¢ and 6 may

be replaced by « and v reducing the number of vari-
ables in equations (7a), (7b), and (11) to three. These
equations are rewritten as,

dCp av’

—CLA7—20DAV’—TAa—2T T a
ODA7—2OLAV’—@’A¢1— ‘z b{(12)
MeT dt+dt Tpmala= TQ(dt*"'Eﬁ* g

The foregoing equations of equilibrium must each
be satisfied at each instant (neglecting approximations
assumed) of flight. It is obvious that each of the
variables Ay, Aa, and AV’ will affect each of the others,
and it is reasonable to assume that, if any one of them
follows a regular scheme of variation with time, then
the others will vary according to the same scheme.
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Assume therefore that the variables change accord-
ing to the exponential expressions:
Ay=Ae
Aa=DBe*
AV =6
(In mathematical terms € is an integrating factor.)
where
A, B, and C are constants depending on the mag-
nitude of the initial disturbance.
¢, the base of natural logarithms=2.71828.
)\, an arbitrary constant.
t, time in seconds.
It appears that if \ is positive Ay, Ae, and AV’ will
increase with time and therefore the motion will be
unstable. If N is negative the departures from the
condition of steady flight will decrease and the motion
will be stable.

Now if
=Ae
—daxt=A)\e“
%=A)\’e“
etc.
Substituting in (12)
——CLAe"‘—2C’DC’e’“—d0DBe“—21-)\0e“ n}
OpAr—20,0cr— ddO"BeM= —2rANeM b{(13)

mer(Brer -+ ANer) - pmaBeM =1 (NBeM - NAere
Each of the equations may be divided by e

—CLA— 20D0—dUDB 2r\C 2
dnL =—2\A4 b (14)
mqfx(A+B)+,LmaB=(Tx)f(A+B) ¢
From (14Db)
mA+0DA—d0LB
C= 50,

Also, since + and X do not appear except in the product
A, let M=)

Substituting in (14a)

Cof v, d0,.\ dC,
—C’LA—E<2)\A+GDA L)- op

N _da,
_@@x A+Cod daB)
Multiplying by Cp
— C2A—20p\ A— 0D2A+0D‘fi0
do,,B

g OdeO”B

—2(M)2A-+ N CpAd—N
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or, since O+ Cp?=Cg?

A C2+3CpN +2(N)
_ B( + CDdG" ddC’D +>\'d0L
Therefore,
dC dC’ 40y,
A_9d O N
B (JR“+3(J)D)J-1-2()\’)2

Cr

- Also from (14¢)

AlmN —(N)=B[(\')*—m N —pum.]
Therefore,
A pmatm N —(N)?2
BT —mNFV)?

It therefore appears that equilibrium at all times is
possible when, :

ac,

dC’D dCL '

Orda % da TN da _pmatmd— (V) (15)
C2+H30pN 20N~ —m N+ ()2

or
(—meN + (GO E

=[Ce"+30oN +2 (V)] [pmatm N — (V)]

Expansion of this relationship and collection of terms
give the biquadratic expression

'+ (w)a[_m,Jr.g(gGD +d0L>]

+<x’)’[—mq§(3ap+%(’i -

2( C,DdC’L dC’D Loy ):l

PLonio-o 1) o]

(16)

For simplicity the biquadratic may be expressed as:

AQNY+BWYPHCON)2P4-DN+HE=0 an
where

A=1
5] et 30,492

0| ~maz (3004 G) ot 3( o520 Z2 1 07)|

D= I: —mMyy 5 (GD 40y -y dCD+ % )“" OD#ma:l

2
E= —%—#ma

Unfortunately there is no simple, direct method of
solving biquadratics. It is possible, however, to factor
& biquadratic into two quadratics, each of which is
susceptible to direct solution.
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The biquadratic
W)*+B()*+C(N)*+DN + E=0
may be replaced by the expression
[A)2 4@ N +bi[(V)*+asN +bs] =0

from which
————
k,=—%i‘\/(a§l'> —'bl a
or (18)
—
i@
It appears that
B=a;+a.
C=a,a3-+b,+b;
D=a;bs4-asb,
E=b1b2

The general case may be worked out as follows:

a,=B—a,
C=a,(B—a,)4b,+b.
D=a1b2+ (B—al)bl

E
b2='b—1
Therefore,
C=0,(B—a) +bi+i a
_ z ‘ (19)
D=a/1b—'+(B_a'1)b1 b
Dropping the subscripts:
BY . E
a=§:}:\/<§> —C’-l—b—i-—b !
and (20)
a— b*B—bD b
T VP—EFE

These relations can be solved by plotting the curves
of b against ¢. There are two intersections of these
curves, in general, corresponding respectively to a,
by, and to ay, bs.

Also from (19)

bE=0—b—a(B—a) 2
D=aC—ab—a*(B—a)+b(B—a)  bi@1)
,_D—a0+aB—a

= B—2a ¢

Substituting (21¢) in (19a)

—_ 2D __ a3
O=a(p—a)+(P=GHLE=T)

B—2a
+E<D—a0—l—a”B—a3

(22)

or
a“—-a‘(3B)+a‘(BB2+262,
— (B 4BC)+a2(2B*C+BD+(*—4
—a(B'D+BC*—4EB)+BCD—D*—B'E=0 (23)
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By use of the foregoing relationships the coefficients
of the quadratics may be determined with as high a
degree of accuracy as desired by graphical means or
by trial substitutions.

At first glance it appears that a 6th-power equation
such as (23) would be harder to solve than a 4th-power
equation such as (17). In equation (17), however, the
complex roots must be obtained; whereas in (23) it is
necessary to solve only for the real values. Equation
(23) is useful from a practical standpoint chiefly in
obtaining accurate values of a; by making trial sub-
stitutions from approximate values obtained from the
expression for a, given on page 6. Because of the
very smell value of ¢, it is generally not necessary to
include the terms in (23) that contain powers of a,
higher than the third.

Significance of \'.—As sppears in equations (18),
there are possible either 4 real values of A/, 2 real
and 1 pair of complex values, or 2 pairs of complex
values. The values of B, C, and D in the normal
flying range of conventional airplanes are always
positive because of the signs and magnitudes of their
constituent factors. It is obvious that no positive real
value of N can satisfly the biquadratic unless E is
negative but that if E is negative there is such a
solution for N. A positive real value of N’ signifies
an aperiodic divergence. If —pm. is positive corre-
sponding to static stability, then E is positive and the
biquadratic expression indicates no possibility of an
aperiodic divergence.

The values of B, C, D, and E are, in general, such
that the solution for N\ givés two pairs of complex
values. It can be shown by mathematical reasoning
not essential to this treatment that an expression of
KeVY—where M =¢'+iy’ and where K, {’, and ¢’
are constants and i=+/—1 — can be replaced by an
equivalent expression, K'e!'” cos (y't’—8) where K’
and § are new coustants. Therefore Ay=A4 > may
be replaced by Ay=A’ed"" cos (Y’'t'—8) and similarly
for the other variables. It appears that the motion
indicated by a complex root is therefore made up of
sinusoidal variations of the angle of attack, angle of
attitude, angle of the flight path, and velocity along
the flicht path and that the amplitudes of the oscilla-
tions increase or decrease with time depending upon
whether ¢’ is positive or negative. From equations
(18) it appears- that

3’2'= "%aa
e
wi=yft—(%)
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where {7/, {3/, Y1/, and .’ express the stability charac-
teristics of the airplane.

From the expression Ay=A’e"" cos (Yy't’'—8) the
period of the oscillation is P’ =i—f and the time for
the oscillation to damp to one-half amplitude from any
instant chosen as the time of starting is 7"/ =—%-
Since A was set equal to Ar during the derivation, P’

and 7" are in units of time which are equal to r=‘iVl

seconds or the time in seconds necessary for the air-
plane to travel the length I at the velocity V multi-
plied by the relative-density factor p. Therefore the
final expression for the time in seconds for the oscilla-
tion to decrease to one-half amplitude is

q_—0603 _—0.603 m_
14

—0.313 /W
='_§I—"/;STOL

under standard conditions; and the period in seconds is

(24)

v
=225G (25)

under standard conditions.
Substituting for ¢ in equation (23):

(28)°+(2¢")°(3B) 4 (23")*(38B°+-20)
+(28")*(B°+4BO) +(2{)*(2B*C+BD+(*—4E)
+@2¢")(B*D+BC*—4EB)+BCD—ID*—B*E=0
(26)
From equation (21)

W) D+2¢'CH+3(¢")*B+4G")?
B4t

Reference to equation (26) reveals that from the

values of B, C, D, and E in the normal-flying ranges the
coefficients of the terms in 2¢’ will all be positive.

Therefore a positive real value of ¢’ can exist only if

27)
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(BCD—D*—B2E) is negative. This fact was first
pointed out by Routh (reference 4) by a somewhat
different derivation and the factor is known as “Routh’s
Discriminant.”

There has been developed in reference 1 an approxi-
mation for the case when D and E are small with
respect to B and C by assuming that

a=B
1=0
Then .
D=Bb;+}a,C
E=0Ch,
or
bz=%
and
_D_BE
Q=0T
It follows that,
B
3'1'=—§ (28)
2
111’1':—‘/ 0—('5 ’ (29)
, 1/D BE
tr=—3(2-2F (30)
, E 1/D BE\
1) =\/5—4 T (31)

These approximate expressions are generally used
and are satisfactory for most cases encountered.

Since B and C are large in the normal-flight range,
values of ;' and ¢, define a very heavily damped
oscillation which is, in general, of short period. This
oscillation is unimportant, except possibly in special
cases above the stall; throughout the remainder of the
report ¢’ and ¢’ will be used without the subscripts
to refer to the slightly damped phugoid oscillation
previously defined by &’ and y.’.

Derivation of expression describing the sinusoidal
motion.—The expression Ay=AeMd=Ae"" can be
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replaced by the equivalent expression Ay=A'e!"
cos (Y't’—s) where A’ and & depend upon the instant
from whence time is taken as zero. If time is zero
when A+ is at a point of maximum amplitude A’=Av,
and =0 so that
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where Aay, AVy’, and A, are the magnitudes that the
variables would have were they at & maximum at zero
time and &y, &, and &; are phase angles of the variables
with respect to the flight-path angle.

These values of Ay, Ax, and AV’ may be substi-

Ay=Av,et'" cos 't (32) | tuted in equz?.t.ions (12) and solutions made for ¢’
It follows that and ¢’. It will be found that the complete solution
Aa=Aayet" cos (¢t —8) (33) for ¢’ and ¢/ given in the precedjng section can be
AV =AV et cos (Y1’ —8,) (34) | checkedin thlsma.nnera.ndthevaluesof -77, tans;,
Ad=Afet" cos ('t —8y) (35) | and tan & are found at intermediate steps to be:
dcy
By W(30D+4;') @BCyF4ar) & (36)
1.&'(3017 d0L+4g)
tan &= (37)
dC dCp , ,,dC, 3Cp+4 , , R
02—, 200 d;) CRE 8D (et +sma—167Y— ('Y}
aq dC dc,
A’YO ( - +g- Ta &_-d—__:
AV yV dOD sin dCp cos b, (38)
do da
20/ Cig (28 —mq)+¢'%@ N
tan &= (39)
(02— 020 2 T v 2 ettt 0= 607 |

where

N= —2ume—t5'm— 2 +66) @ —m)(Cot 52|

The detailed derivation is not repeated because it
18 quite long and tedious and introduces no new con-
cepts.

Application of mathematical formulas.—The rela-
tionships derived in the preceding section of this
report make possible various treatments of the prob-
lem of determining stability. The period and time

to damp to one-half amplitude may be determined-

directly having given Gy, Cp %%; %Ciy—m,,
—um, from the equations (17), (24), (25), and either
(26) and (27) or (30) and (31).

An understanding of the underlying principles gov-
erning stability can be had only from & consideration
of the variations of the angle of attack, angle of atti-
tude, angle of flight path, and velocity along the flight

mq(e+2¢") +pma—[d+2¢ c+4 (")

path relative to each other. Figures 2 to 14 are in-
cluded to show the nature of these variations. Figures
2 to 9 present the effects of changing —m, and —pum,
independently for two sets of typical values of

Cry O, = 4Gy, d—dci Figures 10 to 14 illustrate

qua.htatlvely the variations in phase relationships re-
sulting from changes in —um, and serve as a basis
for the discussion of their effects upon the stability
of the airplane. The relationships (36) to (39) can
be used to determine the characteristics of the motion
for any particular design.

The solution for the stability characteristics gives
no direct indication of the effect of variation of the
individual parameters upon the stability characteristics.
By means of the rel&tlonshlp that follows directly
from equation (22)

+[_mq[d+2§"0+4(§',)2]—#ma(3+2§") ‘|‘2§"[d+2§"0+4(§")2]}
—m+(c+4¢")

—mg+(c+4¢")

—J #ma{

—mJdF2y T &) — pma(e+23) 20 A+ 2T c+4(r')2]] #0)
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where
=£<30D+£lﬂ>
d=-<0’ a0, dOD-{-OR )
e=1.50p
F=50s*

charts may be plotted showing the variations of —m,
with —um, necessary to secure given values of ¢’
and ¥’. A number of these charts have been prepared
covering the range of conditions likely to be encoun-
tered in normal flight and are included in this report.
(See figs. 15 to 54.)

DISCUSSION

The mathematical relationships evolved in the pre-
ceding paragraphs permit calculation of the probable
stability characteristics of a proposed design, but they
offer little information as to the relative importance
of various factors or as to the reasons for the effects
produced by changes in those factors. In the following
paragraphs the oscillatory motion is first considered
in detail so that the sequence of flight conditions that
must exist if instability is to arise may be pointed out.
Next is given a general discussion of charts (figs. 15
to 54) that show the effects on the stability character-

istics of the six fundamental parameters Gy, Co, %9,
doc
%%’: —um,, and —m,. Finally, the effects of various

physical characteristics of the airplane on its stability
are considered in the light of the earlier discussion.

The oscillatory motion.—When the terms in AV’
were eliminated by simultaneous solution of the equa-
tions of equilibrium tangent and normal to the flight
path, respectively, the following equality was found to
exist:

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

A0e_ 405 | A0,
O da _pmatmN — ()3
OR’+30D)\’+2()\')2 gl W

The terms to the left of the equality sign arise out of
the necessity for equilibrium of forces; the terms to the
right arise out of the necessity for equilibrium of
moments. If a case be investigated with —um,=0

) dOL_ %Ci_l_)\'dob——OR —30pN —2(\")?
or
)\,)2+§<30D+d01, X, 2<0Dd0L Ode'%)"i-ORz):O

=— -(3 COp +dOL>

i\/ﬁ@a”"'(fi_%) ( als dO’D_I_OR)

p— __(3 o +d0L)

_ \/ (c’deL dGD 2o 03) 16(30” +d0,,>

Since both Cp and %%5 are positive below the stall, it

follows that if —um, is zero the linear motion of the
airplane is a heavily damped oscillation with the period

2
\/ _(Opd@, dﬁu —I—ﬂ-C’B) <3 o, _I_dOL

and the time to damp to one-half amplitude

0603
l(3(;',,+—‘-"6L>
4 da

all in nondimensional units, or the motion is an aperi-
odic convergence with the time to converge to one-half
amplitude

0.693

,=§(30D+d@ i\/16<30,,+d0L> —(ODdOL d0D+GR)

depending on the relative magnitudes of the quantities.

Since instability of the linear motion cannot arise
when —um, is zero, it seems probable that under-
standing as to the underlying causes of instability may
be gained by considering the effect of —pm. upon
the sequence of flight conditions during oscillatory
motion. In the following paragraphs the part played
by —pm,. is analyzed by physical reasoning. Only
the case when —um, is positive is considered because
when —pum, is negative an aperiodic divergence from
the equilibrium condition occurs and the question of

dynamic stability does not arise. It is first pointed
out that —pm. plays a primary part in determining
the phase angles between the change of angle of attack
and the changes in attitude and flight-path angles.
It is next shown that stability of the angular motion
depends upon the phase angle between the angle-of-
attack change and the attitude change. It is finally
shown that instability of the linear motion can arise
only when the phase angle between the angle-of-attack
change and the flicht-path-angle change falls within a
certain range.
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Figures 10 to 12 illustrate qualitatively the effect
of —pum, upon §; and §,, the phase angles between the
angle of attack and the flight path and attitude angles,
respectively. When —um,. is zero the attitude does
not change with time and hence, if an oscillation is set
up in the flight-path angle (v), it is obvious that the
angle of attack must change as shown in figure 10 where
5, is 180°. Although not shown in figure 10, physical
reasoning leads to the conclusion that 5; is 90°. When
—um, i8 very large the moment tending to cause the
attitude to change with the flight path is also large
and the angle-of-attack change is small. The condi-
tions are approximated by figure 12. The phase
angles 8, and §, are also small and approach zero as
—pum, is increased. Figure 11 shows an intermediate
case which more truly represents the usual condition
than either of the others. Here §,<{180° and 5,<{90°.
The curves of figures 10 to 12 were drawn from physical
reasoning but are fully confirmed by the computed
curves of figures 2 to 4 and 7 and 8.

Referring to the curves of figures 2 to 9 one sees
that, if 2 points are chosen exactly 1 period apart when
Ay is zero, the value of AV’ will be found to be greater
at the second point than at the first if the motion
is unstable, to be unchanged if the motion is neutrally
stable, and to be less if the motion is stable. Similar
observations can be made with respect to the val-
ues of Ay when AV’ is zero and to the values of

dag In other words, when neutral

E—when A6 is zero.
stability exists, the momentum along the average
flight path m(V+4AV), the momentum perpendicular
to the average flight path (mV sin Ay), and the angular
momentum are each the same at the end of a period
as at the beginning. If instability exists, there is
more momentum at the end of the period for each of
the types of motion than at the beginning. It is
therefore desirable to consider the sequence of flight
conditions that results in the increase or decrease of
momentum in the system.

Consider first the angular motion. Figure 13 is an
illustration of a typical set of variations of Aa, Ay,
and Af when ¢’ is zero. At the beginning of the half

period when Af is & maximum, Aq { or A %) is zero and

the angular momentum BAg is therefore zero. At
the end of the half period Aq is again zero. It there-
fore follows that the angular momentum introduced
into the system during the half ¢ycle must be balanced
by the momentum removed during the same interval.

At each instant when there is a finite value of Aq,
there is a, pitching moment introduced into the system

equal to Aa oV2Se dd_C',,, Since a moment A applied
during a tlme t introduces angular momentum into the
system equal to Mt

Yimx dc’
2 m

mky ( > fano pV Sc szt
Ylar 1
p=0 2°
represents the angular momentum introduced into the
system during one-half cycle (neglecting the effects of
terms involving the products of two small quantities,
as has been done throughout the discussion).

Considering, for simplicity, the case of neutral
stability

yiox
mky< > ft ] :lsz Sc—ﬂAao cos (Yyt—é&,)dt

{mmy
V’ScAaoddC(; *
- "l’ i ("l’t_al)
pV’ScAao%%'sin 5

v

is the angular momentum introduced into the system.

The rotational velocity causes a change of angle of
attack at the tail that introduces & moment tending to
oppose the rotation. The magnitude of this change is

V18202 Aot cos (wt—b)dt

do db
a, tag_ M T
) I A A 7
since
jdo_do
T

dC.
The moment is —szpV 381 T — S) 7 (Seep.3)

The angular momentum removed from the system

(¢=0) during the half cycle is
Ky 2pVSl*(H-—— ) ¥A% sin ydt

Yl
mhy® (d > J;t-
dC’z,S,

In the case of neutral stabﬂlty the momentum intro-
duced must equal that removed and therefore

OZ; t

pV3ScAqg d-a% sin &,
14

Z;SI

dc,
—n KpVSE xS Afy=0

or

o
v m,=0 (a1)

From figures 2, 3, 4, 7, and 8 it is evident that as

sin 8§,—

—um, Increases —];; —Aﬂ, and &, all decrease. The first
BV Avyg -

term in equation (41) may therefore either increase
or decrease with increase in — um,; hence increasing
—um, may decrease the angular momentum added
during & cycle. What happens in an actual case
depends on the magnitudes of the quantities, as will be
brought out later in the discussion.
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The introduction of linear momentum along and
perpendicular to the flight path might be discussed by
considering equations (12a) and (12b) separately but
the analysis may be simplified by combining the two

7
through elimination of terms involving AV’ and dZ .

The relationship established is:
Y__
272‘5 =
dCL 0 dOD dCy da
ol S T
Considering the case of zero dampmg during the in-
terval from yt=0 to Yi== it is obvious from figure 14
that the integral sum of terms multiplied by Ay or by

—032A7_30D78—t

2
AY is zero because these quantities are symmetrical

dae
with respect to the zero line. The equation of equality
of momentum introduced to that removed becomes:
f pox J‘ L ( dCy dC’D Aadt
wi=0
f ‘““' dC’L da
gm0 da dt
which reduces to
( dCy dGD
—3Cp Ea_ Aa" sm & +%i—” ﬁa" cos §,=0
(42)

The growth of linear momentum therefore depends
upon 5, 2&, and ¢’ in addition to the parameters

Yo
ac, dC, . Aay . ..
Cyp, Crp, ED’ an EL Since A—z is normally positive

the following facts appear: Cp is a factor serving
always to remove momentum from the system;

( do"— L% % is a factor adding energy to the
system when C} dGD> D%Oa—z’, as is normally the case
dCL

at high angles of attack; and —== adds momentum to

the system when 8,<90° and removes momentum
when 6, >90°. When —pum, is zero, §,=180° and the
factor removing energy from the system is (3 Gp+d0"

as was shown earlier i m the discussion. As —um, is
all decrease (figs. 2, 3, 4, 7,

'll/'
d0y,  ~dCpo\1 Ay .
and 8). The factor < 200 )7 By, 8Ing,

reaches its maximum at some point between §,=180°

—.ane dOL Aao
and §,=90°. The factor 2= Ta Aryo
a stabilizing to an unstablhzmg influence at §,=90°
and reaches a maximum as an unstabilizing element

between 5,=90° and §,=0. It would appear at first

increased, BIA— , and

cos &, changes from
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thought that the effect of %%5 as an unstabilizing
factor would always be small because of the decrease of

2;‘“W1th increase of cos 8 but such is not necessarily
0

the case because of the large ratio of %;" to Op, particu-
larly at low angles of attack.

There is an interesting point in connection with the

factor (C’ a0 CL%% that appears as the chief

unstabilizing element at small values of —pm,. If the
law of induced drag be applied to determine Up and

.dTOD ; it appears that

dO
( dCy__ dO’D _ODF%C’DZ_L_l_OD:{%_ 3 Dy
ZdC’L 20 dOL
= DPHZ"" AR
s S

de, C
E_L<0Dp ﬂ_L)
dOL(ODp‘—OD{)
Therefore equation (42) may be rewritten as
_30D+dOL Aaol:(C’D, Opp)‘ll, sm 81+COS 51]—0 (43)
It appears that instability of the linear motion for

| small values of —um, can occur only at angles of

attack where Cp,>Cp,. The detrimental effect of
Op, is not as great as at first appears, however, be-
cause the damping factor 3 Cp increases with Cp, also.
In the foregoing analysis, the effect of {’ has been
neglected and therefore the statements made cannot
be considered rigorously true when the stability or in-
stability is of appreciable magnitude. The analysis
does, however, point out the more important influences
and the nature of the interaction of events that brings
them into play. Equation (43) cannot be applied near

20,25

the stall where % ceases to equal b,a .

s

In figures 2 to 14, inclusive, and in the discussion of
the oscillatory motion an arbitrary value of Ay,=1 has
been assumed. No attempt will be made to evaluate
Ay, in terms of control movements or gust velocities
as the actual magnitude is unimportant with respect
to stability (assuming that the deviations are not so
great as to destroy the validity of the basic assump-
tions). It seems not out of place, however, to suggest

; ; Acg AVY' Al
that relative magnitudes of Ave Bve Ao 8y, 8, etc.,
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may have important bearing upon the comfort, ease of
handling, and design load factor of aircraft and that
further work taking these factors into consideration
might lead to valuable information.

Charts of rotational damping factor against static
stability factor.—In the section dealing with applica-
tion of mathematical formulas a convenient graphical
means of showing the variation of ¢’ and ¢’ with —m,
and —um, has been described. This method of pres-
entation was given by Gates (reference 5) in essen-
tially the same fashion although differing in detail.
In reference 5 preference is given to charts with
coordinates of tail volume and fore-and-aft location
of the center of gravity. Preference has been given
in this report to charts with coordinates of rotational
damping factor and static-stability factor because they
are more convenient for use with data from wind-
tunnel tests, they do not require assumption of arbi-
trary fixed values for several important factors, and
they cover & much wider range for & given number of
charts. The charts are entirely nondimensional and

vary only with Cp, Cp, %% %C-;B

empirical factors such as the K in —m,, 1, % (see

p. 17), ete., affect only —m, or — um,, as the case may
be, and their effects upon the stability are readily
apparent.

The series of charts presented (figs. 15 to 54) are
intended to show somewhat more precisely and com-
pletely than has been done in the preceding discussion
dO’D

Variation of

the effects of the parameters O, OD, —&; and ——

upon dynamic stability and to provide a convement
graphical means by which the designer may estimate
the probable stability characteristics of a proposed
airplane and the effects of various changes without
recourse to extensive calculations. The charts cover
the range of values of the parameters that appear
likely to be attained in the near future. The values
represented are summarized in table I.

Certain general characteristics of the charts are im-
mediately apparentuponinspection. As—pum,increases
from zero, ¢’ at first becomes more positive correspond-
ing to a decrease in dynamic stability but, at a fairly
small value of —um,, changesits trend and becomes more
negative. This tendency is general throughout all the
charts and is apparent whether —m, is large or small.
It will be remembered that such an effect appeared
probable from the discussion of the introduction of
angular momentum into the system during & cycle
by —m.. As pointed out at that stage of the report,
2‘—::) sin 54, and l,ll/,
the charts of variation of the stability characteristics
with —m, and — pm, show definitely that the decrease
of the product of these factors is much more than
sufficient to nullify the increases in —um, after a
certain value of —um, has been exceeded. Increase

all decrease with increase of —pum,;
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of ¥/, hence decrease in period of the oscillations, with
increase of —um, occurs at practically all values of
—m, and — pm,.

Increases of —m, give, in general, more negative
values of ¢’ and consequently more rapid dying out of
the oscillations. At large values of —um, increases
in —m, give more positive values of {’ but this effect
is not of practical importance. It will be noticed that
at fairly large values of —pm, increasing —m, has but
slight effect but that —m, becomes of increasing im-
portance as —pum, is made smaller. Increasing —m,
decreases ¥’ rather graduslly, giving oscillations of
longer period. It appears that if the criterion of sta-
bility be taken as the number of oscillations necessary
for the amplitude to decrease to one-half its original
value then the value of —m, is of particular importance.

The charts of figures 23, 27, 28, and 29 show that
increasing C;, without changing other factors increases
quite markedly the tendency to instability. This ob-
servation agrees well with the effect to be expected
from increasing Oy, that might have been predicted from

the part played by O in the factor ( Gy, _ %%’)

in equation (42).

The effect of increasing Cp without changing other -
factors appears in figures 29, 30, and 31. It will be
seen that increasing Cp reduces the range of instability
and brings the curves of {’=Fk nearer together with a
very large net increase in damping. The effect upon
¥’ 18 negligible.

The slope of the lift curve is of importance although
not giving such extreme effects as changes in G, and Cp
(figs. 34, 35, and 36). Here again the effect is in good

agreement with equation (42). Increasing %% tends

to extend the instability region to greater values of
—pm, or, in other words, if — um, is large, 5, is less than

0° and % becomes a definite unstabilizing factor.

do

At small values of —m,, d_aL is a stabilizing factor,

as is apparent from the curves. Increasing %’ also

tends to decrease ¥’.

Increasing the slope of the drag curve is distinctly
unfavorable to stability as shown in ﬁgures 42, 44, and
45, The penod of the oscillation is but shghtly
affected.

Reference to charts 15, 21, and 33 shows that the
goneral effect of increasing angle of attack is to in-
crease the region of instability but to decrease the
spread between curves of {'=k. It appears that
instability of the oscillatory motion is very unlikely
for small a.ngles of attack and becomes increasingly
likely with increase of that angle. On the other hand,
if —pm, and —m, remain unchanged throughout the
change of angle of attack, the value of ¢’ may become
more negative, which seems to be directly contra-
dictory to ‘the preceding statement. The explanation
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lies in the fact that at small angles of attack changes
of —pm, and —m, have little effect upon the damping
coefficient; whereas at large angles of attack a small
change in —pm, or —m, may change the damping
coefficient from a definite negative value to a definite
positive value. The period of the oscillation decreases
markedly with the increase of angle of attack but the
decrease is not so great as would appear to be the case
from consideration of the increase in y’. The period

VG,

in seconds is proportional to =7 and the increase in

C,, is sufficiently great partly to counteract the increase
in ¢,

The effects of various physical characteristics of
the airplane on the stability.—In the preceding dis-
cussion no consideration has been given to the various
dimensional characteristics, aerodynamic interferences,
etc., that determine the values of the fundamental
parameters. A large number of factors affect the
stability but in many cases the effects are of a minor
nature. Only the more important ones will be dis-
cussed in the following paragraphs.

The wing loading appears in but two places in the
analysis of stability in this report. The nondimen-
sional relative-density factor

_ m
r=157
w
S

=322,

131
—_Z_S_ (standard conditions at sea Tevel)

is directly proportional to wing loading and the factor

V¥
L
-r-_—S-V “55p IS proportional to the square root of

wing loading. Since p appears only as the coefficient
of —m, it is apparent that the variation of the non-
dimensional values of ¢’ and ¢’ with p are the same as
for variations of —pm,.. It therefore appears that,
if the longitudinal motion of an airplane with respect
to the air is to be unaffected, an increase in the wing
loading of a given design must be accompanied by a

proportional decrease in % provided that I, ¢, and

ky are unchanged. Aside from the effect upon —pm.
the wing loading affects the stability characteristics
through the time factor =, which appears in the reduc-
tion of the nondimensional units ' and ¢’ to the time
to damp to one-half amplitude and to the period of
the oscillation in seconds

—0.693

P ~
and

T
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If —um, is preserved unchanged as %V is increased,

both the period and the time to damp are increased
but the number of oscillations for & given degree of
damping is unchanged. The effect of an increase of
wing loading without change of other factors is there-
fore to increase both y’ and r with the net effect, in
general, of increasing the period; to make ¢’ more
negative if — um, is large, with a net effect upon the
time to damp either of an increase or of a decrease;
and to make ¢’ less negative if —um, is small, resulting
in & comparatively large net increase in the time to
damp to one-half amplitude.

The aspect ratio of the wing combination affects the
stability indirectly through its effect upon the para-

aC, dCo

meters T da’ and Cp at a given value of ;.

Increasing the aspect ratio increases %%‘ and decreases

both ‘fi% and Cp.

36 and 39 corresponding to aspect ratios of 5 and 8,
respectively, shows that (neglecting the effect due to

Comparison of the curves of figures

change of %%‘, which is comparatively small and will

not materially affect the conclusions to be drawn) the
net effect of increasing the aspect ratio is to increase

the range of instability. The decrease in %%‘3; an

effect favorable to stability, is less important than the
decrease in (p, which quite markedly tends to decrease
the stability.

The effect of parasite drag is brought out quite
clearly in figures 33, 36, and 40. (In general, increas-
ing the parasite drag also increases the slope of the
drag curve and this fact has been taken into account
in the figures by using the method of reference 6.)
It is apparent that the drag is an important item in
determining the stability characteristics of a design
and that the ‘“cleaner” the airplane the greater the
tendency to unstable oscillations. Increasing the
parasite drag results in a decrease in the unstabilizing
factor (Cp,—Cp,) and an increase in the stabilizing
factor 3Cp, which appears in equation (42) in the
discussion of the growth of linear momentum during a
cycle. It appears therefore that air brakes of various
kinds may be expected to have beneficial effects upon
the longitudinal stability provided that they do not
introduce undeésirable moments or interferences.
Highly efficient designs that achieve high values of
Cr.... Without the use of devices introducing parasite
drag may be expected to be deficient in longitudinal
damping.

The moment of inertia of the sirplane about the
latera] axis appears as the term ky®in the denominators
of the expressions for —m, and —m.. Increasing k;?
decreases both —m,; and —um, proportionally with a
corresponding increase in the time to damp. The
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effect may be readily visualized by imagining any
point —um,, -m, upon the chart moved from or
toward the origin along a radial line an amount such
that the ratio of the new distance to the origin to the
original distance is the ratio of the original value of
ky® to the new value. It is therefore to be expected
that distribution of the mass of an airplane along its
longitudinal axis may lead to unstable oscillations
although other factors such as length and size of tail,
location of the center of gravity, etc., are such that
ordinarily the damping would be satisfactory. The
effect upon the period of changing ky* is not great
although increasing ky* will, in general, lead to oscil-
lations of shorter period.

The location of the center of gravity affects the
longitudinal stability through its effect upon the

The

pitching moment of an airplane about the center of
gravity may be expressed as

terdeOa”—1 appearing in the expression for —m,.

Ons == Ol 04— 0+ Ono,+ O, + O,
dCs 18,
tai—— d a, ! e s
Differentiating with respect to angle of attack
dC, —4Cz, dCx,z dCn
o da Co—Ct+—7,° da c+ dap
de,dCs, ] S,
T2 da; oS ™
or, for practical purposes,
ac. dCn,
=T O O
4 480,18, ’
"da da, ¢S
where ‘

C,, ratio of distance of ¢. g. from the leading edge
of the wing to the wing chord.

C,, ratio of the distance of the aerodynamic center of
the wing from the leading edge of the wing to
the wing chord.

Cz,,, normal-force coefficient of wing.

Cx,, longitudinal-force coefficient of wing.
z, digtance of mean wing chord below ¢. g.
Cw,, parasite pitching-moment coefficient of fuselage
and landing gear.

ratio of change of angle of attack at the tail to
change of angle of attack at the wing, an em-
pirical factor depending upon downwash (refer-
ence 7).

dey
da’

Since ‘% is positive, increaging €, by moving the
center of gravity toward the rear tends to make%a—

less negative and to decrease —pm,. The effect of
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longitudinal center-of-gravity location upon the sta-
bility characteristics thus follows from the preceding
discussion of the effect of changes in —um,. The
location of the aerodynamic center of the wing, de-
fined by G,, affects the stability in the same manner
as the location of the center of gravity but with the
opposite sign. The value of C, given by wing theory
i8 0.25 (reference 8). Wind-tunnel data indicate the
actual values to range from 0.23 to 0.25 for conven-
tional airfoils (reference 9).

The vertical location of the center of gmv1t.y with
respect to the mean aerodynamic wing chord is not
unimportant in many cases and should be considered
particularly in high-wing or low-wing monoplanes.

Since —dﬁ is positive, positive values of E (as in the

case of a low-wing monoplane) make ddC’ less negative

and may cause an unstable divergence (static insta-
bility) in cases that would be considered stable on the

basig of calculations involving only C,. The value of
dCx,

W 1s derived as follows:
Ox =_0Dw COSs a+0L sin a

dOX —(O __d—) cos a+<0pw+%% sin o

dCp,,
where GD,, and ?a— are for the wing alone. For a case

dCy

with O,=14, %4 0, —0.01,¥—6, a=15°
do 0. 'S

Cp,,=0.01 +—£=0.11
d0p, 2X1.4X4

da — 62 060

0k,
2= (0.80.966)+ (4.11X0.259)

0.77-4+1.06=1.83
Assuming the case of a low-wing monoplane with %=

0.25 and C,=0.80, it will be found that the stability
will be the same as though

20 and G,=0.30+ @xo 25) —0.41.

The exa.mple represents perhaps an extreme case but
illustrates the desirability of investigating the effect of
vertical center-of-gravity location.

The value of the slope of the curve of parasite
pitching-moment coefficient against angle of attack
may be determined with reasonable accuracy only by
careful testing of a scale model or the complete air-
plane. For a number of designs of military airplanes
for which sample computations wgzre made and g%’m—

me.g. Mp
To values of I

were found to range from 0 to 0.4, with an average
value of 0.2, at angles of attack corresponding to

The value of A0, became

pared with measured values of d

cruising and high speeds.
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less positive as the angle of attack was increased in all
cases where it was of appreciable magnitude but in
no case became negative. It therefore appears that
the parasite pitching moment will be, in general, such
as to decrease —um, with corresponding effects upon
the stability characteristics.

The tail length, size, and aspect ratio are very
important factors in the stability characteristics. Tail
length appears both in —mq and in —upm,. It will be
remembered that

B S, dC,
=—Engr3 5 a,

—HMe= 5] Ty [ =0+ TS i+_fz
da, dC5, S,

e g 5 )

Increasing [ has a very beneficial effect upon the factor
—m,g, which is proportional to the square of . In
an actual case increasing ! will also increase ky, and
perhaps in some cases 5, s0 that the net increase in
—m, will only approximate thatindicated by consider-
ing only the square of the tail length. Increasing [
makes — um, larger because of the increase in moment
arm of the tail. There are also secondary effects because

! affects ‘(lia’ 7., and ky. The net effect of small in-

creases in tail length can only be predicted from con-
sideration of the particular design. There is a small
range of conditions, corresponding to small values of
— pM,, in which increasing / increases the time to damp
because the effect upon —pum, is of more importance
than the increase in —m,. ILarge increases in I will
always increase the period and decrease the time to
damp.

It has been mentioned that I affects 5, and T
The effect upon 75, is small and may be neglected.
Increasing tail length increases %%’ The angle of

attack at the tail may be expressed as
a=at+i,—e
where 17, is the incidence of the tail referred to the wing
chord.
The downwash may be expressed as

e=— (:z:—l— 1)7B(y+4-1)"9B(C, (reference 10)

where R is the equivalent monoplane aspect ratio of
the wing combination and z and y are the distances of
the tail plane behind and above or below the trailing
edge of the wing in chord lengths. The value ¢ there-
fore decreases exponentially with tail length and hence

doy de

da
KdGL
=1-Kg)

becomes greater with increase of .
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The size of the teil appears in the ratio S,/S occurring
in the expressions for —m, or— m.. Increasing S,/S
increases both —m, and —um.. In the case of —m,
the increase is proportional to S,/S but in the case
of —pum. the increase is more than proportional to
the increase in S,/S because —um, would normally be
negative were S,/S equal to zero. Increasing tail size
may be expected to have a net effect somewhat less
beneficial than increasing I unless the alrpla.ne already
has a large value of — um..

The aspect ratio of the tail surfaces affects the

stability through dCs — 2t TIncreasesin 40z,
da; da;

effect as increases in S,/S and need no further discus-
gion. It will be noticed that if S,/S is incressed by
, ddiz“ will be decreased so that the
net effect will be less than would be expected on the
basis of tail size alone.

The tail efficiency factor 5, affects the stability
characteristics in the same manner as the ratio S,/S.
Tail efficiency depends upon the interference effects of
the wings, landing gear, and fuselage upon the tail
plane. Warner states (reference 11) that, in general,
tail efficiency has been found to range from 0.6 to 0.8
with extreme values as low as 0.54 and as high as 1.2.
Computations made by the author for a number of
military airplanes indicate that for modern designs the
tail efficiency factor will be of the order of 0.75 to 0.8.

The series of charts of stability characteristics against
—m, and —pm, has been extended to include the
range of high-lift devices known at the present time
(figs. 41 to 54). The charts bear no evidence of in-
creased difficulty with longitudinal stability by the
use of these devices. Devices which increase the
parasite drag as well as the maximum lift coefficient
are more desirable than those which merely serve to
maintain the flow to high angles of attack. It will
be noticed, however, that in order to use the charts
with variable-ares lifting surfaces the true area of the
extended wing must be used in order to come within
the range of parameters given. When the true area
is used, S,/S and p will have been decreased and the
quantity ¢(C,—C,) changed. The effective value of
—m, is thereby decreased as compared with the wing
with lifting surfaces contracted; whereas the value of
— pm, I8y be either decreased or increased, depending
upon the relative values of the quantities. The fact
that an airplane has good stability characteristics
with conventional surfaces is therefore no assurance
that trouble will not be expenenced when high-lift
devices, particularly those increasing the wing ares,
are added. In connection with calculations of stability
with high-lift devices it should be noted that in cases
of such devices as split flaps, variable-area wings, etc.,
which greatly increase the camber of the wings, par-
ticular attention should be paid to reductions in tail
efficiency 7%, which may occur in some instances

! have thesame

increasing the chord

because of the change of effective location of the tail
surfaces relative to the wing chord. (See also refer-
ence 12.)

The analysis and discussion have been confined to
consideration of only the long-period oscillations or
the divergence of an airplane as a rigid body. The
effects of such physical cheracteristics as wing or
tail-supporting structure elasticity or of free longitudi-
nal confrols are not, however, unimportant. No
attempt will be made to analyze these effects mathe-
matically but they will be briefly discussed in connec-
tion with the basic relationships brought out in the
foregoing portions of the report.

The effects of wing elasticity have been treated mathe-
matically in reference 13. Although these effects are
normally not important they may in some cases,
particularly in view of the high speeds being obtained
with modern aircraft, be sufficient to change a nor-
melly positive value of —um, to a negative value with
possibly serious tendencies to divergence. The obvi-
ous means of guarding egainst such possibilities are
to make the wings rigid in torsion and to use airfoil
sections having positive or zero values of Cp,,

The effect of elasticity of the tail-supporting struc-
ture is primarily of importance in connection with the
pbenomena of buffeting and tail flutter and needs no
consideration here other than to call attention to the
possibility of resonance between the natural frequency
of oscillation of the tail structure and the short-period
oscillations of the airplane, which are normally very
heavily damped. The results of such resonance would
probably be structural failure and would not receive
practical classification as instability,

The effect of freedom of the longitudinal controls
hes been treated mathematically in reference 14. The
mathematicel analysis introduces several new factors
into an already complex problem and it seems likely
that no designer would attempt to predict the stability
with free controls. From a practical standpoint it is
obvious that if the control surfaces do not deflect
appreciably as the airplane follows the sinusoidal vari-
ation of angle of attack, etc., the stability will be the
same with free controls as with fixed controls.

The influences that cause the control surfaces to
deflect are the aerodynamic hinge moment caused by
change of angle of attack of the tail and air speed; the
inertia moment that tends to keep the surfaces from
following the changes of attitude of the airplane; and
the mass moment, in the case of statically unbalanced
controls, that tends to deflect the elevator under the
influence of gravity and accelerations of the tail plane
is accelerated normal to the longitudinal axis. The
aerodynamic hinge moment, which is normally of such

gign as to decrease ‘—fi%‘ and hence both —m, and —um,,

mey be kept small by serodynamic balance of the
elevator surfaces. The inertia moment is small and
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may be neglected, as in reference 14. The mass
moment may be kept sma.ll by statically balancing
the elevator.

It follows from the foregomg discussion that sta-
bility with free controls can be insured by providing
ample stability with fixed controls and then asro-
dynamieslly and statically balancing the elevator sur-
faces or making the control irreversible. It isgenerally
not desirable to attain complete aerodynamic balance,
but the difference between the stability with free con-
trols and that with fixed controls can be made small
without complete aerodynamic balance or without
making the controls completely irreversible.

CONCLUSIONS

1. It is believed that for the average student of the
subject this substitute treatment of the derivation of
the relationships governing longitudinal stability will
be more understandable than the classical treatment.

2. Increase in the amplitude of longitudinal oscilla-
tions with time is possible only when the change in
angle of attack lags the change in flight-path angle.
The lag of the angle of attack with respect to the
ﬂlghb-pn.th angle depends primarily upon t.he static-
stability factor — um..

3. The nondimensional parametsr —um. not only
plays the most important part in determining the lag
of the angle of attack with respect to the flight-path
angle but also is the only source of unstabilizing
angular momentum with power off. Increasing tke
value of —um,, i. e., increasing the static stability,
will increase the tendency to instability if the original
value of —pum, is small. After a certain value of
—um, is reached, further increases in the negative
sense will reduce the tendency to instability.

4, The effect of the vertical location of the wing
relative to the center of gravity should not be neglected
in calculating the static stability.

5. Aerodynamically efficient airplanes are more
likely to be dynamically unstable than less efficient
types.

6. Increasing the wing loading will increase the
period of the oscillations but will not necessarily make
the airplane either more or less stable.

7. High-lift devices that depend partly upon in-
croases in wing ares may lead to instability if the size
and disposition of the tail surfaces are determined on
the basis of the contracted wing.

8. There is no likelihood of dynamic instability at
the angle of attack corresponding to maximum or
cruising speeds. The damping of the oscillations may
be more or less pronounced at low speeds than at high
speeds. There is likelihood of dynamic instability at
low speeds.

9. Stability with free controls can be brought close
to that with fixed controls by aerodynamically and
statically balancing the elevators.
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II. ESTIMATION OF STABILITY
METHOD

The charts included in this report (figs. 15 to 54)
provide an easy method of estimating the dynamic
stability of airplanes. In order to use the charts it is
necessary to know the values of the nondimensional
dCy, dCp
da’"da’
airplane at the speed under consideration. Knowing
the parameters, turn to the charts and select those for

which C,, Oy, %0 ang 402

T and == T
case under consideration. Spot the particular point
representing —m, and —pm, upon the charts. Rough
interpolations between the values of ¢’ and ¢’ so in-
dicated will, in general, provide & sufficiently accurale
estimation of the stability characteristics of the design.
The time to damp to one-half amplitude, in seconds,

parameters Oy, Cp, —my,, and —pm, for the

most nearly represent the

is
w
1‘,=—o.313\/"§05
g—l
and the period in seconds is
.
P=2.83\/ 5%
1;,/

The number of oscillations for the amplitude to die to
one-half the original value will be J—— 3"7

DETERMINATION OF NONDIMENSIONAL
PARAMETERS

The nondimensional parameters should be taken
from available flight or wind-tunnel data if possible.
If such data cannot be obtained they may be calculated
by methods outlined in the following paragraphs.

Lift coefficient Cp.—The lift coeflicient Cy follows
directly from the wing loading and the speed. In gen-
eral, it is desirable to choose O as 0.20, 0.80, 1.40,
1.90, or 2.40 to facilitate use of the charts. For air-
planes with variable-area wings the wing area in use
under the flight condition should be used as the basis
of calculations.

Drag coefiicient Cp.—The drag coefficient Cp may
be estimated from the relationship

Co=Cpp+ (ib)’ (see reference 6)
5S¢
where Cp, is the parasite-drag coefficient,
(kb)

<~ the equivalent monoplane aspect ratio

(reference 7 gives k in convenient form).
¢, an airplane efficiency factor ranging from 1

for very clean designs to 0.7 for very

inefficient designs (reference 6).
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Slope of lift curve %%"-—The slope of the lift

curve %%may be taken as 4 (all values of angles are

in radian measure) at low and intermediate angles of
attack and as 3 near the stall if the values of the other
parameters are based on the true wing area and the
airplane is a conventional type. It should be noted
that in cases of extremely high or extremely low aspect

fatios for which (—i(% differs considerably from 4 the
wing area may be considered such as to make

dG" =4 if Gy, Cp, and %0&-: —m,, u, and —m, are
each multiplied by the ratio of 4 to the actual value of
%%‘ for reference to the charts. In such a case the

ratio must not be neglected in the conversion to time
in seconds.

a0y,
Slope of the drag curve Ea—-—The slope of the
drag curve may be estimated from the relationship

do;,
ac, "% da
da ~ _(kb)?
e
S
ac,
The value of Ta here used may be taken as 4 through-

out the flight range as % does not fall off with %—%
near the stall.

Rotational damping factor —m,—This parameter
will, in general, have to be estimated although it may
be determined from tests of an oscillating model, or
from tests on a whirling arm (reference 15). TFor
purposes of estimation the equation

l2 S‘ dGLg
me=KEn 5325 T,

where K is taken as 1.25 will generally be sufficiently
accurate. The tail efficiency 7, may be taken as 0.75
or 0.80 for modern designs. The distance from the
center of gravity to the elevator quarter-chord point
l, the ratio of tail-plane area to wing area S/S, and
the radius of gyration of the airplane about the span
axis ky are dimensional characteristics of the airplane.
The radius of gyration may be found from the rela-

tionship
=W
where

B is the moment of inertia about the span axis.
g, the acceleration of gravity.
W, weight of the airplane.

or estimated from the relationship

kr='\' aa(zlz‘l‘hz)
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where
(5 is an empirical constant.
l;, over-all length of the airplane.
h, over-all height of the airplane.
From 11 airplanes for which (3 was determined
(reference 16)
0.0325< (< 0.0394 with the average value 0.0362.
In the absence of test data the slope of the lift
curve for the tail may be taken as

dOL, 5.5

“ 142 >
E
Static stability factor —um.—The static stability
factor is

(reference 17)

_ w lo dCa,,.
M= T 320X W da
or
6.5§0 dC.,M

- 7a—' (standard conditions)

where ¢ is the chord length upon which O, is based.
Various methods have been proposed for estimating

dCw, . .
L. The author prefers the relationship
dCr,,. dC’L dCx,2z dCu, l S, dCy, da,
da (0 Qa)+ da c+ de ‘e S der da
where

C, is the distance of the center of gravity of the
airplane from the leading edge of the reference
chord in chord lengths.

C,, the distance of the aecrodynamic center of the
wings (reference 8) from the leading edge of

the reference chord in chord lengths.
dCx,

T:’: the slope of the curve of longitudinal force co-
efficient for the wings alone against angle of
attack and is

dC’xw ( do,,

d
0}; COoSs « + (Opw GL

sin o

where ﬁ" and Cp,, are values for the wing

alone.
—ZI’ the distance of the reference chord below the

ic. center of gravity in chord lengths,

T ——2 the slope of parasite pitching moment due to

fuselage, engine nacelles, landing gear, etec.,
against angle of attack.

%’ the rate of change of the angle of attack at the

tail with change of angle of attack of the air-
plane and is

‘(ii—c—!—‘= 1— gﬁ where ¢ is the angle of downwash at the tail.
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The value of C, varies from 0.23 to 0.25 referred
to the mean aerodynamic chord of conventional air-

dCy
foils (reference 9). The value of Tia_p may be esti-

mated if the designer so desires. The author has
found the value to vary from 0 to 0.4 for a few military
airplanes at low angles .of attack with the average

dCp
value about 0.2. The value of 7;3 was found, for

the cases considered, to fall off to approximately zero
at high angles of attaclk.

The rate of change of downwash angle at the tail
with change of angle of attack may be estimated from
the relationship

L {;E%(Hl)* sy 1)on

40, (reference 10)

where
dCy .
do is in radian measure
z, the distance of the tail plane to the rear of the
trailing edge of the wing in chord lengths.
1, the distance of the tail plane above or below
the trailing edge of the wing in chord lengths.

For the average case y=0, z=2.5, i—z— 851?)52 %Ci

EXAMPLES
AIRPLANE A
Cr=0.80 %%‘=3.95
C»=0.080 dEO—D——O 39
(Taken from full-scale flight data.)
—mg=2.6 —jima=16.5
(Estimated.)
From figure 23 {'=—0.044 ¢y'=0.48
From figure 25 {'=—0.035 ¢'=0.48

From interpolation between the figures on the basis
of Cp, {'=—0.039 and y’'=0.48. From interpolation

between the figures on the basis of —dZ’ ¢'=—0.038

and ¥/=0.48. From full-scale unpublished flight tests
of this airplane {’=—0.041 and ¢'=0.72.

317
AIRPLANE B
C.,=0.80 %‘=3.60
Cp=0.076 0 —0.42
—m,=1.5 —pm,=9

(Taken from full-scale flight datea.)

From figure 23 {'=—0.034 ¢'=0.49

From figure 24 {*=—0.030 ¢'=0.50

From figure 25 {'=—0.025 '=0.48

From interpolation between figures 23 and 24 on the
basis of Op, ¢'=—0.031 and ¥'=0.50. From inter-
polation between figures 23 and 24 on the basis of

%%D, ¢'=—0.033 and ¥’ =0.49.

between figures 24 and 25 on the basis of %,

'=—0.027 and ¢'=0.49.
From full-scale flight tests of this airplane (refer-
ence 2) {’=—0.038 and ¢’'=0.55.

From interpolation

AIRPLANE C
€,=0.80 %%—'=4.00
Cp=0.094 %(Z:’=O.51
—m,=2.3 —um,=4.8

(Estimated data.)

From figure 23, {'=—0.034 and ¢'=0.4.

No interpolation is necessary. From extrapolation of
full-scale unpublished flight data {*=—0.030 and ¢'=
0.72.

ATRPLANE D
0, =0.80 ‘ZOL —=4.00
- d0p_
=0.12 T2=0.54
—m,=1.76 — M =3.40

(Estimated data.)

From figure 26, {'=—0.03 to —0.04 and ¢'=0.39.
From full-scale unpublished data {’=-—0.035 and ¢'=
0.53.

LANGLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaTioNaL ABvisorRY COMMITTEE FOR AERONAUTICS,
LancLeY Fiewp, Va., December 13, 1934



APPENDIX

RECAPITULATION OF SYMBOLS

-

SRS

coefficients of stability quartic.

& BYa

}coeiﬁcients of stability quadratic.
<3 C, +d0L

1(0 dC’L d0,,+0 )
e"i

i =%032
e, base of natural logarithms.

b,

2
e, airplane efficiency factor such that Cp i=%
G
Ok, coefficient of resultant force.

Oy, coefficient of force normal to the wing chord,
positive downward.

Cx, coefficient of force parallel to the wing chord,

positive forward. -

(., coefficient of aerodynamic center (ratio of dis-
tance of aerodynamic center from leading edge
to chord length).

C,, coefficient of center of gravity (ratio of distance
of center of gravity from leading edge to chord
length).

Cp,, coefficient of pitching moment other than that
from wings and horizontal tail surfaces.

Oy, coefficient of pitching moment of wing at zero

lift.
Ch,,., coefficient of pitching moment with respect to
center of gravity.
Coe ky®*  coefficient of radius of gyration about
BT {2FR)’  lateral axis.
l,, over-all length of airplane.
h, over-all height of airplane.
l, distance from center of gravity to quarter-chord
point of horizontal tail surfaces.
t=+/—1
K, empirical factor by which computed value of
rotational damping factor of tail is multiplied
" to give total rotational damping factor.
%, empirical factor for conversion of biplane span
to equivalent monoplane span.
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dCp . .
— M= — % 2% —f‘% static-stability factor.
Y

—my=K 7, 2% g‘ (?L‘: rotational damping factor.

0, subscript denoting that the value of the symbol
refers to zero time.

P’, period of an oscillation, nondimensional units.

P, period of an oscillation, seconds.

T”, time for an oscillation to decrease to one-half
amplitude, nondimensional units.

T, time for an oscillation to decrease to one-half
amplitude, seconds.

t, subscript denoting that the symbol refers to the
horizontal tail surfaces.

AV’, ratio of AV to V.

w, subscript denoting that the symbol refers to the
wing alone.

" z, distance of horizontal tail surfaces to the rear

of the trailing edge of the wing, chord lengths.

vy, distance of horizontal tail surfaces above or

below the wing chord (extended), chord
lengths.

2, distance of wing chord below center of gravity.
51, angle of lag of change in angle of attack with
respect to change in angle of flicht path.

53, angle of lag of change in velocity along flight
path with respect to change in angle of flight
path.

5y, angle of lag of change in angle of pitch with
respect to change in angle of flight path.

8, angle of lag of change of angle of attack with
respect to change in angle of pitch.

7., tail efficiency.

§'=_°;§§§, damping coefficient.
¢'=2Fﬂ,', period coefficient.
={ .

p=£-;z; relative dénsity.

m . -
T= , time conversion factor.
P
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TABLE I

LIST OF CHARTS
kb2 dCt, dCp
Figure CL 5 Co, Cp da de
0.20 b 0.02 0.023 4.00 011
.20 5 04 .043 3.00 .10
.20 b .04 043 4.00 .13
.20 8 .04 042 3.00 .08
.20 8 04 . 042 4.00 .08
.20 3 .08 . 064 4.00 .15
.80 ] .02 .085 4,00 .45
.80 5 J04 .091 3.00 .38
.80 5 .04 .091 4.00 .51
.80 8 .04 .072 3.00 .24
.80 8 .04 072 4.00 .32
.80 b .08 .120 4.00 .85
1.00 .091 4.00 .51
L20 . 091 4.00 .51
1.40 .001 4.00 .51
140 .14 4.00 .51
140 .20 4.00 .51
1.40 .20 4.00 .70
1.40 5 L2 .18 4. 00 .79
140 5 .04 .20 2.00 .89
140 5 04 .20 3.00 .80
140 5 04 .20 4.00 .89
140 8 .04 14 2.00 .50
1.40 8 .04 .14 3.00 .56
1.40 8 04 14 4. 00 .56
1.40 5 .08 .28 4.00 LO2
1.960 .30 4.00 L50
42_ 160 .45 4.00 150
43_ 1.90 .60 4.00 150
44__ 190 .45 4.00 100
45 190 45 4.00 2,00
46, L9 .45 3.00 1.50
47 190 .43 2.00 L50
48 2.40 .70 4.00 250
49. 2.40 .85 4.00 2.50
50, 2.40 L00 4.00 2,50
51 2.40 .85 4.00 2.00
52 2.40 .85 4.00 3.00
53, 2.40 .85 3.00 2.50
54 2.40 .85 2.00 250




