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CALCULATION OF DISTURBED MOTIONS OF AN AIRPLANE
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SUMMARY

A simplified treatment of the application of Heaviside's
operational methods to problems of airplane dynamics is
given. Certain graphical methods and logarithmic for-
mulas that lessen the amount of computation involved are
explained.

The problem of representing a gust disturbance or
conirol manipulation is taken up aend i 18 pointed out
that in certain cases arbitrary control manipulations may
be dealt with as though they imposed specific constraints
on the airplane, thus avoiding the necessity of any inte-
gration whatever.

The application of the calculations described in the text
18 llustrated by several examples chosen to show the use
of the methods and the practicability of the graphical and
logarithmic 6mputations described.

INTRODUCTION

The theory of airplane dynamics in its present form
is due mainly to the original researches of Lanchester
and Bryan on the stability of airplanes.. Later inves-
tigators, notably Bairstow and Wilson (reference 1),
applied and extended the original conceptions of the
theory. Bryant and Williams (reference 2) have re-
cently shown how the operational mathematics of
. Heaviside may be used in applying the theory to prob-
lems of the disturbed motions of airplanes.

Although the calculation of disturbed motions of
aircraft is important in problems of flight safety, little
experience has been gained in the practical application
of the theory owing to its mathematical complexity.
The present paper gives the results of researches in the
mathematical application of the theory. It has been
found, as suggested by Bryant and Williams, that the
Heaviside method affords the simplest and most direct
solution of these problems. In order to bring out the
advantages of this method, & treatment of its applica-
tion is given and certain formulas and graphical con-
structions are explained that make the calculations
easier.

In their usual form, problems of airplane dynamics
depend for solution on the integration of simultaneous
linear differential equations. Methods for the integra-

tion of such equations are given by Wilson and Routh
(references 1 and 3) and in mathematical textbooks.
The problems met in airplane dynamics are often more
complex than the examples treated in ftextbooks and,
when an attempt is made to apply the given methods
to their solution, difficulties of computation arise.

In view of the importance of investigating these
problems and since their solutions involve lengthy cal-
culations, it is desirable that as many mathematical
simp]iﬁcations a8 possible be employed. Heaviside’s
method gives such s simplification, the solution of the
differential equa.mons being accomplished symbohca]ly

by & single ‘“‘expansion theorem.” .’ b

THE DIFFERENTIAL EQUATIONS FOR THE DISTURBED
MOTIONS

An airplane in uniform flight may be thought of as a
free rigid .body in equilibrium. Deviations of the air-
plane from. this equilibrium condition may be caused
by reactions due to control movement, gustiness in the
air, or by some influence such as the stopping of an
engine. The motions of the airplane following such a
disturbance may be calculated if the momentary
accelerations or forces are known. It is obvious that
this computation may be performed by taking small
intervals of the time and caculating the velocities and
displacements generated by the known accelerations
step by step, assuming the accelerations momentarily
constant.

The component linear and angular motions of the
airplane in its deviations from equilibrium are given
exact definition by constructing a set of axes rigidly
fixed in the machine and considering its motions as
being those of the axes themselves. The motions
spoken of are then velocities and displacements of the
airplane axes relative to the earth or the air. When
the airplane is in steady flight, it maintains a certain
equilibrium attitude with respect to the air and to
the earth. Thus for climbing flight at a given engine
speed a definite angle of attack and a definite angle of
pitch must be preserved. Deviations from equilibrium
in either sense will introduce reactions; hence motions
of the airplane axes relative to both air and earth
must be considered.
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The aerodynamic reactions to the motions arise
from changed relative air velocities over the different
parts of the airplane. The calculation or measure-
ment of these component aerodynamic reactions leads
to quantities known as “resistance derivatives” or
“gtability derivatives,” which are taken as constant
factors of proportionality between the reactions and
the velocities or displacements of the motions. For a
more detailed exposition of the concept of stability

derivatives, the reader is referred to standard text-
books on aeronautics.

On account of the bilateral symmetry of the airplane
it is customary to divide the motions into two inde-
pendent groups, the lateral and the longitudinal, each
consmtmg of t.hIee degrees of freedom:

sl ! é’fM-’ #'Stne [Rolling.

. A) teral motions _________ Yawing.
Sideslipping.

/W 6«,&\/ e ")"4""\ —_ Pltchm,,

,}//{/ /’['“ pohe Vertical translation.
Forward translation.
Presumably the reactions to small increments of
longitudinal speed or displacement do not sensibly
influence the lateral motions and the two groups may
be independently treated. In order to illustrate the
calculation of the history of a motion due to a given
disturbance, examples of lateral motions are chosen
although the methods used are equally applicable to
any set of degrees of freedom of the airplane. The
quantities that arise in the consideration of the lateral
motions are defined in the following table:
Velocities and displacements of airplane axes:
U,, equilibrium flight velocity along X axis.
v, component of flight velocity along ¥ axis
(sideslipping).
p, component of angular velocity about X axis
(rolling).
r, component of angular velocity about Z axis
(yawin_g).
¢, angle of bank (relative to gravity).
Forces and moments resolved along airplane axes:
Y, component of force along ¥ axis. .
L, component of moment about X axis (rolling
moment).
N, component of moment about Z axis (yawmt.
moment).
Accelerations of airplane:
Y,=Y[m (force per unit mass).
Ly=L/mks® (moment per unit moment of inertia).
Ny=N/mkz* (moment per unit moment of inertia).
Gust velocities resolved along airplane axes:
t, component of gust velocity directed along Y
axis.
7o, component of angular velocity of gust about Z
axis.
Po, component of angular velocity of gust about X
axis.

®3) Longltudmal motions____
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Nore.—The signs of the gust velocities are so
chosen that a positive gust produces the same aero-
dynamic reaction on the airplane as a positive velocity
of the airplane in still air. The resolution of gust
velocities along the moving axes is exact only to the
first order of the small quantities involved.

Airplane characteristics used as parameters:

Y, :
Stability derivatives in terms of accelera-
Y. tions of airplane, thus:
TRl
L, dY / he u
= /M ,
L, i,
«'1_‘(///(
L L=5rfmet A
!
2 e M
N, ON [
=3?7/me2 }'ﬁ//,(
N,
N,

With the definition of the component motions that
are to be considered, the stability derivatives will be
of the form:

oL bN oY
2p o0 or ot

where L, N, Y, respectively, are the rolling moment,
the yawing moment, and the sidewise force, as they are
customarily defined.

It has been found convenient to transform all
stability derivatives and disturbing effects into terms
of accelerations of the airplane rather than retaining
them as moments and forces. This transformation
is accomplished by dividing out the appropriate
moments of inertia and the mass of the machine.

For example, g—]z';' /m.i’r:x2 may be written simply as L,;
similarly 2 /mk,’=N. and %/'m —7,

If the flight path is assumed to be horizontal (or
nearly so) and the main forward velocity U, to be
substantially constant, the equations of motion in a
lateral disturbance may be written:

(In sideslipping) %=y¢—on+vY.+rYr+ X,

(nrolling)  PPeol,+pL,+rL+Lo 1)
(In yawing) %=vN.+pr+rN,+No

In these equations the terms Yy, Ly, and N, represent
known disturbing or controlling accelerations, assumed
to be given as functions of the time ¢. In the first
equation the terms go and —rU, are, respectively, the
accelerations due to gravity and to the rotation of the
moving axes. Since the axes chosen will ordinarily lie
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near the axes of the principal moments of inertia of
the airplane, terms involving the products of inertia
have been neglected.

INTEGRATION- OF EQUATIONS FOR VELOCITIES AND
DISPLACEMENTS

As previously mentioned, equations (1) may be inte-
grated by taking small intervals of the time and calcu-
lating the velocities, and finally the displacements, by

assuming the accelerations %’: etc., to be momen-

tarily constant. Although this method is sometimes
useful, it naturally leads to extensive numerical work.
The operational mathematics of Heaviside appear to
offer the most promising means of performing these
integrations.

The first step in integrating the equations of motion
by the operational method is to replace the symbol

by the so-called ‘“‘differential operator” D, which is

dt
to be treated as though it were an ordinary algebraic
quantity; the equations are then rearranged with the
kmown disturbance effects on the right-hand side:

D—Y )o—ge+(Up—T,)r=1X,
_le'l' (D'_'LP)P—LrT=-LU
— Nao—Nyp+(D—N)r=N,

Since Dyp=p, the first equation may be operated on
throughout by D, reducing all to the same variables
(v, p, 7):

@)

D(D—Y yo—gp+D(Uy,— Y )r=DT,
—Lop+D—Ly,)p—Lr=L,
—va_Npp+ (D_Nr T=N0

With the. equations in this form, they may be solved
for v, p, or » by. ordinary algebraic means; thus,

(2a)

DY, —g D(Uy—
I (o-1,,  —L
N, —-N, (D—N)
o= 3)
DD-Y,) —g D(U,—7Y,)
—L, (D—L,) ~I,
—N, —N, —N,) .

The expansion of the determinant of the numerator
in terms of minors results in:

—I’P) '_'Lr
—N, —N)

1 D(U,—Y,)
_Nr)
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In the calculation of any of the velocity components
the same denominator appears; if this determinant is
denoted by F(D), the forms of these components are:

pTaD) ' FaD)y  FuD
=FO)tFON D)

_JfaD) o | fuD)y | fr D)y
=%yt F D o e

Y412

6
Y,

etc.

Thus far the solution of the equations of motion has
progressed simply on algebraic grounds, the required
quantities (v, p, etc.) having been found explicitly in
terms of the symbol D). The symbol D was defined as
the operation of derivation with respect to the time ¢,
expressed by writing
d
dt

The terms of the solution f(D)/F(D) indicate that the
formal operations are to be performed on whatever
functions follow them as factors. Since they contain
the symbol D in their denominators, it becomes neces-
sary to define the operation indicated by 1/D or D1,
As D is an operation and not a number, its reciprocal is
defined as the inverse of the operation of differentiation,
rather than as the derivative itself divided into 1.
The inverse of differentiation is integration: thus,

D=/, .. dt

The operations indicated by the ratios of polynomials
in D that occur in the terms of our solution then consist
of a succession of differentiations [f(D)] and a succes-
sion of integrations [F(D)]™:. It is clear that the
nature of the problems at hand requires that the result-
ant of these operations be an integration, which is
shown by the fact that the polynomial F(D) is invar-
iably of higher degree in D than any of the polynomials

JD).
THE EXPANSION EQUATION

By treating the disturbances (such as Yy, Ny, Lp) as
discontinuous functions of the time, Heaviside obtained
solutions of equations similar to the foregoing by a
simple theorem. The substitution of ¥, into Heavi-
side’s theorem results in

D==_

F(D) ONIECIY
FO =T 7oy T4 } ©

where the M’s are the roots of the polynomial equation
FD)=0. This polynomial, F(D)=0, is used in the
study of the stability of motion, being called the

“stability equation.” Its roots, Af A2. . . A, give an
o 4)
D—L,) —L,

—N,
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indication of the natural tendencies of an airplane’s
motion and are used in the definition of stability.

In order to apply the foregoing theorem to the
integration of equations of airplane motion it is neces-
sary to assume that the disturbance terms (¥,, IV,
etc.) due to the control or gust in question are instantly
applied at the assumed origin of the time scale (=0)
and remain constant thereafter. In the general case
the disturbance terms in the equations of motion cannot
be thus represented as remaining constant although in
practical problems they may almost invariably be
represented by means of functions of the form Y, e*.
The interpretation of Heaviside’s theorem (equation (6))
when this form of function is used is (see reference 2):

f (D) nt_ (n) . JN)
Yoe %e +ZZ)\_7L)F—'()\ ] (M)

When dealing with variable disturbance terms, it is
important to note that a discontinuity of the function
representing the disturbance at =0 is implied as in
equation (6).

By the substitution of (in) for » in equation (7),
expressions that can be used when the disturbances

-z
FiGues 1.—Map of polynomial. F(D)=DitaDH-bD¥cD-+d near zero.
F(D)—>FQ) =0 when D->a--1b.

are represented by forms involving sin n¢ or cos nf are
obtained

f(D Yoetrn

=Y %%% (cos nt-}7sin nt) +E<;‘;’:Z >f(>‘) e“](7a)
(in)

If Fen =A-}4B, then the expressions for the sine and

cosine forms separately become

157((153 ==Y sin nt

=YU|:A sin nt--B cos nt+2()‘,_7r_n, 1’% M:I
%%YO cos ni '

——Y.,[A cos ni—B sin nt+2<)\,+n )F%e’“] )]
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These latter forms are particularly useful because
almost any arbitrary variation of gust or control may
be expressed as a sum of sine or cosine terms. Thus if

Y,=K, sin -+ K, sin ngt . . . 4 ete.
J.{;% Y°=§ED§ 1 sin nlt‘l';ED;Ka sin ngt+ . . . 4 etc.

(10)
Each of these terms may be evaluated by equation (8).

SOLUTION OF OPERATIONAL EQUATIONS
FINDING THE ROOTS OF THE EQUATION F(D)=0

The expansion equations given for the forms
f(D)/F(D) require the roots of the complementary

equations F(D)=0 for their solution. In cases of
airplane motions this equatlon is normally of the fourth

degree in D; hence it is not practicable to find the roots
directly. Although a number of methods for approxi-
mating the roots of such equations have been devised,
the most direct way is to draw a curve of the function
F(D) against D, locating the real roots as the points
crossing the D axis. Usually in equations of this
type near roots may be isolated by separating the
equation into two parts. Thus, if

F(D)=D*-aDP+-bD*+eD+d=0 (11)

there will usually be a large real root near I¥=—al?,
or D=—a, and & small one near D= -——%- This
division follows from the consideration that large roots
are more dependent on the coefficients of the higher
powers of D and small roots, on the lower powers.

If the natural motion of the airplane contains oscilla-
tory components, as it usually does, there will be pairs
of conjugate complex roots of the polynomial F(D)=0
in addition to the real roots. The determination of
these roots is naturally more difficult, although if real
roots have been previously found they may be used
to reduce the degree of the equation by synthetic divi-
sion. and the determination of further roots will be-
come progressively easier. Complex roots of such an
equation may be directly found by plotting & map of
the polynomial F(D) for various values of D using the
coordinates D=z--iy and finding the zero point, or
root, by interpolation, as is shown in figure 1. If a
very accurate value of the root is required it may be
convenient to plot the region of F(D) near the origin
to a magnified scale. Since the polynomial is what
is known as an ‘“analytic function’’ (reference 4),

oFD)__, 2F(D)
or oy

) | and the map in its smallest parts will consist of squares.
In this way a more accurate interpolation may be
made or a process analogous to Newton’s method may
be applied.

It will be found most convenient to calculate the
various values of F(D) by means of a vector diagram

(12)
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as shown in figure 2. If trial values of D are expressed
in the form E (cos 6-+% sin 8) or Re®, vectors repre-

senting each of the terms of the polynomial may be
simply calculated. The problem is to make all terms
of the polynomisal balance each other and it is readily
seen how this may be accomplished by varying 6 to
change the relative inclinations of the vectors and by
varying R to change their relative lengths. The
advantage of this method is that it enables a close
approximation of the value of a root with a minimum
number of trials, the diagram making apparent how
nearly all the vectors cancel each other.

SOLUTION OF EXPANSION EQUATIONS

The numerical operations indicated in the expansion
equations (6) to (9) call for calculations with complex
numbers (i. ., roots of F(D)=0). A great deal of the
labor involved in these computations may be saved by
the use of graphical and logarithmic methods.

Thus, if it is desired to calculate values of the com-
plex terms occurring in equation (6), the logarithmic
formula
Jog~L(M) Mi+Hlog F(n) —log Ni—log F'(A)  (13)

MET (A
is used. For the purpose of calculating these loga-
rithms, it is convenient to express the complex numbers
(A, f(\), ete.) as vectors of radius R and angle 6,
writing, for example,

eMi=

M=a-}1b=R,(cos 6} sin 6,) =R,e*: (14)
by De Moivre’s formula.
A complex term of equation (6) may then be written,
f(}‘l) elll Rﬂewg
)\IF'()\I) RIG“IR36"3
- Ili’a PeHO—0—8) (15)
=R M
Then
log)‘f (3‘8‘ )e“‘—k1t+log Bo+-16, (16)

and the resultant logarithm may be plotted as a straight
line At-+constant, which is then divided or extended to
represent any division or extension of the time # over
which the calculation is made. (See fig. 3.) The final
vectors will represent the complex values of

J(\)
MET(N)
and it is seen that the ordinates of the points of the line
Mi-t-constant are the angles of these final vectors while
the abscissas are the logarithms of their radii.

eh t

%%Yo sin ni=X, l:magmary coordinate of

. %YO cos nt=1Y, I:real coordinate of If%zem +2
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By a separation of the twobomponents of the imagi-
nary root A=a-}b, the logarithmic formula may be
reduced to

log,—1(@-ib)

ST (@ +zb)°‘“+“’“— (a+-1b)t-+log By+if,
= (log By+at) +i(6o4-5%) (17)
The final formula, where \;=a+-%5, then becomes
SO pupgraoin  ag)
or, by De Moivre’s theorem,
T i Regolcos (b4 +i sin (bt-+09] (1)

AF7(N)

The points thus plotted will lis on a logarithmic
spiral (fig. 3); the deviation of this spiral from a circle

eD |i

alb?
F1GURE 2.—Graphical method of locating values of F(D) near zero, whers
F(D)=Di4-aD3-bD-cD+d. Dimzytiyr=Riett=Ri(cos 61 sin 61)

shows the influence of damping on the natural motion
of the airplane.

The summeation indicated in equation (6) calls for
the plotting of such a logarithmic spiral for each of the
complex roots. Since these roots always ocecur in con-
jugate pairs, the calculation may be carried out for one
of such a pair and a spiral calculated for the second
would be exactly conjugate to the first. Thus, itis only
necessary to perform the foregoing calculations for one
root of each pair, the summations indicated in the
equations being carried out in effect by merely doubling
the abscissas of the points of one of the conjugate
spirals. If \;=a-1b and A\y=a—ib, this summation
may be written:

The formulas for the integration of terms containing
sin 7f and cos ¢ may be put into & more convenient
form for the graphical or logarithmic calculations, i. e.,

M—=2Rq.e%cos (bi-1+0,) (20)

f( ) gint f()\)
S
NFn2EF'(\) i| (22)
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In these forms the graphical construction of the terms

,f(ﬂg etru
F(@n

terms involving complex roots A. Here the re-
sulting diagrams will be .circles, divided into equal
angles as nf may be divided. In case X is complex the
plot of an ¢ term will be a logarithmic spiral as before
and it is important to remember that the summation

“ fog L)

AFA)

proceeds along the-same lines as that of the

et = Jog R, +iG,+At

t=1.0_

—_— -
——
——

———

———
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For the velocities of an assumed gust, forms involv-
ing ¢* are useful. Thus, if the gust is considered a ,
“transient’”’ one, disappearing rapidly from an arbi-
trary initial value, the form (A) (fig. 4)

(24)

may be used. Here v, is the initial value and —n is
chosen to make the gust diminish in any required way.

Do=016~"

FA)

3
223

(For t=0)

-1

FiGuRE 3—Graphical construction of ¥ -—L0) _ext where Amaztib. Log fQ\—log A—log F\)=log Ro-i6o.

over each of a pair of conjugate roots is accomplished
by doubling the abscissas of the spiral obtained for one.

WAYS OF REPRESENTING GUSTS AND CONTROL
MANITPULATIONS

GUST DISTURBANCES

If the disturbances to be considered are due to gusts,
the terms Y, L, ete. of equations (1) will be of the form

Yo=0,Y, 4T,
No=0N s+ poNp+70N; -

where t,, po, and r, are the component velocities of the
gust, which may vary with thetime. As given, the ref-
erence system for specifying these gusts has been chosen
so that a positive gust velocity may be considered as
producing the same aerodynamic reaction on the air-
plane as a positive airplane velocity in still air. All
such gusts must be ‘assumed to be moderaté so that
second-order effects ‘may be neglected. (See refer-
ence 1.) .

23)

If the gust is to be made to start from an initial value
of zero and to persist with the time, the form (B)

to=0;(1—e™™) (25)

may be used. (See reference 1.)

For the purpose of representing gusts that arise with
any degree of sharpness from zero velocity to a given
peak value and then diminish, the form (C) may be
used: ’ .

vo=Ke‘"f (1—e™) (26)

i'The sharpness.of the rise of this gust is governed by

—m and the decrease by —n, since its curve approaches
that of (1-¢~™) near the origin and finally becomes
asymptotic to e~™.

In the- case of a rotating gust it is probably more
logical to use-the transient forms that represent the
gust as disappearing in time instead of being persistent.

CONTROLLED MOTIONS

When considering controlled motions, it is often just
as reasonable to assume that the airplane is under a
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kinematic constraint, or prescribed acceleration, im-
posed by the confrol as to assume that the pilot uses
the control in an arbitrary way. This assumption
leads to the inversion of the integration problems here-~
tofore considered, because the motion of the airplane
is itself predetermined and the forces and moments (or,
more properly, accelerations) required to be supplied
by the controls are calculated by differentiation. The
ability of various control devices to produce a given
maneuver of the airplane may thus be compared and
the degree of coordination required of the-other-con-
trols may be studied.

The foregoing procedure is a particularly useful way
of studying the lateral-control effectiveness in turms.
Turn maneuvers, which usually begin and end in level

' t
Q) y=Ke™l-e™)
{

FIGURE 4.—Curves of different formulas for representing gusts.

flight, may be described by means of a few sine or

cosine terms. For example, the angle of bank ¢ may

be given by ‘ )
p=constant+A, cos nt+ 4, cos 2nttetc.  (27)

(See fig. 5.) The rate of rolling at every instant
136602—37——22
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naturally follows by differentiating this equation. If
the turn is to be ‘‘perfect,” that is, with no sideslipping,
the rate of yawing throughout must bear a definite
relation to the angle of bank, namely,

=_g_ .
r UOS].nqo

(28)
or, SlmPIY: .
r=a[g70qa if ¢ is under 30°

-‘Pifferentiating the expressions for p and r giveé the
accelerations in rolling and yawing and hence the

--Rate of ro'///'n'g, }'7 | l l ‘
‘ — [ ~cAngle of bank g
8 [/
? L \ 1N\
g / 4 Rate of yawing, r.
HipannsssasEStuni
9 ud N B
3'§0 7ime, ¢ ™ mnt seconds’
; 5 /
|18
3 \ /
o
g ‘ /
NL]

F1GURE 5.—Speclfications for a turn maneuver in which the constraints are given by
d,
=136 A14-A4; cos nt+ 3.4, cos 2ni; p-f; '-%6 @

moments, which will arise from two  sources: the
reactions due to natural stability and the reactions
produced by the displaced controls. The reactions
arising from the motions are found by combining the

"| known stability derivatives with the angular velocities

p and r, obtained from the specification equations (27)
and (28). The parts of the moments necessarily
supplied by the controls are then obtained by deduct-
ing these from the total moments. In the case of the
aileron control, secondary moments in yaw result from
the application of rolling moment, which modify the
amount of rudder control displacement necessary.

CONTROL AGAINST GUSTS OR ENGINE FAILURE

In order to deal with attempted control of a given
disturbance it is important to consider that there is
invariably a lag in the pilot’s reaction in countering
the motion. In these cases it is possible to assume
that the disturbance arises instantly, or nearly so
(whether persistent or not), and that the pilot’s dis-
placement of the corrective control takes place accord-
ing to the law

§=dy(1—e™™)
(see fig. 4(B)) where §, is the assumed maximum con-

trol deflection, which occurs more or less quickly as
~n is made large or small.

(29)
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EXAMPLES SHOWING APPLICATION OF OPERATIONAL
METHODS TO PROBLEMS OF AIRPLANE MOTION,

The following examples illustrate the application of
the various methods-to specific problems of airplane
motion. The airplane assumed in these calculations
is a typical 2-passenger machine having the following
characteristics:

CHARACTERISTICS OF TYPICAL AIRPLANE
Type: Monoplane; aspect ratio 6; rectangular, rounded

tip, Clark Y wing; dihedral angle, 1°.
Dimensions:

Gross weight_____ . _________ 1,600 1b

Wing span__ .. _______ 32 ft.

Wing ares._ - . _________ 171 sq. ft.

e e e mmm e 1,216 slug-ft.?

Mg o e 1,700 slug-ft.?

Stability derivatives:

@y | | & | v | N | M| T
10 | 35 |64 | 11| -216| 0207 [ —0.013| 552
8.5| LO —3.23| L88|—L11| —.301| —.663] 204
68 LS —246] 251 | —L66| —.310| —.977 | L46

¥ Flaps down.

The calculated principal lateral-stability derivatives
of this machine given with the other characteristics
refer to motions of a set of axes fixed in the airplane
but so inclined that the X axis points in the direction
of the relative wind in straight flight at the lift coeffi-
cient specified. The axes, nevertheless, move with the
machine during the small oscillations considered and
hence depart slightly from instantaneous reference axes
fixed in the wind direction.

ILLUSTRATION OF SOLUTION WITH CONSTANT DISTURBANCE
TEREM

Example I, Rolling motion produced by deflecting
ailerons at low speed:

(a) Assume the machine to be in level steady flight
at a speed of 88.5 feet per second (Cr=1.0) and that
a rolling moment corresponding to C;=0.04, with an
adverse yawing moment C,=—0.01, is applied sud-
denly at the time {=0. This condition corresponds
approximately to & full deflection of ordinary ailerons
at this speed.

(b) The equations of the motion in the three degrees
of lateral freedom may be set up without including the
expressions for the lateral air force, since this force is

small and may be neglected in this case. The equa-
tions are: P :
3—3=9¢—on
d
ta=vL.+pr+rL,+Lo (30)

%=DN,+PN,,+1'N,»+N0 J
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The terms L, and NN, represent the accelerations due
to the constant control moments suddenly applied at
t=0. They are

(31)

The substitution of D for d/d¢, and the rearrange-
ment of the equations result in

—Lo+D—Ly)p—Lr=Ly
—Np—Np+(D—N,)r=N,

Since the rolling motion is desired, the equations will
be solved for p. The algebraic solution is:

(32)

D2 0 DU,
—L, L, ~L,
—N, No (D—N,) ’
p= (33)
o —g DU,
—L, (D—L,) —L,
—N, —-N, @D—-Np)

which is then reduced to the form required for expan-
sion in equation (6),

r=H L AR, (34)

The calculation of the various polynomials in D results
in:

£,(D)=D*—N,D*+ UN.D
f(D)=L,D*—U,L,D

F(D)=D'— (L 4-N,) D+ (L,N,— LNy + UpN ) D?| ¢
+ O LNy~ LN~ L, )D+9 (TN~ L)

35)

At the assumed speed of 88.5 feet per second
(Cp=1.0), the constant rolling and yawing accelera-
tions are

Ly= 1.68

No=_0.301

Using these numerical values, combined with those
given for the stability derivatives, the polynomials in
D become
F1(D)=D*+-0.663D%4-2.04D
£:(D)=1.88D*+1.11D
F(D)=D*+3.891#+4.75D*+10.33D—1.13

(36)

(35a)

In order to perform the expansion of %;(Z%)S by Heavi-
gide’s theorem it is necessary to determine the roots of

the complementary equation F(D)=0. When the
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polynomial F(D) is plotted as a function of a real vari-
able (D), two real roots of this equation are found:
1=—3.41
x,= 0.104 }
By the use of vector diagrams (gee fig. 2) and the plot-
ting of a map of the polynomial considered as a func-
tion of a complex variable (D=z+1y), the following
root was found by interpolation:
=1.78 (cos 1.73-}1 sin 1.73) (38)
An additional complex root that is the conjugate of A,
is known to exist and completes the four roots of the
fourth-degree equation,
N=1.78 (cos 1.73—% sin 1.73) 39)
The next step is to set up the integration equation
and perform the indicated operations. Since the
applied control moments L, and N, are constants, form
(6) will be used

@7

1(0)

I(D) 2(D) 1)
o (s (iR L{mﬂLEW‘}LN

The various terms to be substituted in this formuls
are found to be:

£1(0) 2(0)

Fi(NLoHF2(N) Ny=1.683+0.54\243.09%

AF7(N)=4N4-11.6778-}-9.4900M10.332
These terms are to be calculated for the four (real and
complex) values of the roots. In the case of the real
roots the calculation is made without resorting to
graphical methods. For \;=—3.41, the value

S (>\1)Im+f2()\1)No_

(41)

WALG) —0.484 results, (42)
and for A;=0.104

It will be convenient to perform graphical calcula-
tions to determine the other parts of the solution,
corresponding to the complex terms. This result is
accomplished by calculating the square, cube, and
fourth power of the absolute length of A; and by mul-
tiplying each of these values by the proper coefficients
in the polynomials f(D) and F(D). By vector addition
the value of the first polynomial was determined as

F1(0) Lo+ () Np=3.99 (cos 5.23+1% sin 5.23)  (44)
and the second
AF’ (A;)=40.6 (cos 5.60-+1% sin 5.60).  (45)

Since the quotient of these values is to be multiplied
into e for a series of values of ¢ it will be convenient
to use the logarithm of this quotient, simply adding to
it the various values of A\ for which the calculation is
to be made. This 1ogarithm i8

f1 (M) Lo+f2(A)No_
ME (Ns)

=(log 3.99—~log 40.6) +(5.23—5.60)=—2.32—0.38 7
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The logarithm of the result naturally occurs in the form
z+1y. Plotting this point on the paper and construct-
ing from it a line parallel to A;, we obtain the locus of

1()‘3)L0+f2()‘3)N0m¢

log O S e

for various values of ¢t (see fig. 3). The angles of
the final points are given by the ordinates of these
logarithms and the absolute lengths by the antiloga-~
rithms of the abscissas. The final points are found to
lie on a logarithmic spiral whose radius decreases with
the time (time measured as angle) showing the damping
of this component of the motion. The summation
over the two conjugate roots Ny and )\, is accomplished
without any further calculation by merely déubling
the abscissas of the points plotted above, as has been
pointed out. The values thus obtained are listed in
the following table:

AO 5O
BROM xF'(x)} (40)

Table of values obtained from graphical consiruciion

;ﬁm@émmw

{
(8econds)

P,
oMo ak b

At the time t=0, ¢ will be unity so that the initial
condition of zero rate of rolling should be given by the
sum of its coefficients. The summation

—0.484-4-0.2774-0.184=—0.023

shows how nearly this condition is attained. Figure 6
shows the resultant rate of rolling and the components
of the solution corresponding to each of the four roots,
As. In addition to the rolling curve obtained by the
foregoing methods, other curves obtained by step-by-
step integrations of the same equations of motion are
given. In the celculation of these curves, steps of one-
tenth and one-twentieth second were taken, which
resulted in the differences shown.

ILLUSTRATION OF SOLUTION WITH VARIABLE DISTURBANCE

TERMS

Example II, Sideslipping during 2-control turn
maneuver:

(a) Assume the airplane to perform a specified bank-
ing maneuver by application of a variable rolling mo-
ment. If no yawing moments (from either rudder or

(46)
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ailerons) are applied, the natural stability of the air-
plane will cause it to turn in & direction appropriate to
the direction banked. Such a turn is called a “2-con-
trol turn,”’ inasmuch as only two (ailerons and elevator)
of the three available controls are used. Since there
will not be a very perfect coordination between the
banking and yawing, some sideslip will result. It is of
interest to know the approximate amount of this

.6 -
:--Sfep mefﬁod, Yo secornd sfeps
: ru - , Vm - -
[
Y 4 b =
S . ;//\Q e ]
'§ ?f o~ ] —deeg——r
s [T ]
Q .2 == <~ — Ant
2 s N p=LCe™ |
) ~ (Complete solution)
0 =
N <
- ™
R0 e
O T >~
§ L” T~ -
= t Ay? Agt
0 / Ge™+ e
“_ o L (Complex terms)
?, ) A C et
"G / ~Le
t 7
7
II
—4 7
/
U
o / 2

Time, Seconds

F1GURE 6.—Result of sample computation compared with step-by-step integrations;
example I. Rolling motion following sudden deflection of allerons. Typical 1,600-
pound alrplane. CrL=1.0; Ci=0.0§; Cax=—0.01.

sideslip during such a turn in studying the practica-
bility of 2-control operation.
(b) The first step in this problem is the determination
of a suitable expression for the banking part of the
. maneuver. It was considered that the pilot would
naturally conform his use of the control to the desired
motion of the airplane rather than move the control in
a predetermined way and accept whatever motion of
the machine followed. Hence it seems more logical
to specify the banking motion itself rather than to try
to predetermine a law of application of rolling moment.
The airplane is thus assumed to be constrained in
banking by the aileron control so as to follow a well-
executed bank maneuver and recovery. The usual
procedure in making a turn is to bank the machine up
to a definite angle, holding this angle steadily for a short
time while in the steady part of the turn, and then to
recover to level flight on the completion of the desired
angle of turn. A curve representing such a relation of
bank angle against time may be represented by a series
of only two cosine terms with a constant defining the
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initial and terminal conditions of level flight, or zero
bank angle. (See fig. 7.) For a fairly sharp turn with
this small airplane the time required will be about 6

seconds if the maximum angle of bank is 30°. The
specification decided on is:
Bank angle, ¢=0.327—0.262 [cos {+¥ cos 2¢] (47)

which reaches a steady value of 30°, and gives level
flight at £=0 and =27 seconds. The rate of rolling
is the rate of change of this angle of bank; or
p=‘fii:=o.262 sin t4-0.131 sin 2¢ (48)
A constraint of the machine in one of its degrees of
freedom having thus been specified, it is only necessary
to consider the equations for free motion in the remain-
ing two degrees. As before, the lateral motion will be
assumed to be independent of the longitudinal. There
remain only the sideslipping and yawing motions to

be considered. Their equations are:

d
H_:=g¢—TU0

(49)

%=0N v pNp+rN,

Although the equations contain the rate of rolling and
the angle of bank, these are to be considered 2s known

Q)

g | 1 ) |
2 Bank constroint
] Y ~4=--Jdv

2 1 =

~ ,/’ ‘.‘ [4
Q.49 7 A%
) A 30° N

U /
'E II’ ‘\

15 \
5 .2 7 X
E ,’/ / I \ ) N
3 //' ‘i’ ~ Sideslip, 5/l \\
5 0 ] >
8, ~
0 / 2 4 5 &
< Time, seconds

FIGURE 7.—Result of computation; example II. Sideslip during a 2-control turn
maneuver.

from equations (29) and (30) and are, in fact, to be
used as the disturbance terms. Calling

Y= g (2

o (50)
No=pN,

and rearranging the equations as in the other problems:

D—g—;)"_T: Yo
(61)

- UON'%;-i— (D_Nr) T=ATO
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Solving algebraically for v/Uy:
Y, 1
NO ""'Nr)

(52)
D 1

_h@D) +fa (D)
UO—W
fl (D) =D_.Nr
fHD)=—1
F(D)=D*—N,D+TU,N,

’ l

N,)
or

(52a)

where

(83)

If the airplane is to maintain its altitude while
turning, the speed must be adjusted to give a higher
lift than that at an equal lift coefficient in level flight.
At an assumed lift coefficient of 1 the speed necessary
to maintain altitude while turning at 30° bank is
found to be 95 feet per second. Actually, if this
speed is held throughout the specified maneuver, the
longitudinal path will be accelerated somewhat; this
condition will be neglected in the present problem.
The necessary stability derivatives calculated for the
new condition are: '

N,=—0.712
U,N,=2.40 (54)
N,=—0.323

The “disturbance effects’” Y, and N, are (see equations
(46), (47), and (49))
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Y,=0.111—0.0888 cos t—0.0222 cos 2 55)
55
Ny=—0.0846 sin ¢ —0.0423 sin 2¢

and, finally,

1(D)

%;=0.111-FYD—)——0.0888'2—,E% cos ¢

—0.0222‘%1% cos 2t—0.0846f (D) sin ¢ (56)

—0. 042311;,21’;; sin 2¢

For the expansion of these terms in the integration
equations (8), (8), and (9), it is necessary to know the
roots of F(D)=0. These are

)\=Nr:‘: ‘\'j;rz_‘;EoNo
2

(67)
A=—0.356+£1.517

Since both these roots are complex, the operations
indicated in the integration equations were performed
graphically in the manmner previously shown.

The results of these calculations are shown in figure 7.
The fact that the error in meeting the zero sideslip
condition at the start of the maneuver was very small
(even though "the graphical construction of several
terms was required) gives an indication of the accuracy
of the calculation.

LangLey MEMORIAL AERONATUTICAL LLABORATORY,
NaTioNAL ADpvisorRY COMMITTEE FOR AERONAUTICS,
LawerLey Frewp, Va., February 19, 1936.






APPENDIX

EVALUATION OF ELEMENTARY OPERATORS

A simple differential equation may be used to illus-
trate briefly Heaviside’s method of evaluating more
elementary operational forms. Consider the case of an
pirplane executing pure rolling motion under the
influence of & suddenly applied rolling moment of
magnitude mkx*Ly, which produces the impulsive accel-
eration L, in roll. The equation of motion may be
written:

%=plp+Lo

in which both p and L, are supposed to have the value
zero &t the time £=0.
The solution of this equation as ordinarily found will
consist of two parts, one of which is a solution of
dp
dt
the “complementary equa.tlon.”, In effect, Heaviside
wrote both equations, (58) and (59), as one by intro-
ducing a discontinuous function of ¢ into (58). Thus,
(substituting the usual D)
Dp—L,p=1(t)Ly (60)

where the symbol 1(t) is termed the “unit function,”
and is supposed to have the value zero until the time

(58)

—pL, 0 59)

t=0 and to take the value 1 thereafter. The algebraic
solution of (60) is then written
1
P=p—T,} ()L, (602)

and it is required to evaluate the form

1
D—1,®
The procedure is to expand the fraction by the bi-
nomial theorem in ascending powers of .L,, thus,

(D—L,)*=D"'+D*L,+D-3Lp*+ . . . +ete. (1)

Since
D=, 10)di=1()t
(62)

D)= /S 1Qdtdt=1(0)L; ete.,
performing the indicated integrations results in
O-L)1O=10(t+ 3+ 5+ +ete) 63)

If this series is multiplied throughout by L, it becomes
identically the series for ¢“* except for the term 1,

that is
[L(D—L;) ' +1]1() =1(t)e™* (64)

or

(D—L) 1) = 2e—1) (65)

The final solution of the original equation (1) follows as

=107 —1) (66)

Such forms as the left side of equation (60), involving
the symbol D, are termed “operators.” Equations
(6) to (9) of the text are to be considered as evaluations
of the more complex operators f(D)/F(D) along the
above-indicated lines. The evaluation of a number
of such forms is given in reference 5.

Equation (6) of the text is a shorthand method of
arriving at the foregoing solution. For the present
problem this formula is:

:I (67)

p= ﬁ%%ut)aﬂ(t)[ﬁggmz{%é
and the various terms are:
fD)=1
FD)=D-L,
J(0)=1
F0)=—
A=L,

JF)=1
F'(\)=1

(68)

The substitution of these terms in (67) results in

=107 (e—1) (69)

as before.
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