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WING PLAN FORMS FOR HIGH-SPEED FLIGHT

By Rosert T. JoxEs

SUMDMARY

It is pointed out that, in the case of an airfoil of infinite as-
pect ratio moving at an angle of sideslip, the pressure distribu-
tion is determined solely by that component of the motion in a
direction normal to the leading edge. It follows that the ai-
tachment of plane waves to the airfoil at near-sonic or super-
sonic speeds (Ackeret theory) may be aroided and the pressure
drag may be reduced by the use of plan forms in which the angle
of sweepback is greater than the Mach angle.

The analysis indicates that for aerodynamic efficiency, wings
designed for flight at supersonic speeds should be swept back
at an angle greater than the Aach angle and the angle of sweep-
back should be such that the component of velocity normal to
the leading edge s less than the eritical speed of the airfoil
sections. This principle may also be applied to wings designed
for subsonic speeds near the speed of sound, for which the induced
velocities resulting from the thickness might otherwise be suffi-
ciently great to cause shock waves.

INTRODUCTION

The theory of potential flows with small disturbances is
particularly suited for application to aeronautical problems
because the assumptions of small disturbances and isen-
tropic flows on which this theory is based agree with the
requirements for efficient flight. Theories of large disturb-
ances, which deal with the formation of shock waves, are of
lesser practical interest since such theories describe the losses
of energy and the large drags associated with unsuitable
forms.

At subsonic speeds the assumption of small disturbances
leads to the well-known thin-airfoil theory and the Prandtl-
Glauert rule (references 1 and 2); whereas at supersonic
velocities this assumption leads to the Ackeret theory
(reference 3), according to which the wing sections generate
plane sound waves of small amplitude. The assumption of
small disturbances, although mathematically valid in the
limiting case, does not, of course, insure that such & condition
will exist with an actual body of finite thickness. Fortu-
nately, experiments have been made that show in a general
way the limits of applicability of this assumption. Of par-
ticular interest are the experiments of Ferri (reference 4) and
Stanton (reference 5).

At present both the experiments and the theory have
been restricted primarily to the two-dimensional flow caused
by motion of the wing at right angles to its long axis. For
this case the theory shows a radical change in the properties
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of the wing on transition from subsonic to supersonic speeds.
At subsonic speeds the air flows smoothly over the wing sec-
tion and no pressure drag arises. At angles of attack a
suction force is developed on the nose of the airfoil of suf-
ficient magnitude to bring the resultant air force forward
relative to the chord axis to a position nearly at right angles
to the relative wind. As soon as the speed of sound is
exceeded, however, the nature of the flow changes and these
favorable characteristies disappear. Instead there arise a
pressure drag proportional to the square of the thickness and
an additional drag equal to the lift times the angle of attack.
These adverse effects are associated with the formation of
plane sound waves by the airfoil. Predictions of the theory
are borne out by experiments in supersonic wind tunnels.

The purpose of the present report is to show how the
adverse effects of high speed may be minimized by the use
of a relatively large angle of sweepback, so that the type of
flow described in the Ackeret theory no longer occurs. Cer-
tain effects of sweepback have, of course, been known for
some time (references 6 to 9). Kiissner (reference 8) men-
tions compressibility effects of sweepback at subsonic
speeds. Busemann (reference 9) considers the effect of
sweepback at supersonic speeds and points out that the
drag associated with flows of the Ackeret type may be re-
duced by the use of sweepback. Busemann does not,
however, consider angles of sweepback greater than the
Mach angle, which result in a different type of flow.

SYMBOLS
angle of attack
angle of sideslip or sweepback
velocity components along z, y, #
coordinates
transformed coordinate
wing span
wing chord; velocity of sound
thickness
velocity of flight
disturbance-veloeity potential
lift
drag
lift coefficient
drag coefficient
Mach number
local pressure difference
dynamic pressure
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THEORY OF WING AT AN ANGLE OF SIDESLIP

The primary effects of sweepback may be illustrated by
considering the problem of a long and approximately e¢ylin-
drical airfoil at an angle of sideslip. Two such airfoils may
then be combined (with due allowance for their interference)
to give a sweptback plan form.

First consider the airfoil with its long axis parallel to the
z-axis and with the relative wind at an angle 8 to the coordi-
nate system as in figure 1. By following equation (9a) of
reference 2 the differential equation of the flow may be
written
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The Prandtl-Glauert rule follows from the assumption
that only the velocity component u is comparable to the
velocity of sound. In the present example both % and
since they contain components of the flight velocity, are of
the order of magnitude of the sound velocily ¢. On the

other hand, if the flow patterns in planes perpendieular to |

the long axis of the wing are similar (two-dimensional flow),
the terms du/0x and dv/dr vanish,
1f small velocity disturbances are acsumed the term w/e

may be neglected and the term 1—4 may be replaced by

FiGURE 1.—Plan view of airfoil showing axes used in equation (1),

V cos B\? . . .
l—<——c*6> where 17 cos 8 is the component of the flight

velocity in the direction normal to the long axis of the wing.
By using this relation and introducing the disturbance po-
tential ¢, there Is obtained
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It is important o note that the derivation of this equation
involves no restriction on the flight velocity V, which may
be subsonic or supersonic. The restriction is that the dis-
turbance velocities 0¢/0y and 0¢/0z be small relative to e.

If 77 cos gis less than the sound veloeity ¢, the substitution

e ®

vields Laplace’s equation
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and it follows that the flow patterns are similar (o those
oceurring in an incompressible fluld excepl for an increase
of the pressures in the ratio
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If V cos B is greater than ¢, the substitution

v cosB - o (5)
o

results in the hyperbolic equation

52¢ b2¢
5—22—57_/75=0 (6)
which is the basis of the Ackeret theory.

The derivation of equations (4) and (8) is actually a special
case of a more general statement, namely, that the component
of translation of a cylindrical body in the direction of its long
axis has no effect on the motion of a frictionless fluid. In

the case of a wing of constant section moving through still

fluid, the flow is determined by the normal components of

© velocity of its solid boundaries and these components in turn
, are completely speeified by the component of motion in
planes perpendicular to the axis ¥V cos 8. When the normal

component of veloeity 17 cos 8 is less than sonie, then the
wing-section flows are determined by solutions of Lapluce’s
equation. As is well known, these flows show no pressure
drag due to thickness of the airfoil. On the other hand, if
the normal component exceeds the veloeity of sound, the
flow patierns are of a different type and are characterized by
plane sound waves. In this case a pressurc drag arises and
the suction force at the leading edge disappears (fig. 2 (a)).
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Fiitre 2.—Effect of leading-edge angle on pressure distribution.

A physical explanation of the occurrence of smooth flow
patterns and pressure distributions at supersonic velocities
is as follows: If V7 is greater than ¢ but 17 cos 8 is less, then
the angle of sideslip or sweepback is greater than the Mach
angle (see fig. 2 (b)) and the airfoil will lie behind the charac-
teristic lines along which pressure influences are transmitted
{(Mach lines). Thus, although the fuid directly upstream
from a given section can receive no pressure signal from this
section, the flow behaves as though it did receive such signals
because of the successive influence of similar sections farther
upstream along the airfoil. The streamlines will thus be
caused to curve and follow paths appropriate to a subsonic
flow, although the speed is everywhere supersonic.

Figure 3 illustrates the effect of sweepback on the change
in cross section of a stream tube passing near the upper sur-
face of a cambered airfoil. As is well known, the equations
of fluid motion show a reduction in the area of a stream tube
in the region of increased velocity above the airfoil when the
velocity of flight is subsonic but show an increase in the
¢ross section when the veloeity of flight is supersonic. In
figure 3 the component normal to the leading edge 17 cos 8
is subsonic; and hence in section view the streamlines, follow-
ing the pattern for subsonic velocities, appear to contract as
they flow over the upper surface. In plan view, however,
the resolution of velocities shows that the flow lines bend as

Plan view

<

Section view

F:GTRE 3.—Change in ares of stream tube over upper surface of sweptback wing.

they pass over the wing in such a way as to increase the

stream-tube area. In case the velocity of flight is super-

sonic, the latter effect must predominate, as is required by
the equations of motion.

The order of magnitude of the pressure-drag coefficient
and its variation with angle of sweepback are indicated by
figure 4. The calculations were made by applying the
Ackeret theory and formulas (4) and (5) to a wing of infinite
aspect ratio. A simple biconvex wing section was assumed
and the angle of attack was varied so as to maintain a con-
stant lift coefficient of 0.5. The calculations were made for
a Mach number of 1.4, with the result that at 45° the angle
of sweepback becomes equal to the Mach angle and the
factor

1
\/ (LCEO—S”B)* 1

becomes infinite. At this point the pressure drag due to
thickness becomes infinite and the drag due to angle of

attack (shown by the curve marked g-—:O) vanishes.
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FI16URE 4.—Variation of pressure drag with angle of sweepback for infinite aspect ratic.
M=14; Cr=0.5.

*

In the case of 2 wing of finite aspeet ratio, it seems prob-
able that in the regions of the center section and the tips
pressure drags of the same order as those indicated for these
sections by the Ackeret theory will appear. If the wing is
of sufficiently high aspect ratio, however, the fraction of the
wing area affected will be negligible and the pressure drag
will be nearly that given in figure 4. The other drags in-
volved are: (1) skin-friction drag, which may be of the
order of 0.01, and (2) induced drag, which for an aspect ratio
of 8 is also about 0.01.

WINGS OF FINITE SPAN AND THICKNESS

Schlichting (reference 10) proposes a trapezoidal plan form
with tips cut away at the Mach angle as the ideal supersonic
wing, since in this case the wake has no influence on the lifting
surface and the dragisno greater than that of a wing of infinite
span. In the plan forms proposed by Schlichting, however,
the resultant force remains at right angles to the chord; hence
the pressure drag is equal to the lift times the angle of attack.
With this type of flow there is no favorable effect of aspect
ratio.

It is interesting to note that a favorable interference may be
obtained by separating the wing into lifting elements and

staggering the elements in a rearward direction behind the
Mach lines as in figure 5. In the staggered arrangement
the upflow outside the vortices trailing from element A
will be effective at the position of B and, although the lift of
each element is at right angles to its chord, the upflow
permits the angle of attack of element B to be reduced for
the same lift and hence the lift-drag ratio will be improved.

According to Munk’s stagger theorem (reference 11) the
over-all drag of a lifting system in an incompressible flow
would not be altered by changing the relative positions of the
lifting elements along the direction of flight. In the type of
flow considered by Munk, therefore, a reduction in the drag
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FiGURE 5.—Staggered Iifting elements in supersonic flow.,

of element B, caused by moving it into a position of greater
upwash (that is, moving it backward relative to A), would be
compensated by an equal increase in the drag of element A,
resulting from the loss of upwash at A. (See fig. 5.) In
supersonic flow, however, this reciprocal relation does not
exist since a lifting element can produce no upwash ahead of
its Mach cone. Lifting elements spaced at right angles to the
direction of flight therefore have no favorable interference,
and it is evident that the Lift-drag ratio eannot be improved
merely by increasing the aspeet ratio of the lifting system.
Favorable interference can be obtained only by arranging the
lifting elements behind the Mach lines, as shown in figure 5.

Further analysis is needed to determine the flow near the
center scction of the sweptback wing because in this region
the flow will not remain two-dimensional, as has been as-
sumed. Departures from cylindrical flow caused by the tips
will be small since their influence cannot extend forward of
the Mach lines drawn from the points at which these depar-
tures originate in the plan form. As pointed out by Buse-
mann and Schlichting (references 9 and 10), cylindrical flow
may be preserved right up to the tips by cutting them off
along the Mach lines. (See fig. 6.) )

At large angles of sweepback the flow near the vertex is
expected to be similar to that over the low-aspect-ratio tri-
angular airfoil discussed in reference 12. Figure 7 shows the
lift distribution obtained in reference 12 and shows qualita-
tively the type of approximation involved.
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FicURE 6.—Wing with tips cut away along the Mach lines.

Finite thickness is expected to result in & pressure drag on
those sectionis near the center of the wing and further study
is also required to establish the flow due to thickness in this
region. Some insight into the problem of flow near the cen-
ter section may be furnished by the known solutions for
supersonic flow in three dimensions (reference 13). Finite
thickness may also cause pressure drag in regions where the
flow is two-dimensional if the induced velocities are great
enough to cause shock waves. This effect may be avoided
by increasing the angle of sweepback so that the normal
component of velocity not only is subsonic but is less than
the critical speed of the airfoil sections. This principle may
also be applied to wings designed for subsonic speeds near
the speed of sound.

LaxgLEy MEMORIAL AERONATTICAL LLABORATORY,
Natronal Apvisory COMMITTEE FOR ABRONAUTICS,
LaxerLEY Fiewp, Va., June 23, 1945.
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