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SUMMARY
Thh report preaenh a diwwti of longiiuo?ina.1

8tabdity in gliding j?ight togetherwith a 8eTie# of churt8

wiih which the stalnliiy churactenktti of any airphw
may be readily e+itimated.

The$rst portion of thti report is ird&, F“&y,
for 8tUti of the Subject. % rektiwwhips gouerni~
8taMity churacteri8tic8are derived from eqwuiti of
equilibrium referred to mowing axes that are iangeni
and perpendicular to the indaniananu jlighi path. It
ia slwum thutinAzMiiy of th. motion can tie only
through an increase of linear and an@ar m.omeniumin
tha system during mu complete cycle. The interaction
of events leading to increa3e or decreme of momentum
during a cycle b explairwdin &tad. The CO@ruction
of charts slwwing the e$eds of the nondhn.ewiond

d(?. ‘dCD -
parameier8 CL, CD, ~, ~) —mC,and —pm= upon

tlw stability characterixti.csis expl.uirwdand the efects
of the more important of the amodynumic and mass
characteristic of the airplane, a8 receaikdby the charts,
are di.scw8ed.

The latterportion of thapaper is deuotedto a 8& of
40 refutedchartswi$hwhtih the dynamic stability of any
airplmw in power-ol$$ight may be readily estimaied.
The me of the chart-si# qp?ained in &tail so that
reference to the earlier discussion is unnecessary.

INTRODUCTION

The longitudinal stability of aircraft has received
very extensive and exhaustive treatment by able
writers (see references and bibliography), but the
classical treatment of the subject has been rather
diflicult for those not familiar with higher mathematics
The study reportad herein w= undertaken with the
purpose of making more understandable the mathe-
matical treatment and of preparing a method of esti-
mating stability characteristics that would be sufE-
ciently accurate and rapid tc appeal to practical
designem.

The section preceding the group of charts for deter-
mining stability characteristics in power-off flight is
devoted to a derivation, in relatively simple terms,
of the mathematical relationships and to a discussion
or the formulas. The portion following the group of
charts consists of an explanation of the method of
using them. It is not necessary to read the tit por-
tion in order to use the charts with satisfactory results.

All symbols not given in the report cover are deiined
where used and are also listed fi the appendix.

L ANALYSIS AND DISCUSSION
DERIVATIONOF MATHEMATICALFORMULAS

Definition of stability characteristics.-The sta-
bility characteristics of an airplane are those qualities
which define the nature of the motion after a deviation
from an initial condition of equilibrium. The motion
may be periodic, consisting of a series of oscillations
having a certain period and rate of increase or decrease
in amplitude, or aperiodic with a certain rate of return
toward or deviation from the- equilibrium position.
In many stable airplanes the return to a condition of
nonoscillating equilibrium is spoken of as aperiodic or
“dead beat” when it is essentially oscillatory in
character but very heavily damped.

Fundamental concepts and assumptions.-The forces
and moments determiningg the motion of the airplane
are of two kinds; (1) Aerodynamic forces and moments
created by movement of the lifting and control sur-
faces relative to the surroumiing air; (2) mass forces
and moments arising from the weight and acceleration,
angular as well as linear, of the airplane. The funda-
mental basis of the discussion presented in this report
is that at all times there exists a stab of equilibrium
between the mass forces and moments and the aero-
dynamic forces and moments.

A complete treatment of the stability of airplanes
would be extremely lengthy and very complex. Cer-
tain assumptions have therefore been made. As the
motion of an airplane is three dimensional, it is to be
expected that any treatment of the subject will be
incomplete if it neglects certain of the components of
the motion. Fortunately, conventional airplanes are
symmetrical (within limits here applicable) with
respect to the plane that includes the fuselage axis and
is perpendicular to the span axis. It is obvious that a
longitudinal motion having no component of linear
veloci~ perpendicular to that plane or no component
of angular velocity about any axis lyiqg in that plane
cannot intioduce asymmetric forces or momants.
Such motion can therefore be treated as an independent .
phenomenon.

The longitudinal-stability characteristics will neces-
sarily be affected by any deflection of the lifting or
control surfaces. The influence of w&c elasticity and
of free longitudinal control will not be considered in
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the primary analysis because such a consideration
would complicate the relationships sad obscure the
fundamental p.ficiples.

It is assumed that forces and moments acting upon
the wing and the horizontal tail surfaces vary as the
square of the air speed and the iirst power of the angle
of attack of the individual surfaces and that they are
not affected by the rate of change of either the air
speed or the angle of attack. Also the forces upon
the lifting surfacea are assumed not tc be affected by
the rate of rotation of those surfaces (reference 1).

Each of the foregoing assumptions necemarily rn-
volves a certain degree of approximation but they are
confirmed by comparison between measured and cal-
culated values of stability characteriatim (reference 2
and unpublished data) and are justified by the simpli-
fication of the relationships they permit.

Equations of equilibrium,-As has been previously
stated, the course of the airplane in flight is determined
by the conditions necessaiy tc maintain equilibrium
between maas and aerodynamic forces and momenti
at all times. In steady flight the equilibrium may be
expressed by the equations (see fig. 1):

@

w ~ I+;PV’SCD=O Ia
w Cos +w’sc.=o

}
b (1)

$v’scc.=o. Ic

OMMH’133E FOR A3BONAUTICS

where (la) refe~ to forces tangent to the instantane-
ous flight path, (lb) to forces perpendicular to the
instantaneous flight path in the plane of symmetry,
and (lc) to moments about an axis through the center
of gravity and perpendicular to the plane of aynmmtry.
After displacement from the steady-flight condition
the equations of equilibrium read.

1WCOS(y+AY)–~P(V+ AV)’S(G+AOJ= –mV$’ b (2)

‘d%
~P(V+Av’Sc(C~+AC.) =mky d~ c

where
dV~Y acceleration tarigent to flight path.

@, centrifugal acceleration normal to the flight
dt path.

d% angular acceleration of airplane about the
~ lateral axis.

Since the effects of angular velocity and of acceleration
upon the forces are neglected, AoD may be written as

d(?~.Aad~ ~d ACL~ A=,. AU= may be written as

+ Aqd~ where Aq=q, the angular velocity in

pitch, since g is zero in the original condition; and
AV, A-f, Aa, and q are small quantities by aesmmption.
Terms involving products of two or more small quan-
tities will be neglected.

sin (7+ A7)=sin Y COSAY+ccs y SillAy
=siIl ~+A~ COS~

and
cos (Y+A-y) =COS~ COSAy—sin ‘y SillA7

=COSY—Ay sm Y
Then:

Subtracting (1) from (3)
dVWA7 cos y+ PVSCdV+~pV2E@~Aa= –m~ .

n

b ‘(3)

c
,

8

b ‘(4)

c
,
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From equations (1)

w COS”T=;PVWCL
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w sin ‘y= –&J7wD
(7.=0

Therefore,

Dividing (5a) and (5b) by ~ pVW and (5c) by pSV

Let

#v=’‘afhr‘lauert’‘eferenm3)
$V=AV’

Equations (7a) and (7b) are nondimensional and the
only variables are Ay, AV’, and Aa. In order to re-
duce (7c) to a comparable form it is necewary ti

rewrite ‘~ ‘“—,which B the only constant in the

equations not in readily usable form, and to express
flintermsofyrmda.

The greater portion of the change in pitching mo-
ment produced by rotdion occurs beoause the rota-
tion changea the angle of attack of the tail surfaces.
A positive rotation g oauses the tail to move downward
with a velocity, relative to the center of gravity, equal
to @ where 1is the distance from the center of gravity
to the mean quarter-ohord point of the horizontal
surfaoes. The tangent of the “change in angle of
attack nt the tail is tan Aat= ql/V which may be re-
placed by Aa~=@/V for’ the small angles under con-

sideration. The change in moment due to the change
n the angle of attaok at the tail is

dC.
AiU,=~pPIS,V,z’Aa,

J
dCz,

where—
da,’

slope of normal-force curve of tail surface9.

5’,, area of horizontal tail surfaces.
q~,tail efficiency.

m, in coefficient form,

Miroducing an empirical factor K to allow for wing

Therefore (7c) may be rewritten aa

Dividing (8) through by kr’ and multiplying by r to
make the expression nondimensional,

Letting ~=p (referenee 3)

For convenience let

0?0
marq+ pmaAa= ? ~ (11)

Since e= (a+-y) and g=% (see fig. 1), g and 13my

be replaced by a and -yredwing the number of vari-
ables in equations (7a), (7b), and (11) to three. These
equations are rewritten a9,

dv’–@-c–DAv’-d%Aa=%iFaI
dy

(?@y-2@v’–d~Aa= –2rzt

I

b (12)

‘d%+2)+~aAff=’G+$3 c
The foregoing equations of equilibrium must eaoh

be satisfied at each instant (neglecting approximations
assumed) of flight. It is obvious that each of the
variables A-y,Aa, and AV’ will aiTecteach of the others,
and it is reasonable to assume that, if any one of them
follows a regular scheme of variation with time, then
the others will vary acoording to the same scheme.
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&mme therefore that the variables change accord-
ing to the exponential expressions:

A-y=Aekl
Aa=BexL

AV’=Ce~t

(In mathematical terms .@ is an integrating factor.)
where

A, B, and C are constants depending on the mag-
nitude of the initial disturbance.

e, the base of natural logarithms= 2.71828.
A, an arbitrary constant.
t, time in seconds.

It appears that if A is positive A-Y,Aaj and AV’ d
increase with time and therefore the motion will be
unstable. If A is negative the departures from the
condition of steady ilight will decresse and the motion
will be stable.
Now if

Ay=Aext

‘Y=A~eM
z

~=A~’e~$

etc.
Substituting in (12)

“DBel~=2~hCekt
\

—C&e&’–2C&ext-~ n

‘CLBeh~=–2,A~eXtcDAe~t—2c@e~t- ~ b (13)

mqr(BleA’+Akex~ +Wm~Bext=r02Bext+ XzAex9c

Each of the equations may be divided by ex’

–C&2C.C-d~B=2rAC a

C&–2CLC–d~B=–2rL4 b (14)

mrr~(A+B) +pmaB= (7x)S(A+B) c,

From (14b)

2Tk.A+CDA-~B
c= 2CL

Also, since r and Ado not appear except in the product
TX,let X’=rX

Substituting in (14a)

(
‘CLB –d~B–C~–~ 2VA+CDA-X

)

=+:@x’A+ CA–d~B)

hfultiplying by CL

– CLZA–2CDA’A– CD’A+CD~B– C~d~B

dCLB .=2(h9~A+~r&4-x/-
da

>)?,~inc8 CL2+(?D2=CE2

A[+C.2+3C.A’+2 (X’)’]

17herefore,

Llso from (14c)

rherefore,
A_pma+mqX’–(~’)2
Z– –m,X’+ (k’)’

It therefore appears that equilibrium at all times is
possible when, -

‘[c.2+3cD~’+2(k’)q@.+m,~’– (~’)’l

Expansion of this relationship and collection of terms
give the biquadratic expression

(A’)4+(A’)3[-mu+i(’cD+%)l

+(’’)’[-m*cD+%)-’m.~
+;(C.%–CLda

‘q+c’2)1

-pm=$=(l (16)

For simplicity the biquadratic maybe expressed as:

A(x’)’+B(x’)3+ C(A’)2+~A’+E=0 (17)
where

A=l

‘=[-mQ+*cD+’31

Unfortunately there is no simple, direct method of
solving biquadratics. It is possible, however, to factor
a biquadratic into two quadratics, each of which is
susceptible to direct solution.
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The biquadratic

(X’) ’+.B(X’)’+C(A’) ’+ DX’+E=O

may be replaced by the expression

[@’) ’+alX’+hl[(X’)’+ aJ’+b2]=0

from which

or 1
n

(18)

b

Iii appearathat
B=a,+fi
C=ti~+b,+bz
D=alb,+qb,
E=b,b,

The general case may be worked out as follows:

u,=B-~
C=a,(B–aJ +bl+b,
D=a,b,+ (B–a,)b,

D

Therefore,

C=aJB–aJ+b,+;

ll=a,~+(ll-a,)bl In (19)
b

Dropping the subscripts:

B
‘=3+ J(’) ~

‘–c+b+~ a

and 1(20)
b’B–bDa= b’–E

b

These relations can be solved by plotting the curves
of b against a. There are two intersections of these
curves, in general, corresponding respectively to al,
bl, and to a,, b~.
Also from (19)

~= C–b–a(B–a)

D=aC–ab-a’(B-a) +b(B-a)

I

b (21)
b=D–a0+a2B–a?

B—2a c

Substituting (21c) in (19a)

D aC+a’B–asC=a(B–a) +( – B_2a
)

(22)

or
ae—as(3B)+a4(3B’+2

%—a3(B+4BQ+az(2B’ +BD+@—4
?—a(B’D+BC’-4EB) +BCD-D-B’ =0 (23)

By use of the foregoing relationships the coefficients
)f the quadratics may be determined with aa high a
iegree of accuracy as desired by graphical means or
~y trial substitutions.

At fit glance it appears that a 6th-power equation
wch aa (23) would be harder to solve than a 4th-power
?quation such as (17). In equation (17), however, the
:omplex roots must be obtained; whereas in (23) it is
lecessary to solve only for the real values. Equation
(23) is useful from a practical standpoint chiefly in
]btaining accurate values of G by making trial sub-
Jtitutiom from approximate values obtained from the
xcpression for G given on page 6. Because of the
very small value of az it is generally not necessary to
hclude the terms in (23) that contain powers of G
higher than the third.

Significance of A’.—As appem in equations (18),
there are possible either 4 real values of h’, 2 real
and 1 pair of complex values, or 2 pairs of complex
values. The values of B, C, and D in the normal
flying range of conventional airplanes are always
positive because of the signs and maggtudes of their
constituent factors. It is obvious that no positive real
value of X’ can satisfy the biquadratic unless E is
negative but that if E is negative there is such a
solution for A’. A positive real value of 1’ signifies
an aperiodic divergence. If —pm= i9 positive corre-
sponding to static stability, then E is positive and the
biquadratic expression indicates no possibility of an
aperiodic divergence.

The values of B, C, D, and E are, in general, such
that the solution for X’ gh%s two pairs of complex
values. It can be shown by mathematical reasoning
not essential to this treatment that an expression of
Kex’~’—~here A’=F &i$’ and where K, {’, ~d +’

are comtant& and i= ~= — can be replaced by an
equivalent expression, K’er’l’ MM (#’t’ —3) where K’
and 3 are new coustants. Therefore A7=A ex’” may
be replaced by A-y= A’e~’” cos (#t’-8) and similarly
for the other variables. It appeiu-athat the motion
indicated by a complex root is therefore made up of
sinusoidal variations of the angle of attack, angle of
attitude, angle of the flight path, and velocity along
the f@ht path and that the amplitudes of the oscilla-
tions increase or decrease with time depending upon
whether P is positive or negative. I?rom equations
(18) it appears that

{,’=+,

‘l’=db’-w
.-
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where ~1’,f~’, 41’, and #~’ express the stability charac-
teristics of the airplane.

I?rcm the expression AY=A’et’” cos (x’t’–~) the

period of the oscillation is P’=2~ and the time for

the oscillation to damp to one-half amplitude from any
0.693

instant chosen as the time of starting is T’= ——”
{’

Since h’ was set equal to Xr during the derivation, P’
dand T’ are in units of time which are equal to T=v

seconds or the time in seconds necessary for the air-
plane to travel the length 1 at the velocity V muki-
died by the relative-density- factor P. Therefore the
‘fial efires.sion for the tim~ in secorids for
tion k decrease to one-half amplitude is

T=.–0.693 –0.693 m
1’ ‘= 1’ psv

r–0.313 w
‘- ~c.

r

the oscilla-

(24)

under standard conditions; and the period in seconds is

p=~ ~
*’

(25)

under standard conditions.
Substituting for a in equation (23):

(2~)’+ (2r’)’(3B)+ (2t’)4(31P+2C)
+ (2~’)3(~+~@+ (2~’)’(wC+BD+@–4E)
+ (2t’) (~D+B@–4D)+B~–P–FE=o

(26)
From equation (21)

(w’=
D+2~’C+3 &’)2B+4&’)3

B+4r “ (27)

Reference to equation (26) reveals that from the
values of B, C, D, and Ein the normal-fl “

Y
ranges the

coefficients of the tams in 2t’ will all e positive.
Therefore a positive real value of ~’ can exist only if

COMMXITEE FOR AERONAUTICS

(BCD-W-.WE) is negative. This fact was &t
pointed out by Routh (referdnce 4) by a somewhat
different derivation and the factcr isknown as “Routh’s
Discrimimmt.”

There haa been developed in reference 1 an approxi-
mation for the case when D and E are small with
respect to B and C by assuming that

~=B
b,=c

Then
D=Bb;+(qC
E= Cb,

or
b,=$

and
D BE&=c–F

It follows that,

(28)

(29)

(30)

(31)

These approximate expressions are generally used
and are satisfactory for most cases encountered.

Since B and C are large in the normal-ilight range,
values of ~1’ and Xl’ deiine a very heavily damped
oscillation which is, in general, of short period. This
oscillation is unimportant, except possibly in special
cases above the stall; throughout the remainder of the
report ~’ and #’ will be used without the subscripts
to refer to the slightly damped phugcid oscillation
previously defied by ~j’ and ~,’.

Derivation of expression describing the sinusoidal
The expression Ay=Aex~=Ad’t’ can bemotion.—
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replaced by the equivalent expression A7=A~e$’t’
cos (Y’t’ —~) where A’ and 3 depend upon the instant
from whence time is taken as zero. If time is zero
when AY is at a point of maximum amplitude A’= AyO
and 6= O so that

Ay=A@’” COS#’t’ (32)

It follows that
Aa=Aa@’” COS(+ ’t’–&) (33)

AV’=AVO’e~’” cos (+ ’t’–&) (34)

AO=AOOeJ’”cos (#’t’–&) (35)

where A@, AVO’, and AOOare the magnitudes that the
variables would have were they at a maximum at zero
time and 81,b, and& are phase angles of the variables
with respect to the flighhpath angle.

These values of A7, Aa, and AV’ may be substi-
tuted in equations (12) and solutions made for t’
and y’. It will be found that the complete solution
for f’ and #’ given in the preceding section can be

A~o A70
checked in thismanner andthevalues of —~ ~ tan&,Am
and tan & are found at intermediate steps to be:

~= –2pm=–4~’mQ–2(#’)2+6w)’+(2r’–m,)(cD+~)j

The detailed derivation is not repeated because it
is quite long and tedious and intiduces no new con-
cepts,

Application of mathematical formulas.-The rela-
tionships derived in the preceding section of this
report make possible various treatments of the prob-
lem of determining stability. The period and time
to damp to one-half amplitude may be detemnined

-pm= from the equations (17), (24), (25), and either
(26) and (27) or (30) and (31).

An understanding of the underlying principles gov-
erning stability can be had only from a consideration
of the variations of the rmgle of attack, angle of atti-
tude, angle of flight path, and velocity along the flight

(38)

(39)

path relative to each other. Figg 2 to 14 we ti-
cluded to show the nature of these variations. Figures
2 to 9 present the effects of changiug —maand —~m=
independently for two seti of typical values of

CL, CD, ZJ md ~. Figures 10 to 14 illustrate

qualitatively the variations in phase relationships re-
sulting flom changes in —pm= and serve ~ a b~
for the discussion of their effects upon the stability
of the airplane. The relationships (36) to (39) can
be used to determine the characteristics of the motion
for any particular design.

The solution for the stability characteristics gives
no direct indication of the effect of variation of the
iudividualparametars upon the stability characteristics.
By means of the relationship that follows directly
from equation (22)

mc(c+2r’)+w.–[d+ 2{’c+4&’)q

+[–
mJd+2r’c+4W)q-pm= (e+2t’)+2f’[d+2 {’c+4~’)~

—ma+ (c+4~’) }

–jpm=
{

—m,+ (c+4~)
1—mJd+2f’c+4@’)q—Pma(e+ 2~’)+2f’[d+2~’c+ 4&)7 ‘0 (40)
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where

I?=l.5’D

f=;’,’

charts may be plotted showing the variations of —me
with —pm. necessary to secure given vslues of f’
and 4’. A number of these charts have been prepared
covering the range of conditions likely ta be encoun-
tered in normal flight aud are included in this report.
(See figs. 16 to 54.)

DISCUSSION

The mathematical relationships evolved in the pre-
ceding paragraphs permit calculation of the probable
stability characteristics of a proposed design, but they
offer little information as to the relative importance
of various factors or as to the reasons for the effects
produced by ch~mes in those factors. In the fo~owing
paragraphs the oscillatory motion is fit considered
in detail so that the sequence of flight conditions that
must exist if instability is to tie may be pointed out.
Next is given a general discussion of charts (figs. 15
to 54) that show the effects on the stability character-

d’Listics of the six fundamental parameters CL,CD,
z’

‘CD, –pm=, and –m,. Finally, the effects of various
-Z-
physical characteristics of the airplane on its stability
are considered in the light of the earlier discussion.

The oscillatory rnotion.-ll%on the terms in AV’
were eliminated by simultaneous solution of the equa-
tions of equilibrium tangent and normal to the flight
path, respectively, the following equality was found to
exist:

.

The terms to the left of the equality sign arise out of
the necessity for equilibrium of forces; the terms to tho
right arise out of the necessity for equilibrium of
moments. If a case be investigated with – Pm. = O

or

@’)2+%cD+a’’+w”%$-c=%$+c’2)=0

“=-KC”+%

“=-i@cD+%)

d’Since both ‘D and -& are positive below the stall, it

folIows that if –pm= is zero the Iinear motion of the
airplane is a heavily damped oscillation with the period

and the time to damp to one-half amplitude

all in nondimensional units, or the motion is an aperi-
odic convergence with the time to converge to one-half
amplitude

depending on the relative magnitudes of the quantities.
Site instability of the linear motion cannot arise

when —pm. is zero, it seems probable that under-
standing as to the underlfig causes of instability may
be gained by considering the effect of —pma upon
the sequence of flight conditions during oscillatcny
motion. h the following paragraphs the part played
by –pm= is analyzed by physical reasonhg. OnIy
the case when —Pm= is positive is considered because
when —pm= is negative an aperiodic divergence from
the equilibrium condition occurs and the question of

dynamic stability does not arise. It is first pointed
out that —pm= plays a primary part in determining
the phase angles between the change of angle of attack
and the changes in attitude and fl.ighbpath angles.
It is next shown that stability of the anguIar motion
depends upon the phase angle between the angle-of-
attack change and the attitude change. It is finally
shown that instability of the linear motion can arise
only when the phase angle between the mgl~of-attack
change and the tlight-path-angle change falls within n
certain range.
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Figures 10 tm 12 illustrate qualitatively the effect
of —Pm. upon & and ii,, the phase angles between the
angle of attack and the flight path and attitude angles,
respectively. When –pma is zero the attitude does
not change with time and hence, if an oscillation is set
up in the f@gh&path angle (y), it is obvious that the
angle of attack must change as shown in figure 10 where
& is 180°. Although not shown in figure 10, physical
reasoning leads to the conclusion that 64is 90°. When
—pm= is very large the moment tending ta cause the
attitude to change with the flight path is also large
and the angle+f-attack change is small. The condi-
tions me approximated by figure 12. The phase
angles & and & are also small and approach zero as
–pma is increased. Figure 11 shows an intermediate
case which more truly represents the usual condition
than either of the others. Here &<180° and &<90°.
The curves of figures 10 to 12 were drawn from physical
reasoning but are fully continued by the computed
curves of figures 2 to 4 and 7 and 8.

Referring to the curves of figures 2 to 9 one sees
that, if 2 points are chosan exactly 1 period apart when
A-yis zero, the value of AV’ will be found to be greater
at the second point than at the tit if the motion
is unstable, to be unchanged if the motion is neutrally
stable, and to be less if the motion is stable. Similar
observations can be made with respect to the val-
ues of A-y when AV! is zero and to the values of
d~ when AO~ zero
al . In other words, when neutral

stability exists, the momentum along the average
tlight path m(V+AV), the momentum perpendicular
to the average ~ht path (mV sin Ay), and the angular
momentum are each the same at the end of a period
as at the beginning. If instability exists, there is
more momentum at the end of the period for each of
the types of motion than at the beginr@. It is
therefore desirable to consider the sequence of f@ht
conditions that results in the increase or decrease of
momentum in the system.

Consider fit the angular motion. Figure 13 is an
~ustration of a typical set of variations of Aa, A-y,
and AOwhen f’ is zero. At the beginning of the half

()
period when AOis a maximum, Aq or A# is zero and

the angular momentum BAg is therefore zero. At
the end of the half period Ag is again zero. It there-
fore follows that the angular momentum introduced
into the system during the half cycle must be balanced
by the momentum removed during the same interval.

At each instant when there is a finite value of Aa,
there is a pitching moment introduced into the system

dCequal to Aa~ pV2Sc~m. Since a moment M applied

during a time t introduces angular momentum into the
system equal to Mt

represents the angular momentum introduced into the
system during one-half cycle (neglecting the effects of
terms involving the products of two small quantities,
as has been done throughout the discussion).

Considering, for simplicity, the case of neutral
stabili~

~ky’(:)1=L::pv2s’%A~cOs“’-’’)dt

dCn .
pV%’cA~~ am 64

=
+

is the angular momentum introducacl into the system.
The rotational velocity causes a change of angle of

attack at the tail that introduces a moment tending to
oppose the rotation. The magnitude of this chrmgeis

since

The angular momentum removed from the system
&=O) during the half cycle is

In the case of neutral stability the momentum intro-
duced must equal that removed and therefore

dC~ .
pV2L%Aq~ am 84

# -q,KpvJw%)A’o=o

m
qgti ~4_m co
$ AOO u (41)

From figures 2, 3, 4, 7, and 8 it is evident that as

—, —, and 64all decrease. The first
‘p” ‘creMB ; ::.
berm in equation (41) may therefore either increase
m decrease with increase in —pma; hence increasing
–pm= may decrease the angular momentum added
bing a cycle. What happens in an actual case
iepends on the magnitudes of the quantities, as will be
mought out later in the discussion.
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The introduction of linear momentum along and
perpendicular to the flight path might be discussed by
considering equations (12a) and (12b) separately but
the analysis may be simplified by combining the two

dV’
through elimination of terms involving AV’ and ~.

The relationship established is:

Considering the case of zero damping during the in-
terval horn #d=O to @=r it is obvious from figure 14
that the integral sum of terms multiplied by A7 or by
A2y
~ is zero because tke quantities are symmetrical

with respect to the zero line. The equation of equaliw
of momentum introduced to that removed becomes:

which reduces to

The growth of linear momentum therefore depends
Amupon 61) —~ and # in addition to the parameters
ATO

df%, ~d @CD,6’L,~ ~ - Since ~ isnormally positive

the following facts appear: CD is a factor serving
always to remove momentum from the system;

( )c~d~–cLd~+/is a factor adding energy to the

dcD c dcL, ~ is nomdy- the casesystem when CL—da> ~

‘- dds momentum toat high angles of attack; and ~ a

the system when &<900 and removes momentum
when &>900. When –P= is zero, 6,= 180° and the

( ‘CL)factor removing energy from the system is 3CD+ ~ ,

as was shown earlier in the discussion. As —pm= is

increased, &&~, and $ all decrease (figs. 2, 3, 4, 7,

( dC. 1 A~ ~,
)

@#$-cLG #’ AYOand 8). The factor ——

reaches its maximum at some point between al= 180°

and 6,=90°. The factor ~ ~ cos 6, changes from

a stabilizing to an unstabilking -influence at &=90°
and reaches a maximum as an unstabilizing element
between &=90° and 61=0. It would appear at first

dcLthought that the effect of ~– as an unstabilizing

factor would always be small because of the decrease of

‘m .th increase of cos & but such is not necessarily
%m

‘CL to C~, pnrticu-the case because of the large ratio of ~

lady at low angles of attack.
There is an interesting point in connection with the

factor
(

dCL_ c~d~
CD=

)
that appeara as the chief

umtabilizing element at small values of —pma. If the
law of induced drag be applied to determine O. and

‘%’ ‘t appem ‘hat

( dO.i
L– cLd~cDd; ) ‘OL– CL=

‘CDpd~+ CD,=

Therefore equation (42) may be rewritten as

[ 1‘CL‘q (C.i–CD,)+sin61+COS61 =’0(43)‘3 CD+ da A70

It appeam that instabili~ of the linear motion for
small values of —Pm= can occur only at nnglea of
attack where CDi>CDP. The detrimental effect of
CDf is not as great as at first appears, however, be-
cause the damping factor 3 CDincreases with CD, also.

k the foregoing analysis, the effect of (’ has been
neglected and therefore the stdements made cannot
be considered rigorously true when the stability or in-
stability is of appreciable magnitude. The analysis
does, however, point out the more important influences
and the nature of the interaction of events that brings
them into play. Equation (43) cannot be applied nenr

do’
2CL~

the stall where’~ ceases to equal ~.

T
Ih figures 2 to 14, inclusive, and in the discussion of

the oscillatory motion an arbitrary value of A-ro= 1 has
been assumed. No attempt will be made to evnlunte
~Yoin terms of control movements or gust velocities
u the actual magnitude is unimportant with respect
to stability (assuming that the deviations are not so
~eat aa to destroy the validity of the basic assump-
tions). It seems not out of place, however, to suggest

~~ ‘~ ~’ 61,h, etc.,that relative magnitudes of —
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may have important bearing upon the comfort, ease of
handling, and design load factor of aircraft and that
further work taking these factors into consideration
might lead to valuable information.

Charts of rotational damping factor against statio
stability faotor.—In the section dealing with applica-
tion of mathematical formulas a convenient graphical
means of showing the variation of t’ and #’ with —mn
and –pm= has been described. This method of pres-
entation was given by Gatea (reference 5) in esse-
ntiallythe same fashion although differing in detail.
In referen~ 5 preference is given to charts with
coordinate of tail volume and fore-and-aft location
of the center of gravity. Preference has been given
in this report to charts with coordinate of rotational
damping factor and static-stability factor because they
me more convenient for tie with data horn wind-
tunnel tests, they do not require assumption of arbi-
trary fixed values for severil important faders, and
they cover a much wider range for a given number of
charts. The charts are entirely nondimensional and

dC~ “ Vtiation of
vary ody with o~, (?D, ~~ and ‘$”

da,
empirical factors such as the K in —ma, q~, ~ (SW

p. 17), etc., ailect only —maor —pm=,a9 the case may
be, and their effects upon the stability are readily
apparent.

The series of charts presented (figs. 15 to 54) are
intended to show somewhat more precisely and com-
pletely than has been done in the preceding discussion

dCD
the effects of the par~etera C., UKJ,~~ and ~

upon dynamic stability and to provide a convenient
graphical means by which the designer may estimate
the probable stabili~ characteristics of a proposed
airplane and the effects of various changes without
recoume ti extensive calculations. The charts cover
the range of valueE of the parameters that appear
likely to be attained in the near future. The values
represented are summarized in table I.

Certain general charactmistics of the charts are im-
mediately apparentupon inspection. As —pm=increase9
from zero, t’ at first becomes more positive correspond-
ing to a decrease in dynamic stability but, at a fairly
smallvalue of —pmqchangesits trend andbe’comesmore
negative. This tendency is general throughout all the
charts and is apparent whether —mais large or small.
It will bo remembered that such an tiect appeared
probable from the discussion of the introduction of
angular momentum into the system during a cycle
by –m.. As pointed out at that stage of the report,
Acq
— j sin 84,and —)all decrease with increase of —pm=;AyO ;
the charts of variation of the stability characteristics
with —meand —pm. show definitely that the decrease
of the product of these faotom is much more than
sticient to nullify the increasw in —pm= after a
certain value of —pm. has been exceeded. Increase

of ~’, hence decrease in period of the oscillations, m“th
increase of —pma occurs at practically all values of
—mC and —pin=.

Increase9 of —ma give, in general, more negative
valuea of ~’ and consequently more rapid dying out of
the oscillations. At large values of —pm= increases
in —m~give more positive values of f’ but this effect
k not of practical importance. It will be noticed that
at fairly large values of —pmaincreasing —ma has but
slight effect but that —mg becomes of increasing im-
portance as —pm= is made snder. Increasing —ma

decreases +’ rather gradually, giving oscillations of
longer period. It appeam that if the criterion of sta-
bili~ be taken as the number of oscillations necessary
for the amplitude to decrease to one-half its original
value then the value of —mQis of particuhtrimportance.

The charts of figures 23, 27, 28, and 29 show that
increasing CLwithout changing other factOm increases
quite markedly the tendency to instability. This ob-
servation agrees well with the effect to be expected
from increasing CLthat might have been predicted from

(
dCLthe part played by CLin the factor CD

)
~–CLd~

in equation (42).
The eilect of increasing CDwithout changing other

factors appears in figures 29, 30, and 31. It will be
seen that increasing (& re’duceathe range of instability
and brings the curves of ~’=k nearer together with a
very large net increase in damping. The effect upon

+’ is negligible.
The slope of the lift curve is of importance although

not giving such extreme effects as changes in CLand CD
(figs. 34,35, and 36). Here again the effect is in good

dCLagreement with equation (42). Increasing ~ tends

to extend the instability region to greater values of
—pm= or, in other words, if —pm. is large, &is less than

‘CL becomes a definite unstabilizing factor.90° and ~

‘~ is a stabilizing factor
‘t ‘mw ‘duw ‘f ‘m”’ da 7

as is apparent from the curves Increasing ‘~ ho

tends to decrease #’.
Increasing the slope of the drag curve is distinctly

unfavorable to stability as shown in figures 42,44, and
45. The period of the oscillation is but slightly
ailected. ‘

Reference to charts 15, 21, and 33 shows that the
general effect of increasing angle of attack is to in-
crease the region of instability but to decrease the
spread between curves of s?’=k. It appears that
instability of the oscillatory motion is very unlikely
for small angles of attack and becomes increasingly
likely with increase of that angle. On the other hand,
if –Mm= and –m, remain unchanged throughout the
change of angle of attack, the value of f’ may become
more negative, which seems to be directly contra-
dictory to “thepreceding stai%ment. The explanation
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lies in the fact that at small angles of attack changes
of —pm. and —mahave little effect upon the damping
coefficient; whereas at large angles of attack a small
change in —pm= or —ma may change the damping
coefficient from a deiin.itenegative value to a definite
positive value. The period of the oscillation decreases
markedly with the increase of angle of attack but the
decrease is not so great as would appear to be the case
from consideration of the increase in #’. The period

~ and the increase tiin seconds is proportional to —

CLis sufficiently great partly to counteract the increase
in +’.

The effects of various physical characteristics of
the airplane on the stability.-In the preceding dis-
cussion no consideration has been given to the various
dimensional characteristics, aerodynamic interferences,
etc., that determine the values of the fundamental
parameters. A large number of factors affect the
stability but in many cases the effects are of a minor
nature. Only the more importmt ones will be dis-
cussed in the followhqg paragraphs.

The wing loading appears in but two placw in the
analysis of stability in this report. The nondimen-
sional relativedensity factor

~=%
w
x

‘m

m
13.1 ~

=~ (standard conditions at sea ievtd)

is directly proportional to wing loading and the factor

d–

w
~ c.

7=$= ~-22 is proportional to the square root of

wing loading. Siice p appears only as the coefficient
of —m= it is apparent that the variation of the non-
dimensional values of ~ and x’ with K are the same as
for variations of —pm.. It therefore appears that,
if the longitudinal motion of an airplane with respect
to the air is to be unaffected, an increase in the wing
loading of a given design must be accompanied by a

dCm
proportional decrease in ~ provided that 1, c, and

k= are unchanged. Aside from the effect upon —pm=
the wing loading afhcts the stability characteristics
through the time factor ~, which appeam in the reduc-
tion of the nondimensional units j-’ and $’ to the time
to damp to one-half amplitude and to the period of
the oscillation in seconds

~=–0.693
r

and

If —P. is preserved unchanged as ~ ia increased,

both the period and the time to damp are increased
but the number of oscillations for a given degree of
damping is unchanged. The effect of an incrense of
wing loading without change of other factom is there-
fore to increase both 1’ and ~ with the net effect, in
general, of incre&ng the period; to make 1’ more
negative if —pm=is large, with a net effect upon the
time to damp either of an increase or of a decrense;
and to make c’ less negative if —pm=is Bmall,resulting
in a comparatively large net increase in the time to
damp to one-half amplitude.

The aspect ratio of the wing combination nffects the
stability indirectly through its effect upon the para-
metim dCL dCD~ ~ and CD at a given value of ~L.

‘OL d decreasesIncreasing the aspect ratio increases~ an

both ~: and C.. Comparison of the curves of figures

36 and 39 corresponding to ~pect ratios of 5 and 8,
respectively, shows that (neglecting the effect due to

change of ~, which is comparatively small nnd will

not materially ailect the conclusions to be drawn) the
net effect of increasing the aspect ratio is to increase

the range of instability. The decrease in ‘~, an

effect favorable to stability, is 1ss.simportant than the
decrease in C& which quite markedly tends to decrease
the stability.

The effect of parasite drag is brought out quite
clearly in &ures 33, 36, and 40. (In general, increas-
ing the parasite drag also increaseB the slope of the
drag curve and this fact has been taken into account
in the figures by using the method of reference 6.)
It is apparent that the drag is an important item in
determining the stability characteristics of a design
and that the “cleaner” the airplane the greater the
tendency to unstable oscillations. Increasing the
parasite drag results in a decrease in the unstabilizing
factor (CD,– CD,) and an hMrOSSein the stabilizing
factor 3CD, which appears in equation (42) in the
d.iscuasionof the growth of linear momentum during n
cycle. It appears therefore that air brakes of various
kinds may be expected to have beneficial effects upon
the longitudinal stabtity provided that they do not
introduce undesirable moments or interferences.
Highly efficient designs that achieve high values of
C- without the use of devices introducing parasib
drag may be expected to be deficient in longitudimd
damping.

The moment of inertia of the airplane about the
lateral axis appears as the term k=’ in the denominators
of the expressions for -mC and -ma. Increasing kY2
decrews both -mC and -m= proportionally with a
corresponding increase in the time to d&mp. The
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effect may be readily visualized by imagining any
point –p=, -mC upon the chart moved from or
toward the origin along a radial line an amount such
that the ratio of the new distance to the origin to the
original distanca is the ratio of the original value of
k== to the new value. It is therefore to be expected
that distribution of the mass of an airplane along its
longitudinal axis may lead to unstable oscillations
although other factom such as length and size of tail,
location of the canter of gravi~, etc., are such that
ordinarily the damping would be satisfactory. The
effect upon the period of changing k=z is not great
although increasing k=’ will, in general, lead to oscil-
lations of shorter period.

The location of the center of gravity aflects the
longitudinal stability through its effect upon the

term~appearing in the expression for -ma. The

pitching moment of rm airplane about the center of
gravity may be e~ressd as

o %.0.= – OZW(O,–O=)+ c.ow+cxm~ + ‘.,

d(?z, 1 St
+fft~;~m

Differentiating with respect to angle of attack

d~tdcz, 1S,
+ZG7R7’

or, for practicnl purposw,

where
06, ratio of distance of c. g. from the leading edge

of the wing ta the wing chord. “
C., ratio of the distance of the aerod~amic center of

the wing from the leading edge of the wing to
the wing chord.

Cz@,normal-force coefficient of wing.
Cxn, longitudinal-force coefficient of w~~.

z, dietance of mean wing chord below c. g.
Cm,, parasite pitching-moment coefficient of fuselage

and landing gear.
da,
d; ‘

ratio of change of angle of attack at the tail to
change of nqgle of attack at the wing, an em-
pirical factor depending upon downwash (refer-
ence 7).

Since ~ is positive, increasing Co by moving the

center of gravity toward the rear tends to make’~

less negative and to decrease —pm.. The effect of

longitudinal center-of-gravity location upon the sta-
bility characteristics thus follows horn the preceding
discussion of the eilect of changes in —pm=. Tho
location of the aerodynamic center of the wing, de-
fied by C=, affects the stability in the same manner
as the location of the center of gravity but with the
opposite sign. The value of C. given by wing theory
is 0.25 (reference 8). Wind-tunnel data indicate the
actual values to range from 0.23 to 0.25 for conven-
tional airfoils (reference 9).

The vertical location of the center 0! gravity with
respect to the mean aerodynamic wing chord is not
unimportant in many cases and should be considered
particularly in high-wing or low-wing monoplanes.

dCxW
‘hm da— is positive, positive vahm of ~ (as in the

case of a low-w@ monoplane) make’~ 1s5snegative

and may cause an unstable divergence (static insta-
bility) in cases that would be considered stable on the
basis of calculations involving only C,. The value of
dC=W

da— is derived as follows:

CxW=–C.w COSa+C~ Silla

d6’.w
where CDWand ~ are for the wing alone. For n cnse

dCz
with CL=I.4, ~=4, CDO.=O.O1,~=6, a=15°

C.w=o.ol+g=o.ll

dC.
~“= (0.8X0.966)+ (4.llXO.259)

0.77+1.06=1.83

Assuming the case of a low-wing monoplane with ~=

0.25 and CO=0.30, it will be found that the stability
will be the same as though

:=0 and Cn=0.30+
( )
yxo.25 =0.41.

The example represents perhaps an extreme case but
illustrates the desirability of investigating the effect of
vertical center-of-gravity location.

The value of the slope of the curve of parasite
pitching-moment coefficient against angle of attack
may be determined with reasonable accuracy only by
careful testing of a scale model or the complete air-
plane. For a number of designs of military airplanes
for which sample computations were made and com-

dC~O~
pared with measured values of a

da
vahle9 of ~

were found to range from O to 0.4, with an average
value of 0.2, at angles of attaok corresponding to

dCmV
cruising and high speeds. The value of became



306 EDPORT’ NATIONAL ADVISORY CO~’IT!EE FOR A15RONAUTICS

less positive as the angle of attack was increased in all
cases where it was of appreciable magnitude but in
no case became negative. It therefore appeam that
the parasite pitching moment will be, in general, such
as to decrease —pm= with corresponding effects upon
the stability charackistics.

The tail length, size, and aspect ratio are very
important factors in the stability characteristic. Tail
length appears both in —mQand in —pm=. It will be
remembered that

P 8, dCz
‘mQ=—&j~ ~ =1

[

dC?. Z dom -Q “(C,-C.) += ~+~
‘pm”=’~ 2k=’ da

da, dC.., St

7“l~a a%, S c
—— —

Increasing 1has a very beneficial effect upon the factor
–m,, which is proportional to the square of 1. In
an actual case increasing 1 will also increase kY, and
perhaps in some cases q,, so that the net increase in
—mQ will only approximate that indicated by consider-
ing only the square of the tail length. Increasing 1
makes —pm= larger because of the increase in moment
arm of the tail. There are also secondary effects because

J aifects ~, q,, and k=. The net effect of small in-

creasea in tail length can only be predicted from con-
sideration of the particular design. There is a smau
range of conditions, corresponding to small values of
—iL%, ~ which ~mtig 1increases the time to damp
because the effect upon —pm=is of more importance
than the increase in —ma. Large increases in 1 will
always increase the period and decrease the time to
damp.

It has been mentioned that 1 aflects q, and
2“

The effect upon 71 is small and may be neglected.

Increasing tail length increases ~. The angle of

attack at the tail maybe expressedas

where if is the incidence of the tail referred to the wing
chord.

The dowmvash may be expressed as

t=~(z+l)4S(y+l)4W~ (reference 10)

where ‘R is the equivalent monoplane aspect ratio of
the wing combination and z and y are the distances of
the tail plane behind and above or balow the trailing
edge of the wing in chord lengths. The value e there-
fore decreases exponentially with tail length and hence

becomes greater with increase of 1.
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The size of the tail appean in the ratio S’,/8 occurring
in the expressions for —mCor— m=. Increwin.g S’,/s
increases both —mr and —Pa. In the case of —ma
the increase is proportional to S,/S but in the case
of —w. the incwm is more than proportional to
the incresse in SJS because —pm=would normally be
negative were S,/S equal to zero. Increasing tail size
may be expecbd to have a net effect somewhat less
beneficial than increasing Junless the airplane already
has a large value of –p=.

The aspect ratio of the tail surfaces affects the
dCz, dCzt

stability t,hrough—.
da,

Increases inxhave thesame

effect as increases in SJS and need no further &cus-
sion. It will be noticed that if SJS is incre=ed by

dCzt
increasing the chord, ~ will be decreased so that the

net effect will be less thin would be expected on the
basis of tail size alone.

The tail efficiency factor q, aflecta the stability
chmacteristics in the same manner as the ratio SJS.
Tail efficiency depends upon the interference effects of
the wings, landing gear, and fuselage upon the tail
plane. Warner statm (reference 11) that, in general,
tail efficiency has been found to range from 0.6 to 0.8
with extreme values as low as 0.54 and as high as 1.2.
Computations made by the author for a number of
military airplanes indicaiw that for modern designs the
tail efficiency factor will be of the order of 0.75 to 0.8.

The seriesof charts of stability characteristicsagainst
—ma and —w= hss been extended to include the
range of high-lift devices known at the present time
(figs. 41 to 54). The charts bear no evidence of in-
creased d.ifiiculty with longitudinal stabili@ by the
w of these devices. Devices which increase the
parasita drag ss well ss the maximum lift coefficient
are more desirable than those which merely serve to
maintain the flow to high angles of attack. It will
be notimd, however, that in order to use the charts
with variable-area lifting surfaces the true area of the
estended wing must be used in order to come within
the range of parameters given. When the true area
is used, S,/S and p will have been decreased and the
quantity C(CO—C=) changed. The effective value of
—m? is thereby decreased as compared with the wing
with lifting surfacm contracted; whereas the value of
—pm. may be either decreased or increased, depending
upon the rdative vahms of the quantities. The fact
that an airplane h= good stabfity characteristics
with conventional surfacas is therefore no assurance
that trouble will not be experienced when high-hft
devices, particukly those increasing the wing area,
are added. In connection with calculations of stability
with high-lift devices it should be notad that in cases
of such devices as split flaps, variable-area wj.ngs,etc.,
which greatly increase the camber of the wings, par-
ticular attention should be paid to reductions in tail
efficiency q$ which may occur in some instances

because of the change of effective location of the tail
surfaces relative to the wing chord. (See also refer-
ence 12.)

The analysis and discussion have been confined to
consideration of only the long-period oscillations or

the divergence of an airplane as a rigid body. The
effects of such physical characteristics M wing or
tail-supporting structure elasticity or of free longitudi-
nal controls are not, however, unimportant. No
attempt will be made to analyze these effects mathe-
matically but they will be briefly discussed in connec-
tion with the basic relationships brought out in the
foregoing portions of the report.

The effecti of wing elasticity have been treated mathe-
matically in reference 13. Although these effects are
normally not important they may in some oases,
particularly in view of the high speeds being obtained
with modern aircraft, be sufficient to change a nor-
mally positive value of —flmato a negative value with
possibly serious tendencies to divergence. The obvi-
ous means of guarding against such possibilities are
to make the wings rigid in tomion and to use airfoil
sections having positive or zero values of C%.

The effect of elasticity of the tail-supporting struc-
ture is primarily of importance in connection with the
phenomena of btieting and tail flutter and needs no
consideration here other than to call attention to the
possibility of resonance between the n~tural frequency
of oscillation of the tail structure and the shorkperiod
oscillations of the airplane, which are normally very
heavily damped. The results of such resonance would
probably be structural failure and would not receive
practical classification as instability.

The effect of freedom of the longitudinal controls
has been treatad mathematically in reference 14. The
mathematical analysis introduces several new frmtors
into an aIready complex problem and it seems likely
that no designer would attempt to predict the stability
with free controls. From a practical standpoint it is
obvious that if the control surfaces do not deflect
appreciably as the airplane follows the fiusoidal vnri-
ation of angle of attack, etc., the stability will be the
same with free controls as with tied controIs.

The influences that cause the control surfaces to
deflect are the aerodynamic hinge moment caused by
change of angle of attack of the tail and air speed; the
inertia moment that tends to keep the surfaces from
following the changes of attitude of the airplane; and
the mass moment, in the case of statically unbalanced
controls, that tends to deflect the elevator under tho
influence of gravity and accelerations of the tail piano
is accelerated normal to the longitudinal axis. The
aerodynamic hinge moment, which is normally of suoh
* * ~ dem~ @td; and hence both - mqand —pma,

may be kept small by aerodynamic balanca of the
elevator surfaces. The inertia moment is small and
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may be neglected, as in reference 14. The mass
moment may be kept small by statically balanc~m
the elevator.

It follows from the foregoing discussion that sta-
bility with free controls can be insured by providing
ample stability with fixed controls and then aero-
dynmnically and statically balancing the elevator sur-
faces or making the control irrevetible. It is generally
not desirable to attain complete aerodynamic balance,
but the difference between the stability with free con-
trols and that with fixed controls can be made small
without completi aerodynamic balance or without
making the controls completely irreversible.

CONCLUSIONS

1. It is believed that for the average student of the
subject this substitute treatment of the derivation of
the relationships governing longitudinal stability will
be more understandable than the classical treatment..

2. Increase in the amplitude of longitudinal oscilla-
tions with time is possible only when the change in
angle of attack lags the change in f3igh&path angle.
The lag of the angle of attack with respect to the
flight-path angle depends primarily upon the static-
stability factor —~=.

3, The nondimensional parameter –pm= not only
plays the most important part in determining the lag
of the angle of attack with respecj to the flight-path
angle but also is the only sourm of unstabilizing
angular momentum with power off. Increasing tke
value of —P., i. e., increasia~ the static stability,
will iucre~ the tendency to instability if the original
value of —pm= is small. After a certain value of
—~= is reached, further @creases in the negative
sense will reduce the tendency to instabili~.

4. The effect of the vertical location of the wing
relative to the center of gravity should not be neglected
in calculating the ststic stability.

5. Aerodynamically efficient airplanes are more
likely to be dynamically unstible than less efficient
type%

6. Increasing the wing loading will increase the
period of the oscillations but will not necessarily make
the airplane either more or 1ss.sstable.

7. ~h-lift devices that depend partly upon in-
creases m wing area may lead ta instability if the size
and disposition of the tail surfaces are determined on
tlie basis of the contracted wing.

8, There is no likelihood of dynamic instability at
the angle of attack corresponding to maximum or
cruising speeds. The damping of the oscillations may ,
be mor; or less pronounced at low speeds than at high
speeds. There is likelihood of dynamic instability at
low speeds.

9. Stability with free ccntrols can be brought close
tQ that with fl~ed controls by aerodymunically and
statically balancing the elevators.

IL ESTIMATION OF STABILITY
METHOD

The charts included in this report (figs. 15 to 54)
provide an easy method of estimating the dynamic
stability of airplanes. In order to use the charts it is
necessary to lmow the values of the nondirectional

dC~ dC~parametem CL, CD,~,x, —ma, and —Pma for the

airplane at the speed under consideration. Knowing
the parameters, turn to the charts and select those for

dCL d ~which CL, CD, ~ an most nearly represent the

case under consideration. Spot the particular point
representing ~ma and —pm. upon the charts. Rough
interpolations between the valuea of ~’ and #’ so in-
dkated will, in general, provide a sufficiently accurate
estimation of the stability characteristics of the design.
The time to damp to one-half amplitude, in seconds,
is

J–
‘c

T= –0.313 R L
i’

and the period in seconds is

d

.—
‘c~=2.83 ~ L

+’

The number of oscillations for the amplitude to die to

one-half the original value will be ;= – $.

DETERMINATIONOF NONDIMENSIONAL
PARAMETEIMl

The nondimensional parameters should be tien
from available fright or wind-tunnel data if possible.
If such data cannot be obtained they maybe calculated
by methods outlined in the following paragraph.

Lift coefficient Cz.—The lift coefficient CL follows
directly from the wing loading and the speed. In gen-
eral, it is desirable to choose CL as 0.20, 0.80, 1.4o,
1.90, or 2.40 to facilitate use of the charts. For air-
planes with variable-area wings the wing area in use
under the flight condition should be used ae the basis
of calculations.

Drag ooefflcient CD.—The drag coefficient CD may
be estimated from the relationship

cD=c@+T(~~)z ~ (see reference 6)

se

where CDPis the parasite-drag coeilicient,

(kb)’, the eqtivdent monoplane aspect ratio
s

(reference7 give9 k in convenient form),
e, an airplane efficiency factor ranging from 1

for very clean designs to 0.7 for very
inefficient designs (reference 6).

.



316 REPORT NATIONAL ADVISORY COMMITITIIil FOR AERONAUTICS

Slope of lift curve ‘~ —The slope of the lift

dCL
curve ~ may be taken as 4 (all values of angles are

in radian measure) at low and intermediate angles of
attack and as 3 near the stall if the values of the other
parameters are based on the true wing area and the
airplane is a conventional type. It should be noted
that in cases of extremely high or extremely low aspect

dC’
ratios for which ~ diifers considerably &m 4 the

wing area may be considmed such as to make
dCL
~=4 if Cz, 6’D, and ‘~] —m,, ~, and —m. are

each multiplied by the ratio of 4 to the actual value of

‘~ for reference to the charta. h such a case the

Iatio must not be neglected in the conversion to time
in seconds.

Slope of the drag curve ‘~—The slope of the

drag curve may be estimatid from the relationship

dCL
dCD 2c&~

z’ Jkb)’
se

The value of’~ here used may be taken as 4 thrcugh-

dCLout the flight range as ‘~ does not fall off with ~

near the stall.
Rotational damping faotor —mC.—This parameter

will, in general, have to be estimated although it mav
be dete%ed “horn tests of m oscillating
from tests on a whirling arm (reference
purposes of estimation the equation

.
model, or
15). For

where K is taken as 1.25 will generally be sufficiently
accurate. The tail e5ciency q, may be taken as 0.75
or 0.80 for modern designs. The distance from the
center of gravity to the elevator quarter-chord point
1, the ratio of tail-plane area to wing area SJS, and
the radius of gyration of the airplane about the span
axis iiy are dimensional characteristics of the airphme.
The radius of gyration may be found from the rela-
tionship

where
B is the moment of inertiaabout the span axis.

g, the acceleration of gravi~.
W, weight of the airplane.

or estimated from the relationship

k== J_-

where
C~ isrm empirical constant.

1,,over-alllength of the airplane.

IL,over-allheight of the airplane.

From 11 airplanes for which C. was determined
(reference 16)

0.0325s C~5 0.0394 with the average value 0,0362.
In the absence of test data the slope of tho lift

curve for the tail may be taken as

dCA, 5.5
G =~ (reference 17)

l+p

x
Static stability faotor —~a.—The static stability

factor is

or

6.5~c dCraO.,.
–v ~ (standard conditions)

where c is the chord length upon which On is based.
Various methods have been proposed for estimating
dCmC.~
~ The author prefers the relationship

dC~C,. dc= dC=wZ dCmP 18, dCb, da,
—=~(c,–ca)+~;+~–vt~”~~da
where

COis the distance of the center of gravity of the
airplane from the lending edge of the reference
chord in chord lengths.

Carthe distance of the aerodpamic center of the
wings (reference .8) from the leading edge of
the reference chord in chord lengths.

dCxm
~ the slope of the curve of longitudinal force co-

efficient for the wings nlone against angle of
attack and is

dC.
where ~“ and C~@are values for the wing

alone.

~ the distance of the reference chord below the

center of gravity in chord kmgths.
!iC.,
~j the slope of parasite pitching moment due to

fuselage, engine nacelk, landing ger4r, etc.,
against angle of attack.

~) the rate of change of the angle of attack ~t the

tail with change of angle of attack of the air-
plane and is

fat de~= 1—@where cis the angle of dowmvash at the tail.
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The value of C. variea from 0.23 to 0.25 referred
to the mean nerodynmnic chord of conventional air-

foils (reference 9). The value of ~ may be wti-

mnted if the designer so deai.m. The author has
found the value to vary from Oto 0.4 for a few military
airplanes at low anglea of attack with the average

d(?.p
value about 0.2. The value of ~ was found, for

the cases considered, to fall off to approximately zero
at high angles of attack.

The rate of change of downwash angle at the tail
with change of angle of attack may be estimated from
the relationship

‘CL ference 10)g=&z+l)+””(y+l)+”~ ~ (re

where
dc=
z is in radian measure

z, the distance of the tail plane to the rear of the
trailing edge of the wing in chord lengths.

y, the distance of the tail plane above or below
the trailing edge of the wing in chord lengths.

For the average case
de 0.65 do=

Y=o’ ‘=2”5’ &=m x
3-

EXAMPLES
.lD?PLANEA

0==0.80 2=3.95

C~=0.080 dg=o.39

(Taken from full-scale flight data.)

—mC=2.6 –~m==16.5

(Estimated.)
l?rom figure 23 c’= –0.044 +’=0.48
I?rom figure 25 r’=–O.035 #’=0.48
From interpolation between the figures on the basis
of CD, ~’= —0.039 and t’=0.48. From interpolation

between the figures on the basis of ‘~, I’= –0.038

and ~=0.48. From full-scale unpubbhed flight tests
of this airplane ~’=–0.041 and #’=0.72.

AIEPLANE B

CL=O.80
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d!l==3.60
da

CD= O.076 dCD o *
x= “

—m{=l.5 —pm.=9

(Taken from full-scale flight data.)
From @e 23 I’= –0.034 $’=0.49
From figure 24 ~’= –0.030 #’=0.50
From @e 25 ~’=–O.025 4’=0.48
From interpolation betwewl figures 23 and 24 on the
basis of CD, ~’=–o.031 and +’=0.50. From inter-
polation between @ures 23 and 24 on the basis of

%
~’= –0.033 and Y’=0.49. From interpolation

between figures 24 and 25 on the basis of ~,

~=–O.027 and 1#’=0.49.
From fulkcale flight teats of this airplane (refer-

ence 2) ~’= —0.038 and #’=0.55.

AIEPLANE C

d%=4.00
da

cD=0.094 d!?=o.51

—mC=2.3 —pm==4.8
@ktimated dab.)
From @ure 23, ~’= –0.034 and +’=0.4.
No interpolation is necewmry. From extrapolation of
full-scale unpublished flight data ~’= –0.030 and #’=
0.72.

AIRPLANED

CL=O.80 dCL
~=4.oo

cD=0.12 “D=O.W
z

—m~=l.76 —Jlm==3.40
(Estimated data.)
From figure 26, ~’=–O.03 to –0.04 and #’=0.39.
From full-scale unpublished data f’= –0.035 and #’=
0.53.

LANGLEYMEMORIALAERONAUTIC LABORATORY,
NATIONAL&hsoRY COMMITICEEFOEAEBONAUmCS,

LANGLEYFIELD,VA., December13,1934



APPENDIX

A,
B,
c,
D,
E,
a,
b,

RECAPITULATION OF SYMBOLS

coefficientsof stabilityquartic.

coefficients of stability quadratic.

C=+@cD+%)

( )d=; c“d~–C.d~+C,2.

j=;c.z
e, base of natural logarithms.

e, airplane efficiency factor such

C., coefficient of resultant force.
Cz, coefficient of force normal to the wing chord,

positive downward.
U.., coefficient of force parallel to the wing chord,

positive forward. -
C., coefficient of aerodynamic center (ratio of dis-

tance of aerodynamic center from leading edge
to chord length).

CO,coefficient of center of ~vity (ratio of distance
of center of gravity from leading edge to chord
length).

Cfi9, coefficient of pitching moment other than that
from wings and horizontal tail surfaces.

0%, coe5cient of pitching moment. of wing at zero”
lift.

c .C.a., coefficient of pitching moment with re9pect to

center of gmvity.
k=2

‘B= ~~
coefficientof radius of gyration about

lateralaxis.

11,over-alllength of airplane.
h, over-all height of airplane.
/, distance fkom center of gravity to quarter-chord

point of horizontrd tad surfaces.

~= J=
K, empirical factor by which computed value of

rotational damping factor of tail is multiplied
‘ to give total rotatiomd damping factor.

k, empiriccd factor for conve~ion of biphme span
to equivalent monoplane span.
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m k dcm..g—pm==— .1static-stabilityfactor.
p= 2W -Z-

P “ ‘CL’, rotational damping factor.—mq=K qt z- ~ G

O,subscript denoting that the value of the symbol
refem to zero time.

P’, period of an oscillation, nondimensiomd units.
P, period of an oscillation, seconds.
T’, time’ for an oscillation to decrease to one-half

T,

t,

AV’,
w,

“ z,

Y,

z,

61,

amplitude, nondimensional units.
time for an oscillation to decrease to one-hali

amplitude, seconds.
subscript denoting that the symbol refers to the

horizontal tail surfaces.
ratio of AV to V.
subscript denoting that the symbol refersto the

wing alone.

distance of horizontal tailsurfaces to the rear

of the trailingedge of the wing, chord lengths.

distance of horizontal tail surfaces above or

below the wing chord (extended), chord

lengths.

distance of wing chord below center of gravity.

angle of lag of change in angle of attock with

respect ~ change = angle if flight path.
3*,angle of lag of change in velocity along flight

path with respect to change in angle of flight
path.

6S,aqgle of lag of change in angle of pitch with
respect to change in angle of flight path.

6,, angle of lag of change of angle of attack with
respect to change in angle of pitch.

q~,tail efficiency.

r=-??damping coeiiicient.

A’=ly+’i*’.

‘=alm jrelatived&ity.

“=5%time conversion factor.
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b
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,-------
,-------
------- -
,-------
,-------
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.04
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,-------
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.------ .
.------ .
--------
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. ------ .
--------
--------
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------- .
--------

CD

Ilom
.043
.042
.0!2
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R.ual
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.072
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. CtJl
. WI
.14
.m
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.16
.m
.m
.m
.14
.14
.14
.20
.33

;;

.45

.45

.45

.70

i:
.8-5

:E
.8s

4W
Im
400

i%
4WJ
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Xw
4W
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4.00
4m
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M

WI
4m
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4m
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3.m

2%
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4m
2.m
2m
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.13
.03
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.15
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.51
.24
.82
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.51
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.51
.70
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.89
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M
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M
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