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WING PIAN FORMS FOR HIGH-SPEED FLIGHT

By ROBERTT. JONES

SUM MARY

lt is pointed out that, in flie case ofan ai~foil oj infinite as-
pect ratio moring at an angle ofsideslip, the pressure distribu-
tion is determined solely by that component of the motion in a
direction normal to the leading edge. If follow that the at-
tachment of plane wares to the airfoil at near-sonic or wper-
,Wnic speeds(A.&ret thcoy) may be aroided and the pressure
drag may be reduced by the -useoJfplanjorme {n wkich the angle
qf .wreepback is greater than the Mach angle.

The analysis indicates that for aerodynamic eficie.ncy, wings
designed for jlight at .wpersonic speeds should be swep~ back
at an angle greater than the Mach angle and the angle of sweep-
back should be such that {he component of relocity normal to
the leading edge is less than the critical speed of the crhfoil
sections. This principle may also be applied to wings designed
for subsonic speeds near the speed of sound, for which the induced
celocitiea resulting from the thickness might otherwise be suff-
iciently great to cause shock uxwes.

INTRODUCTION

The theory of potential flows with small disturbances is
particularly suited for application to aeronautical probIems
kwuse the assumptions of small disturbances and isen-
tropic flows on -which this theory is based agree with t-he
requirements for efficient flight. Theories of large disturb-
ances, which deal ~ith the formation of shock wa-res, are of
lesser practical interest since such theories describe the losses
(of erlergy and the large drags associated with unsuitable
forrm.

.4t subsonic speeds the assumption of snMII disturbances
leads to the well-known thin-airfoil theory tmd the Prandtl-
Glauert rule (refer~ces 1 and 2); whereas at supersonic
velocities this assumption leads to the Ackeret theory
(reference 3), according to -which the wing sections gener~te
plane sound waves of small amplitude. The assumption of
small disturbances, although mathematically valid in the
Iirniting case, does not, of course, insure that such a condition
wilI ~xist with an actuaI body of finite thickness. Fortu-
nately, experiments have been made thab show in a general
Wacythe limits of applicability of this assumption. Of par-
ticular interest are the experiments of Ferri (reference 4) and
Stanton (reference .5).

At present both the experiments and the theory have
been restricted primarily to the two-dimensional flow caused
by motion of the wing at right angles to its long axis. For
this case the theory shows a radical change in the properties
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of the wing on transition from subsonic to supersonic speeds.
At subsonic speeds the air fioris smoothly over the wing SCC-

tion and no pressure drag arises. Ak angles of attack a
suction force is deveIoped on the nose of the airfoil of suf-
ficient magnitude to bring the resultant air force forward
reIative to the chord a.tis to a position nearly at. right angles
to the relative -wind. AS soon as the speed of sound is
exceeded, however, the nature of the flow changes and these
favorable characteristics disappear. Instead there arise a
pressure drag proportional to the square of the thickness and
an additional drag equal to the. lift times the angle of attack.
These adverse effeck are associated with the formation of
plane sound waves by the airfoil. Predictions of the theory
are borne out by experiments in supersonic wind tunnels.

The purpose of the present report is to shotv how the
adverse effects of high speed may be minimized by the use
of a relatively large angle of sweepbaek, so that the type of
flow described in the Ackeret theory no longer occurs. Cer-
tain effects of sweepbmk have, of course, been known for
some time (references 6 to 9}. Kiksner (reference 8) ment-
ions compressibility effects of s-weepback at subsonic
speeds. Busemann (reference 9) considers the effect of
s~eepback at supersonic speeds and points out that. the
&ag associated fifi flows of the .Ackeret type may be re-

duced by the use of sw-eepback. Busemann does not,
however, consider angIes of sweepback greater than the
hlach angle, ~hich result in a different Lype of flow.
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transformed coordinate
wing span
wing chord; -velocity of sound
thickness
-reIocity of flight
disturbance-velocity potentiaI
lift
drag

lif Lcoefficient
drag coefficient.
h~ach number
local pressure difference
dynamic pressure

spanwise-Iocation parameter
(Cos%)

61



62 REPORT IVO. 863—NATIONAL ADVISORY COMFZITTEE FOR .4ERO~AIJTICS
-.

THEORY OF WING -AT AN ANGLE OF SIDESLIP

The primary effects of sweepback may be iHustratecl by
considering the problem of a long and approximate ely cylin-
drical airfoil at an angle of sideslip. TWO such airfoils may
then be combined (with due allowance for their interference)
to give a sweptback pkn form.

First consider the zirfoil with its long axis parallel to W
~-axis and with the relat ivc wind at an angle @ to the coordin-
ate system as in figure 1. By following equation (9a.) of
reference 2 tl]c diff(;rential equation of the flow may be
w!it ten

(1)

Tk Prand t]-Gkuert r’u]e follows from the assumption
that only the velocity component M is comparable to tl~e
v[iocity of sound. In the present example both u and v,
since Lky contain components of the flight T-elocityj are of
tile order of magnitude of the souncl velocity c. On the
other han{l, if the flow patterns in planes perpendicular to
the long axis of the \ving are similar (two-dimensional floW),
the terms &@x and &~/&z vanish.

H small ~-elocity disturbamxs are assumed, the term w/c

may be neglected and the term 1—$ may be replaced by
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FIGURE l.—Pla~ view of airfoiI showing axes used in equation (1).

velocity in the direction normal to the long axis of the }ving.
By using this relation and introducing tl]e disturban(c po-
tential +, there is o’otained

(2)

It is important to note thal the derivation of this equation
involves no restriction on the flight. vclority 1’, which wtiy
be subsonic or supersonic. The rest~iction is that tljc dis-
turbance ~elocities b#/by and &#/bz be small relative to c.

If T“cos 6 is Iess than the sound velocity c, the suktit utiol~

“=4-(:-’:s’)‘3)
yields Laplace’s equation

(4)

and it follows that the ffow patterns are similar to those
occurring in an incompressible fluid except for un increase
of the pressures in the ratio

W’-’w
If 17cos ~ is greater than c, the substitution

which is the basis of the Ackeret theory.
The derivation of equations (4) rrnrl (6) is aciunlly a spcrial

case of a more general statt~rneilt, namely, that [he u}llll)ol}t I[}L
of transition of a cylindrical botly iu th[~(Iirvction of its long
axis has no etlect on the motion of a frictionless flui(l, Ilk
the case of a wing of constant section moving througl] still
fluid, the flo~v is determimxl l)y the normal compo[lrr)ts of
velocity of its solid boundwics ancl these compollerits in turn
are completely spccifir(l by the component of motion in
planes perpendicular to th[’ axis 17 cos ~. Wlren the normal

component of velocity 1’ cos 19is less tlian sonic, theft ~l~c
wing% ection flo~vs are determined b3T so]ut.ious of T,ajIlace’s
equation. As is welf knovm, these fio\Ys shutv no prossurr
drag due to thickness of the airfoil, Ou lbe otl}[’r han(l, if
the normal component exceeds the v~locity of soun(l} tt][~
flotv patterns are of a difle~cnt, type an(d are characterized by
plane sound waves. In this case a pressure drag firises and
the suction force tit the leading edge disappears (fig. 2 (a)).
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FiI ;L R E 2.—E ffect of Ieading+$dge angIe on pressure distribution.

.$ physical explanation of the occurrence of smooth flow
ptitterns and pressure distributions at supersonic ~-elocities
is os foIIows: If T’ is greater than c but 1“ cos ~ is less, then
tbe angle of sideslip or s-weepbark is greater than the Jlach
angIe (see fig. 2 (b)) and the airfoiI wilI Iie behind the char.ac-
trristie lines alon~ ~vhich pressure influences are transmitted
(lIach lines”). Thus, although the fluid clirectIy upstream
from a +\-en section can receive no pressure signal from this
~~L[.otion,the floN- behaves as tho@l it did recei~-e sLIch signak
I)[v.tiuse of the successive influence of similar sections farther
Ilpstream along the fiirfofi. The streamlines m-n thus be
ctiused to cur-i-e and foHow paths appropriate to a subsonic
flow, although the speed is everywhere supersonic.

Figure 3 illustrates the effect of sw-eepba(:k on the change
in cross section of a stream tube passing near the upper sur-
face of a cambcrecl airfoil. .+s is well known, the equations
of fluid motion show a reduction in the area of a stream tube
in the region of increased velocity above the airfoil when the
velocity of flight is subsonic but show m increase in the
(Lross section m-hen the -relocitey of flight is supersonic. In
figure 3 the component normal to the leading edge T“ cos p
is subsonic; and hence in section tiew the streamlines, follow-
il>g the pattern= for subsonic velocities, appear to contract as
they flow over the upper surface. In plan view, however,
the resolution of velocities shotvs that the flow lines beud as
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Plan view

Secfbn view

FIGCZE3.—Chmge in area of stream fnbe o}-er uppc.r wrfwe of sweptback wing.

they pass o~er the wing in such a <ay as to increase the
stream-tube area. In case the veIocity of flight is super-
sonic, the latter effect must predominate, as is required by
the equations of motion.

The order of magnitude of the pressure-clrag coefficie.nt-
and its ~ariation with angle of smxpback are indicated by
figure 4. The calculations were made by applying the
kkeret theory and formulas (4) and (5) to a w~~ of infinite
aspect ratio. A simple biconvex wingg section was assumed
and the angIe of ~ttack vi-as varied so as to maintain a con-
stant. lift. coefficient of 0.5. The cakulations were made for .
a Mach number of 1.4, with the resuIt that at 45° the angle
of sweepbaek becomes eqmd to the Jlach angle and the
factor

becomes infinite. At, this point the pressure ch-ag due to
thickness becomes in-kite and the drag due to angIe of

attack (shown by the curve marked ~= 0) vanishes.
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FIGURE 4,—Vmiat:on of pressure drag with a~gk of sweepbzrckforinfiniteaspectratio.
.M=.I.4; cr,=o.5.
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In the case of a wing of finite aspect ratio, it. seems prob-
abk that in the regions of the center section and the tips
pressure drags of the szme order as those indicated for these
sections by the .4ckeret theory will appear, If the wing is
of sufficiently high aspect ratioj however, the fraction of the
wing area affected wiH be neg~igibk and the pressure drag
wiH be nearly that given in figure 4. The other drags in-
volved are: (1) skin-friction drag, which may be of the
order of 0.01, and (2) induced dragj which for an aspect ratio
of 8 is also about 0.01.

WINGS OF FINITE SPAN AND THICKNESS

$khlichting (refe~ence 10) proposes a trapezoidal plan form
with tips cut away at. the Mach angle as the ideaI supersonic
wing, since in this case the wake has no influence on the lifting
surface and the drag is no greater than that of a wing of infinite
span. In the plan forms proposed by ScMichting, how-ever,
the resultant force remains at right angles to the chord; hence
the, pressure drag is equal to the lift times the angIe of attaeli.

With this type of flow there is no favorable effect of aspect
ratio.

It is interesting to note that Mf~vorable interference may be
obtained by separating the wing into lifting elements and

staggering the elements in a rearward direction behind the
lfach lines as in figure 5. In the staggered arrangrmcnt
the upffow outside the vortices trailing from element A
wiH be effecbive at Lhe position of B and, although th~elift of
each element is at right angles to its chord, the uptlow
permits the angIe of attack of element B to be reduced for
the same Iift and hence the lift-drag ratio wilI be improved”.

According to hfunk’s stagger thmrem (reference 11) the
over-all drag of a lifting system in an incompressible flow
-would not be altered by changing the relative positions of the
lifting elements along the direction of flight. In the type of
flow considered by lfunk, therefore, a reduction in the drag
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FIGURE 5.-Soggered lifting elemeuts in supcrsrmfc flow.

of element B, caused by moving it into a ~msition of greater
upwash (that is, moving it backwurd rcla tive to A), WOUI{lhti
compensated by an equal increase in the drag of element A,
resulting from the loss of up}vtiski at A. (See fig. 5.) In
supersonic flow, however, this reciprocal relation docw not
exist since a lifting element can produce no upwash ahead of
its hfach cone. Lifting elements spaced at righL angIcs to the
direction of flight therefore htiye no favorable interference,
and it is evident that the lift-drag ratio cannot be improvpd
merely by increming tile aspect ratio of the lifting systt’m.
Favorable interference can be obtained only by arranging the
lifting elements behind the Mach lines, as shown in figure 5.

Further analysis is needed to determine the flow near the
center section of thu sweptback wing becwusc in this region
the flow will not remain t\\-o-dimensional, as has been as-
sumed. Departures from cylindrical ffow caused by the Lips
wiII be small since their influence cannot extend for~vard of
the Mach lines drawn from the points at which &Ise depar-
tures originate in the plan form. As pointed OULby 13use-
mann and Schlichting (references 9 and 10), cyIinclrical flo~r
may be preserved right up to the tips by cutting them off
along the Mach lines. (See fig. 6.)

At Jarge angles of sweepback the flow near the vertex is
expected to be similar to that over the low-aspeci-ratio tri-
angular airfoil discussed in reference 12. Figure 7 shows the
lift distribution obtained in reference 12 smd sholvs qualita-
tively the type of approximation involved.
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FLGURE&-N”ing with ti~s cut away along the }Iach iines.

Finite thicbess is expected to result in a pressure drag on
those sections near the center of the wing and further study
is also required to estabIish the fiow due to thiclmess in this
region. Some insight, into the problem of flow near the cen-
ter section may be furnished by the lmown solutions for
supersonic flow in three dimensions (reference 13). Finite
thickness may also cause pressure drag in regions where the
flo}v is tw-o-dimensional if the induced -reIocities are great.
enough to cause shoeli -waves. This effect may be a~-oided
by increasing the angIe of sweepback so that the ~ormaI
component of velocity not ordy is subsonic but is less than
the critical speed of the airfoil sections. This princip~e ma-y
aiso be appIied to wings designed for subsonic speeds near
the speed of sound.

L.iXGLEY MEMORI.W AEROXAUTTCAL LABORATORY,

N,4TIOX.ILADVISORY COMMITTEE FOR AERONAUTICS,

L.}NGLEY FIELD, Y.%.,June %’, 1945.
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