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PLASTIC BUCKLING OF A RECTANGULAR PLATE UNDER iﬂDGE THRUSTS

By G. H. HaANDELMAN and W. Prager

SUMMARY

The fundamental equations for the plastic buckling of a
rectangular plate under edge thrusts are developed on the basis
of a new set of stress-strain relations for the behawior of a metal
in the plastic range. These relations are derived for buckling
Jrom a state of uniform compression. The fundamental equa-
tion for the buckling of a simply compressed plate together with
typical boundary conditions is then developed and the results
are applied to calculating the buckling loads of a thin strip, a
simply supported plate, and a cruciform section. Comparisons
with the theories of Timoshenko and Ilyushin are made. Fin-
ally, an energy method is given which can be used for finding
approximate values of the eritical load.

INTRODUCTION

This paper is concerned with the plastic buckling of a
rectangular plate which, previous to buckling, is under a
uniform compressive stress oy in the direction of one of its
edges. In the case of clastic buckling in which ¢, remains
below the clastic limit of the plate material, it is well known
that the buckling stress dependson the dimensions of the plate
and on the manner in which it is supported (cf. reference 1, ch.,
7). In the case of the plastic buckling of beams, on the other
hand, Engesser (reference 2) and Von Karman (reference 3)
developed a satisfactory theory based on the fact that for a
fiber which is compressed beyond the elastic limit the tangent
modulus (i. e., the ratio of the variation of strain to the cor-
responding veriation of stress) assumes different values depend-
ing on whether the variation of stress constitutes an increase
or a relief of the existing compressive stress.

Generalization of this theory to the plastic buckling of
plates has repeatedly been attempted. These attempts can
be divided into two groups which may be labeled formal and
analytical generalizations. The formal generalizations start
from the remark that the formulas of the Engesser-Von
Karman theory of the plastic buckling of beams differ from

the well-known formulas for the elastic buckling of beams .

only by the fact that the so-called ‘“reduced modulus”
replaces Young’s modulus. A formal generalization of the
Engesser-Von Karman theory to the plastic buckling of plates
is therefore obtained by introducing the reduced modulus
into the formulas for the elastic buckling of plates in such a
manner that the results of the Engesser-Von Karman theory
are obtained in the case of a narrow rectangular strip which
is free on its long edges and simply supported on the short
edges where it carries a compressive load. Of course, this
formal generalization is more or less arbitrary and leads by

no means to a unique result. Formulas of this type have
been suggested by Bleich (reference 4, p. 216 ff.) and Timo-
shenko (reference 1, p. 384).

In contrast with these formal generalizations of the Enges-
ser-Von Kdrmén theory, the analytical generalizations do not
merely introduce the reduced modulus of the theory of beams
into the formulas for the elastic buckling of plates. Instead,
the analytical generalizations go back to the considerations
by which the reduced modulus is derived and try to apply
these to the case of a buckled plate. Generalizations of
this kind have been previously presented by Kaufmann
(reference 5) and Ilyushin (reference 6). As is shown in the
present report, however, these authors use stress-strain
relations which do not fulfill certain postulates of the theory
of plasticity; the correctness of their results must therefore
be questioned.

The present paper aims at developing a theory of the
plastic buckling of plates which takes full account of the
modern theory of plasticity. The stress-strain relations in
the plastic range are discussed at considerable length in the
first section of the ANALYSILS, and it is shown that, for an
adequate treatment of buckling phenomena, a theory of
plastic flow is indicated rather than a theory of plastic defor-
mation of the type used by Kaufmann and Ilyushin. The
precise definitions of these terms and the basic considerations
suggesting the use of a theory of plastic deformation for
problems such as buckling are fully discussed in the ANALY-
SIS. A particular theory of plastic flow suitable for the treat-
ment of the problems under consideration is developed in the
first section and its relations with other theories of plasticity
are pointed out. It is shown that in the particular case of
a plate buckling out of a state of simple compression there is
very little freedom in the choice of the stress-strain relation
if it is to fulfill certain simple postulates. This means that
all the-empirical information which is necessary for the theo-
retical treatment of the plastic buckling of a rectangular
plate under edge thrusts can be obtained by a simple com-
pression test. .

The second section presents the development of the funda-
mental equation of the plastic buckling of & simply compressed
plate, and the appropriate equations describing typical bound-
ary conditions are given in the third section. The remaining
parts contain several examples, which are carried out in
detail, as well as an equivalent energy principle which proves
to be very useful for approximate computations. Finally,
the appendixes contain detailed discussions of several tech-
nical points raised in earlier parts of the paper.
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SYMBOLS

length of plate
constant in compressive stress-strain law

expression in variational principle
, 077, b, }coefﬁcients in plastic stress-strain law

width of plate
expression in variational principle

c=MA—1)/[(5—4rr—(1—2»)7

WA TR ke
)

C1, Ca, C3y Cq arbitrary constants appearing in equa-
tion for
D flexural rigidity of plate <Tl§ hREy/ (l—v“’))

Dy, Dys, Doy coefficients in plate equation for plastic
flow

D11,=DII/D,DI2,:D12/D, D22'=D22/D

Du*, Dis*, Dn*  coefficients in plate equation for Ilyu-

shin’s theory of plastic deformation
Du=Dy*|D, Dyy=Dy*/D, Dyy=Dun*/D

E tangent modulus in compression

E, Young’s modulus

E* Von Karman’s reduced modulus

E; secant modulus obtained from compres-
sive stress-strain diagram

) section of buckled middle surface for r=
Constant

h thickness of plate

I moment of inertia of cross section

oo? (1—v?)
k=12 TRIEE,
2
F=lk

K=Q-nK+@—1K;
K =0%/0x?, K, = 0%b/0y?, K12 = 20%i:/0xdy

m number of half waves in buckled configur-
ation

M, rate of change of bending moment about
y-axis

M, rate of change of bending moment about

. _ 2-axis

M., rate of change of twisting moment

n integer

N. reduced compressive stress resultant
(ooh/Eb)

N. rate of change of stress resultant in z-
. direction
N, rate of change of stress resultant in y-

direction

v

_(mrY Dy
1’2—(7 D
P total compressive force (aobh)
QZ[Dl'z_ (1 _V)D]/Dzz

Uoh mw ZDIIDZZ_'DIZ2

2.

=D, \a Dy;,Dy,
r=+p(g+p)

R side ratio (b/a)
s=+p(q—p)

¢ time
u=8v"412vr—23

w deflection rate

rectangular Cartesian coordinates; x,y-
plane coincides with middle surface of
unbuckled plate

Y, 2

2o 2—v) él—‘—. 2r—1)é

K
2

a=1—C6—%)

@ ratio of Von Karman’s modulus to Young’s
modulus (in section “Buckling of a
simply supported plate” only)

B constant in compressive stress-strain law

s[ 15t 5ot [ for K0

&=
1 3._ 1, 4] .
s 1450 —5@)? | for <o
D' Day' =Dy
a Dy,
€ uniaxial strain
dez, de,, de, }_inﬁnitesimal strain increments present in
d71u7 d7uzy d'Yzz buckling

14 !
de,’, de,/,

, f }reversible (elastic) strain increments
de.’, dvzy

144 144
de,’’, de,’’,

ermanent (plastic) strain increments
dezll, d,Yz”II }p (p )
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é(z, v) normal strain rate in middle surface in z-
direction

é(z,y) normal strain rate in middle surface in y-
direction

¥ (2,y) shear strain rate in middle surface

g‘ = 220/h

=a++d—1

foo=—a—+a?—1

n==gb

K ratio of Von Karman’s modulus to
Young’s modulus (E*/E,)

A ratio of Young’s modulus to tangent
modulus (Fy/E)

v Poisson’s ratio

E=rb

a uniaxial stress

oy intensity of stress (o, 7+ ¢,2— 0,0, 4 374,2)

Ter critical compressive stress

oo original compressive stress in plate (—a;)

normal stress components
Tayy Tyzy Toz shear stress components
do,, do,, do,, }inﬁnitesimal stress increments present in

Ozy Oy, 02

drry, drysy d7os buckling
(1 \/;{w>

w function of intenswy of stress o;
o’ =dw/da;
Q=0w/(1—w)

_da,

“de; °

:dQ/dﬂ'i

— superscript denoting values on unloading
side of neutral surface

-+ . superscript denoting values on loading
side of neutral surface

ANALYSIS

STRESS-STRAIN RELATIONS FOR BUCKLING FROM A STATE OF
UNIFORM COMPRESSION
The mechanism of buckling beyond the elastic limit is
relatively complicated because the material, which was
originally in a state of simple compression, is loaded in some
regions and unloaded in others during the buckling process.
Consequently, the stress-strain relations must be considered

in some detail with special reference to the problem of load-
ing beyond the elastic limit followed by unloading.

The material must exhibit strain-hardening if the deter-
mination of the buckling stress is to constitute a problem.
Indeed, for a perfectly plastic material which yields under
constant stress, Von Kérmén’s reduced modulus vanishes

~once the initial compressive stress has reached the yield
limit.

- This means that the bending stiffness is reduced to
zero and buckling must be expected quite independent of
the dimensions of the bar.

Stress-strain laws for materials which exhibit strain-
hardening can be divided into two types which, for con-
venience, will be called “theories of plastic deformation”
and “theories of plastic flow.” According to the first group,
there exists a one-to-one correspondence between stress and
strain in the plastic range, as well as the elastic, provided
that the material is being loaded. The stress-strain law of
the well-known Hencky-Nddai theory (reference 7, ch. 14,
and reference 8) and the law used by Ilyushin (reference 6)
in his discussion of plastic buckling are typical theories of
plastic deformation. On the other hand, the theories of
plastic flow are based on the assumption that, for a given
state of stress, there exists a one-to-one correspondence
between the rates of change of stress and strain in such a
manner that the resulting relation between stress and strain
cannot be integrated so as to yield a relation between
stress and strain alone. Typical examples of theories
of plastic flow are the stress-strain relations developed
by Prager (reference 9) and Handelman, Lin, and Prager
(reference 10). A particularly important difference between
these two basic theories of plasticity lies in the fact that the
strain which corresponds to a certain state of stress, accord-
ing to the theory of plastic deformation, is entirely inde-
pendent of the manner in which this state of stress has been
reached, whereas, according to the theory of plastic flow, the
strain depends on the manner in which the state of stress is
built up.

The stress-strain relations to be used in the analysis of
the plastic buckling of a rectangular plate under edge thrusts
form a special case of those developed by Handelman, Lin,
and Prager in reference 10. In this particular case, how-
ever, it is possible to develop the stress-strain relation in a
quite elementary manner, and the inherent difficulties of
the theories of plastic deformation can be seen from a
slightly different point of view. It appears worth while,
then, to examine these relations in some detail with special
reference to the problem which forms the subject of the
present report.

In the following, the stresses and strains in the buckled
plate will be referred to a fixed system of rectangular Car-
tesian coordinates z, y, and z. The z,y-plane of this coor-
dinate system coincides with the middle surface of the un-
buckled plate, and the axes of z and y coincide with two of
its edges, the other edges falling on the lines x=a and y=b.
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FIGURE 1.—Plate under uniform compressive stress in direction of z-axis prior to buckling.

Prior to buckling, the plate is under a uniform compressive
stress ¢y in the direction of the z-axis (fig. 1). The investi-
gation of the stability of the state of stress

Oy— "0
o,=0,=0 (1
sz:’ruz:Tzz:rO

requires the knowledge of the relations between the infinites-
imal increments of stress doy, doy,, do,, dryy, dry,, and dr.,
and the corresponding increments of strain de, de, de,
dyzy, vy, and dy.,. Within the framework of plate theory,
0, =T,=17,=0, even in the buckled state, and hence do,=
dr;;=dr,,=0. Accordingly, dy,;=dv,.=0. Within the elas-
tic range the remaining increments of stress and strain are
related to each other by means of

Eyde,=do,—vda,
Eyde,=—vdo,4-do,
Ede,=—vdo,—vdo,
Eydvy.,=2(1+v)dr,,

2

where E; denotes Young’s modulus and », Poisson’s ratio.
Before an analysis of the plastic buckling of the plate can
be attempted, the relations replacing equations (2) in the
plastic range must be known. In order to establish these
relations, it will be convenient to think of the strain incre-
ments¥as consisting of reversible (elastic) and permanent
(plastic) components:

' dey=de,’ +de,’”
de,=de,” +de,”’
de,=de,” +de)”’

d'Y:w =d'Yzy, +d'qu/ !

3)

Primes and double primes denote elastic and plastic com-
ponents, respectively. The elastic increments of strain are
related to the increments of stress by means of equations
(2), in which the left-hand sides must all be written with
primes now: .

Eyde,’ =do,—vdo,
Ede,/=—vdo,+da,
Eyde,! = —vdo,—vda,

(4)

Eod')’a:u, =2 (1 + V) dTZlI

These relations may be regarded as the definitions of the
elastic increments of strain. The purpose of the following
discussion is to establish similar relations for the plastic
increments of strain.

The elastic increments of strain, equations (4), depend
only on the increments of stress and are independent of the
existing stress o,. Moreover, a reversal of the signs of all
increments of stress leads to a mere reversal of the signs of
all elastic increments of strain. The plastic increments of
strain, however, do not have these properties; since they
must vanish as long as ¢, remains below the elastic limit,
they cannot be independent of the existing stress o, More-
over, if for a given value of ¢, certain stress increments pro-
duce plastic increments of strain, stress increments of the
same magnitudes but opposite signs do not produce any
plastic deformation. In other terms, beyond the limit of
elasticity an infinitesimal change of stress may be classified
as loading the material or not according to whether it is
accompanied by permanent deformation. Infinitesimal
changes of stress which do not load the material may be
classified in turn as unloading or neutral. Unloading brings
the material into a state of stress such that all sufficiently
small further changes of stress are accompanied by elastic
deformations only. These basic differences in loading and
unloading appear somewhat more clearly if the simple
example of a uniaxial state of stress and strain (say a tensile
test) is considered. Let ¢ denote the stress and e the strain
in figure 2 and suppose the material is loaded to the point
P. The stress-strain diagram for unloading is a straight

€

0

FIGURE 2.—Stress-strain diagram for loading and unloading for uniaxial state of stress and
strain.
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line PA with the same slope as the loading curve at the
origin 0. The permanent strain corresponding to loading
up to the point P is measured by OA4. Suppose now that,
after the point P has been reached, the test specimen is
further loaded to the point P;; by this, the permanent strain
is increased by the amount A4,. In other words, the change
__from P to P, constitutes loading in the sense just defined.
On the other hand, if the new state of stress and strain is
given by the point P;, that is, if the stress has been reduced
below that at P, the permanent strain is left unchanged.
Furthermore, any small change of stress from the point P,
(strictly, all changes within the ranges P,P and P,A4) pro-
duces an additional deformation which is purely elastic..
The material has thus been unloaded.

For uniaxial stress any change of stress constitutes either
loading or unloading. A third possibility, designated as
“neutral’”’ change of stress, exists in the case of combined
stress. A neutral change of stress, while not accompanied
by a permanent deformation, brings the material into a
state such that there exist certain further changes of stress
which are arbitrarily small and yet produce a permanent de-
formation. This third condition is illustrated in the analysis
of the buckling of a plate. It is precisely the possibility of
the occurrence of neutral changes of stress which distinguishes
the present problem from that treated by Engesser and Von
Kérmén, for in their case the stress is uniaxial in the buckled
state as well as in the unbuckled. Accordingly, a change of
stress can be only an increase of the existing compressive
stress (loading) or a decrease (unloading). The situation is
more complicated in the case of a plate.

Since there is no permanent deformation accompanying
neutral changes of stress or unloading, de,’'=de,’ =de,’’ =
dvz,"’=0; and the relations of equations (4) define the total
change of strain. For loading, however, equations (4) must
be supplemented by equations of the form

Ede, =a’do,+b'de,
Ede,’ —a'do,+b'"do,

(5)
Ede, =a'"de,+b""do,

Edy., =2c'dr,,

where the coefficients a’, b, a’’, b/, a’’’, b’’/, and ¢’ depend
on the existing stress oo.

As is customary in the theory of plasticity, the plastic de-
formations will be supposed to represent a mere change in
shape but no change in volume. Accordingly,

de,’’ +de,’’ +de’’ =0 (6)

This relation must hold independently of the values of do,
and do,. Thus,

a/+a//+a11r=0 (7)
and

b/+b//+b///:0 (8)

The elastic formulas, equations (4), exhibit a certain
symmetry of the coefficients appearing on the right-hand

side. For instance, the coefficients of do, in the second and
third equations are equal, as are the coefficients of doy in
the first and do, in the second equations. Which of these
symmetries, if any, will be maintained in equations (5)?
The existing state of stress singles out the z-axis, but it
does not matter which of the other two axes is labeled y

_and which 2. Accordingly,

(1/ [ a/// ) ‘ (9)
In view of equations (7) and (9),

a”=a”’=—-12— a’ (10)
These coefficients can easily be expressed in terms of the
so-called “tangent modulus” corresponding to the compres-
sive stress ¢,. Application of equations (4) and (5) to simple

compression in the z-direction yields (with do,=0)

Ede,=FEy(de,” +-des'")

=do,+a'do, 11
or
_do,_ Ey
ZleTrd (12)
where E denotes the tangent modulus. With
A=Fy/E (13)
equation (11) gives
@’ =r—1 (14)
Hence, according to equation (10),
a//=a///:—()‘2—1> (15)

Next, the criterion for neutral changes of stress must be con-
sidered. Any given infinitesimal change of strain can be
decomposed in the following manner:

de;=x (deatde,+de) +5 (2des—de,—de) A
deu=% (des+de,+-de) +% (—de+2de,—de.)

dez=% (dez+de,+de.) +é (—de;—dey+2de.) F (16)

d’Ya:y =0 + d'Yzy
d'Yuz =0+ d'sz
d')’zr =0 + d'Yzz J

The change of strain defined by the first members of the
right-hand sides of these equations is a uniform expansion
(or contraction) in all directions. Such a uniform expan-
sion changes the volume but not the shape of the element
to which it is applied. The change of strain defined by the
second members of the right sides of equations (16), on the
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_other hand, affects the shape of the element but preserves
its volume. The work done by the existing stress or stresses
on the change of sirain, equations (16), consists of the work
done on the change of volume represented by the first mem-
bers of the right sides of equations (16) and the work done
on the change of shape represented by the second members.
Since all changes of volume are supposed to be of an elastic
nature, it seems natural to speak of loading or unloading
according to whether the work dW which the existing stresses
do on the change of shape alone is positive or negative.
Vanishing of this work must then be interpreted as indicating
a neutral change.

In the case under discussion, the only existing stress is
o,=—0q, and the criterion for loading or unloading is fur-
nished by the sign of

d =—%9 (2de, —de,—de,) (17)
while neutral changes are characterized by
2de,—de,—de,—0 (18)

Now, for unloading, the entire change of strain is of an
elastic nature and equations (2) apply. Equation (17) is
therefore equivalent to .

E,dW= —‘—’3-° [2(do,—v do,)— (—vdo,+do)) — (—v doy—v day)]
(19)

Since ¢, >0, this expression will be negative, whenever

2do,—da,>0 (20)

This inequality, equation (20), is thus seen to constitute the
criterion for unloading. Similarly, the criterion for neutral
changes of stress is found to be

2do,—do,=0 (21)

Changes of stress which satisfy neither equation (20) nor
(21), that is, changes of stress for which

2do,—do, <0 22)

must therefore constitute loading. Another definition for
the criterion for the three types of change of stress, which
is found by combining equations (20), (21), and (22), is that
the change of stress is classified by the sign of the increment
in the second invariant of the stress deviator, which measures
the intensity of stress. A detailed account of this alterna-
tive formulation is found in reference 10.

By a suitable choice of the values of do, and do,, the
expression 2do,—do, can be made to fulfill the following
inequalities:

0>2do,—do, >—¢ (23)

where e is an arbitrarily prescribed small positive number.
All changes of stress satisfying equation (23) constitute
loading and are therefore accompanied by plastic deforma-
tions in accordance with equations (5). For e—>0, however,

these changes tend toward neutral changes of stress for
which there are no plastic deformations. Furthermore, there
are no plastic increments of strain when 2ds,—do,>0. It
is to be expected that the total strain increments will be
continuous in the region which marks the transition from
unloading through the neutral state to loading. Although
such a statement does not follow specifically from the equa-
tions of equilibrium or compatibility, continuity should be
expected in the strain increments. With this assumption,
the plastic increments of strain, equations (5), should vanish
whenever the increments of stress satisfy equation (21).
This furnishes the conditions

a’'+2b'=0
a’’ +2b" =0
al//+zblII=O

¢’ =0

(24)

Together with equations (14) and (15), these equations de-
termine all coefficients appearing in equations (5), which
therefore take the form

R
Eyde," = (\—1)do,— 2=

o do,

e A—1 A—1
Eyde,/ = 5 daz+—4 doy, 4 (25)

A—1 A—1
Eyde, = — 5 dcrz-l-——étﬂ doy

K, d'Y:cy”:O J
1t is interesting to note that here again the coefficients of
do, in the second and third equations are equal, as are the
coeflicients of do, in the first and of do, in the second equa-
tion. Whereas in the elastic case this type of symmetry in
the stress-strain relations is a consequence of the isotropy
of the material, this is no longer so in the case of equations
(25). Indeed, the equality of @’/ and a’”/ (see equation
(15)) follows from the assumption that the plastic deforma-
tions do not involve a change in volume. The equality of
b’ and @'/, on the other hand, might be described as almost
accidental, the value of the ratio a’’/a’ being fixed by the
assumption just mentioned, while the value of the ratio
b’/a’ is fixed by the form of the condition for neutral change
of stress.

Combination of equations (4) and (25) finally yields the
stress-strain relations which will be used throughout this
paper:

S

Eodexz)\da,——<u+)\——2—1—) day,
Eode, = _(v+3‘5—1) doo+ 212 do, i

Eyde,—= _<,,+2‘__2_1> do’z—(v~)\;41> day

Eydy =20 +v)drs, )

(26)
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It seems worth while to stress once again the assumptions
on the basis of which these stress-strain relations are derived.
These are

(1) Plastic deformations do not involve a change of volume

(2) The criterion for loading or unloadizig is furnished by
the sign of the work W which the existing stresses do on the
change of shape produced by the increments of stress

The first assumption is commonly made in the theory of '

plasticity (cf. reference 7, p. 10) and is confirmed by the
experiments of Bridgman (reference 11, p. 166). The sec-
ond assumption is a slight generalization of a similar as-
sumption which Prager (reference 10) introduced in the case
of incompressible plastic materials; more recently, it has been
used by Ilyushin {reference 6).

It is interesting to note how far the stress-strain relations,
equations (26), differ from those used in previous work on the
plastic buckling of plates. In the present notation, Kauf-
mann’s stress-strain relations (reference 5) are

Eyde,=No,—vda,
Eyde,= —Nvdo,+doy,
Edy,=01+N(1 —{—v)drz,,J

(The expression for de, is not given because this strain com-
ponent is not necessary for the determination of the bending
and twisting moments in the buckled plate.) It is seen that
here the coefficient of do, in the first equation and that of
do, in the second are unequal. In an earlier paper on the
plastic buckling of cylindrical shells (reference 12, footnote
1, p. 422) in which similar stress-strain relations were used,
Kaufmann comments on this lack of symmetry, recommend-
ing that the stress-strain relations, equations (25), be checked
by experiment. Since this type of symmetry in the present
stress-strain relations, equations (26), has been characterized
as almost accidental, the lack of symmetry in Kaufmann’s
relations hardly constitutes a sufficient reason for discarding
the stress-strain relations, equations (27). It is not difficult,
however, to show that these relations correspond to an un-
acceptable condition for neutral changes of stress. Indeed,
subtraction of the elastic increments of strain, equations (4),
from the total increments of strain, equations (27), yields
the following plastic increments of strain:

(27)

Ede,” = A—1)do,
Eyde,/' =v(A—1)do, (28)
Eod'Y:wN =x—-11 +”)de1/
These plastic increments of strain vanish if
do,=0
(29)
d1,=0
According to Kaufmann's stress-strain relation, neutral
changes of stress are characterized by the two conditions

given as equations (29). If the most general change of stress
considered here is represented by a point with the coordinates

RAOG21—50—2

do,, do,, and dr,, in a three-dimensional space, the condition
of equation (21) represents a plane through the origin which
separates the ‘‘region of loading”’ from the ‘‘region of unload-
ing.”” Equations (29), however, define a straight line which
does not mark off two such regions.

‘Tlyushin (reference 6) considers an incompressible material
and assumes the stress-strain relations for loading to have

_the form _
20,0y h
=501 =w)
20,— 0z
Eo€u=2a”__:) L (30)
37,
Eo')’:w_—"l__i’i J

where « is a function of the intensity of stress o; defined by

Ci= Vot 0, — 00,3757 (31)

For loading, the increments of stress and strain are then
connected by

__ 1 —de. 2020y A
Eodez—m <2d0’z d(fy 1—w dw)

1

EOdEMZQ_ZiT—U) <2d0‘y*d0',;—zgy—:—w{x dw) ; (32)

E‘)dW":TiTo (d””‘ = d‘”) J

For buckling from a state of uniform compression o,= —ay,
in particular,
dw=@- da»=—w~, (2do,—day) (33)
d("i 1 2 z v
where
w' =dw/de; (34)

Equations (32) then reduce to

1
Eode”:?m (1—w—w'oy) (2do,—do,)

1 , oow’
Eyde,= — E (1—w- 204w )do-z—l—l:,?(l—-w)—— 02 :Ida,,}

2(1—w

3
Eod'y”=1—_—c~o de,, v
(35)
For unloading, the relations, equations (2), are supposed to

hold with »=1/2 on account of the assumed incompressibility
of the plate material:

Eode,,=% ©2do,—ds,)

Fide,= (2da,—do,) (36)

Eodryry=3d74 J

As to the criterion for loading and unloading, this is again
supposed to be given by the sign of the expression

AW=0.de,+ o, de,+ 722y 37
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In particular, it is given by the sign of

—Uodez (38)
in the case of buckling from a state of uniform compression
o;=—ap. In view of the first of equations (35), this means

that neutral changes of stress are again characterized by
equation (21). It is easily seen, however, that for 2ds,—
do,=0, equations (35) and (36) do not give the same incre-
ments of strain. Ilyushin’s stress-strain relations are thus
seen to exhibit an objectionable discontinuity along the
surface 2do,—do,=0 which separates the region of loading
from the region of unloading. A more detailed analysis of
the effect of this discontinuity in the case of a buckling plate
is found in appendix A.

FUNDAMENTAL EQUATION OF PLASTIC BUCKLING OF A
SIMPLY COMPRESSED PLATE

The technique used in the derivation of the fundamental
equation of the plastic buckling of a simply compressed plate
is quite similar to that needed for the same problem in the
elastic range. (See, for example, the more general problem
of combined bending and compression of elastic plates in
reference 1, p. 302.) There is one essential difference, how-
ever, in that the stress-strain relations given in equations (26)
must be used in the regions of loading rather than generalized
Hooke’s law. Consequently, the middle plane of the unbent
plate will no longer play the role of the neutral surface in the
buckled position. Once the position of the neutral surface
has been found and the bending and twisting moments deter-
mined as functions of the second derivatives of the deflection
of the plate, the equilibrium conditions and the final differen-
tial equation can be derived in exactly the same fashion as
that used by Timoshenko in reference 1.

It will be found more convenient, in the following discus-
sion, to use “reduced stresses” rather than actual stresses,
that 1s, stresses reduced by dividing the actual stress by
Young’s modulus £y,. No new notation will be employed to
denote these reduced stresses; therefore, care must be taken
in interpreting the results obtained here in terms of the
known facts for elastic buckling. An attempt will be made
at such points to keep the notation clear. In addition, the
use of differentials of stress and strain may lead to some con-
fusion in deriving the equations of equilibrium for an element.
Since the stress-strain relations given in equations (4) and
(26) are linear in these differentials, both sides of the equa-
tions may be divided by d¢>>0, where ¢ may be regarded as
the time. It should be noted that ¢ appears homogeneously;
that is, the time scale may be arbitrarily distorted without
changing the equations. If differentiation with respect to ¢
is denoted by a dot, equations (4) and (26) can be rewritten
as reduced stress-strain relations, for W= 0,

€r=NGy— (u+>‘—;1) by
. A—1\ . | A3,
e,,=—(u+ 3 ) a’+T Gy

€= —<V+)\—;i> &,——(u-—%—l z'r,,)

7:#22(1"}"’) 5':1/ J/

~

g (39)

and for W= o,
€x=0,—V0y
é,=—vo,40
v o v (40)

&= —v3,— 75,

');zy=2(1+”) +xy

where W=dw/dt.

The stress rates ¢, and ¢, can be found in terms of the
corresponding strain rates for loading by solving the first two
of equations (39). Thus,

"’z=(5_4y)>\l_(1ngy)z[(>\+3)éz+2(>\'~1+2u)ey] an
oy= (5_4@)\1_ 1—25)? [2N—1420)é,+4NE,)]
The criterion for loading
26,—,<0 (42)

can then be written as

(5_4,,);_(1_2,,)2[(Q—V)éz+(21’—l)éy]<0 (43)

Now, Poisson’s ratio » satisfies the inequality —1=<»=<1/2 (cf.
reference 13, p. 104); in addition, A2 1. Consequently, the
expression appearing outside the brackets is always positive
and the inequality, equation (43), can be replaced by

@—»é+ (2r—1e<0 (44)

The strain rates appearing in equations (39) and (40) must
now be evaluated. The strain rates in the middle surface
will be denoted by é,=¢(z, y), the normal strain rate in the
z-direction; é&=4é(z, ¥), the normal strain rate in the y-
direction; and y=+(z, ), the rate of shear strain. Points on
the normal to the undeformed middle surface are assumed to
remain on the normal of the bent middle surface. This
implies that the strain rates ¢, ¢, and v,, at any point of
the plate can be written in the following form:

éz = él - ZKl
é,=6&—2K, (45)
Yoy =" -ZKIZ

The quantities Kj, Kz, and K, appearing in equations (45)
are defined in terms of the rate of deflection =1 (z, y) of the
middle surface in the following way:

R O%i ~N

B =g
. O

K, =57 r (46)
: 0%

Ha=2 20y
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Geometrically, K, and K, represent the rates of curvature
of the middle surface in the z- and y-directions, respectively,
whereas K, represents the rate of relative twist. The cri-
terion for loading, equation (44), can now be rewritten in
terms of the strains of the middle surface and the quantities
Ky, K, and K;,. Itisseen that loading takes place provided

T @eRat @ —Dald @Kt @—DK] @)

With the word ““sign’’ to denote the sign of the quantity within
the parenthesis and vertical bars to denote the absolute
value of the enclosed expressmn the last inequality may be
transformed into

@—Né+@—1)é
1Q—» K1+ (2v—1) Ky

z sign [(2—») K+ (2v—1) Ko) > (48)

This inequality can be simplified further by introducing two
new quantities K and z, defined by
K: (2—V>KI+(2V—‘1)K2

2—v)é+ (2v—1)é (49)
K

o=

The inequality, equation (48), becomes then
z sign (K) >Kz/|K|=2, sign (K) (50)

that 1s,
z2>>2, for positive K

. (51)
2< 2, for negative K

The surface z=2, separates the regions of loading and un-
loading in the plate; a given part is in a state of loading or
not according to which condition of equations (51) is satisfied.

The criterion just developed must now be applied to the
problem of buckling. As mentioned previously, the stress
distribution of the buckled plate differs from the original
state of pure compression by certain additional stresses
o.dt, o,dt, and T,dt. 'These new stresses are such that their
total stress resultants must vanish and the moments pro-
duced will be in equilibrium with the moment generated by
the original compressive force in the buckled plate. The
vanishing of the stress resultants will lead to a formula for
2 1n terms of the constants of the material and the value of
oo. Once this equation has been developed, a rather straight-
forward computation will lead to the desired equation of
equilibrium.

The rates N, and N, s of the stress resultants are defined as

. hi2
Ne= —hf2 o2
. e (52)
. Ny= - G, dz

As indicated in equations (51), two cases must be considered
according to whether K>0 or K<0. TFor K>0, direct
computation shows that

No—wN,=ehteK (B2 )
y \2 7/
(53)
Ny—rNo—eh—L ek (B —2)
y ViV g=— € ) 9 0
where the quantity ¢ is a function of X and » given by
r—1 (54)

BN —(1—2)?

Appendix B contains the details of this calculation and others
used in this section. It has been pointed out previously
that N, and N, must vanish. According to equations (53),
this yields
h OV &b 26k
n_ = T 5
<2 zo> cK ¢K (55)

Thus the strain rates ¢ and é in the middle surface are
related by the equation
G=—26 (56)

From the definition of 2y, equations (49), and this result, it is
seen that

2o=(2—») I%Jr (2r—1) fr—z,

== (5 4v) 67
This result may then be substituted back into equation (56)
to yield
h 2 2€2h 220h
(3-=) 2=t (58)

Relation (58) can be solved for z; to yield the equation of the
neutral surface which separates the regions of loading and
unloading. Since &, ¢, and » depend only on the geometry
of the plate and the applied compressive stress, 2z, will
depend only on these quantities. It is more convenient to
introduce a new quantity {, defined by

5'0—'2;0 (59)
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Then the quadratic equation for z, equation (58), becomes a
quadratic equation in {, namely,

(1—§0)2+~CE‘%_—{‘{4—V)=0 (60)

There are two solutions to this equation, in general, but the
only one which is physically realizable is

o=t =a+Vo2—1 (61)
where
2

Equation (61) gives the desired formula for the neutral sur-
face.

When K<0, the procedure is exactly the same as that out-
lined. Again the details are found in appendix B. The
formula for the neutral surface is given in this case by

a?—1 (63)

o= =—a—

Roughly speaking, the sign of K indicates whether the plate
“buckles up’’ or ‘‘buckles down.” Consequently, the differ-
ences in sign found by comparing equations (61) and (63)
are quite natural. It would also be expected that the rates
of change of the bending and twisting moments, as well as the
resulting equilibrium equation, should be independent of
the sign of K. This will be shown to be true.

The rates of change of the bending and twisting moments
can be computed now that z, or {; is known for K >0 and for

K< 0. The rates of change of the bending moments, M,
and M,, are defined as

. B2
M,= f .2dz
—hj2
(64)
. M2 o
M= [0 6d

where the moments are taken about the y- and =z-axes,
respectively. The rate of change of the twisting moment

M,, is given by
. M2
Myy=— f Sy P2 (65)
The calculation of the rates, equations (64) and (65), must

be carried out separately for K>>0 and K<0. It can be
shown that the only quantity appearing in the final result

which depends on the sign of K is the function é defined by

1 . 1 .
o=3 [1 ":3; §0++‘2‘ (§‘0+)3] for K>0
1 3 1 (66)
52—2‘ [1 +Q _(_0-—‘5 ((0—)3:] for K<O
According to equation (63), o™= —{,*; the numerical value of

8 obtained from equations (66) will therefore be the same in
either case. Thus the expressions for M., M,, and M,, will

be the same in both cases. The details are found in appendix
B in which it is shown that

M,=—12(——l’33:7) (K[l —c8(2—») 2+ Kolv—08(2—) (2v—1)]}
(67)
My=—l—2(f—3_7) {Kilr—cd(2—) (2v—1)]4 K;[1—ed(2v —1)7]}
(68)

P hd (1—v)
M=t | S 52 Ko | (69)

The equation of equilibrium can be set up in terms of the
bending and twisting moments and compressive load without
reference to the stress-strain relations. This has already
been done by Timoshenko (reference 1, p. 305) for the more
general case of combined bending and tension or compression.
His results may be applied to this special case of a simply
compressed plate. With the present notation, the equation
of equilibrium is

>*M,

M., [ O*M, ., %
o =N o

“dxdy T oY

(70

Timoshenko’s relation was originally written in terms of the
actual bending moments and actual compressive stress re-
sultant N, rather than the rates of the reduced quantities.
Timoshenko’s equation can be differentiated with respect
to time and divided by £, on both sides, so that equation (70)
is the desired equation of equilibrium provided N, is defined
as

N,=och/E, (71)
From equations (46),

K, =0"w[ox?

K=oy

< 12=20%0/0xdy

With these relations and cquations (67), (68), and (69),
equation (70) may be rewritten as

Dllw:zzz+ 2D12wz:cuz/+D22wyg/yu: _Uohwzr (72)

where the subscripts denote partial differentiation with re-
spect to the variable named and

Dy =D]1—c¢s (2—»)¥ )

Dyy;=D [1—¢8 (2—v) (2v—1)]

Dyp=D[1—cé (2v—1)7 - (73)
RE,

P=Ga—» )

The quantity D is the well-known flexural rigidity of the
plate. Equation (72) resembles the equation for the buckling
of an anisotropic plate (reference 1, p. 380). There is one
important difference, however. In the case of an anisotropic
plate, the coefficients D), Dy, and Dy are constants of the
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material; for the plastic case Dy, Dy2, and Dy, are functions of
go. In other words, the plate is anisotropic but this aniso-
tropy is caused by and is a function of the compressive stress.
. Consequently, certain changes must be made in the standard
procedure for calculating buckling loads for anisotropic
plates Several examples illustrating this technique are
given in the succeedmg sections. QGraphs of the gquantities

11 —1—‘06(2—“11)2

Dy =1—¢8(2—v)(2v—1)
and
Dgg"——- 1 —65(211'— 1)2

as functions of N\ for »==0.32 are given in figure 3 and the
numerical values are listed in table I.

TABLE 1
VALUES OF D)/, D', AND Dy’
FOR »=0.32
l N ‘ Dy’ ‘ Dy’ ! Doy’
1.0 1. 0000 1. 0000 1. 0000
1.2 . 93030 1. 0149 . 99680
1.4 . 87447 1. 0269 . 99424
1.6 . 82847 1. 0368 . 99212
1.8 . 78973 1. 0451 . 99034
2.0 . 76655 1. 0522 . 98882
2.5 . 69086 1. 0662 . 08580
3.0 . 64178 1. 0768 . 98355
3.5 . 60345 1. 0850 . 98179
4.0 . 57255 1. 0916 . 98037
4.5 . 54698 1. 0971 . 97920
5.0 . 52544 1.1017 . 97821
6.0 . 40104 1.10901 . 97663
7.0 . 46459 1.1147 . 97541
8.0 . 44365 1.1192 . 97445
9.0 . 42652 1.1229 . 97367
10.0 . 41226 1.1259 . 97301
1.3
1.2
1-edf2 -v)ev-1)=D,’
I —
L/ —
1]
- —1)2 = [
1.0 == 1-cg(2v-1)2 =D,

5
~—l-coe-v)¥=~D,’
=]
.4
3 2 3 4 5 6 7 8§ 9 W

a

Fi1GURE 3.—Graphs of D1y, D1/, and Dz’ as functions of A for »=0.32.

TYPICAL BOUNDARY CONDITIONS FOR THE FUNDAMENTAL EQUATION
FOR A SIMPLY COMPRESSED PLATE

The discussion of the boundary conditions for the buckling
equation, equation (72), is facilitated by expressing the
moment rates M, M,, and M., in terms of the second deriva-
tives of the deflection rate w and the stiffnesses Iy, Dys, and
D,, introduced in equations (73). Thus, it follows from
equations (67), (68), and (69) that

EoMz =—DWee—[D1;— (1—7) D] wwl
EoMu = _‘[Dlz_ (1 "V)D] wzz“Dﬂww (74)
EOM,,,=D(1—V)U')Z,,

The following boundary conditions are typical in the buckling
of rectangular plates:
(1) Simply supported edge at r=0. The deflection rate

b and the moment rate M, must vanish at this 