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1. FUNDAMENTAL AND DERIVED UNITS 

Metric English 

Symbol 
unit Abbrevia- unit Abbrevis- 

tion ,tion 
- 

Length------ 1 
Time ______-_ I 
Force ________ F 

Power -__..___ P 
Speed------- V 

meter _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
second- _ ___-- __________ 
weight of 1 kilogrrtm-- ___ 

-~ 

m foot (or mile) _-._______ ft (or mi) 
second (or hour)---,--- see (or hr) 

& weight of l::pound-----, lb 

1 

horsepower (metric) _ _ _ - _ _ _-k~~ _ -_ ih 
kilometers per hour-- _ _ _ _ 

hqrsepower- _ _ -) ____ - - - 
mdes per hour- _ _ _ _ _- _ 

meters per second- _ _ ____ mw feet per second _____ LPI 
zph 
fps 

2. GENERAL SYMBOiS 

Weight=mg Y Kinematic viscosity 
Standard acceleration of gravity=9.80665 m/s” Density (mass per unit volume) 

or 32.1740 ft/seca &,andard density of dry air, 0.12497 lrg-m-4-sa at. 15’ c 

Mass=y 
and 760 mm; or 0.00237s lb-ftw4 sec2 

Momen! of inertia=mk?. (Indicate axis of 
SpecXc weight of %tandard” air, 1.2255 kg/m* or 

0.07651 lb/cu ft 
radius of gyration k by proper subscript.) 

Coefficient of viscosity 
3. AERODYNAMIC SYMBOLS 

Area 
.4rea of wing 
Gap 
Span 
Chord 

Aspect ratio, g 
. . 

True air speed 
. Dynarmc pressure, 3~ 5 

,. 

Lift, absolute coefficient C&=$ 

Drag, absolute coefficient GD=$ 

Profile drag, absolute coefficient C*,,=$,$ 

Induced drag, absolute coefficient CD,=gf 

Parasite drag, absolute coefficient 
$ 

Cdl= $ 

Cross-wind force,. absolute. coefficient i&=$, 

Angle of setting of wings (relative to thrust line) 
AII~~) of stabilizer setting (relative to thrust 

1 
Resultant moment 
Resultant angular-velocity 

Reynolds ntiber, p: where I is a linear dimen- 

sion (e.g., for an airfoil of 1 .O ft chord, loornph, 
standard pressure at 15.’ C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,OOO) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured f: om zero- 

lift position) 
Flight-path angle 
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REPORT No. 921 

Z-1 _...,) .,,’ THEORETICAL SYMMETRIC SPAN LOADING AT- SUBSONIC SPEEDS 
FOR WINGS HAVING ARBITRARY PLAN FORM 

By jam DEYOUNG md CHARLES W. HARPER 

SUMMARY 

A method is shown by which, the symmetric span loading for 
u certain class of wings can be simply found. The geometry 
of these wings is limited only to the extent that they must have 
symmetry about the root chord, must have a straight quarter- 
chord line over the semispan, and must have no discontinuities 
in twist. A procedure is shown jor$nding the lijt-curve slope, 
pitching moment, center of lift, and induced drag from the 
span load distribution. A method of accounting for the eflects 
of Mach number and for changes in section lijt-curve slope is 
also given. 

Charts are presented which give directly the characteristics 
of many wings. Other charts are presented which reduce the 
problem oj$nding the symmetric loading on all wings falling 
within the prescribed limits to the solution of not more than four 
simultaneous equations. 

The loadings and wing characteristics predicted by the 
theory are compared to those given by other theories and by 
experiment. It is co,ncluded that the results given by the subject 
theory are satisfactory. 

The theory is applied to a number of wings to exhibit the 
e#ects of such variables as sweep, aspect ratio, taper, and 
twist. The results are compared and conclusions drawn as to 
the rektive effects of these variables. 

INTRODUCTION 

Theory predicts and experiment has shown that the effects 
of compressibility on wing characteristics can be delayed and 
diminished through the use of wing sweep and/or reduced 
aspect ratio. Experiment has also shown that if sufficient 
wing sweep or reduction in aspect ratio is used to reduce 
compressibility effects, then the characteristics of the wings 
will be different from those of conventional wings. The 
importance of being able to predict the characteristics of 
these heretofore unstudied plan forms in incompressible 
flow is obvious. Net only does it become possible t’o make 
a systematic study of the effects of major plan-form changes, 
but also a base is supplied from which the subcritical effects 
of compressibility can be predicted. 

Lifting-line theory in the past has been so modified and 
extended that the characteristics of wings having no sweep, 
moderate to high aspect ratio, and any taper ratio can be 
determined readily with good accuracy. For studies re- 

I @Sring a higher degree of accuracy, lifting-surface theories 

have been used, but generally it has been found that the 
additional complexity of these methods has not sufficiently 
improved the predictions to warrant common use. 

Lifting-line theory, however, proved wholly inadequate 
when used to predict the characteristics of wings having 
appreciable angles of sweep and/or very low aspect ratio. 
Lifting-surface theories, in contrast, made satisfactory pre- 
dictions of the characteristics of these wings although the 
extent of the computing labor involved prevented the under- 
taking of any general study. 

Continuing studies of the problem resulted in the theory 
first satisfactorily presented by Weissinger (reference 1) for 
the case of wings having a straight quarter-chord line across 
the wing semispan. It was found that this approach, which 
can be considered a simplified lifting-surface theory, enables 
rapid and satisfactory predictions to be made of the incom- 
pressible-flow characteristics of wings having swept and/or 
low-aspect-ratio plan forms as well as those of more con- 
ventional plan form. Further, it was found to be admirably 
suited for the problem of undertaking a systematic study of 
the effects of plan form on wing characteristics. Develop- 
ment of the method and procedures for its application to- 
gether with the results of applying it to study the charac- 
teristics of a series of wings have been presented in references 
2, 3, and 4. It is the purpose of this report to combine and 
extend the material contained in these three references. 

NOTATION 

m number of span stations at which circulation and 
downwash are found 

n an integer defining a ppanwise station on the wing 
quarter-chord line for which the value of circula- 
tion is determined 

V an integer defining a specific point within the wing 
plan form for which the boundary condition of 
no flow through the wing is applied 

tl dimensionless lateral coordinate measured per- 
pendicular to the plane of symmetry, fraction of 
semispan 

7C.P. spanwise location of center of pressure 
t lC.P., spanwise location of center of pressure due to addi- 

tional lift on the wing 
4 trigonometric spanwise coordinate (cos-* q), radians 

4. valueof +atstationn(cos-l~) 

1 L 
Ill - 
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wing angle of attack measured in a plane parallel 
to the plane of symmetry, degrees or rahians 

angle of attack at station v, degrees or radians 
angle of attack at station v for zero net lift on the 

wing, degrees or radians 
angle of attack of the wing-root section for zero net 

lift on the wing, degrees or radians 
angle of twist of the wing at station v measured 

relative to the wing-root section (cv=w~-%), 
degrees or radians 

dimensionless circulation 
( > 

FV , identical to the load 

coefiicient gI at spanwise station n 

value of G, for zero net lift on the wing 
value of G, due to additional lift on the wing 
coefficient dependent on wing geometry and in- 

dicating the influence of arbitrary loading at span 
station n on the downwash angle at span station v 

coefficient dependent on wing geometry and in- 
dicating the influence of symmetric loading at 
span station n on the downwash angle at span 
station v 

span of the wing measured perpendicular to the 
plane of symmetry, feet 

local chord of the wing measured parallel to the 
plane of symmetry, feet 

local chord through point v, feet 

M. A. C. mean aerodynamic chord , feet 

taper ratio 
tip chord 

root chord 
b2 aspect ratio s 

0 
wing area, square feet 
geometric sweep angle of the wing quarter-chord 

line, positive when quarter-chord line is swept 
aft of a line normal to the plane of symmetry, 
degrees 

compressible sweep parameter 
( 

AS= tan-’ tan A - 
B > 

section lift coefficient k 
0 

section lift-curve slope, per radian or per degree 
section lift coefficient for zero net lift on the wing 
section lift coefficient due to additional lift on the wing 

lift wing lift coefficient - ( > ¶S 
lift-curve slope, per radian or per degree 

pitching-moment coefficient ( moment qs M.A.C. 
> 

pitching-moment coefficient for zero net wing lift 
on the wing 

pitching-moment coefficient due to additional lift 
on the wing 

C =f 
C =io 

c =4Z 

a. c. 

r 
h 

P 
W  

V 
P 

L 
K 

KV 

H” 

dv 

induced-drag coefficient induced drag 
PS > 

induced-drag coefficient due to basic loading (zero 
net lift on the wing) 

induced-drag coefficient due to additional loading 
(net lift on the wing) 

longitudinal position of aerodynamic center, meas- 
ured from the leading edge of the mean aero- 
dynamic chord, in percent of the mean aero- 
dynamic chord 

circulation, square feet per second 
absolute distance from a vortex to a downwash 

point, measured perpendicular to the vortex, feet 
density of air, slugs per cubic foot 
induced velocity, perpendicular to the mean chord 

line of the wing, positive for downwash, feet per 
second 

free-stream velocity, feet per second 
dynamic pressure, pounds per square foot -- 
compressibility parameter (41 -M2) 
Mach number 
ratio of the experimental section lift-curve slope c[~ 

to the theoretical value of $j both taken at the 
same Mach number 

value of K at spanwise station v 

wing geometric parameter d.(i)($) 

scale factor 

METHOD 

THEORY AND LIMITATIONS 

A detailed mathematical development of the method is 
given in the appendix to this report. However, as a pre- 
liminary to the discussion of the use of the method and the 
results obtained from it, an outline of the theory and its 
application is given here. 

The wing is replaced by a plate of zero thickness but having 
a plan form and twist identical to that of the wing. It js 
assumed that the chordwise distribution of loading on the 
plate can be concentrated into a lifting line lying along the 
quarter-chord line of the wing. The method as developed 
here requires that the lifting line and, hence, the quarter- 
chord line of the wing in question, be a straight line over 
each semispan. At the plane of symmetry the method 
allows an angular discontinuity of the quarter-chord line to 
exist which therefore enables consideration of any degree of 
wing sweep.’ The boundary condition which fixes the span- 
wise variation of the circulation is that the slope induced in 
the flow field by the downwash normal to the plate due to 
the lifting line and its trailing vortex sheet shall be equal to 
the slope of the plate with respect to the free stream at 
specified points (control points) within the wing boundary, 
or, in effect, that no flow shall occur through the plate at 
the control points. On the basis of two-dimensional theory, 
the chordwise location of these control points is chosen to 

1 It should be noted that this specifies that the angle of sweep is taken with respect to the 
quarter-chord line. In this report it will be understood that sweep angle refers to sweep of 
the quarter-chord line. 

i 
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be at the three-quarter-chord line.2 As will be shown lat,er, 
this implicitly specifies that for each section the lift coefficient 
increases at the theoretical two-dimensional rate of 2~ per 
radian change in true angle of attack of the section. The 
spanwise locations of the control points are chosen for 
reasons of mathematical expediency alone since only at 
certain fractions of the wing semispan is it convenient to 
solve the integral expressions for the total downwash. 

The method. treats- the -lifting line and -its trailing vortex 
sheet as being continuous. However, explicit values for the 
circulation strength are found only for those spanwise points 
on the quarter-chord line which correspond to the spanwise 
location of the control points. The total number of control 
points m can be as great as desired. Comparison of the 
loadings predicted where various values of m are used shows 
that little change occurs where m is made greater than seven. 
Further, comparison with experimental results has shown 
that as few as seven (one at midspan and six distributed 
symmetrically about this point) nil1 enable good predictions 
to be made of the span loading of wings without sharp dis- 
continuities in span loading as would result from partial- 
span flaps. All of the material presented in this report is 
based on the seven-point solution with the exception of the 
appendix which is not restricted. 

Using the vortex pattern substituted for the wing and 
applying the boundary condition allows a set of simultane- 
ous equations to be formed, each of which involves (1) the 

slope of the flow ; 
( > 

“(or angle of attack of the plate 3 CU,) 

induced by the total downwash at each control point Y, (2) 

the load coefficient 
( “9 

a,,=% of the lifting line at each span- 

wise point n on the quarter-chord line, and (3) influence 
coefficients A., which relate the influence of the circulation 
at any point n to the downwash at any point v and are a 
function of wing geometry only. The method shows that 
for an arbitrary loading the equations have the following 
form: 

av=~AvnGn, v=1,2, . . . m 7Z=l 
2 It is important for the render to realize here that B choice has been mode between B number 

of possible procedures. These possibilities arise from the fact that the exact location, on a 
tapered wing, of constant-percent-chord lines depends upon the orientation of the reference 
line along which the chord is measured. The orientation of the reference line is usually 
chosen such that an airfoil section so defined will have aerodynamic characteristics closely 
resembling those found two-dimensionally for the same section. This then enables an esti- 
mation of the effect of changes in section characteristics on over-all wing characteristics. For 
unswept wings, there is little reason to consider my orientation of the reference line other 
than parallel to the free-stream direction. However. when a wing is swept. the question of 
orientstfon of the reference chord cannot be so easily answered. Insufficient experimental 
data exists to determine the most sntisfnctory orientation. and strong nrgumenti can be 
presented for at least two orientations, namely. pnrallel to the free streamand perpendicular 
to some swept referenca line. In the present analysis the reference chord was chosen as being 
parallel to the free stream since it greatly slmpll5es the mathematical procedure and since 
wnsideretion of the differences expected from use of the alternate choice indicates they will 
be small. 

’ The render should note that the boundary condition is given by UJ,= V, sin (I., from 
which (G), is seen equal to sin m.. The substitutio6 of P, for sin (I. has the effect of 
increasing the value of loading on the wing above that necessary to satisfy the boundary 
condition. However, the boundary condition was fixed assuming that the shed vortices 
moved downstream in the extended chord plane. A more realistic picture is obtain@ if the 
vortices ore assumed to move downstream ln a horizontal plane from the wing trailing edge. 
It am be readily seen that, if this occurs, the normnl component of velocity induced by the 
trails at the three-quarter-chord line is reduced and, if the boundary condition is to continue 
to be saCsBed, the strength of the bound vortex m.ust increase. It follows that substitution 
of PY for sin LII then has the effect of accounting for t,he bend up of the trailing vortices. It is 
not known how exact the correction is, but calculations and experimental veri5ution show it 
of to be the correct order. 

Each equation gives the downwash angle at the control 
point v, the spanwise location of which is defined by 

t]=cos y 

where the downwash results from the circulation at m points 
n on the wing the spanwise locat,ions of which are defined 
also by 

vj=cos 7 

In the case of symmetrically loaded wings, each panel pro- 
duces an identical equation for the corresponding semispan 
point. Since only one of these identical equations is of 
value, the total series reduces to the equations correspond- 
ing to the wing midpoint and one panel,. For the seven- 
point solution, equation (1) is therefore written 

av= 5 a,, G,, v=1,2,3,4 
n=1 

where a”,, represents the influence coefficients for the sym- 
metric seven-point solution. The set of four simultaneous 
equations so formed can be easily solved to obtain the dis- 
tribution of total load (in terms of G,,) on any wing for which 
the angle of attack at each spanwise station, sweep, and 
chord distribution are specified. The .distribution of load 
is specified at only four spanwise stations, namely 7=0.924, 
0.707, 0.383, and 0 (n=l, 2, 3, and 4, respectively). Values 
of loading at additional spanwise stations can be found by 
means of the interpolation function given in the appendix 
(equation (A52)). 

The simplicity of the procedure depends to a largeextent 
on the fact that the solution can be found in terms of the 
coefficients avn. Even where these must be computed for 
each wing plan form the’ method offers computational ad- 
vantages over other equally accurate methods. However, 
because these avn coefficients are a function of geometry alone, 
it is possible to relate them in a simple manner ,such that a 
limited amount of comput(ation will give the a”,, coefficients 
for all plan forms to which the method is applicable. Details 
of this procedure and the results of applying it are discussed 
in a later sect.ion of the report. 

The method assumes that the flow follows the wing surface 
and makes some allowance for the trailing sheet aft of the 
trailing edge becoming horizontal.3 Hence, the method 
should apply to higher angles of attack with considerable 
accuracJi, provided the flow remains along the wing surface. 
The method assumes incompressible flow but it will be shown 
how the effects of compressibility can be included within the 
limits of applicability of the Prandtl-Glauert rule. The 
method assumes the. theoretical section lift-curve slope of 
2s (or with account taken of compressibility, 27r/p) but a’pro- 
cedure will be shown which accounts for the variation in 
section lift-curve slope from the theoretical value. 

It is clear from the foregoing outline of the theory that the 
method can account for variations in those geometrical char- 

J see footnote 5. 
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ncteristics of wings, namely plan form and twist, which have 
the greatest influence on the spanwise distribution of lift. 
With the exception of variations in cb the method cannot 
directly account for any effects dependent upon the geometry 
of the airfoil section even though these may affect the span 
loading. The substitution of uniformly cambered sections 
for uncambered sections across a wing span is assumed to 
change only the wing angle for zero lift and this change is 
assumed equal to that shown by the section. The substi- 
tution of variable camber is assumed equivalent to twisting 
uncambered sections. 

PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS 
FROM SPAN LOADING 

The foregoing section has shown a method by which the 
symmetric span load distribution of any wing having a 
straight quarter-chord line over the semispan can be deter- 
mined from a knowledge of wing geometry only. With 
such loading determined it becomes possible to quickly find 
other characteristics. It should be noted, however, that 
these characteristics are derived directly from the wing load 
distribution and that no further aerodynamic theory is in- 
volved. 

It is possible to find the gross load distribution and re- 
sultant characteristics directly for a wing at any angle of 
attack and having any plan form and twist. Past experience, 
however, has shown that gross characteristics can better be 
studied if the basic and additional type loadings are handled 
separately. Since the two types of loading are additive, 
this procedure is permissible. 

Basic loading is that existing with zero net lift on the wing 
and is, therefore, due to twist or effective twist 4 (e. g., span- 
wise change in camber) of the wing-chord plane. The basic 
loading and characteristics dependent on it are unchanged by 
the addition of load due to uniform spanwise wing angle- 
of-attack change and are equal at all angles of attack to that 
found for zero net lift on the wing. 

Additional loading is that due to equal geometric angle-of- 
attack change at each section of the wing. The distribution 
of additional load is a function only of wing plan form and is 
thus independent of any basic load due to twist existing on 
the wing. The magnitude of the additional load is a function 
only of angle of attack of the wing and thus each equal 
increment of angle of attack will give the same increase and 

. distribution of additional load irrespective of the gross load 
on the wing. The wing characteristics due to additional 
load of any given plan form are thus a function of the lift 
coefficient or angle of attack of the wing. 

In the following sections the procedure for determining 
- basic-type span load distribution and the characteristics 

associated with it (denoted by a subscript 0) is first presented 
and then the procedure for finding additional-type span load 
distribution and the associated characteristics (denoted by a 
subscript a). Finally, it is shown how characteristics due 
to gross load distribution (denoted by absence of a subscript) 
can be found. 

’ Hereafter reference will be made to twist only. The reader will understand that effective 
twist will be handled in an identical manner. 

PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS 
DUE TO BASIC LOADING 

Span load distribution and angle of zero lift for arbitrary 
twist.-It is not possible to obtain the distribution of basic 
load on a twisted wing directly from equation (2) since the 
values of (T” for each station are not generally known for the 
condition of zero net lift and thus, as written, eight unknown 
values appear. However, only one ;mknown has actually 
been added to the four unknowns (the individual loads of 
equation (2)) since, while four values of (Ye appear, they are 

related to one another through knowlege of the twist distri- 
bution. To form the fifth equation required for the solution 
in addition to the four represented by equation (2), use is 
made of equation (A46) of the appendix which gives the 
total lift in terms of the four individual loads. Thus 

Equating this to zero (basic loading) and with equa.tion (2), 
a set of five simultaneous equations is formed, the solution of 
which will give the values of loading at the spanwise points 
and the angle of zero lift of the reference station. Thus 

O= G4+2 i&G,, sin b 

~v+a,.f,=~~l ad?,,, v=l, 2,3,4 1 (4) 

J 
Solution of the five equations will give values of the angle of 
zero lift of the reference section and the four individual loads. 
The angle of attack of sections other than the reference sec- 
tion is determined from the twist. 

Some simplification of this process can be made, however. 
When equated to zero lift, equation (A46) involves only the 
four individual loads, and it is therefore possible to express 
one load in terms of the other three. Elimination of one 
unknown in the remaining equations enables a solution to 
be made for the angle of zero lift and three individual loads 
from a set of four simultaneous equations. Finally, since 
the individual section angles for zero lift are each expressed 
as the sum of the reference angle and a twist angle (which is 
zero for the reference station), one equation and one un- 
known (the reference angle) can be eliminated by subtracting 
one equation from the remaining three. Values can then he 
found for the three loads from solution of only three simul- 
taneous equations, with the angle of zero lift for the refer- 
ence chord and the value of the fourth load found from the 
previously eliminated equations. 

The exact form of the equations depends on the section 
chosen as a reference. If, as is customary, the root is taken 
as a reference, then 

where e, is the angle of twist at station v with respect to 
station 4, and the set of equat.ions required for the solution 
take the following form. The three simult.aneous equations 
giving the three outboard loads are 
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B1=IU**--a,, -0.765(~~~--a,,)]G,,+[a,~-a,~-1.414(u~~-u,,)]G~~i-[u~~-u,~-1.848(u~,-u,,)]G~, 

cz= [~zl-~41- 0.765(~z4-~44)14,+[~*2-~42- 1.414(~z4-~d1Gz0+[uzz-uu-1.848(uz~-u,4)]G~, 

I 

(6) 

~=[~s~-~4~-0.765(~,4--44)lG~,+ tar-arc-l .414(a34-a44)]Gz0+[uzz-u~~-1.848(u~~-u~4)]G~, 

The equation giving the root load is 

G4,= - (0.7656,,+ 1.414Gz,+ 1.84863,,) (7) 
.-.- 

The equation giving the angle of the root section for zero 
lift is 

c~~~=a4~=(u4r-0.765u44)4,+(u,z-1.414u44)Gz, 

+ (~43 - 1.848a43 Go @> 

The dimensionless circulation G, can be related to other 
forms of loading coefficient,s by 

Conversely, if the load at each of the four span stations is 
known for the case of zero wing lift, it becomes a simple 
matter to solve equation (2) directly and determine the 
required wing twist. 

Induced drag.-With the values of loading found at the 
four spanwise positions, the induced drag can be found from 
the following equation which is derived in the appendix. 
In terms of the nondimensional circulation G,, 

CDto=$ [ G2,,+ G2zo+ G2so+>- G4,(0.056G~,+ 
-I 

0.7896,J -G~o(0.733G,,+0.845G~o)~ (9) 

Through use of equation (4), the induced drag can be put 
in terms of only three values of G,. Thus 

C~~o=:~A[0.668G2,,,+G2z,,+2.082G2~0+(0.215G~0+ 

1.442GzJ Gz,,+ 1.06 1 G,oGzo] (94 

Pitching moment.-It is quite evident that, as a wing is 
swept, the distribution of span load will increasingly affect 
the wing pitching moment where this is measured about an 
axis normal to the plane of symmetry. Correspondingly, as 
the wing is swept, any changes in the chord load distribution 
exert relatively less effect on wing pitching moments. Fur- 
ther, since the possible distortion of a chord loading from the 
conventional is not great, the span load distribution begins 
to control the wing pitching moments even at small angles 
of sweep. Since the subject method gives, as will be shown, 
good predictions of span load distribution, then it is safe to 
assume that good estimations of pitching moments should 
be possible. 

The moment produced by basic-type load distribution is 
in the form of a pure couple since zero net load exists on the 
wing. It follows immediately that the magnitude and sign 
of the moment are independent of the fore-and-aft location 
of any reference axis normal to the plane of symmetry. 

Y> Using the expression for continuous loading (equation (Al7) 

of the appendix) and summing the moment of each wing 
element about an arbitrary axis, the value of the coupledue 
to the basic load distribution can be found. About an axis 
normal to the plane of symmetry and in terms of dimen- 
sionless circulation this is 

c7”O=-M.A.C. -&-- tan A (0.138G,o+0.198G20+0.135G30+ 

0.016G4,) (10) 

If equation (4) is again used to eliminate G4,, equation (10) 
becomes 

%= - M.A.C. -/!!- tan A(0.126G,,+0.175G2,+0.106G,,) 

OW 
PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS 

DUE TO ADDITIONAL LOADING 

Span load distribution and lift-curve slope.-Since the 
additional loading distribution for wings of a given plan 
form is the same, regardless of twist or camber, it is necessary 
to consider only the case of the flat wing. Further, since 
the magnitude of the additional load varies directly with 
angle of attack, it is only necessary to consider unit angle- 
of-attack changes as all other loadings will be directly pro- 
portional to this. Thus, to find the additional load distri- 
bution, equation (2) is written in the following form 

14% a,,% v= 1,2,3,4 
CY 

Solution of the set of four simultaneous equations gives the 
G% values of circulation per radian ; at the four spanwise 

stations q=O.924, 0.707, 0.383, and 0. 

Substitutions of the values of % in the expression for lift 

coefficient gives the wing lift coefficient for one radian 
change in angle of attack, or in effect, lift-curve slope. 
Thus, with equation (3) 

‘~=CL~=$ (+=+1.848 +=+1.414 %+0.765 % > 
(12) 

The dimensionless circulation per radian ‘2 can be es- 

pressed in the more usual loading-coefficient form through 
the relations 

Induced drag.-The induced drag due to additional load- 
ing can be computed at any lift coefficient exactly as was 
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the induced drag due to basic loading. Values of loading 
at the four spanwise points are found for the particular 
value of CL and substituted in the appropriate form of equa- 
tion (9). If the more usual expression fo; induced drag as 

a function of CL is desired, then values of 2 are substituted 

in the following expression which differs only algebraically 
from equation (9): 

c -&&(y+(y+(y+;(.y 

G4a -; 
,( 

0.056 G$+0.789 % 
> 

0.733 2-tO.845 $ >I (13) 

Spanwise center of pressure,-Substitution of the values 
for individual loads in equation (Al7) of the appendix gives 
an expression for the continuous distribution of additional 
load. Integration of the increments of bending moment 
about an axis lying in the plane of symmetry will give total 
root bending moment. Then, with knowledge of the total 
load, an expression giving the spanwise location of the Center 
of load (on the quarter-chord line) can be found. In terms 
of the values of the dimensionless circulation, this exp,ression 
is (from reference 5) 

0.352 2+0.503 $+0.344 %+0.041 :E 
Ilc. v. (&= - (14) 

0.383 2+0.707 $'+0.924 +0.500 % 

Either of the two loading coefficients can be used directly 
G 

in place of the values of 2. 

Pitching moment.-The value of the pitching moment, due 
to additional-type load can be found exactly as was that due 
to basic load. However, account must be taken of the fact 
that the value of the moment is directly dependent on both 
the position of the reference axis and the amount of addi- 
tional load. This can be accomplished directly by using 
the results of the previous section which gave the spanwise 
position of the center of pressure. Since the center of pres- 
sure is placed by the method on the wing quarter-chord line, 
it is simply a matter of geometry to locate the longitudinal 
position of the center of pressure with respect to any reference 

axis. The value of the moment-curve slope 3 is then 
L 

simply the difference between the longitudinal position of this 
reference axis and the longitudinal position of the center of 
pressure expressed as a fraction of the mean aerodynamic 
chord. 

PROCEDURE FOR DETERMINATION OF AERODYNAMIC CHARACTERISTICS 
DUE TO GROSS LOADINQ 

Gross loading must be considered when a twisted wing is 
carrying other than zero net lift. Since the load distribu- 
tion is the sum of a constant and a variable, its shape varies 

with lift coefficient and thus the resulting characteristics 
must generally be determined at each lift coefficient. For 
the most part, excepting possibly the effect on the character 
of wing stall, the effects of twist on aerodynamic character- 
istics are of minor importance compared to the effects of 
sweep, aspect ratio, or taper ratio. However, where the 
twist varies with load due to the elastic properties of the 
wing, careful consideration must be given the gross loading 
if a true picture of the characteristics is to be obtained. 

Span load distribution.-Since basic and additional load 
are additive, the gross load distribution at a given CL is 
simply the sum of the two. The magnitude of the total 
load is equal to the value of the additional load. Thus, the 
gross load coefhcient is given by G,= G,,$ G,,. 

It is sometimes of importance to determ.ine the twist 
required in a wing to have a given gross load distribution 
at a particular lift coefficient. If this distribution is chosen 
and the additional load distribution for the wing correspond- 
ing to the particular lift coefficient is subtracted from it, 
then the necessary basic load distribution is defined. As 
noted previously, the twist required is readily determined. 
For wings having pronounced sweep or very low aspect 
ratio, the twist required to give load distribution approaching 
the desired elliptical may become great even where the 
distribution is desired at a lift coef&ient of only 0.2 or 0.3. 

Lift-curve slope.-If the twist is constant, the lift-curve 
slope for the wing is that found for the untwisted wing. 
However, if the twist varies with load, then the lift coefficient 
must be determined for each angle of attack in order to find 
the lift-curve slope. The required values of the lift coeffi- 
cient can be determined from equation (3) once the values 
of G, are known for each angle of attack. 

Induced drag.---Total induced drag can- be found by 
substituting the values of total loading coefficient in equa- 
tion (9). It is, of course, impossible to make CD, a function 
of CL when twist is present since CD, is a function of load 
distribution and this varies with each lift coefficient. (Note: 

Pitching moment.-The gross pitching moment is found by 
adding directly the pitching moment due to basic lift to the 
pitching moment due to additional lift. This gross char- 
acteristic must be carefully examined if twist is a function of 
total load or dynamic pressure. In these cases a new twist 
and the pitching moment due to basic lift must be found for 
each flight condition. It is possible the resultant changing 
value of basic load moment can be of sufficient magnitude 
to seriously affect the stability of an airplane. 

CORRECTION FOR SECTION LIFT-CURVE SLOPE 

The development of the basic theory involves the assump- 
tion that each section on the wing maintains a lift-curve 
slope of 2~. This is implicit in the choice of the three- 
quarter-chord line as the location for the control points. It 
may be..desirable at times, however, to consider the effects 
of deviation in lift-curve slope from the theoretical value of 
2~. How this can be done by moving the control point from 
the three-quarter-chord line is shown in the following 
discussion, 
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The’logic underlying the choice of the three-quarter-chord 
line as a location for the control points can be shown as 
follows. The velocity w induced ‘at any distance h from an 
infinite vortex of strength l? can be expressed as 

r 
w=2?rh 

_ ---- ---,The circulation.is.in. turn related to the section lift coefficient 
cl of a section through the expression 

: i l=prv==cl; pv2c 

From these two expressions it can be .found that 

cr=4a(;) (k) 

It can be seen that the term F indicates a change in the 

direction of flow with respect to the free-stream direction, 
which change decreases with distance from the’ lifting line. 
If the lifting line is assumed to be replacing a plate insofar 
as lift is concerned, then simplified lifting-surface theory 
requires that, at some distance from the lifting line, the 
direction of flow must be parallel to’ the plate. In. effect, 
then, the induced downwash angle becomes equal to the 
angle of attack of the plate. It remains to determine how 
far aft of the lifting line the downwash angle must be meas- 
ured in order to properly relate the increase in circulation 
to the change in angle of attack of the plate. From the’ 
foregoing expressions and assuming small angles, the follow- 
ing relation can be written: 

~=(--&)=4~ (3 

Now, if a section lift-curve slope of 2r is assumed, it is 

evident that 
0 

$ must equal $ or that h is equal to f c, thus 

fixing the point where no flow occurs through the plate at 
. 
i c aft of the lifting line or on the three-quarter-chord line. 

,It follows directly that, if a lift-curve slope is less than 
2a, then the control point should move forward of the three- 
quarter-chord line, and if greater, aft. Thus, adjustment 
can be made for changes in section lift-curve slope at each 
of the four control stations. The procedure for doing this 
will be shown in the application of the method. It is not 
clear just how well this procedure will account for changes 
in section lift-curve slope resulting from separation of flow. 
Therefore, some caution should be used in interpreting 
results obtained from this method where large changes in 
lift-curve slope from the theoretical, are involved. 

In using this lift-curve-slope correction, it must be real- 
ized that an attempt is beingmade to impose. considerations 
of section characteristics on a theory which cannot rigor- 
ously allow such considerations. The question of the ap- 
plicabilim of the correction becomes of particular import- 
ance where the wing has large values of sweep of the quarter- 
chord line. As the subject theory is developed, ‘the sec- 

tions containing the control point and the point at which 
load is determined lie in a line parallel to the free-stream 
direction. Thus any considerations of section character- 
istics can be applied only to sections lying along these lines. 
However, simple sweep theory indicates that it is more 
correct to make the controlling airfoil section that one lying 
along a line normal to the wing quarter-chord line. These 
two sections are quite different, of course, if sweep is present. 
If no taper is present, their thickness distributions are the 
same, but their thickness ratios vary by the cosine of the 
angle of sweep. If taper is present, both thickness distribu- 
tion and thickness ratio vary. 

Study of the problem has so far indicated that neither the 
approach of simple sweep theory nor of the subject theory 
is correct insofar as choosing the controlling airfoil section, 
but rather that the controlling section lies somewhere be- 
tween these two limits and varies with span position. In 
view of this, therefore, it should not be expected that true 
account can be taken of changes in airfoil-section character- 
istics. However, it is believed that use of the procedure 
proposed herein will indicate the trend of the changes in 
over-all wing characteristics to be expected from changes in 
section characteristics. Until such time as more detailed 
analytic and experimental studies of the problem are com- 
pleted, it is recommended that the results of applying this 
correction be considered largely qualitative. 

EFFECTS OF COMPRESSIBILITY 

The Prandtl-Glauert rule, which accounts for the effects 
of compressibility, is directly applicable to the subject 
simplified lifting-surface theory. The approximations and 
limitations of the Prandtl-Glauert rule are well known and, 
hence, no discussion of them is given herein. However, for 
convenient reference, the basis for correcting the predicted 
span loadings and the theoretical relation of these correc- 
tions to the simplified lifting-surface theory is presented.b 

The Prandtl-Glauert rule simply states that, as the Mach 
number is increased, the span load distribution of a wing 
distorts as though the x dimensions of the wing were in- 

creasing as the ratio of $* Thus, the effects of Mach number 

on a given wing can readily be considered by finding the 
span loading at zero Mach number of a properly distorted 
wing. It can be seen that increasing the x dimensions of the 
wing results in increasing the angle of sweep and increasing 
each local chord (or, in effect, a decrease in aspect ratio) 
while leaving the span and taper unaffected. Thus 

AB=/3A 
tan A 

AB=tan-‘7 

The foregoing is applicable to any type of span-loading 
theory. The distorted wing is considered for the Mach 
number in question and the span load distribution found. 
This load distribution is then considered as being carried 
by the undistorted wing-in order to find those characteristics 
dependent on span loading. 

1 For the limiting case of Mach number equal to 1, the reader is referred to NACA TN 184, 
“Linea&.ed Compressible-Flow Theory for Sonic Flight Speeds.” by Max. A. Haslet. 
Harvard Lamar, and John R. Spreiter. 

. 
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In thecase of thesubjectspan-loading theory, the compressi- 
bility correction can be considered in another way. As before, 
the angle of sweep is effectively increased by increasing Mach 
number. However, the increase in local chord in the 

ratio - 
; 

can be regarded as an increase in the distance between 

the lifting vortex and the control point on the undistorted 
wing. From the previous section it will be recalled this 
corresponds to an increase in section lift-curve slope-in this 

case exactly in the ratio of L* B Thus, the theoretical section 

lift-curve slope, where compressible effects are included and 
the control point is held at the three-quarter-chord point, 

2?r 
implicity becomes -. B 

Any corrections for section lift- 

curve-slope change thus become based on the deviations of 
the experimental section lift-curve slope at a given Mach 

number from the value of 5 at the same Mach number. 

It can be seen that this increase in cza is exactly equivalent 
in effect to the decrease in aspect ratio. It is obvious from 
this that two techniques can be used in applying the cqm- 
pressibility correction to the simplified lifting-surface theory. 
Either the wing geometry can be appropriately altered or 
the disposition of the ,original layout of the lifting vortex 
and control points can be altered. The choice of procedure 
is governed entirely by the relative simplicity in handling 
the computations. As will be shown under the following 
sections on the application of the method, both are used, 
the choice depending on the type of loading and wing being 
considered. 

APPLICATION OF METHOD 

LOADING CHARACTERISTICS FOR ARBITRARY WINGS 

In the foregoing sections, a method for predicting the span 
loading on wings has been outlined and it has been shown 
how other characteristics can be found from the span loading. 
Further, it has been shown how corrections can be applied 
to approximately account for deviations of the section lift- 
curve slopes from the theoretical value of 2~ and for the effects 
of compressibility. 

With the information thus far given, it is possible to predict 
the span loading and resulting characteristics of an arbitrary 
wing from a knowledge of the wing geometry only. Appli- 
cation of the procedure, however, shows that the most time- 
consuming portion is that of computing the influence coefi- 
clents avn, sixteen of which are required for the seven-point 
method. Examination of the theory shows that, if the num- 
ber of control stations is fixed, the influence coefficients 
become a function of the wing geometry only, that is, sweep 
and chord distribution. It becomes immediately appa.rent 
that, if the number of control stations is chosen, then the 
corresponding influence coefficients can be presented in 
graphical or tabular form as a function of wing geometry. 
Thus, the greater part of the computing work associated 
with the method can be eliminated, since the same coefli- 
cients are used to find any form of svmmetric loading for a 
given plan form. 

Further simplifications, not. so immediately evident, are 

--~--..---- ---------- --... - . . . .._._..-.. __.__._ . . ,..,.. ,,, , 

also possible. It can be shown (see appendix) that, if the 
angle of sweep is fixed, all the influence coefficients become a 

function of $ alone. Thus, if a complete set of coefficients 

for one taper ratio is determined throughout the aspect-ratio 
range, the coefficients for all other plan forms having the 
same sweep can be related to these coefficients by relating 

the values off of the wing in question to those for which the 

coefficients were determined. Further consideration shows 
that the effect of section lift-curve-slope deviation from the 
theoretical values can also be accounted for by a change in 

the value of LV in the ratio of experimental to theoretical 

section lift-curve slopes. Finally, if the compressible-sweep 

parameter 
( 

As= tan-’ tan 
P > 

is used rather than the geo- 
b metric sweep angle and the value of C, is adjusted by the 

factor p, then the effective plan-form change due to com- 
pressibility is accounted for. 

To simplify the use of the method, therefore, the influence 
coefficients for symmetric loading a”,, for the seven-point 
method have been computed and are presented in table I 
and figure 1 as functions of the compressible sweep parameter 
A, and the parameter H,. For most wings the values of the 
coefficient avn can be obtained directly from figure 1. How- 
ever, for certain wings of extreme plan forms the values of 
H, will be such that the values of up,, will lie off the charts. 
Where linear extrapolation’of the curves is not acceptable, 
table I provides sufficient values of aVa to enable extension 
of the curves. Adequate accuracy of the final results will 
be obtained if the value of a.yD is read to two decimal places. 

The parameter H, is defined as follows: 

where 
d, scale factor which is given on each chart 

cz 
KY u,,p, the ratio of the two-dimentional experimental lift- 

WP 
curve slope for the airfoil section at station v to the theo- 
retical value, both for the Mach number under con- 
sideration 

p Ji=w 
b - 
CY 

ratio of wing span to the chord df the wing at the span- 
wise station corresponding to the control point v 

The application of the method to the cs,se of the arbitrary 
wing plan forms can be outlined as follows: 

1. Compute the value of H, at each spanwise station Y 
and the value of A,, both for the Mach number in question. 
(Note that the effects of section lift-curve-slope change and 
of Mach number are completely accounted for within the 
limits of the method by these parameters, and the predicted 
results will incltide these effects.) 

2. From figure 1 or table I and with the value of Hv, find 
the values of each of t.he 16 a,, coefficients. 

3. Insert the values of avn in equation (6) for basic load- 
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ing or equation (11) for additional loading and solve the 
simultaneous equations6 for the values of G,,, or %  

a 
4. With the values of G,,,, or %  known,, other wing char- 

a! 
acteristics can be found by substituting these values in the 
appropriate equation as indicated by the following table: 

Basic loading ,, ,. .,. _ ,, ~. -~ Additional ,lqading 
C 

C$L2 
Equation. (9) _____ __ Equation (9). 
------------------ Equation (13). 

7C.P. ___- i ------------- Equation (14). 
cm Equation( lo)--- ___ _____ _____ ___ _ 

ADDITIONALLOADING CI~ARACTERISTICS~FSTRAIGRT-TAPERED 
WINGS 

The previous section has shown how to apply the method 
to determine aerodynamic characteristics of an arbitrary 
wing. For the more common case of straight-tapered wings, 
it is possible to prepare charts giving wing aerodynamic 
characteristics due to additional loading directly as a func- 
tion of wing sweep, aspect ratio, and taper ratio. 

The method has, therefore, been used to find the additional 
span loading and some of the wing characteristics for a series 
of wings of varying plan forms and having constant section 
lift-curve slope across the span. Some 200 wings (the range 
of plan forms, but not the total number of wings is shown in 
fig. 2) were included in the study, the results of which are 
presented in figures 3 to 6. Each of these figures is a chart 
giving the variation of a particular wing characteristic with 
wing sweep and aspect ratio for five values of taper ratio. 
Figure 3 gives the value of the local loading coe5cient at 
each of the four spanwise stations. Figure 4 gives the 
value of wing lift-curve slope. Figure 5 gives the spanwise 
location of the center of pressure. Figure 6 gives the chord- 
wise location of the center of pressure or the aerodynamic 
center T measured from the leading edge of the mean aero- 
dynamic chord. 

To find the desired characteristic for a given wing, the 
chart for the proper taper ratio is entered with the com- 

( 
tan A 

pressible sweep parameter Aa= tan-’ - 
P > 

7 and the de- 

sired value read from the curve-or interpolated-for the 

proper value of the aspect-ratio parameter ‘4. Thus, it is 

possible to find, with no computation, many of the charac- 
teristics for untwisted wings. It should be remembered 
that, since basic and additional loading are considered 
independent, these characteristics not only represent the 
gross characteristics of untwisted wings, but also ,the addi- 
tional loading characteristics of twisted wings. They are 
thus applicable, to some extent, to all wings having straight- 
taper and constant section lift-curve slope across the span. 

‘6 Erperienca has shown that the method given in reference 6 for the +tion of a set of simul- 
taneous equations is most satisfactory. 

7 For the case of the straight-tapered wing, this chordwise location of the aerodynamic 
center can he simply expressed in terms of the geometry of the wing and the spanwise location 
of the center of pressure. Thus 

TABLE I.-SYMMETRIC INFLUENCE COEFFICIENTS, a,“. 
WHICH LEAD OFF THE CHARTS OF FIGURE 1 

a11 

-20. 0 20 40 56 60 70 75 
--- ___~_----__- 

\ 5 AP -45 -40 -26 0 20 46 50 60 70 75 
--- -2.02: ---w-P- -- --_ 

0.6 -1.32 _______________ _ _____________________ -6.35 -8.00 
.8 -2.05 

::i -:$ 1.72 r;.;; -1.05 -1.55 
_____________________________ ________ -8.07 -10.14 

ii 3.76 -;k; 1 48 -.05 .Q5 

_______ -___ 1________________________ __--___ _ __--___-_---__ -6.60 -7.73 -11.51 -9.70 -12.26 
-14.42 

2:4 .m”:““. 2:48 1.96 
_____________ _ _______ -7.03 -8.28 -9.41 -14.05 -18.70 
-______ -___ -_---__ _-_-___ -6.95 _--__ __ -9.66 -13.23 -11.32 -18.39 _______ 

2.8 ________ _ _____ 2.05 
___ ______-- _-_____ 

______ -7.71 -10.81 
3.2 -_____ _ _______ 3.95 

___ _____ _______________________ 
-__ __________ -8.47 -12.07 _______________________, 

3.6 -____________. 4.95 -____ _______ -0.23 -13.23 
4.0 

__ _._____________________ 
_______ _ ______ _______ .______ .______ -9.97 ________ ________ ________ _____ __ 

-- -- ----- 

2, -46 -40 -20 0 20 40 60 60 70 75 

___-------_--- 
0.8 -l.o3 _______ _______ _______ .______ _______ ________ .______. 3.23 4.91 
::2” -1.69 -2.26 -1.72 -1.28 .___.__ _____ __ _______ _______ _______ _______ ____ ___ _______. 

_______ ________ 
________ 4.37 5.351 8.20 6.56 

it -3.33 -4.39 -2.64 -3.56 214 _______ -4.48 -1.23 -1.71 _- __________________.________ -2.10 _______ ___ .___ _______ __ ____._____ 4.73 ____. -‘-i-si- 6:04 170.;; 
____ _______ 

7.55 :.- .?““. 
.-.- .______. 

2.8 ______________ -2.67 _______ _______ 6.71 _______ ________ . .._____ ..______ 
3.2 ___- __________ -3.16 _______ __- 4.45 6.69 ____ .___ _.__ .- _.___ _______. 
3.6 _______ _______ -3.63 .___ _ _________ 5.15 7.67 . . . ..__. ___.__. ____ -.._ 
4.0 ______. ._______._________ _ __________ 6.30 ________ ___.__.. ___.___________ 

a14 
- --- ------~~ 

AP 
L 
\ 

-45 -40 -20 0 20 40 56 60 70 75 
------ ------__~ __- --- 
1.0 i __.-__ -_---__ ------- --- ---- --.--- - ------- -------- -------- .--- --__ -3.31 
1.2 

i:: 

--i:is. -----.. ------- --- ---- ------ - ------- -------- -- ---- -- ---- --._ -4.01 
1.17 _______ __.____ ____.______ ____.___.. .- ______ -4.08 -5.61 

1.93 1.59 _______ .______ _______ .____________--._______ -4.67 ________ 
2.4 ______ 2.01 .____...________________--___-______.-___-__ -5.28 ________ 
2.3 ___________ -__ 1.06 _.____....____-______--__--__----____ -5.89 _.__.___ 
3.2 __- __________. 1.27 .-.__.__.._.__-__----________________.._.____. _____. 

DISCUSSION 

COMPARISON WITH OTHER THEORY AND WITH EXPERIMENT 

The extent to which the method can be evaluated varies 
widely with the particular characteristic in question. In 
general, the accuracy of predicting the characteristics asso- 
ciated with basic loading can be evaluated in only a limited 
manner, since few swept or lowlaspect-ratio wings having 
appreciable twist or camber have -been experimentally or 
theoretically studied. On the other hand, many wing plan 
forms have been studied and from those results it is possible 
to assess fairly well the accuracy of the method with regard 
to additional loading. 

Basic loading.-The prediction of the effect of twist and/or 
camber on load distribution can be evaluated to ‘a degree 
by comparison with other theories. Such a comparison is 
given in figure 7 wherein the predicted loading given by the 
subject methodis compared with those given by the method 
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developed by V. M. Falkner and that of reference 7. It may 
be assumed that the Falkner method is the most accurate of 
the three since it approaches a true lifting-surface theory. 
From the comparisons shown in figure 7, it would appear 
the subject theory is nearly as good as the more complex 
theory and considerably better than the lifting-line theory 
of reference 7. It must be recognized, that twist introduces 
large induction effects even on high-aspect-ratio wings. 
Therefore, it follows that the deviations of the predictions 
of the subject theory and those of the theory of reference 7 
from those of Falkner’s method are indicative of the ability 
of the two methods to account for the induction effects. 

A check on the ability to predict Cm,, and c+,, can be had 
from comparison with the experimental results shown in 
reference 7. Here a wing having 30° of sweepback wa.s 
tested without twist (wing designated 24-30-o) and witb 
8.5’ of twist (wing designated 24-30-8.5). The force tests 
show that the twist shifts the angle of zero lift 2.6“ while 
the present theory gives a value of 3.3’. The force tests 
indicate that twist produces a value of Cm0 of 0.05 which 
is the same as that predicted by the theory. 

A further comparison of experiment and the present 
theory can be made using results of pressure-distribution 
tests of a wing having 60.8’ of sweepback. The geometrical 
characteristics of the wing together with the experimental 
results and theoretical predictions are shown in figure 8. 
The comparisons are made for zero lift where only basic 
loading exists. It can be seen that the agreement is good 
even for this unconventional plan form. 

On the basis of the foregoing comparisons, it seems justifi- 
able to conclude that the subject method can adequately 
predict the effects of twist and/or camber on the cbaracter- 
istics of wings of arbitary plan form. 

Additional loading.-Much experimental data and several 
theories are available for comparison with the subject theory 
in regard to the prediction of additional-type lift. Figure 
9 shows a comparison of the predicted loadings and those 
obtained experimentally for six wings varying in sweep, 
aspect ratio, and taper ratio. Figure 10 compares the 
variation of lift-curve slope with aspect ratio as predicted 
by the subject theory, by two more rigorous theories (refer- 
ences 8 and 9), and by a theory directed at the limiting case 
of zero aspect ratio (reference 10). Figure 11 compares 
experimental and theoretically predicted lift-curve slopes 
(assuming a section lift-curve slope of 2?~ per radian) for 
two families of plan forms covering a wide range of aspect 
ratios (references 11 and 12). The comparison between 
experimental (references 12 and 13) and predicted results 
for a random group of wing plan forms is shovm in figure 
12 for lift-curve slope and figure 13 for aerodynamic-center 
location. All experimental values of CL, and aerodynamic- 
center location were measured at zero lift. It is evident 
that in almost every case the method gives an excellent 
prediction. 

From all of this comparative material it seems possible to 
safely draw the conclusion that the. subject method can 
satisfactorily predict the additional-type span loading on 
wings of arbitrary plan form. Further, it seems possible 
that equally good predictions can be made of those charac- 
teristics primarily dependent upon such span loading. 

EFFECT OF PLAN-FORM VARIATION ON TEE BASIC-LOADING 
CHARACTERISTICS 

To study the effects of plan-form variation on the basic- 
loading characteristics of linearly twisted, straight- 
tapered wings, the characteristics of a representative group 
of wings (see shaded wings, fig. 2) having unit washout 8 
have been computed and are presented in figures 14 to 19. 
The Mach number was taken as zero and the section lift- 
curve slope as 2~. The basic-loading characteristics con- 

sidered are the loading coefficient g (figs. 14 to 17), the 

pitching-moment coefficient due to twist % (fig. IS), and 

the angle of attack of the root section for zero net lift 3 
e 

(fig. 19). 
Magnitude and spanwise distribution of load.-Examina- 

tion of figures 14 to 17 reveals that the aspect ratio influences 
only the magnitude of the load and is in fact the predominate 
influence on the magnitude of the load. Reductions in as- 
pect ratio from 6.0 to 3.5 and 1.5 result in approximately 
35percent and 70-percent reductions, respectively, in load 
due to twist for either the unswept or 45’ swept-back wings 
(fig. 15). 

Sweep, either forward or back, tends to reduce the magni- 
tude of loading, although appreciable reductions are produced 
only by sweep angles greater than 45’ (fig. 14). Sweep also 
affects the load distribution such that the load on the outer 
section of the wing is shifted inboard by sweepforward and 
toward the tip by sweepback; as will be seen, this is similar 
to the effect of sweep on the additional-type 1oad:ng. Since 
an increase in aspect ratio magnifies the loading, it also mag- 
nifies the effects of sweep on the loading as is shown in 
figure 14. 

As shown in figures 16 and 17, variation in taper ratio has 
little effect on the magnitude of basic loading; and variations 
in taper ratio, for taper ratios larger than 0.5, have little 
effect on the load distribution. However, for taper ratios 
less than 0.5, the loading on the outer section of the wing 
shifts inboard. These effects of taper ratio on loading are 
magnified by increases in aspect ratio. 

Pitching moment.-That the pitching moment due t,o 
twist is primarily a function of sweep and aspect ratio is 
shown in figure 18. The magnitude of the pitching moment 
increases as either aspect ratio or sweep is increased so that 
pitching-moment coefficients as large as 0.008, for 1’ of twist, 

8 In this case, lo was chosen, and for any larger amount of twist the effects,are propoitional. 
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exist on wings having large aspect ratios and sweep angles. 
The effect of taper ratio is relatively small, the greatest 
being evidenced at the small values of taper ratio. For 
example, reducing the taper ratio from 0.5 to 0 reduces the 
pitching moment due to twist about 30 percent. 

Angle of zero lift.-Although the effects of plan form on 
the angle of zero lift a?0 may not be very important, some of 
the trends indicated in figure 19 are of interest. For the 
range .of plan formsrepresented -in figiire“l9, the angle of 
zero lift varied only about 20 percent from the mean value. 
This is small compared to the effects of plan form on the 
magnitude and distribution of loading and on the pitching 
moment. In contrast to the small effect of taper noted 
previously, taper ratio appears to be the predominant influ- 
ence on CY,~ particularly at large aspect ratios and large 
sweepback., The effect of aspect ratio and sweep are sec- 
ondary but not negligible. 

EFFECT OF PLAN-FORM VARIATION ON THE ADDITIONAL LOADING 
CHARACTERISTICS 

Span load distribution.-To show directly the effects of 
wing plan form on the addit.ional span loading, figure 20 
has been prepared by cross-plotting the data of figure 3. 
It shows that increasing the angle of sweepback or the taper 

ratio serves to move the loading 
c 

as defined by g 
> 

out- 
L ao 

board. 
It can be noted in figure 5 that the spanwise center of 

pressure is independent of aspect ratio for certain combina- 
tions of taper ratio and sweep angle. These values of taper 
ratio are plotted against sweep angle in figure 21. Further, 
for the wing geometry represented by the curve of figure 21, 
the loading is ,approximately independent of aspect ratio 
(fig. 3), and also is approximately elliptical. For elliptical 
loading, the loading coefficient at the four spanwise stations 
have the values 1.273, 1.176, 0.900, and 0.487. It can be 
seen that these values compare closely with those given in 
figure 3 for the plan forms specified in figure 21. The farther 
the wing geometry departs from the configuration represented 
by the curve in figure 21, the greater the change of loading 
with aspect ratio and the rate of distortion from an elliptical 
load distribution. Also, examination of figure 3 will show 
that elliptical loading cannot be maintained, when a wing is 
swept, by altering aspect ratio alone; however, all wings 
approach an elliptical loading as aspect ratio approaches zero. 

The wings specified by the curve of figure 21 have the 
property that their aerodynamic characteristics can be 
expressed in a simple manner similar to the case of unswept 
wings with elliptic plan formsi: Namely, the induced drag 

is given approximately by -Df=& spanwise center of CL2 TA 
pressure by qc.*.= 4 3r, and aerodynamic-center location with 

respect to the mean aerodynamic chord by 

1 a.c. =q+ 0.342-0.567X-0.908X2 A tan n 
lO(1 $-x+x*) 

From figure 4, it can be shown that the wings specified by 
the curve of figure 21 give the maximum lift-curve slope for 
a given aspect ratio and sweep angle. For example, see 
figure 22 for the case of A=3.0. 

In summary, the curve of figure 21 defines wings *aving 
the following approximate characteristics.: span loading 
distribution independent of aspect ratio, minimum induced 
drag; and maximum lift-curve slope for a given sweep and 
aspect ratio, a constant spanwise center of pressure, and an 
aerodynamic-center location that is a simple function of 
wing geometry only. 

Lift-curve slope.-Examination of figure 4 reveals certain 
general trends with respect to the effect of wing plan form 
on wing-lift-curve slope. For wings of high aspect ratio, 
the angle of sweep has a marked effect on lift-curve slope, 
with the maximum effect occurring for wings of infinite 
aspect ratio when the lift-curve slope is directly a function 
of the angle of sweep. As the aspect ratio approaches very 
low values, the lift-curve slope for the unswept wing is 
greatly reduced and the effects of sweep become small except 
for very large angles of sweep. Also, it can be seen that at 
very large angles of sweep the effects of aspect-ratio varia- 
tion on lift-curve slope become small. 

To better illustrate the separate effects of aspect ratio 
and taper ratio, the data from figure 4 have been cross- 
plotted to show the variation with aspect ratio of the lift- 
curve slope for various values of taper ratio and sweep angle. 
These results are shown in figure 23. This figure shows 
clearly how increasing the angle of sweep decreases the varia- 
tion of lift-curve slope with aspect ratio. It shows further 
that while taper ratio as compared to aspect ratio has only 
a small effect on the lift-curve slope of an unswept wing, 
taper ratio has a predominant effect on the lift-curve slopes 
of highly swept wings of moderate to high aspect ratios. 
For very small aspect ratios (i. e., A<1.5), however, the lift- 
curve slopes of all the wings converge and become almost a 
linear function of aspect ratio, being essentially independent 
of the effects of sweep and taper (reference 10). 

Aerodynamic center.-In figure 6, variations of aerodyna- 
mic-center location from 15-percent mean aerodynamic 
chord to 45-percent mean aerodynamic chord are indicated 
for the range of plan forms studied. It will be noted that, 
for taper ratio X=0, the aero.dynamic center moves aft for 
sweepback and forward for sweepforward. At taper ratios 
of 1.0 and 1.5 the aerodynamic center moves forward for 
sweepback and aft for sweepforward. For X=0 the effects 
of aspect ratio are largely ,confined to the swept-back wings 
and as taper ratio is increased the effect of aspect ratio 
decreases for swept-back wings and increases for swept- 
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forward wings. Where the effects of aspect ratio are signifi- 
cant, an increase in aspect ratio generally moves the aero- 
dynamic center aft. 

CONCLUDING REMARKS 

The simplified lifting-surface theory presented herein 
enables the rapid, accurate prediction of symmetric span 
load distribution for wings which have symmetry about the 
root chord and a straight quarter-chord line over the semi- 
span And which can have arbitrary chord distribution, 
sweep, aspect ratio, and continuous twist. Modifications 
to the method are shown by means of which approximate 
account can be taken of changes in section lift-curve slope 
and by means of which the effects of compressibility as 
predicted by the Prandtl-Glauert rule can be included. 

With the charts presented in’the report, the load distribu- 
tion can be obtained directly for many wings and can be 
obtained with .slight additional computation for all wings 
falling within the limitations prescribed. 

From the span loadings determined by the method, it is 
shown how several important wing characteristics can be 
determined. Comparison tith experimental results in- 
dicates that the wing characteristics so obtained are reliable 
for a wide range of plan forms. 

AMESAERONAUTICALLABORATORY, 

NATIONALADVISOIXYCOMMITTEE FOR AERONAUTICS, 

MOFPETTB'IELD, CALIF., 1947-1948. 



APPENDIX 

The mathematical process of finding the loading distribu- 
tion for wings evolves itself into two.parts: first, the deter- 

.---. --m-domination of the integral equation which relates the downwash 
at a given point to the’integrated effects of the bound vortex 
and trailing vortex sheet; and, second, the solution of the 
integral equation to determine the unknown loading distri- 
bution factor. 

T 

s distance along the load vortex, feet 
X longitudinal coordinate, positive downstream, feet 
z longitudinal coordinate pertaining to the load 

Y 
i 

at 

WZ 

ADDITIONAL SYMBOLS USED IN THE APPENDIX 

Fourier coefficients of the loading distribution series 

mathematical series coefficients 

loading interpolation-factors 

mathematical series coefficients 

downwash influence coefficients 

value pertaining to interpolated span station 
k?r 

q=cos s ) 

3 downwash integrand functions 

number of span stations taken to numerically 
integrate the downwash integrand function 

absolute distance from the downwash point to an 
elemental vortex, feet 

vortex, feet 
lateral coordinate, positive to the right, feet 
lateral coordinate pertaining to the load vortex, 

feet 
induced angle in the wake of the wing, radians 

-dimensionless lateral coordinate pertaining to the 

( ) Y load vortex b/z 

positive angles’bet&een a vortex line and the lines 
joining the ends of the vortex line and a down- 
wash point, radians 

integer pertaining to span station fi ( q=COS - & > 

PI integer sequence of the Fourier series for loading 
distribution, also pertaining to span station p1 

DETERMINATION OF THE DOWNWASH INTEGRAL EQUATION FOR SWEPT 
WINGS 

Downwash induced by the trailing vortex sheet.- 

Sketch “A” 

The downwash due to the trailing sheet is, for an arbitrary 
elemental trailing vortex, given in several references (e. g., 
see Glauert, reference 14). The downwash at a point in the 
xy plane is given by 

dr dwzy=4Yh (cos e,+cos e,) (Al) 

where the induced velocity is positive for downwash., 0, and 
t& are the inside angles between the trailing vortex line and 
the lines from the ends of the trailing vortex line to the 
downwash point, h is the perpendicular distance from the 
downwash point to the trailing vortex line, and dr is the 
strength at a given span station of the trailing vortex. From 
the foregoing sketch it can be seen that 

h=y-ij 

x-z ~, 120S b= 1/(x-q2+ (y-g)>” 
cos 0,=1 (since &=O with the trailing vortex extended to 

infinity) 
and 

Z=[gl tan A 

Substituting these values into equation (Al) and integrating 
will give w, due to trailing sheet equal to 

&y@$l+ x-‘5’ tan n ] l?(g)dg 4(x- ISI tan A)*+ W-W 
W-3 

13 
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Downwash induced by the load vortex.- 

Sketch “B” 

The downwash generated by the swept load vortex is the 
sum of the downwash generated from each semispan. Along 
the load vortex the circulation is continuously varying. The 
downwash at (x, y) due to the small element,.ds (see accom- 
panying sketch) is given. by (e. g., see Glauert, reference 14) 

dw,,=$ G43) 

For a swept, load vortex, for the right semispan 

&L 
cos A 

h=x cos A-y sin A 

r= ,’ (.c--FiYj2+~ 

Z=# tan A 

while for the left semispan 

h-x cos A+y sin A 

and S, r, and Z are the same as for the rig13 t semispan. 
Subst.ituting t.hcsc rnlucs into c>quation (,4X) and integrat.mg 
will give wzy tlue to load vortcs cqunl to 

Total downwa,sh.-Thcb total tlo~~r~wnsh due to the truil- 
ing sheet and the loud vortex is equal to the sum of equa- 
tiolls (A2) and (,14). or 

r--ljjj tan d 
l+--=z- ::-. : +.-...- ==.z-; 

1’ (-/y/I tan N-+ (y-3 1 r’(;)dy+ 

1 0 
--s 

(xfy tan ai)T’@)dg 
--- .=I- 47r -b/Z [(x-[y, tan A)‘+ (y-y)y+ 

1 
--s 

b/2 
., --_(Ir - Y tnn N r 0 46 

47~ 0 
,---- ~--2-~-.~-23/2 

[(x-@I tan A) + (y-y) I (A5) 

The lsst two integrals of equation (x.5) can be integrated 
by parts a.nd put in the form of the first integral. With r (*$j= 0, equation (AS) becomes 

s 

0 aA+x tan A-y) r’@)d& 

-b/2 (xfy tan A) ,l(x+i tan A)z+(y-~)2- 

5 

s 
b/2 cosZA-x tan-A-y r’(Yj)dy 

-. 
o (x-y tan A) 4(x-y tan A)‘+ (y-y)“’ 

W-3 

Equation (A6) can be simplified algebraically and rewritten 
into the form 

1 S ’ -- 
4r -b/2 

J(X+Y tan ~)2+(~-~2 rJ($dG+ 
@t-y tan 4 (Y-y) 

1 S b/2 4(x-+ tan A)‘+ (y-q)* 
G 0 (x-y tan A) (y-j2 mWi7+ 

-. 
2 tan AJx”-l-y” 

4*(x*--y* tan2 A) r (0) (A7) 

The three int,egrands of equation (A7) have an infinite 
point at c=y. The integrand in the second and third inte- 
grals can be made continuous by subtracting the function 
r’ (2 mid . - =. 
Y--Y 

Equation (A7) remains balancedif g 1s also added 

t.o the first integrand. -4s will be seen presently, the first 
integral, the integrancl of which retains the infinite point, will 
give a finite value after int,egration. Equation (,47) becomes 
(adding the fourth term to the second integral) 

Equation (AS) can give the downwash at, any point in the 
2:~ plane. From the discussion of the theory in the text, the 
downwash must bc found a,long the three-quarter-chord line 
of tlw WiJJg. For a given span station the x coordinate of a 
point on the three-quarter-chord line is given by 

Z=f+iyl tan A 

The nondimensional equat.ion for downwash angle at any 
span station on the three-quarter-chord line can be obtained 
by substituting this value of x into equation (AS) and by 
using the foIlowing nondimensional relations: 
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&=;+ lql tan A The resulting equation is 

for ijl0, 

G=& 

15 

(;).=i jJl -+g &(q,ii)G’Od;i (A9) 

where the function L(v,ij) is given by, 

a; -~ ~-‘u;r;?i) i.(&) iq-;;, i 
-&+ (b/c> CM43 --tan W-t @ lVh--V- 1 

1 -I- (b/cl (bd 4-d tan A f 
+ 2 tan A&+(b/c)l~J tan A]“+(~/c)~~* 

[I -I- (b/c) (Id-d tan A][1 i- (b/c) (Irll +TI) tan a 
,v and, for $20, 

6. L(q,$ = (b,c) ;,-;i, f 
J[l+ (b/4 (Id-3 tan AI*+ W4*k-iP- I 

/ .. l+(b/c)$?l---tl) tan A I 

(Alo) 

Equation (AlO) is complete for positive and negative values 
of the coordinate 7. In the case of the unswept wing wher? 
A equals zero, equation (AlO) simplifies considerably and 

the function L(q,;j) is given by, 

for -1<;<1, 

h$ = (b,c) t,-s , 1 d+ (w)*b--ii)*---l 1 (All) 
MATHEMATICAL SOLUTION OF EQUATION (AS) 

Arbitrary load distribution.-The solution of the integral 
equation (A9) to determine the unknown loading-distribu- 
tion function G(;i), was obtained by Weissinger (refelrence 1) 
using a method introduced and applied by Multhopp 
(reference 15) to the problem ~ of determining downwash 
at rt straight bound vortex. Weissinger’s method consists 
of applying the boundary conditions that the flow shall be 
tangent to the plate at the three-quarter-chord line at a 
number of span. stations, then performing a numerical 
integratioh of equation (A9) at each station. The result 
is a set of simultaneous linear equations in which the 
unknowns are the values of G(F) at the span stations 
choseri. 

Introducing in equation (A9) the spanwise trigonometric 
variables 4” and 4 defined by 

and 
q=cos & 

;=c.os 4 

where b/c, is the value of b/c at span station v. 
In equation (A12) let G(4) be given by the..Fourier series 

as 

G(4) =pTf?l a,, sin ~14 6413) 
L 

where 
i 

usl=-- 

s  
** GCIJ)  

-Jr  0  
sin P14d4 

Since G(4) is of interest only in the interval 0 to r (-b/25 
J 5 b/2) theR 

fZ$ 
s n- 0 * G(4)&?&&@4 W4) 

M.ulthopp in reference 15 develops a quadrature formula 
which is a simple analogy tb Gauss’ (e. g., see reference 6) 
mechanical quadrature. This integration formula is a good 
choice for the functions represented by the series as given in 
equation (A13) since it integrates exactly functions repre- 
sented by the trigonometric series to the 2mtb harmonic. 
The quadrature formula is given by 

where 4= n* n3r -, andf(v,) is the value of f(v) at q=cos -. m+l m-l-1 
Equation (A14) can be integrated by equation (A15) togive 

(-416) 

Substitution of equation (A16) in (A13) gives the new form 
of the loading-distribution function as 

G(4) =& nq 6, p$l sin WA sin ~14 (k17) L 

where G,= G(4,J. 
Then the derivative of equation (A177 is given by 

‘!,G’(4) =& n$l G, 2 ii1 sin ~119~ cm ,+14 . 
PI’1 

(Al 8) 

The first integral of equation (Al2) containing the infinite 
point can be integrated directly with the series given by 
equation (A18). Using the following integral derived jn 
reference 14 

s 

* cos n4 d+= 7r sin n4, 
0 cos 4-cos 40 sin 4,0 

then 

1 * S G’ (4) & - 
* 0 cos 4-cos 4” 

=*(m2+1) a2 Gn ’ 
* I*~ sin ~14~ S 

cm mfx-& 
Pl’l 0 Es 4-cos 4” 

-m;l n$l an 2 Pl sin ;gnbF 114. 

PI=1 

.-=2b,,G,-- 5 2b,,G,, 
n=1 (Al91 
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where the prime on the summation sign indicates that .the 
value for n=v is not summed. Physically, equation (A19) 
gives the downwash angle at an infinite distance down- 
stream for any wing geometry. This downwash angle is 
equal to twice the downwash angle at the quarter-chord line 
for the unswept wing. 

The b.. coefficient of equation (A19) are. given by the 
following kquation: 

For n=v 

bvv=(m+li sin 4 p$l~~ sin* ~16 
" 1 

For n#v ’ 

b,,= (m+~‘sin 4 p$$ ~1 sin ~14~ sin ~14” Y 1 

Wo) 

Equation (A20) can be simplified by making the indicated 
summations. With the relation 

2 p1 cos plx=real part of C ~f+jV 
PI=1 Cl > 

l+m cos (m-!-1)x- (m+l) cos mx = 
2(-l+ cos 2) (A211 

=$$k(4.,4)Gf(4)d4= 8 ( -gr)So‘L(4.,4) Gnfn(4>d4 

then for n=v 

and for nfv 

m+l b,,=-r-- 4 sm 4y 

i 

(A221 

!lI’he integration of the second integral of equation (A12) is 
done by a method similar to that used for the first integral. 
The integral of the product of the L(4,,4) function and the 
terms of the trigonometric series of G’ (4) is too difficult for 
direct integration but can be done with the aid of the in- 
tegration formula. This integration can be made for an 
arbitrary number of points Al which can difI’er from m, 

Using a trapezoidal integration formula for the trigono- 
metric variable gives 

(A231 

where 4,,=& 1 p. With the definition 

$2 (4) = m+ PI PI sin ~~4, ~0s cl14 (A24) 

equation (A18) can be written in shortened form as 

G’ (4) = ne Gnfn (4) (A251 

Applying the integration formulas of equations (A23) and 
(A25) to the second integral of equation (A12) gives 

=gGGn {2(&L) 
L(4Y,4O>f7&(40) +L(4”,4M+llfn(4M+l) 

[ 2 +$ L (404,>f7z (4J-j 1 WW 

Equation (A26) can be simplified as follows: Let jnr=jn(4ti) 

where fn(4J is given by equation (A24) for 4=4,=fi 

and let L,=L(4,,4,). 
Then define 

1 
9’“=-2(M+l) 

L”ofno+L “vM+l.fn*M+l +gl L, f nF) 2 
(A27) 

Then equation (A26) can be written 

WW 

Equation (Al2) can now be put in a form which allows 
solution by simultaneous equat,ions by substituting in it the 
equalities given by equations (A19) and (A28). Making this 
substitution equation (812) becomes 

v=l,2,3, . . . m WW 

where the prime on the summation sign indicates that the 
value for n=v should not be summed. 

Summarizing the development for the computation of 
spanwise loading over the whole wing span, the loading at 
m span stations is found from the simultaneous solution of 
m equations, 

ct.=5 AvnGn 7Z=l 
v=l,2,3, . . . m 

where 

CC”= 
0 ; “- -angle of attack at span station v 

Avn=2b,,+z gyy for n=v 

= -2b.,+g gvn for n# v 

b,, and b,, are from equation (A22) 

gYY=gYR for n=v 

gYn is from equation (A27) 

b wing span 
F,=chord at span station v 

(A301 
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L, is obtained from equation (AlO) for the swept wing, and 

from equation (All) for the unswept wing, with q=cos m% 

and ij=cos $T 1 - and where f,,,, is from equation (A24) with 

4=4&$=z. 
M+l 

Symmetric load distribution.-The computations for the 
-.. symmetrically loaded wing can. be considerably reduced by 

altering the preceding equations and coefficients. For a 
symmetrically loaded wing the distribution of local angle of 
attacl~ is symmetrical about the plane of symmetry, then 

~"=%n+l-Y 

Gv= Gm+l-v 
(A31) 

With symmetric loading, only the odd values’ of pl in equa- 
tion (A13) contribute to the loading, then equation (A24) 
becomes 

fnp=2 52 odd ~1 sin ~(14~ cos 1~14~ 
m+l k=135 

(A32) , 9 . . . 

Since the change of symmetric loading distribution with span 
is opposite in sign from one side of the span to the other, then 

f?w=fn,nf+1-$8, and jn, ~+1=0 
2 

Furthermore, examination of equation (A32) indicates that 

fw=fm+l-71n,P 

Then for symmetric loading equation (A27) becomes 

M-l 
2 

-l c J;tl(L,--“.M+14 gYR=2 (Mf 1) r=o 6433) 

where 
m+l n=l . . . - 2 

ynrr=2jnr for nZm* 

=fnr for n=m+ 

=f, for n#EzJ and p=O 

d$ for ncrnq and p=O 

Equation (A32) gives the values of fnr. 

(A34) 

For symmetric loading, with the relations given by equa- 
tion (A31), equation (A29) becomes 

m+1 

(;),=(&$ 6) Gv-i& (2&,,-~ a.> G,x, 

m+l v=1.2,3, . . - 2 (A35) 
905886--5-O 

(The prime on the summation sign indicates that the value 
for n=v is not summed.) 

where 

B,,=b,,+ br,,,,+l-,, for njfmq 

=bv, m+l for n=2 

It should be noted that the equation for L,, simplifies some- 
what for the symmetrically loaded wing since, for symmetric 
loading, it is necessary to consider only positive values of 8. 
Further, equation (AlO) can be written using only positive 
values of si through the following relation: 

In summary, the foregoing analysis for the case of the 
symmetrically loaded wing gives 

mS1 
2 

aY=CavnGn 
n=1 

m+l v=1,2,3,. . - __ 2 
where 

b- a.,=2b,,+z gYY for n=v 

=-2B,+~~v, for n#v 
I- 

jjyy=& for n=v 
M-1 
3- _ 

c”n=2(&) ~ojnPL*“P 

m+l fn,=2fnr for n#--2--9 P#O 

(A36) 

(A37) 

=fnr for n=m*, p#O 

m+l =fnr for n#7j--7 j.~cc=O 

= $ for n=!?$L, r=O f 

fnp=2 2 
m-i-1 PA,3,6...odd 

PI sin Cc14n co9 ccl4# 

m+l b,,=--r--- 
4 sm 4. 

m+l IL= L+ b,,,+l-, for n f - .-2 .- 

=b,, for n.= y- 
. 

b”n= (cos ;:tL 4”)’ [ 
l-(-l)“-” 

2(m+l) 1 

L*,p= 
1 

~h”-iP~ 

1 i-t h-i> tan A 
IO 

-I- $ ‘(~r.-‘;ir)~- 
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1 

t h”t-9 

{ 

-\i[ 
1+4 C” (Q-Y )’ tan A )r 10 

‘t b .2(~ +? )” G y P 

1+2$v.tanA ;. 
-1 - 

t 

2 tan A 
d( 

l+gT,tan* 2+ i 
> 0 

70”~ 
Y 

1+2 t 7” tan A 

VR 
q*=cos m+l 

5-m 
b=~+~ 

~“~d!!c 
m+l 

DEVELOPMENT OF THE PARAMETERS USED IN THE SIMULTANEOUS 
SOLUTION FOR SYMMETRIC LOADING 

The mq linear simultaneous equations of equation (A36) 

provide means for the solution for symmetric loading for any 
given symmetrical distribution of CY,. The coefficients 

a 
m+l 2 

yn, which are --2- 
( > 

in number, are functions of the wing 

geometric parameters of sweep angle h and the ratio i* The 

principal work in a study of spanwise loading is to compute 
the a,, coefficients. For a study of a range of plan forms, 
these avn coefficients can be plotted as functions of sweep angle 

and the ratio +; however, i will vary spanwise due to the 
b 

taper of a wing and plots of avn as a function of 2 become 

unwieldy for a range of plan forms. A scale factor can be 
b 

applied to 2 such that the spanwise variation will be effec- 

tively nullified for a range of tapered wings. 

For a range of aspect ratio, the values of z for the out. 

board half of the wing semispan, ~>0.5, has maximum values 
for zero tapered wings (provided the plan-form edges are 
not concave) and for the inboard half of the wing semispan, 

b 
t1<0.5, ; has maximum values for the inverse tapered wings. 

The ratio of % in the general case to these maximum values 

6 
of ; provides a geometric parameter that varies approsi- 

mately as the aspect ratio. 
The inverse chord distribution for straight-tapered wings 

is given by 
b &1+X) 
c=z[l+](l--x)j (833) 

For X=0 
b 

z=2& (A39) 

For X=1.5 

(A40) 

The ratio of % to equations (A39) and (A4O) gives, respec- 

tively, the new geometric parameter as 

blc =2(1--q) i for 0.5=~<1 

b/c 2(2+7d b =- ; for OS7SO.5 5 I (841) 

Let H be defined as 215 times the values of equation (A41). 
The factor 215 is introduced to give H the approximate 
values of avn to simplify plotting procedures. Then equa- 
tion (A4l) becomes, 

H=4(1-~) b ------7lO.5$7<1 5 

4(2fo) b =- ;‘o~q~o.5 25 

(A42) 

Introducing the effects of compressibility and section lift- 
curve slope as discussed in the text, equation (A42) becomes 
at the span station Y, 

(A43) 

where d, is a scale factor given by 

=w for Osq,<O.5. 

For straight-tapered wings, equation (A43) simplifies to 

* =m-%~(1+~) 1 
” 5[1--rl,(l-Q] K, ~AO~5~~41 0 

=m5f-d(1fX) 1 
(A44) 

25[1--tl,(l-~)] K, flA,o~Q~0.5 0 

Plots of avn against H, in the range H,=O to 4, will give 
avn coefhcients for wings of- any chord distribution with 
aspect ratios from 0 to io or 12. 
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AERODYNAMIC CHARACTERISTICS FROM INTEGRATED SPANWISE 

LOADING 

Lift coefEcient.-The wing lift coefficient is given by 

&=A _:lGc$d?=AJrG(;) 
s 

sin && 
0 

or using the quadrature formula of equation (A15), 

For symmetric loading equation C.445) simplifies to 

m-1 

CL=$fi ( Gy + 2 g G,, sin I&) (A46) 

Induced drag.-The induced drag is given by 

&,=A s’l G(;i) dZM=A 1” G(4 ~i(+~ sin && 

or using the quadrature formula of equation (Al5), 

(A471 

For the straight wing, o(~ is the induced angle at the one- 
quarter-chord load vortex and the local-induced-dragdistribu- 
tion can be found. For the swept load vortex with the break 
at midspan it is not apparent how the correct induced angle 
at the load vortex can be found to determine local induced 
drag; however, the total induced drag of the wing can be 
found by considering the downwash in the wake of the wing. 

With the use of Munk’s stagger theorem (reference 16) 

the wing induced drag is given by considering the induced 
angle as one-half the value of the downwash at an infinite 
distance downstream. Then at(+) is given by one-half the 
value of equation (A19). Equation (A47) becomes 

For symmetrically loaded wings, equation (A48) reduces to 

m-1 m+1 

bgvGp--~’ B,,G, sin 4” 
n=1 > 1 (AW 

m+l where ---2- are subscripts, and the prime on’ the summation 

sign indicates that the value for n=v is not summed. 

INTERPOLATION FUNCTION FOR SPANWISE LOADING 

The simultaneous solutions of the linear equations given 

by equation (A36) give the spanwise loading at ?q wing 

semispan stations. The spanwise loading function is given 
m-l-1 by equation (A17) in terms of the known loading at -2- 

points. An interpolation function can be determined to give 
vaiues of loading between the known values and facilitate 
plotting of spanwise loading distribution. 

The spanwise loading given by equation (A13) and the 
a,, coefficients given by equation (Al6) can be arranged 
into the form 

3 
G(6) ==m;l __ [(sin 41 sin ++sin 24, sin 2++ . . . +sin m+l sin m+)G1$ 

(sin 42 sin 4+sin 24, sin 24+ . . . + sin rn.4, sin m4) G,+ 

(sin 4; sin ++sin 2& sin 2++ . . . +sin m& sin m4)Gm] (A5o) 

The values within the brackets can be tabulated for a given 
4 and the loading at + will be the sum of the products of the 
tabulated constants and the known values of G,. 

For symmetric loading where only odd values of p1 are 
needed equation (A50) becomes with m=7 

G(4)=; (0.383 sin ++0.924 sin 34-l-0.924 sin 5++ 

0.383 sin 7+) G1+f (0.707 sin 4+0.707 sin 31#-- 
* 

The interpolation factor, e,&, with m=7 for SyInmetriC 

loading is shown by the following table: 

r) 0.981 0.531 0.556 0.195 
,------ --- 

:\\” 6 Q 8 + 

\ --- -- ----- 

; 
0. ml 

O: 47:: 
-0.998 0.023 

-. 375 .513 -. 075 
3. .278 .791 .416 
4 .128 

-.s; 
-.225 ,641 

(A521 

0.707 sin 54-0.707 sin 79) G2+$ (0.924 sin (6- 

0.383 sin 3+0.383 sin 5++0.924 sin 74) G,+ 
For symmetric loading 

$ (sin +- sin 34+sin 5+--sin 74) G4 (A51) Gk=m$entG. 

Letting C$=+k=k$ for k=$, $4, and f, the factors of G,, of Any type of loading coefficient other than G  can be used in 

equation (A51) can be tabulated. equation (A52), such as $&a 
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I& basic loading (&=O) , equation (A46) gives 

Gd= -2(0.383 Gl+0.707 G&0.924 63) (A53) 

With equation (A53), Gl ca.n be eliminated in equation (A5l) 
and a shortened interpolation table for basic loading obtained. 

The internolation factor, e,k:, with m=7 for s.ymmetric 
basic loading is shown by the flowing table: - 

0.981 

K-+-- 

0.831 0.556 0.195 
__- ---- 

---- _ _-_--.---- 
1 0.963 0.375 0.075 -0.463 

3” 
-. 195 .556 ,831 -.981 

.513 -. 639 1.297 -. 763 

For symmetric basic loading 
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FKXJEE 3.-Continued. 
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FIGURE 3.-Continued. 
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F~JURE (.-variation of the lift-curve-slope parameter -;P per degree, with the compressible sweep parameter AD degrees, Ior VariOuS values Of the SSPSCt-ratio ParamCtCr @. s 
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(c) x=0.50. 

(d) X=1.0. 

FIQURE 4.-Continued. 
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FIGURE I.-Concluded 
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FIQURE 6.. -Variation 01 the spanwise center of pmssure q ..,. with the compressible sweep parameter ~0, degrees, for V&OUS WAU~S Of the 8speCt-mtio pameter y And Wer 1 

aspect-rutjo porometer, 

(a) A=0 
(b) X-O.25 
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FIGWE &-Variation of the aerodynamic-center location, fraction of mean aerodynamic chord, with the compressible sweep parameter As, degrees, for various values of the aspect-ratio pram. 

eter sA and taper ratio A. 
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FIGURE IO.--Comparison of lift-curve slopes as obtained by the simplified lifting-surface 
method of the subject report with those obtained by two lifting-surface methods and by a 
theory for wings of zero aspect ratio. 
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FIGUKE Il.--Comparison of lift-curve slopes obtained experimentally for triangular and 
rectangular wings of various aspect ratios with those given by simplified liftiwsurfaoe 
theory of subject report. 
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Frmm 12.-Comparison of lift-curve slopes obtained experimentally for B random group of wing plan forms with those given by the simplified lifting-surfme theory. 
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FIGURE 13.-Compnr&on of aerodynsmiwenter locations obtained experiment.& for a random group of wing plan forms with those given by the simplified liftimwurfece theory. 
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FIQURE Il.-The effect of sweep on the basic loading of wings having a taper ratio of 0.5. 
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Angle of sweep, A. deg 

FIGURE l&-The effect of plan form on the pitching moment due to twist. 
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FIGURE lg.-The effect of plan form on the angle oi zero lift. 
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FIGURE B.-The effect of taper ratio on the additional loading of wings having an aspect ratio 
of 3.0 and various values of sweep. 
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FIGURE xx--Concluded. 
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FICXJRE 21.-Relation of taper ratio to sweep angle required for approximately elliptical loading. 
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FIGURE 22.-Variation of lift-curve slope with sweep for constant aspect ratio 013.0 and various 
vslues of taper ratio. 
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FIGURE 23.-Variation of lift-curve slope with aspect ratio for various values of sweep and 
taper ratio. 
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Normal _______________ 1 Z Z 

txes and angles (forces and moments) are shown by arrows 

Moment about asis 

Designation Sym- Positive 
bol direction 

R&fig _______ L Y-Z 
Pitching.--.-- M  z-x 
Yawing .______ N X-P 

Angle 
I 
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I 

Linear 
Designa- Sym- (compo- Angular 

tion bol nenJa&ng 
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p 
4 
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Absolute coefficients of moment Angle of set. of control surfnce (relative to neutral 
c,L- 

c&j’ 
C=M position), 6. (Indicate surface by proper subscript.) 

m  qcs 
(rolling) (pitching) (yaw@) 

4. PROPELLER SYMBOLS 

D Diameter 
P Geometric pitch 
PID Pitch ratio 
V’ Inflow velocity 

P Power, a.bsolute coefficient Cp=--& 

c. Speed-power coefficient = 
5 p2 

J 
Kz 

V, Slipstream velocity v Efficiency 
T Thrust, absolute coefficient CT=sp ?L -Revolutions per second, rps 

V 
cf, 

Q Torque, absolute coefficient Oe=-& 
Effective helix angle= tan-’ r- 

( 1 

, 5. FJriMEsJUCAL RELATIONS 

1 lb=0.4536 kg 
‘. 

1 hp=76.04 kg-m/s=550 ft-lb/s& 
1 metric horsepower=0.9863 hp 1 kg=2.2046 lb 
1 mph=0.4470 mps 1 mi=1,609.35 m=5,280 ft 
1 mps=2.2369 mph 1 m=3.2808 ft 
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