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SUMMARY

A theoretical analysis is presenied for obtaini~ by u-se of
Theodor8en’s propeller theory the load distribution along a
prope[[er radim to gice the optimum propeller ejiciency jor
any design condition. The ejiciencia realized by designing
for the optimum load distribution are giren in graphs, and
the optimum efficiencyJor any design condition may be read
directly from the graph without any laborious calculations.
Examples are included to illustrate the method of obtaining the

optimum load dietribution8 for bo~h eingle-rotating and dual-

rotating prope[kr8.

INTRODUCTION

Recent contributions to the theory of propellers have been
made by Theodorsen in a series of reports (references 1 to 4).
In the first report of the series (reference 1) a method based
on electrical amdogy was devised for obtaining the ideaI
circulation functions for single-rotating propellers. These
circulation functions were shown to be in good agreement
wit h the theoretical calcuIat ions made by Goldstein in
reference 5 for two- and four-blade single-rotating propellers
and with the extrapolations to other numbers of bIades
made by Lmli and Yeatman in reference 6. The electrical-
amdogy method of measuring these functions was also
applied to more MEcuIt cases for which no theoretical
calculations had previously been made; in particular, to the
case of dual-rotating propellers.

Theodomen in reference 1 introduced the concept of the
mass coefficient K,Ivtich is an integrated value of the ckda-

tion functions. The mass coefficient represents the effec-
tive cross section of the column of the medium pushed by
the propeller divided by the projected-propeIIer-wAe area.

This mass coefficient is made use of h the development of
Theodorsen’s theory. In reference 4, expressions are given
for computing the thrust, the energy loss, and the efficiency
of any propeiler with ideaI circulation distribution based on
the conditions in the final -wake in terms of the maas coeffi-
cient. It is of interest. to mention that the mass coefficient
or mm.s of air operated on by the duaI-rotating propeIler is
much great er than that affected by the singIe-rotating
propeller for the same set of operat~~ conditions. This
Iarge difference in the mass coefficients for the two cases
indicates that caIculat ions for dual-rotating propellers
bused on the ideal circulation functions for singk-rotat~~
propellers are inadequate.

Theodorsen’s theory, as previously mentioned, is based on
the conditions in the final wake. The present analysis

TO PROPELLER DESIGN

attempts to interrelate the conditions in the final wake to the
prope~er and to give the information necessary to design a
propeller for any desired operating condition. For single-
rotating propellers, the method yields the same results as the
conventional vortex theory with the Goldstein tip corrections
appIied. By the ccnwentionrd vortex theory, however, it is
necessary to determine the optimum blade-load distribution
and then to make eIement strip-theory cakulat ions in order
to obtain the optimum efficiency for a given design condition.
This procedure has been followed in reference 7 for a wide
range of operating conditions. By Theodorsen’s theory the
optimum efficiency T can be obtained directly for any design
condition from its reIat ionship to the mass coefficient without
laborious calculations. Thus, in the selection of a propeller
for any design condition, a close estimate of the efficiency
can be obtained before the design is made.

The circulation functions and mass coef%cients for the dual-
rotating propeller were obtained in reference 1 for the ideal
case and refer to conditions in the nltima te wake. Both
propellers were assumed to operate in the same plane. Ob-
viously, this condition is unattainable in the design of an
actuaI propeller. The clegree to which the ideal case can be
realized in practice, or the appIicabiIit y of the ideaI funct ions
to a given case, require further consideration and confirmation.
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number of propeIler bIades
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section drag coefficient
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induced energy Ioss coefficient ~
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projected area of helix (at infinity)
circulation function
lift of propeller section
propeller rotational speed, revolutions per second
input power to propeller
tip radius
radius to any bIade eIement
thrust .of propeller
power Ioaa due to drag (nondimensional)
&al power Ioss due to drag
rotational power loss due to drag
forward axial velocity of propelIer
asial interference velocity (at propeller)
average axial interference velocity (at propeller)
resultant interference velocity (at propeller)
rotational interference velocity (at propelIer)
average rotational interference velocity (behind each

propeller) -—
resuItant velocity on the propeller at rad! us r

local self-interference velocity
rearward displacement velocity of helical vortex

surface
ratio of displacement veIocity to forward velocity

(w/V)
radial location of blwlc element (rlR)
angle of attack, degrees
induced angle of attack, degrees
blade angle, degrees

“vanceratio(:s)
geometric advance ratio (V/n-nD)

( ~ II(Z)Z &)mass coefficient 2

axiaI energy loss factor

()
propeller efficiency ~,

ideal propeller efficiericy (c,/PO)
mass density of air
propeIIer element soIidity (.Bb/2wr)
propeller element load coefficient

circulation at radius x
(

r.(x)= W7JW)W ~(x)
)

ang$e of resultant veIocity W at plane of rotation

@O=tan-l ~ ,..

OJ angular velocity _.
Subscripts:
F front
R rear
0,7R at 0.7 rndiua

OPTIMUM PROPELLER DESIGN

SIKGLE-ROTATTRCPROPELLERS

Velocity diagram,-The veIocity diagram for the single-
rotat,ing propeller is shown in figure 1. This figure is a
reproduction of figure 13 (reference 2) with some additional
designations. The relationship between the axial inter-
ference veIocity at the radiusm, as given by the vortex theory,

+?”

I
3—

v

i—
< ur >

FIGUREL—Velocitydle.gramforslogle-rotsttngprcqwlh?r.

to the displacement velocity w of the vortex sheet is calcu-
lated in reference 2 and is shown in figure 1. The forward
axiaI velocity of the propeller is V and tlm twqymlial velocity
with respect to the air at rest ia CM. The vector Bll is llNI
resultant interference velocity V{ of the air with respect Lo
the air at rest. Thus, the resultant vdocity U’ of a point on
the propeller at the radius r is given by th~ vector CD. ThL*
Iift force ? is perpendicular to this vector and the drag force
d is exactly opposite in clircction to H’ as indicated. From
this figure a comparison of the method of analysis pmscntcd
herein may be made with tho conventional vortex-theory
method. It is required to find the point T) in order to locrLtc
the end of the velocity vector W and tlw angIc C#that the
vector .W’ makes with the direction of rotation. 13y the
convent ional vortex theory, the point D is loeat cd by st art ing
with point B obtained from tho V/nZl of the undisturlwci
flow, proceeding in the V-direction t.hc dist anm Va, and
then taking the perpendicular to this clircct.ion n disttinec
V,. (See reference 8.) The angIc # is given by

tan r$=~a and 11’_ ~-~ v=— sk- ~ I In the calcuhtlion of intcrfur-Cw—Vr
ence velocities T7=and 1“~the 10CCItip c.ormctiou or Gtikhtcin
factor must be used to obtuin the correct location of the
point D.

With the method developed in references 1 to 4, only Lhc

value of ~w, which remaim consta~lt with rtidius, need I.w

used. With this concept it. is possible to use the inlugralcd
values ~f the mass coef!ilcicnt as A@rrnincd by Lhe chWriraI
analogy of reference 1 to ob ttiin the dct ailed infornmt icm
needed at any radius. By this method Lhc poinL D can IN

located by proceeding from point B a dishmce & in the

V-direction to the point E and [hen down the direction of
the velocity vector ~’ a distance DE, where DE is obtained

from the geometry of the figure as ~w sin d find

V+; ~

tan~=~r -- (1)
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The resultant velocity is

I–( v++w Cos’ @
‘sin lj ) (2)

The interference velocities may be obtained from the geom-
etry of the &nw by

r==vf Cos +=; w cosZ@

and

Vr=r, sin 4=; u) sin $ Cos @

Optimum blade-load distribution.-The design probIem of
au optimum propeLIer consists essentially in obtaining the
due of the element load coefficient bczat each radius of the
propeIIer bIade. Vi5th the direction and magnitude of the
rehd ive velocity given at each station there remains only the
choice of a section to give efficiently such a Iift at the appro-
priate angle of attack. The -due of c1 should be at or near
the ided Iift coefficient for the section in order to give
minimum ~~ coefficient.

The method developed in references 1 to 4 treats the
velocity w as an independent parameter upon which dl the
other quantities depend. This reversal of procedure is con-
venient since all quantities are actuaIIy functions of w. The
velocity w is rdated to the power coefficient P. of the pro-
peller and also to the element load coei%cient- Ucl. The rela-
tion of w to UCIis developed herein and the relation of w to
PC,which must be obtained in order to use it for design, is
given subsequedy in the section “Procedure for Propeller
Design.”

The required ideaI circulation 17(x)is given in reference 1 by

(3)

In order to determine the eIement load coeflkient bcl the rela-
tion for the eqmdity of the force on a vortex element and on
an eIement of a lifting surface is given as

prll”=~pll”:clb

where b is the chord of the element. Hence,

r=+ TTc* (4)

where W is given in equation (2), and thus

(5)

Using equations (3) and (5) for I’ gives at once the identity

be,= ‘V”::)wK(2) 2Binl#

v+; w Coe%)

Introducing the nondimensiomd veIocity ~=~fl the

J“+:w

solidity u=~r, and tan ~= Zrm (equation (1)) gives the

nondimensional reIat ion

The selection of a propeIIer for a given airpIane installation
may be based on a method of evaIuat ing a series of propellers
for various operating conditions in order to determine the
most suit able propeller. It is probable that several propellers,
varying in diameter, bIade number, propeIIer operational
speed, and direction of rotation are equally as &icient for
the design condition so that. other considerate ions may enter
into the propeIIer seIection. However, the optimum effi-
ciency for the propeller selected may be obtained from the
charts, and therefore the load distribution SIOWWthe radius ——
that. will give this optimum eftlciency remains to be
determined.

The value of UC1may be cahmlated for any radius from the
relation

where

DUAL-ROTATINGPROPELLERS

In the design of duaI-rotating propeIIera, it has been
customary to select two propellers d&gned for single
rotation and to use them m a dual-rotating propeller. The
fact. that the circulation functions and the mass coefficients
ob taiued by the eIectricnl-tmaloa~ method (reference I)
are very much Iarger for the duaI-rotati~U propeIIer than the
sum of the values for the two singI~~rotat ing propellers
indicates that the functions as used heretofore are not proper.
The electrical-analogy method represents the case of an
idedi.zed dual-mtatiug propeller in which the tvro components
are in the same plane with the same load distribution on each
component and with equal power absorption. fice actual
propellers cannot conform to this ideal case, the applicability
of the iderd functions requires further confirmation. IVe-rer-
theless, the optimum distribution for the duaI-rot uting
propeIler is esaentia.Ily diHerent- from the single-rotating
propeller, and in this analysis the Ioading functions and the
mass coefficients as determined by the electrical-analogy
method are assumed to apply to the optimum dual-rotati~y
propeIIer.
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Interference velocities for dual-rotating propellers.-The
average a.xiaI interference velocity far behind the propeller
obtained from the momentum considerations is

2~a=Kw

where K is the mass coefficient and w is the axifd displacement
velocity. This mean value is equally due to each of the two
oppositely rotating propellers. The avmage .@al inte~er-
ence velocity due to each is therefore exactly

The average interference velocity at the propeller plane is
one-half the value in the final wake and, therefore,

—
at the propelIer plane due to each component of the dual-
rotating propeller. With the two propellers separated by
a small axial distance, this velocity refers to a plane between
the two propellers. The interference velocity at the front
propeller is smaller and at the rear propeller is larger than at
the phme between the propellers. In the following treat-
ment, the propellers are considered to be very close together
so that the axial interference veIocity is the .mme on both
propellers.

In the fiaI wake, the mean value of the rotational inter-
ference velocity for the ideal case is given by

2T7,=0

For an infinite number of right and Ieft blades equally loaded,
rotational components wouId cancel exactly. However, the
average rotational interference velocity immediately behind
each propelIer may be considered as

In summary, the mean interference velocities acting on the
front propeller from the rear propeller are
Axial:

Rotational:
7,=0

The mean interference velocities acting on the rem propeller
from the front propeller are
Axial:

Rotational:

It is useful to recognize that the
each propeller in its own pIanc is

Axial:
1
—KW
4

Rotational:
.!

mean self-interfcrcncc of

j h-wtan ~

Velocity diagram for the dual-rotating propellers, Tho
velocity diagram for the dual- rot at ing propellers is sho wu
in figure 2. As in the case for the single-rotuting propcllur,
the axial displacement velocity at tho propeller is cqunl to
1
– w.2 In figure 2 the vector AB gives tho mmn axinl inter-

ference velocity ~ w of each propeller acting on the other

propeller. The vector B~ gives the mean rotational inter-

ference Vf210Ci@ ~ K’W tan @ of the front pr~pdh!r acting on

the rear propeh. The total interfercnco velocity acting
on the front propeller from the rear propfiller is thcrcforc
given by AB, and the total interference velocity acting on the
rear propeller from thti front propeller is equal to tbc vcckw
AC. The local self-interference velocity of the fron~ pro-
peller is given by 17;~, and the corrcqonhg hlix fwic is

gken by 4F. The Iocal seIf-interference velocity of the rear
propelIer is given by 11’s~, and the corresponding ht~lis
angle is given by h. The aWIC #F is slightly lat’gcr thtitl
the ideal helix augle @ given by tho displacwncnt velocity

~ w and #i%is slightly sma~er t-hatl 4. Tlm design condition

of most interest is the one for which rF for each blade of the
front propeller is equal to 17~ for each blado of tho rear
propeller. The number of blades on the front and rear

E
-------- -------

W.F
/

\
\
I
\
\

I
I

. + f-al
,1

FIQURE2—Velocltydirtgmrnfor dual.rotatlogproIwllcr.
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propeller me considered equal and the rotational speeds, the
same. This condition gives the self-interference velocity
on the front propeIIer equrd to the sdf-interference veIocity
on the rem propeller and means that D and E must. be at
the same horizontal le-reI.

As & and d~ are needed in the design of the propeller, it
is seen from figure z that the associated disph-icement velocity
on the front and rear propellers has been increased and
decreased, respectidy, by the amount

The displacement
Front.:

Rear:

Aw =+ Kw tan%+

velocity is therefore

(
$ w 1+* K tan2@
. )

1
.(
~ w 1—~ Ktan2@

)

From figure 2, the velocity W, is shown to be given by the
relationship

r. ‘m++~ Kwsin f#Jll

( )
=&O 1+: K= SiIl%fJO

and the angle #~ is giwn by

( )
~’+~ ‘W 1+; K tan%

t&n &’=

=wk+i’t~”)l
where @is given by the relationship

v+; w
tan 4=7

‘%%+;’)
Simiiarly ,

~>–‘az~++ rw sin $.+$ m tan +0 cos &

=&o+; Kwsin+,

_.v
(

I+: G sin%p~
Sln & )

and

(8)

(9)

(lo)

(11)

Optimum blade-load distribution.-The optimum distri-
bution of blade loading is obtained from the determination of
the element load coefficient hcl at each radius from the funda-
mental relation

; pbc’W’=f7r?T

where I’ has been given in equation (3) by

(V+w)wl ~
r=~- (z)

Eliminating I’ gives

but ~ ~=u is the solidity of each component- of the dual-

rot at ing propeller, if the number of blades in each compo-
nent are assumed to be equal. Therefore,

For the front propeIIer, this equation maybe salved by use
of equation (8)

and for the rear propelIer by use of equation (10)

USE OF DESIGN FOM2UAS

In order to use the reIation for Ucl,note that it contains not
only the independent variable 75 but also the function K(r)
and the angIe ~. The parameter ~’(z) should be expressed

‘+WJ which is based on the wake helixas a function of —nDO

diameter. & was shown in reference 3, however, DO ditlers
only slightly from the propeller diameter D and in the present
design procedure D is used instead of DO. The function

V+w
K(x) for single-rotating propellers is pIotted against ~ in

figure 3. Siar plots for dual-rotating propellers -were
taken from reference I and are presented in &ure 4.

EQUATIONS J?OE PERFORMANCE CALCULATIONS

SINGLE-ROTATING PROPELLRES

In reference 4 the thrust has been given by

‘=’FKW[’’+WG+91
and the ideal energy Ioss in the wake has been given by
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With the introduction of the nondimensional quantity ?5=~

the thrust coefficient in nondimensional form is

Tc~. —
; PV2F

‘2K’b+”(w (14)

and the induced 10SScoefficient is

Ee.—
; PV8F

‘2=(:+:4
(15)
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The power cocflicient P.=c,+e is given by

The efficiency is given by

Vt=? -(17)
c

These formulas are all that arc ueccssmy for aingle-
rotating propellem. Tho performnncc of tho dual-~tating
propeller is computed by the same formulas.

DUAL-EOTATING PROPELLERS

The thrust of the front propeller is given by

and with (ucJr from equation (12) and W~ from equation (8)
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SimiIarly, for the rear propeIler

The coefficients c,, e, and ~. for the dual-rotating propellers
are given in the same form as in equations (14), (15), and
(16) for singIe-rotating propellem. The only difference in
the coefficients results from differences b the values of
K, ~, and e/K which me substituted in the equations.

BLADE-DUG LOSSES

The frictional Ioss or loss in efficiency due to the profile
drag of the blade is

The drag force per unit Iength is ~ pW’bc.+ wh=e W, the

resultant velocity of the bIade element, has been given in

“’ttta?ttt?

1 \
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FIGCIiEL-Concluded.

equation (2) for single-rotating propellers by

W=*4 (v+; w COS%$)
For the design condition, w is srndl, and because of the
obvious uncertainties in the determination of the value of C6,

it is not necessary to retain the second term ~ w cod+. In-
—

troducing the solidity factor u=~ permits the drag loss to

be given by

or in nondimensional form

E.
‘=1

5 ‘P=R2

(20)
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The component power losses are then, to the same degree
of approstimation in nondimensional form,

Rotational:

Axial:

(21)

(22)

For the dual-rotating propeIIer operating at the design con-
ditions, the terms containing w are small, as is the case with
the singIe-rotating propeller, and a close approximation to
the drag loea is obtained if these terms are neglected. Fur-
thermore, if it is assumed that the average of the res~t~t
velocity W for the dual combination is equal to W for the
single propeller, equations (2o) to (22) may be used for
the dual-rotating propellers. Of course, for conditions othor
than the design condition, especially for very heavy loadings,
exact drag-loss calculations require that the exact equations
be used for either singIe-rotating or dual-rotating propellers.

In summary, the equations for obtaining the prop&r
performance are given by the quantitiw c.! e, and P. and
the drag-Ioss factors are given by & and i..

The net thrust power is

c8T=c#—ta (23)

The power input is

Pt~=c,+”e+t,=P,+& (24)

The e.fliciency is

(25)

where from equation (16)

P,=2Kzl(l+@ (1+: m)

The total power is also given by

P=; PTJ%R2P,= (26)

It shouId be remembered that the. calculation is based on
a given ~. This procedure may seem unjustifiable since
this parameter is not given ‘by the specification but is the
end result of a calculation based on the original data. The
induced lees does not depend on the total-power coefficient
P., but actually clepends ordy on P., and the quantity ~

cannot be obtained from the tot&power eoeffic.ient. How-
ever, the value of P,= in most cases exceeds Pe by not more

than 2 percent or
P~=O.98 P,T’

Since Pc in equation (16) is based on ~ and the dimnc[cr
of the final wake and since the value of F’CTin equation (24)

is based on the propeller diamekr which is sligl~L1y larger
than the diameter of tho fial vmlm, a vwy C1OSCnpproximrt-
tion to ?Bis usurdly given by equation (16). Thcrcfure,

In some cases it may be necessary to calcuIate t,to obtuin n
more exact value of PC,especially if the I.dado profile drag is
large.

PROCEDURE FOR DESIGN OF PROPELLER

FIGURES USED IN PROPELLER DESIGN

The information ncccssmy Lo design a proprler for ~n~

operating condition is given “in thc figures. Figuro 3 gi wcs
the circulation function K(r) interpolatwl for even fractions
for 2-, 3-, 4-, 6-, and 8-blade single-rotating propo]lcrs. ‘1’hc
circulation function for the 2-blade propeller was taken
directIy from reference 5; for the 3-bhulc propclior, from
reference 6; ant] for the propellers having a grca[cr number of
blades was recalculated from the Gokfstein tip rwmc!tir.m
factors as given in reference 7. ~lgurc 4 gives K(x) for duid-
rotat.ing propellers with 4, 8, and 12 blades. Tiwsc valuw
for the duai-rotating propdlcrs were t tikcn from rlah~ of ref-
erence 1. I?lgure 5 gives the mass cocff?cient K for various
numbers of bIades for single-rotating propellms, Figure 0,
which was taken from rcferenco 1, gives K for dunl-rolat ing
propellers. The ideal efficiency ~i is plotted againsL ~ for a
range. of values e/K in figure 7, again9t cJK in figure 8, and
agaimt PJK in figure 9. The datn for figures 7 rmd 8 were
taken clirectIy from reference 4 and the (Iatti for figure 9 wmc
recakulated by the use of cq uation (16) and figure 7. lHg-
urea 7 to 9 apply h either single- or d uLrotating propellms.
The propeller efficiency may be calculntcd from cithc’r of these
figures; however, in this report the @cicncy htis bum deter-
mined from PJK as given in figure 9.

1.

.

K

V+w
%3

I?IQUEBb—b cc.?lllclentKEsafnst~ forvarfousnumbersofIJlndcnfw sfnglc.rotittng

propelkra.
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FIGCBE&—Wasmed valueaC4mass ccdlcient r for dnakotatlng pmpelkrs wfth varfons
numbers of bti Twc-bMe sfngle-rotetfngpropellerfncludedfor comperkon (mkr-
enm 1)

Figure 10 gives values of e, K, and E/K for 2- and 4-bIade
single-rotating propellers and figure 11 gives vaIues for 4-,
8-, and 12-bIade dual-rot at.ing propellers. The vahes of e
for a propeller with a tite number of blades have not Dre-.- .
vioudy been pubhshed, but the values of e and e/K for an in-
finite number of blades are given in figure 4 of reference 4.
The method for calculating 6/K and e is given in the folIowing
section.

PROPELfAER SELECTION

In the selection of a propelIer for a given airpIane instalIa-
tion, the engine power, the forvmrd speed, and the design
aItitude are usually specified. The selection consists of the
determination of the number of blades, the propelIer solidity,
the propelkr diameter, and the rotat.ive speed. The ideaI
propeIIer efficiency for any combinations of these variabks
can be readily obtained with the use of the charts. The
procedure for-a given bIade number, propeller diameter, and
rotet ive speed for either single or duaI rotation is as follows:

First., caIculate the totaI-power coefficient

G

FtGCEE7.–Pro@ler eftlcfencya@Inst~ (refet’fmm4].

and then use this value for the ideal coefficient

()P%= P.=2Km(l +?6) 1+: G

to find Z.

It was shown in reference 4 that the dependence. of the
efficiency on G/K in the efhciency formulas is very sma~ and
that it is sufficient to know onIy the appro.simate vaIue of
E/K. An examination of the formulas for c. and Pc shows that
theh dependence on dK is ako smti. It was further con-
cluded in reference 4 that ●/K is onIy slightly greater than K
and that the practice of using e/K instead of x is considered
satisfactory for design purposes. However, there appears
to &t a simple reIation between the axiaI-loss factor e and
the total-loss factor K. This reIation takes on the form of a
diHerentiaI equation

This relation has been checked and found to be exact for
an in6nite number of blades, and numerical checks for a
two-blade propeller were in very close agreement. It is
considered accurate for an empirical relation for design
purposes for propelle~ of other numbers of blades.
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FICKRES.-propeller efh?lmoy agninst i+ (refe~~ 4).

as a first approximation to k for use in the calculations.
Then read off K and dx/dX from the appropriate charts of K

1-.

agaimt ~ (1+@ for several values of 75 (figs. 5 and 6). I

T7
Curvea of e, K, and E/K are plotted against ~}~ (1 -@) in fig-

ures 10 and 11. IVext pIot n curm for tho right side of tho
equation for PCagainst Z. Where this curvo inhmwct.s (JM
horizontal line, P,=P,= is the desired poinb. This valuo mrty

be checked from the chart by inserting the. values obt.aincd
from the plot in the equation. Thus are obtained K, ~,
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~~ (l+@, and g/K. From the chart of PJK (fig. 9], the

optimum efficiency may be obtained.
The following exampks illustrate the method of deter-

mining the optimum distribution of bc~along the radius for
both singk-rotating and dual-rotating propelIe~ that give
the m&nmm possible ficiency (neglecting blade prde
drag] that can be obtained with either propeIler for one
specified design condition.

ILLUSTRATIVEEXAMPL?M

Single rotation.-Let the following data specify the
propelIer design conditions:

Power, hor=power --------------------------------------- 2,000
Density, slugs per cubic foot---------------------------- 0.001065
Velocity, miles per hem----------------------------------- 425

The propeIler seIection has been made to the ~tent that the
foIIowing data specify the propeller:

Rotational speed, n, revolutions per woond------------------ 23
PropeIler diameter, D, fat-------------------------------- 12
h’umber of b~es, B------------------------------------- 4
V[nD --------------------------------------------------- 2.258

The totaI Pc~ from the given conditions is

(2000] (550]. =0.075
;(0.001065) (623) 3r(6)*



(s)TWo-bla&aln~~ro~tbgpro@er.FIGUB~10.-valrsd Iand IIfor e.ln@wots*grmwue~

The value of F’, should be based on the wake diameter 11

=0.075.

~ plot of Pc against ?5 give9 a value of 15=0.155 at Pe

instead of on the prope~er &lametw ~ and shodd be used

Thenj

Both Pc and the .contmction may be ob-
~ (l+m =(2.268) (1.155) =2.61

~ ~lculate ~. . .

tai.ned by suceOSsive apprommatlons
but the two effects

tend to cancel each otier and generauy p,= based on the
prope~er. diameter is sficiently accumte to use in the ml-

From figure 10 (b), Kis read at ;~. (1 +Zi)=2.61, and the

The relation between ~ and P, is given W
efficiency q 1 for

culation of =.

optimum propeller
a four-blndc si@c-

equation (16) as
rotiti~ propeller is read from flgurc 9. Thus

()

K4?.201

p6=2Km(l+@ 1+; m

where pc=Pe* ‘- ““
9=0.373

If valua of % are selwtd to cover tl~e rmge and the cu

rve
_—

and

for the few-blade propeller in fig~e 10 @). M ‘sEd’

~
~,=0.929

following table is obtatied for the four-blade smgle-roti

~mg

propeller:

W@ @ determined, a I
c for b sinfle-rotat.i[g pmpellcr

z

1“ ‘1

may be found by k direct calculation from cquatiol~ (6}

C/. P.
(aesrme~ ‘

o a245 :%
ala

‘.04$M
, .C1=*)2’K’”S3

.1 .m .259 .097a

.2
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[Ill 1111111 lllliiiiiiiiiiil
o .8 L6 .24 32 40 48 0 .8 M 24 3.2 40 48

v+ w v+w
T nD

(a) Four-blsdedual-rotatingpropelk. (b) E~ht-blade dnakotathg ~O@k

FmmB 11.—Vfduesof ● and z fordmd-rot.nthgPopdlers.

Vahws of the circulationfunctionK(z) at each stationare

obtained from figure 3 (b) at ~ (1+~ =2.61 and the angle

of the relative velocity at the propelk is given for each
station by

~ ~ l+; Z
tan ~=;~~

Performing these calcdations for Z= O.155 givea the va.hm of
o-cl and bcl in the following table (the blade-width &tribu-
tion, in feet, for a constant c1of 0.5 ia also given):

k

Dual rotation,—The procedure is repeated for a 12-foot-
diameter four-blade duaI-rotating propeIler for the same
design conditions as used for the single-rotating propeller.
The following t.abIe is obtained for the four-blade dual-
rotating propeller fvaluea of K and I#K were found from
figure 11 (a)):

In this case a pIot of P. against = give9 a value of Z= O.075
at P.=0.075. Therefore,

~$ (l+i5)=!2.426

P* O.170

and
q~=O.964
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FIOUMIl.—Concluded.

It is seen that the important parameter, the ma.s+flow
coefllcient, is 0.442 for the durd-rotatiug propeller and is only
0.201 for the single-rotating propeller. The efficiency
(without drag) is 96.4 percent fort& dual-rotating propeller
but is only 92.9 percent for the single-rotating propeller.

For the dual-rotating propelkr the vahws of UC1may be
found for the front component from equation (12); thus,

and for the rear propelIer from equation (13)

Equation (9) gives CPrby

and 4B is given in equation (11) by

‘m’~=3+[’+im(l-iK’anI
Values of the circulation function ~(x) arc obhtincd from I

V+Y=;L (1 +m.figure 4 (a) at the appropriate vahm of ~D

Performing these calculations for v=623, n=23, ~=12,
?Z=O.075, and K= O.442 gives the values of tan # and Ucl in
the following table:

- Ii$iii
A comparison of the optimum diatributiou of bcl U1OWthe.

blade for the dual-rotating propeller from this tttbh! with.
the optimum clistribution for the single-rotnling propeller;
aa given in the preceding section shows thtit, if appmxi- ~
mately constant c1 is absorbed. along tho blade, wide di f-
ferences in blade plan form will result for the two propcIIers~
designed for the same operating condition. For [ho opmnt-
ing conditions selected, the mnximum 6cI for tho siuglc-:
rotating prop~er occurs nem the 0.6 radius cud @PH rapidly.
toward the tip and tho hub, being only slighly olrcr 10.

percent of its maximum valuo at Lhc 0.1 radius, Ou W
other hand, the minimum vaIuo of bcl for optimum dist ril~u-:
tion for the duaI-rotating propeller occurs at the propdlcr
tip and progressively increases toward the inner radii. The
value of bc; at the 0.1 radius is four timm its value at t-he
0.95 radius.

Since the design of the dual-rotating propcI1cr ealIs for
high Ioading over the inner sections, the ticiency of the dutd-
rotating propeIIer is less susccptil.dc to comprwsibility Iosscs
which normally occur near the propeller tip for opcmtion at.
high tip hlach numbers. The compressibility 10SSCSnmy
be reduced by reducing the width of l-hew scciions or by
reducing the operating lif~ coefficient.

EtTect of blade drag on efficiency,-Tho loss in ctlicimcy
due to the profile drag of the blades crm l)o calculn[cd from
equations (20) to (22) if the blade-width distribution and
profile-drag coefficients at the operating cl arc known. Inas-
much as structural requircmenta may dctermina (11Qshape
of the blade, especially over the inner radii, only ono cxnmplc
is given. The equations, however, may bc ~pplicd to any
plan form. The examplo selcctcd is for t.ho four-bhdc
single-rotating propeller on -which t.hc induced ticicng ha9
bee~previously calculated. The shank scctiona of tho
propeller blade were assumed to bo round, simikw to thQ
HamiIton Standard Propeller hro. 3155-6 and the hlada
plan form from x=O.3 to z= 1.0 was mado optimum for a C4
of 0.5. The profile-ihag cc@cients for the several radii are



APPLICATION OF THEODORSEN’S THEORY TO PROPELLER DE81GN 99

the same as given in reference 7 for the Hatiton Standard
PropelIer h’o. 3155-6 which has CIark ~ sections and are
given in the folIovring table. It is assumed that a spinner
covers the inner 0.2 of the radius. The distribution of
UCIwith z and of sin @with x have been included in the t able:

-’m:$i
Performing the integrations and substituting in the for-

mulas gives for rotationakirag-loss coefficient

~
=~ (0.000348) =0.0014

and for the tmWdrag-Ioss coeftkient

=2(0.00213) =0.0043

The induced thrust coefEcient has been given by equa-
tion (14) as

‘,=24’+%+:)1
=2(0.201)(0.155) ~+0.155 (; + 0.29)]=0.0700

and the induced power codlicient by equation (16) as

‘.=2=’1+4+:=)

=2(0.201) (0.155) (1.155) (1.045) =0.0754

The induced efficiency is

T*=Q
P.

=-4=0.929

and

I

With drag incIuded, the totaI thrust is given by

C8T=c*—t=

= 0.0700 –0.0043= 0.0657

P,== P=+tr

=0.0754+0.0014=0.0768

The efficiency is

0==0.855T=~=o.0768

Thus it is seen that. the blade drag of the magnitude given
in the preceding table reduces the propeller efficiency from
92.9 percent to 85.5 percent for the propeller operating
conditions given.

CONCLUDING REMARKS

A comparison of Theodorsen’s propeIler theory with the
conventiomd vortex theory shows that the optimum Ioad
distribution aIong the bIade for single-rotating propellers
obtained by the two theories is essentially identical and as a
result the optimum e.tllciencies are the same for a given
operating condition. Theodorsen’s theory has the advantage,
however, that the optimum efficiency for any design con-
dition can be obtained quickly and accurately by the use of
the mass coticient Kwithout any laborious calculations and

before the final design is made.

The distribution of the circulation function K(z) for the
ideaIized dual-rotating propekr is radically dif7erenttfrom
the existing vahea for the singIe-rotating propeLler that
have been previously used for the dual-rotat~~ propelkr.
Also, the mass coefficient K for the dual-rotating prope~er
is Iarger than the sum of the values for two singI-rotating
propellers. These quantities, which are not avaiIabIe from
mathematical computations but are obtained from the
electrical-tmaIoegy method of Theodorsen, are used herein
for obtaining the optimum load distribution along the blade
for the dual-rotating propeIIer.

LANGLEY AEEoN.4mcu tiBOR4T0RY,

h’ATroNAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY FIELD, TA., March 16, 19@.
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