REPORT 1021

'ANALYSIS OF -,PLANE-PLASTiC-STRESS'PROBLEMS WITH
~ AXIAL SYMMETRY IN STRAIN-HARDENING RANGE

-~ By M.H.LEE WU

1951

For sale by the Superintendent of D ts, U. S. Governmeni Printing Office, Washington 25, D, C. Yearly subsoription, $4.00;
$5.25. Single copy price varies accordingtosize <« « - « = Price25conts.

k]

RN



<

L

B

¢

R B

SRS

-

S

: Dynamlc pressure, 5 sz

g AERONAUTIC SYMBOLS.
' 1. FUNDAMENTAL AND DERIVED UNITS )

Metric o ' ~ English
Symbol S } ' ] K -
umit | AP Unit ‘Abbreviation
Length_ . _.._ [ meter. . .- oolcemeoan m foot (or mile) - ... ft (or mi)
Time. . vwem- ¢ second_ ______-._l____. 8. second (or hour) _..__. gec (or hr)
Force.oeeen... F weight of 1 kllogram__f__ kg weight of 1 pound _____ ‘Ib '
Power-_ ... P horsepower (metric) ... -; ________ horsepower._ __._____ _; hp
‘Speed ) v : {kllometers per bour____._ kph miles per hour. .. ... mph
peed. - - ~-- : meters per second_______ mps feet per second ________ fps
. ' 2. GENERAL SYMBOLS ,,
Welght——mg v Kinematic viscosity
Standard acceleration of grawty—-Q 80665 m/fs? Density (mass per unit volume)
or 32.1740 ft;/sec2 o ‘ ‘ Standard density of dry air, 0.12497 kg- m-*-s? at 15° O
Mass—Y. o ‘ N and 760 mm; or 0.002378 1b-ft™* sec?
g - _ . Specific Welght of “standard’” air, 1.2255 kg]ms or

Moment of inertia=mk®. (Indicate axis of  0.07651 lb/cu ft
radius of gyration k by proper subscrlpt ) ’
Coefficient of v1sc051ty

) 3. AERODYNAMIC SYMBOLS - »
Area - ' " te . Angle of setting ( of wings (relative to thrust line) .

Area of wing - .4 Angle of stabilizer setting (relatlve to thrnst
Gap . o o I line) -
Span o L - @ Resultant moment . :
Chord ’ ' R Y Resultant angular velocity ,
I 2 ! .
" Aspect ratio, % o "R Reynolds number, p % where l isa hnear dimen-
True air speed ‘ ' I " sion (e.g., for an airfoil of 1.0 ft chord, 100

mph, standard pressure at 15° C, the corre-
sponding’ Reynolds number is 935,400; or for
" an airfoil of 1.0 m chord, 100 mps, the corre-

sponding Reynolds number is 6,865,000)

a Angle of attack -

¢  Angle of downwash

o Angle of attack, infinite aspect ratio

ay Angle of attack, induced

Lift, absolute co_efﬁclent C’L=§—LS
Dmg, absblute co’eﬂic_ient OD;% :

Profile drag, a,bsolute coefficient O’Do gDS

Induced drag, a,bsolute coefﬁclent Cp,= DS ) a; . Angle of attack, absolute (measured from zero-
QD lift position)
Parasite drag, absolute coeﬁiclent Cp,= 7 =2 Y Flight-path gngle

"Cross-wind force, absolute coefficient Oc= qTCS’
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ANALYSIS OF PLANE-PLASTIC-STRESS PROBLEMS WITH AXIAL
SYMMETRY IN STRAIN-HARDENING RANGE'

By M. H. Lee Wu

SUMMARY

A simple method is developed for solving plane-plastic-stress

problems with axial symmetry in the strain-hardening range |

which 1s based on the deformation theory oy plasticity employing
the finite-strain concept. The equations defining the problems
are first reduced to two simultaneous nonlinear differential
equations involing two dependent variables: (a) the octahedral
shear strain, and (b) a parameter indicating the ratio of principal
stresses. By multiplying the load and dividing the radius by
an arbitrary constant, it is possible to solve these problems
without iteration for any value of the modified load. The con-
stant 1s determined by the boundary condition.

This method is applied to a circular membrane under pressure,
a rotating disk without and with a central hole, and an infinite
plate with a circular hole. Two materials, Inconel X and
16-25-6, the octahedral shear stress-strain relations of which do
not follow the power law, are used. Distributions of octahedral
shear strain, as well as of principal stresses and strains, are
obtained. These results are compared with the results of the
same problems in the elastic range. The variation of load with
mazimum octahedral shear strain of the member is also
tnvestigated.

The following conclusions can be drawn:

1. Inasmuch as the ratios of the principal stresses remain
essentially constant during loading for the materials considered,
the deformation theory is applicable to this group of problems.

2. In plastic deformation, the distributions of the principal
strains and of the octahedral shear strain are less uniform than
in the elastic range, although the distributions of the principal
stresses were more uniform. The stress-concentration factor
around the hole is reduced with plastic deformation, but a high
strain-concentration factor occurs.

3. For the rotating disk and the infinite plate the deformation
that can be sustained by the member before failure depends
mainly on the maximum octahedral shear strain of the material.

4. The added load that the member could sustain between the
onset of yielding and failure depended mainly on the octahedral
shear stress-strain relations of the material.

INTRODUCTION

In the design of turbine rotors, it is desirable to know the
detailed stress and strain distributions in the strain-hardening

range and the increase in load that can be sustained between
the onset of yielding and failure. It is also desirable to know
the effects of a notch or a hole in a turbine rotor or other
machine members that are stressed in the strain-hardening
range. If a member is thin, it can be analyzed on the basis
of plane stress. For problems of this type for ideally plastic
material, Nadai obtained solutions for a thin plate with a
hole and a flat ring radially stressed (referemce 1), and
Nadai and Donnell obtained a solution for a rotating disk
(reference 2). For materials having strain-hardening
characteristics, a solution of plane-stress problems has been
obtained by Gleyzal for a circular membrane under pressure
(reference 3). The concept of infinitesimal strain was used
and the solution was obtained by an iterative procedure
with a good first approximate solution. The plastic laws
were always satisfied by using a chart given in reference 3.
In reference 4, a trial-and-error method is given for a rotating
disk with very small plastic strain, in which the elastic
stresses and strains are used as the first approximate values.
An experimental investigation of high-speed rotating disks
is given in reference 5; distributions of plastic strains (loga-
rithmic strains) for different types of disk are measured.
Reference 6 gives an experimental investigation of the burst
characteristics of rotating disks; stress at the center of the
disk is calculated by assuming that the material behaves
elastically at the burst speed; the average tangential stress
along the radius at burst speed is also calculated.

A simple method of solving plane-plastic-stress problems
with axial symmetry in the strain-hardening range for finite
strains was developed at the NACA Lewis laboratory during
1949-50. This method is based on the deformation theory
of Hencky and Nadai (references 7 to 9), which is derived
for the condition of constant directions and ratios of the
principal stresses during loading. The equations of equilib-
rium, strain, and plastic law are reduced to two simultane-
ous nonlinear differential equations involving three variables,
one independent and two dependent, that can be integrated
numerically to any desired accuracy. These variables are
the proportionate radial distance, the octahedral shear
strain, and a parameter « that indicates the ratio of principal
stresses. The magnitude of variation in calculated values
of the parameter a with change in load directly indicates
whether the deformation theory is applicable to the problem.

1 Supersedes NACA TN 2217, “‘Analysis of Plane-Stress Problems With Axial Symmetry in Strain-Hardening Range” by M. H. Lee Wu, 1950.
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The method developed is applied to: (1) a ecircular
membrane under pressure, in order to compare results
obtained by this method with those obtained by Gleyzal
(reference 3); (2) rotating disks without and with a circular
central hole, in order to investigate plastic deformation in
such disks and the effects of the hole; and (3) an infinite
plate with a circular hole or a flat ring radially stressed, in
order to investigate the effects of the hole in the strain-
hardening range.

In the investigation of (2) and (3), two materials, Inconel
X and 16-25-6, with different strain-hardening character-
istics were used in order to determine the effect of the
octahedral shear stress-strain curve on plastic deformation.
The octahedral shear stress of these two materials is not a
power function of the octahedral shear strain, so that more
general information can be obtained. Distributions of
stresses and strains of the same problems in the elastic range
are also calculated for purposes of comparison.

Acknowledgment is made to Professor D. C. Drucker for
his discussion of this work and for his suggestion to examine
whether the logarithmic strain could be applied correctly
to the present problems and his suggestion to plot the
stress-strain curves of Inconel X and 16-25-6 on a logarithmic
scale in order to show that these materials do not obey the
power law.

SYMBOLS

The following symbols are used in this report:
A, B, C, D, E, F coefficients of nonlinear differential equa-

. . r
tions; functions of «, v, and T

initial radius of hole

initial outside radius of membrane, rotat-
ing disk, or flat ring

¢ initial outside radius of plate, very large

compared with radius a

> Q

G H, J, L trigonometric functions of o

h instantaneous thickness of membrane,
rotating disk, or plate

hoiniy initial thickness of membrane, disk, or plate

K, K, arbitrary loading constants

k constant having a dimension of length

» pressure on membrane

r radial coordinate of undeformed membrane,
disk, or plate

s arc length

% radial displacement

w axial displacement

z axial coordinate

o parameter indicating ratio of principal
stresses

v octahedral shear strain

e logarithmic strain (natural strain), loga-

rithm of instantaneous length divided by
initial length of element
6 angular coordinate

P mass per unit volume

o true normal stress, normal force per unit
instantaneous area

T octahedral shear stress

w angular velocity

Subseripts:

b at radius b

c at radius ¢

0 at center for member without hole; at

radius ¢ for member with concentric
circular hole

principal directions in general

principal directions: radial, tangential, and
axial directions

M%H
2
R e

STRESS-STRAIN RELATIONS IN PLASTIC DEFORMATION

The deformation theory of plasticity for ideally plastic
materials was developed by Hencky from the theory of
Saint Venant-Levy-Mises for the cases in which the directions
and the ratios of principal stresses remain constant during
loading (reference 7). Nadai extended the theory to include
materials having strain-hardening characteristics (references
8 and 9). The conditions for the deformation theory have
been emphasized by Nadai (reference 9, p. 209), Ilyushin
(references 10 and 11), Prager (reference 12), and Drucker
(reference 13). Experiments conducted by Davis (reference
14), Osgood (reference 15), and others on thin tubes subjected
to combined loads with the directions and the ratios of the
principal stresses constant throughout the tube and remaining
constant during loading show that good results can be
expected from the deformation theory.

In more recent experiments on thin tubes by Fraenkel
(reference 16) and Davis and Parker (reference 17), it has
been shown that even with considerable variation of the
ratios of principal stresses during loading the strains obtained
from the experiments were in good agreement with the strains
predicted by use of the deformation theory. Further ex-
perimental investigation is needed to determine the extent
to which the variation of ratios of principal stresses is
permissible with the deformation theory. However, when
the variation is small (approximately 10 percent over the
strain-hardening range), the deformation theory can be
expected to give good results.

In the present problems with axial symmetry, the direc-
tions of the axes of the principal stresses remain fixed during
loading and it is probable that the ratios of principal strains
and of principal stresses also remain approximately constant.
The deformation theory previously discussed is therefore
used. The stress-strain relations are as follows:

extextes=0 (1)
0102 02~~03 03—0; 2)
€17 €9 €2 €3 €3— €1

r=7(y) (3)
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where

T=

[(oy— 09+ (02— 03)*+ (03— 01)*]/? (4a)

Y=

wl oo ol

[(el—52)2‘.1'(52—-63)2‘*‘(53_61)2]”2 (4b)

"From equations (1), (2), and (4a) or (45), the foHowing

relations are obtained:

—

€b=% - 01‘—‘;‘(0'2‘*' 03)1

p—

21

02—%(034' 01)

1 1 ]
€3=§ %FU3*‘§(U1+62)

For plane-stress problems o;=0. It is convenient to use
cylindrical coordinates for the problems considered; the
principal directions 1, 2, and 3 in the preceding equations
become radial, circumferential, and axial directions, re-
spectively. The equations thus become

e t+ep-e,=0 (18,)
"r=¥ (67— 0,06+ a4")* (52)
v=2 2t et e (5b)
and
1 1
=37 (z) ©
1 1
60253_:(00—5 0r> (6b)
c=3I[—FCrted = (et o (60)

When o, and oy are expressed in terms of e, and ¢, there is
obtained

0 =21 (2¢,+ )
Y (7
. oe=2 1(2€9+€T)
¥

Because large deformations in the strain-hardening range
will be considered, the concept that the change of dimension
of an element is infinitesimal compared with the original
dimension of the element is not accurate emough. Hence,
the finite-strain concept, which considers the instantaneous
dimension of the element, is used. (The equations of in-
finitesimal strains considered as special cases of finite
strains are given in appendix A.) The stress is then equal

to the force divided by the instantaneous area and the
strains are defined by the following equation:

a(e) =21

-

where /, is the instantaneous length of a small element having
the original length of (I;); and 7 is any principal direction.
During plastic deformation, the plastic strains at a particular
state depend on the path by which that state is reached.
For the paths along which the ratios of principal stresses
remain constant during loading, however, the octahedral
shear stress-strain relation, the value of the octahedral shear
strain, and the values of the principal strains are defined by
the initial and final states (references 14, 15, and reference 9,
P- 209); 8(¢;) is then an exact differential and

l; l
—1 I or efi= 1 8
=08, O T s ®
It should be noted that the condition under which equation
(8) was obtained is also onc of the conditions under which
the deformation theory is derived; as long as the deformation
theory is applicable, equation (8) can also be used.

EQUATIONS OF EQUILIBRIUM AND STRAINS
INVOLVING DISPLACEMENTS

CIRCULAR MEMBRANE UNDER PRESSURE

Equations of equilibrium and equations of strain are de-
rived for a circular membrane under pressure. The mem-
brane considered is so thin that bending stress can be
neglected (reference 18, p. 576). Figure 1 shows the mem-
brane clamped at the rim and subjected to a pressure p and

<4
. ~F G ] dr+Aﬂ

| =

FiGure 1.—Thin circular membrane (under pressure) and its element in deformed state.

a small element defined by A¢ and As taken at radius »+u
in the deformed state. In the undeformed state, the same
element would be at radius r and defined by A6 and Ar. The
dotted lines represent an undeformed membrane. The in-
stantaneous thickness of the element and the stresses acting
on the element are also shown in the figure. Two principal
stresses are o, and gy, and ¢ is the angle between o, and the
original radial direction.
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Equations of equilibrium.—When all the forces acting on
the element in the direction of o, are summed up, the follow-
ing equation of equilibrium is obtained: v

o, (r+uhAd—(o,+Ac,) [r+u+t+A(r-+u)] A0 (h+Ah) cos Ap+
205 As (h-}-%Ah)sin% cos p—pAs(r+4-u)Ad sin%‘f=0

When A(r-4-u) approaches zero as a limit, the differential
equation of equilibrium may be obtained:

d(a,h)
d(r+u)

(r+u) =h(os—07) (9)

A cap of the membrane bounded by radius r+u and the
forces acting on it are shown in figure 2. Summing up the
forces in the z-direction yields

pr(rt+u)i=o, ((ii—z:- 27h{r+u)

or
(10)

(r+u)

[d(r+u)] [pZ’wr ] 1

FIGURE 2.—~Cap of membrane with radius r + » in deformed state.

Equations of strains.—Inasmuch as the element at radius
r, defined by Af and Ar in the undeformed state, is moved by
the application of pressure p (fig. 1) to radius r+u and
defined by A6 and As, by use of equation (8) the strains are

ds
er=log, 7 dr
€o=10g5 7’—::’11/
e.=log, hi
Then
ot (T T
e {1—}— a0+ (11a)
e6a=r—+i” (11b)
r
efs= h{:“ (11¢)

ROTATING DISK

Equation of equilibrium.—A disk of radius b and thickness
h, rotating about its axis with angular speed «, and an element

taken at radius 7-+u, defined by A¢ and A(r+u), are shown in
figure 3 with all the external forces acting on the element.

hy \(
)‘A(mul

(r+u)

FI1cURE 3.—Rotating disk and its element.

Summing up all forces acting on the element in the radial

direction yields
a',(’l‘+’bb)hA0—(UT+AUT)[T+U+A(T+%)]A9(h—l—Ah)—'—
2oo[A )] (h+1Ah> sin 30—

22
ol (r—]—Ar) T ]Aahm“=0

[r+u+ A+ )]

When A(r-+u) approaches zero as a limit, the following
equation of equilibrium is obtained:

() o = (oo putrh % s (12)
Equations of strains.—The strains are
o6 = d(’;;:u) (13a)
o =TT (13b)
r
¢fa= h (13¢)

init

INFINITE PLATE WITH CIRCULAR HOLE OR FLAT RING RADIALLY
STRESSED

An infinite plate uniformly stressed in its plane in all
directions and having a circular hole is shown in figure 4.
The whole system is equivalent to a very large circular plate
of radius ¢ with a small concentric circular hole radially sub-
jected to the same uniform stress ¢ on the outer boundary.
The solution obtained for such a plate within any radius b
can also be considered as a solution of a flat ring with outer
radius b and inner radius @, that is, uniformly loaded at the
outer boundary with the radial stress o, obtained in the
plate solution.

The equations for this case can be obtained in a manner
similar to the two previous cases, or by simply setting dw/dr
and w equal to zero in equations for the membrane, or by
setting w equal to zero in the equation for the rotating disk.
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EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
TERMS OF PRINCIPAL STRESSES AND STRAINS

CIRCULAR MEMBRANE UNDER PRESSURE

A set of ten independent equations (equations (1a), (3),
(5b), (6a), (6b), (9), (10), (iia), (iib), and (iic)) involving
the ten unknowns o, a4, €, €, €, v, 7, h, %, and w define the
If equa-
tion (11b) is differentiated with respect to » and combined
with equation (11a),

deo e (€ —¢) —
{1+[d<r+u> | o

Substituting equation (10) in equation (14) to eliminate w
yields the following equation of compatibility:

deg pr+w

P ——== (e, —¢€p)
€ % " 2ho,

. }“2 ] (15)

Equations (9) and (15) can be simplified by using equations
(11) to eliminate u and A, which results in

(eg— z) 2y1/2
dd’-{—a, Qd_f;‘g_(ao_g)e(e,—eo)gl_[w] } (16)

2}LinftUT
and

des { rpele—e) T2 1/2
20 gl —e€p) Y I < —
7 ar ¢ o) e 1 l: oo, :I } 1 17

The ten equations defining this problem are now reduced to
seven independent equations, (1a), (6a), (6b), (5b), (3), (16),
and (17), with the seven unknowns o, a4, €, €, €,, 7, and v.
The solution of the problem is simplified by introducing an
arbitrary constant k into equations (16) and (17):
r de,

pk 7 ~e) Hv)
=(o a)e“r—fo’{l—l:———_"“ke 0 ]}
fap) 2”

pk 7 23\ 1/2 }
el )
7‘ deﬂ (e ~¢g {1_[}&9151{: ] } ___1
O
k J

(18)

r do,

g

+or 3

where k is any arbitrary unknown constant with the dimen-
sion of length. By use of the two parameters r/k and
Pl/hiys,, it is possible to solve the problem in a simple, direct
way without the use of the iteration. This will be further
discussed in the section ‘“Methods of Numerical Integration.”

ROTATING DISK

For the rotating disk there are nine independent relations
(equations (1a), (3), (5b), (6a), (6b), (12), (13a), (13b), and
(13¢)) with the nine unknowns o, o4, €, €, ¢, v, 7, b, and .
If equation (13b) is differentiated with respect to r and
combined with equation (13a), the following compatibility
equation is obtained:

deg

T el (19)

Ot

ds
G, +Ad,
1 ——7)
—riu ——+A/rm)"‘
;r WZ*A’I

(b) (e)

(a) Infinite plate with circular hole uniformly stressed in its plane in all directions.
(b) Flat ring radially stressed.
. (¢) Element.
FI1GURE 4.—Infinite plate with circular hole, flat ring radially stressed, and its element in
deformed state.

As in the case of the membrane, # and % can be eliminated
from the equilibrium equation (12) by using equations (13),
which yields

r 2 S (oot — putrtee) (20)
The nine equations defining this problem are now reduced
to seven independent equations, (1a), (6a), (6b), (5b), (3),
(19), and (20), with the seven unknowns o,, oo, €, €, €, 7,
and v.

The solution of the problem is made simpler by introducing
an arbitrary constant & into equations (19) and (20):

-

2
7" do, +ar7’ de, =(00___a.r)e(e,—eg)_p(wk)2(-C) e(—€2)
fa(®) ) k
k k
}
71% déo =e(5r_e‘)_1
r
w d(z

@1)
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By use of the parameters r/k and wk instead of r and w, a
simple direct solution is possible for any arbitrary value of
wk with % to be determined by the boundary condition.

INFINITE PLATE WITH CIRCULAR HOLE OR
FLAT RING RADIALLY STRESSED

The equations of equilibrium and compatibility for the
infinite plate with a circular hole or the flat ring radially
stressed are:

r da, 7‘ dez hY

@) ()

“a(3)

The problem is defined by equations (22) together with
equations (la), (6a), (6b), (5b), and (3) (seven equations
with seven unknowns).

=(gg—a,)e“r™ @

=¢ €rf0) 1

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
TERMS OF OCTAHEDRAL SHEAR STRAIN AND PARAM-
ETER INDICATING RATIO OF PRINCIPAL STRESSES

In the preceding section, displacements are eliminated
from the equations, which result in seven equations involving
the seven unknown quantities o7, 09, €, €, €, 7, and y. The
quanmty ¢, can be expressed in terms of e, and e (from
equation (1a)). Two of the four unknowns o;, oy, €, and e
can be eliminated by using equations (6a) and (6b) or (7). The
quantity r is a known function of v that is experimentally
determined. The problem is then reduced to one involving
three unknowns. Obtaining the solution of the resulting
equations is not, however, a simple matter; the iterative
process is usually needed. ’

It is proposed that this can be avoided by using the fol-
lowing transformsation:

oot o, =3+/27 sin a

g+ o,= 1/_7 coSs a

or

o= —T(\/f% sin a—cos a)
_ (23)
aez\/gr(x/g sin a+cos «)

Then o, and o satisfy equation (5a), because the yielding
surfaces are ellipses according to the deformation theory.
The octahedral shear stress 7, a function of v, in the preced-
ing equations varies with r/k and also with loading. Such a
transformation has been used for ideally plastic material
(r=constant) by Nadai in the section ‘“Yielding in Thin
Plate With Circular Hole or Flat Rings Radially Stressed”

(reference 1, p. 189) and for a rotating disk (reference 2).
From equations (6a), (6b), and (23), the principal strains
also can be expressed in terms of v and «a:

€= zw_z_(sm a—+/3 cos )
(24)
eo=2—3§(sin a-++/3 cos a)

The equations of equilibrium and compatibility for the
three problems considered herein are then obtained in terms
of v and « in the following form:

r da r dvy _C
Fa <k> “a(f)
pr do (25)

d-;/ﬂ _F
SR
where the coefficients A4, B, C, D, E, and F are functions of

a, v, and r/k. For the circular membrane under pressure,

from equation (18),

~
COs «

A=(+/3 cos a-+sin a)—(\@ sin a—cos a) o=

V2
dr sin o\ 1
B=(+/3 si ¢ <1___'y >_
(+/3 sin a—cos a) 77 )7

C=2 (cos a) e( ‘/27005‘0
[ —\/>(\/3sm a+Cos )y e
e (®) (7
67%(+/3 sin a—cos )2 \k hzmt

D=(+/3 sin a—cos a)y
E=—(+/3 cos at+sin a)
F=2+2

fio b

~

—\/> \/3 sin a+-cos a)y

172
: (&) (2
67%(~/3 sin a—cos a)\k hmu )

(26)
For the rotating disk, from equation (21),
- - A

A=(+/3 cos a+sin a)—(+/3 sin a—cos a) L\Ea

vd 1
B=(+/3 sin a—cos a)(T d:’ 7s1n = "

~4/sveosa 2 1 2 T-sina

C=2(cos a)e( ‘/;7 )_\/§ p(wk)z—;<£>e\/2 - (27)

D=(+/3 sin a—cos a)y
E=—(+/3 cos a+sin a)

F=2\/§|:1—e(—‘/gycosa)]




PLANE-PLASTIC-STRESS PROBLEMS WITH AXIAL SYMMETRY IN STRAIN-HARDENING RANGE ) 7

For the inﬁni’ge plate with a circular hole, from equation (22),

~
¥ COS o

ﬁ

'A= (v/3 cos a-+sin o) — (/3 sin a—cos a)

ydr v sin “)l

B=(+/3 sin a—cos a) Tdv vz )

C=2 (cos a) e(—@7c03a) k 28)

D= (/3 sin a—cos &) v
E=—(+/3 cos a+tsin a)

F=24§[1—e<—‘/§7°°5“)]

With these transformations, the solution of the problems
is reduced to simply a numerical integration of the two simul-
taneous differential equations (equations (25)) involving the
two unknowns vy and «. Furthermore, the parameter =,

7

being the octahedral shear strain, directly indicates the °

stage of plastic deformation at any point under any load.
(In plastic problems, according to the deformation theory,
the individual stress and strain distributions cannot give as
clear a picture of the stage of plastic deformation as can the
octahedral shear strain.) Also, the parameter « indicates
the ratio of the principal stresses or strains. At any point,
if « remains constant during loading, the ratio of principal
stresses at that point remains fixed. The value of « obtained
at each point in the calculation during loading directly indi-
cates whether or not the deformation theory is applicable to
the problem.

The value of « is known at the boundaries or the center.
This value can be determined from equations (23) and (24).
For the circular membrane under pressure,

when r/b=0,
o,=0p
a=5=1.5708
when r/b=1,
ee=0

a=§ 7=2.0944

For the rotating disk without a hole,

when r/b=0,
0= 00
a=%=1.5708
when r/b=1,
o,=0
a=7€r=0.5236

For the rotating disk with a hole,
when r/a=1 and r/b=1,

950882—51——2

o,=0
a=5=0.5236
For the infinite plate with a circular hole,"
when r/a=1, .
o,=0

a=g=0.5236

when r/a approaches c¢/a or a value that is large compared
with 1,

g:=0¢
a=%’=1.5708

METHODS OF NUMERICAL INTEGRATION

Two methods are developed to solve the differential equa-
tions (25). In the first method, the differential equations
are numerically integrated along r/k, which is considered the
independent variable. (In the second method, « is con-
sidered the independent variable.) Because many terms in
the equations are trigonometric functions of «, the use of «
as the independent variable considerably reduces the work
of computation.

Numerical integration with r/k asindependent variable.—
Equation (25) can be written in the following forms:

r da _CE—FB)
% (f)‘AE—DB
“\&

. (29)
r dy FA—CD

k rN HEA—BD
4(%)

J

At any point, if a and v are known, dg"7k) and dg~7k) can be

calculated by equations (29). At the boundaries or the
center, « is known, but v is determined by the load. Only
one value (unknown) of v corresponding to a particular load
exists on each boundary; therefore it is difficult to start the
numerical integrations on the boundary with the correct
value of v corresponding to a given load. Also, in plastic
problems covering the strain-hardening range, the method
of superposition is invalid. Usually, a method of iteration
is used to solve the problem (for example, references 3 and 4).
In the method presented herein, an arbitrary but unknown
constant £ has been introduced in equations (18), (21), and
(22). For the cases considered, the terms in the equations

2
that involve load are always multiplied by r, so that ( ,f) r )
init

. 2k N\ /1\? .
can be written as <h—> (E) in equations (18) and (26)

tnit

2
and (wr)? as (wk)? (%) in equations (21) and (27).
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The numerical integration then can be started at the
inner boundary (or at the center if there is no circular hole
at the center) by using the known values of «,, a desired

value of v,, and an arbitrary value of <h ) for the
init

membrane or of (wk)? for the rotating disk. The numerical
integrations can then be carried out, obtaining values of «
and v at different values of r/k, until « progressively reaches
the value that satisfies the outer boundary condition.
Because the value of 7 is known at the boundaries, the value
of I can be determined for the selected value of v,. The
number of points and the formulas used in the calculation
depend on the accuracy required (references 19 and 20).
If the formula for evaluating definite integrals is applied
after using the forward integration formula (references 19
and 20), great accuracy can easily be obtained.

The procedure used herein to obtain solutions is the same
for each problem. Calculations are started from the inner
boundary (or from the center if there is no circular hole at the
center) with the known value of a,, the desired value of
vo, and the arbitrary loading term. The parameter a, is
equal to /2 at »/b=0 for the membrane and for the solid
rotating disk and is equal to «/6 at r/a=1 for tbhe infinite
plate with a circular hole and for the rotat'mg disk with a

hole. The arbitrary loading terms are < 5 ) and (wk)? for
init.

the membrane and the rotating disk, respectively. Then

[ rieamh and [d—g:,’?)l; corresponding to «, and v, at the

inner boundary or the center, are obtained from equations
(29). The following formulas for forward integration are
used to determine the first approximate values of « and v
at the next point (a;* and v, *):

O
we=nt[(1) ()] . <k> |

By substitution of o* and 7,* into equation (29), approxi-

mate values of ﬂ* and —d—L are obtained and
‘@) L@
k 1 1

the second approximate values of a; and v, (oq** and vy **)
can be computed from the following formulas:

*=m+;[<£>:<£>,,]§:dm Lol
olO-OHG ol

are substituted into equation (29)

> (30a)

o

- (30b)

The values of &** and v,**

again in order to calculate the values of |:————dc; :|
(%)
[ ( -I By use of the following formulas for evaluating
0

definite integrals, the volumes of a; and v; are calculated:

OO ]
n=r+3|(5)~(F), p é)_ u+ K é>_ 1§J

This procedure is applied to the next point, and so forth,
until the value of « reaches the required value of o5 at the
outside boundary (a,=2/3 = at 7/b=1 for the membrane,
ay=n/6 at r/b=1 for the rotating disk, and a=n/2 at
r/a=c/a for the thin plate with a circular hole). Inasmuch as

(1) _b
kJeme, k

the loading terms are determined as follows:
For the membrane,

- (300)

=R @) (312)
For the rotating disk,
b 2
() —=(wk)? (E) (31b)
For the infinite plate with a circular hole,
— Ye .
tc:O'hc (r_:u> =ahim’te_e’=0'hmite Zﬁ (310)

or for the flat ring radially stressed at the outside diameter

b,

(31d)

b
ru ——2 (sinay—+/3 cosap)
tb:(ar)bhb< _71: )—(Ur)bhmu@ vz
b

where . and ¢, are the tensions per unit original circum-
ferential length at r=c¢ and r=», respectively.

Numerical integration with « as independent variable.—
Equations (29) can be written in the following forms:

dy_FA—OD
da CE—FB

).
¥/ AE—DBr

de CE—BF k

By use of equations (26) to (28) and expansion of e”‘*¥
into a series, the following equations are obtained:
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For the circular membrane, from equations (26),

OE—BF=2GJ— L2J3HJg<a,‘Y,

N

)fl(a, 7)+2w/—:| (“"Y’k -~

init

AF—(OD=2y3L—2HJy— 2fo2(a,y)g<a, i il e (33)
U —_, 2
AE—BD=—L—J g(a,'y, d,y) )
For the rotating disk, from equations (27),
OF — BF = —2H I— 21/3HJg<a,'y, ) e 7)+LK2<k> (@)
AF—OD={8I—2\BHLO— i (e M+T () Ramly (34)
AE—BD=—L'—J° <a y 141)
(e g )
For the infinite plate with a circular hole, from equations (28),
CE—BF=—2HL—23HJg (a,*y, >f1(a ")
AF—(C D= { SH— 2\3HL[1—f, (a, V) }7 (35)
AE—BD=—L ng<oz,'y, v dr
h
e —1— /2 (cos @A)
G@=sin «
sin «
H=cos «a fa(a,'Y)—e‘/_
: :1+<—1— sin a) —i—l L sin a>2 2}
=\/§ SN a—COo0S « ‘/5 Y 5 (‘/5 g
=+/3 cos atsin a 1 :/: sin a>373+ o

K=(E)
Ky=/3 p(k)’
and
ey =t [1— eV ]
\/ (cos o)y
=1——;— J? (cos a)'y—l——i- (cos® a)y®— . . .

3
PR [

3 1.3
=1 —\/-; (cos a)y+5 X35 (cos® a)y*—

i—ﬁ (cos® a)¥®+ . . .

ydr §1

'yd'r 'yd'r 3 v
g\, o= 5y = )
rdy) 7dy V2 3sina—cosa 7d¥ 2J

r
](a”y,k hzmt [1—
7Y faloy V)T

*[ CRE Solee, )

The symbols @, H, J, and L are trigonometric functions of
a only; K, and K, are arbitrary loading constants. The
symbols f1, f2, f3, and g are functions of « and v; j is a
function of «, v, and r/k.

—J%y(ﬁ sin atcos &)

6782(\/3’; sin a—cos a)? <k> (hm ]

For the solution of an infinite plate with a circular hole e
is the independent variable. The procedure of numerical
integration is similar to that used in the method in which
r/k is the independent variable. The first four terms of the
series of e/(=7 are used; the accuracy of the resultis the same
as that of the previous method, but computation is reduced
by one half.
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Both methods presented herein are used to obtain the solu-

The purpose of the nresent

tinneg for the oiven valuas of o7
o- 146 purpose oI i preseny

UIULLS UL VUU iV ULl Vaiuus Ui

paper is to obtain solutions for the entire strain-hardening
range and the methods developed are very convenient for this
purpose. If, however, a solution for only a particular value

of lnadine is reanired it can he ohteined hv internalatine
v LUwuLu.s U U\i wiL U\.‘. AV uvdrlr WU vuvaalrvu IJJ ALivuwa tl\ll.w uj_us

between values obtained from two or three solutions corre-
sponding to loading near the specified value.

NUMERICAL EXAMPLES

Membrane.—In order to compare the results for the
circular membrane obtained by the method developed herein
with those obtained by Gleyzal (reference 3), one numerical

anliitiaon for imfinitegimal atrain ie ralenletad hy 1iging tha /7~
SOLULION IOT NI vesiInial Sulaill 1S Cailuiaiel Uy USIng uwie 7Y)

curve of the tensile test in figure 1 of reference 3. Inasmuch
as reference 3 states that: “For simplicity, strain will be
taken to mean conventional strain (ds—ds,)/ds, where ds and
ds, are final and initial arc length, respectively.”, equations
(25a) and (36) given in appendix A for infinitesimal strain
are used. The calculation is started at r/k=0.005. Values
of @,=1.5708, v,=0.0299, and pk/hw1t=>55,920 are used.
Rotating disk.~——Numerical solutions for the rotating disk

120x103
L/00
o
L ]
2
W
& 80 pd
[ -
o / [
< e
p 7 ==
L L=
§ 60 = =
-~
< L
Q 7
3
£ 40
3 4
8 — Inconel X
" ———=— /6-25-6
3
& 20
(a)
o N .2 .3 4 5 .5
Logarithmic octahedral shear stran, ¥
(a) Linear-scale plot.
« /50x103
Q
2
RN
L
BS 100
5 '1 80 ==
= o =
8 “1,)) 60 L] :— — =
3 ===
29 40 (b)
.0/ .02 .04 .06 .08 .10 20 40 .60

Logarithmic octahedral shear strain, ¥

(b) Logarithmie-scale plot.
F1GURE 5—Octahedral shear stress-strain curves.
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for finite strain (equations (25) and (27)) are calculated
Tnoanal X and 1R_95_

Thea »{A/\ enirvoe of twn metarmale
ALIVULIIOL L3 Quiu AU SJu—

ALV \' VUL YU v UVV\J 111.wu\u.1.uu.c
are plotted in figure 5 (a). These data were supplied by
W.F. Brown, Jr., H. Schwartzbart, and M. H. Jones. The

same 7(y) curves are plotted on logarithmic coordinates
m ficnre 5 (h) Tneanel X and 18954

i llguly o (). ALLUULITE LA aullul J-Uiﬂu——u’
for which = is not a power function of v, were chosen so that
more gencral information can be obtained. The given
octahedral shear stress-strain curves (fig. 5) of these two

tha tr alit and
vl vl Lcuuaa.u U‘)’ aiiul

Thace maetariala
4 ES0 dliautlians,

nrranta

hava n ha o A fon
péen correctea 1or

materials have not
nonuniform stress distribution introduced by necking and
consequently do not represent the exact stress-strain relation
after necking of these two materials. The solutions obtained

fram tha (- snirvoas of tha tanaile toeat aftor nanking
1101 vllo t\y} UL vod vl UAIU UU]IDJJL/ vODL @i uolL l,lUUl\Lllé ‘./11111,

however, represent the solutions corresponding to materials
having the exact 7(v) curves shown in figure 5 and for simplic-
ity such materials are herein referred to as “Inconel X’
and ‘“16-25-6"".

The calculation for the solid rotating disk is started at
r/k=0.005, as in the case of the membrane.

Three solutions are also obtained for the rotating disk with
a central hole, using Inconel X. Calculations are started
at r/a=1.

All numerical examples for the rotating disk are given
in the following table:

r Solid rotating disk —’
Material Yo K= /zp(wk) 2
'V 3 ‘
Inconel X 0. 04 1X10%
L1152 1X10%
.30 1X10% i
16-25-6 0.04 1X10%
. 1152 1X105
.30 2. 5X10% ’

Rotating disk with central hole

Material Yo '\/g‘ p(wa)?
Inconel X 0.30 1X104
.30 2X103
.30 4X10%

Infinite plate with circular hole.—The calculations for
the infinite plate with a circular hole are carried out for the
case in which ¢,=0 at r/a=1. The value of «, at rfa=1
is then equal to 0.5236. (When ¢, is different from 0 at
rfa=1, the corresponding value of «, should be used.) The
same materials as in the previous problem are considered.
The numerical examples are:

Material Yo
Incone]l X 0.04
. 1152
.1871
.30
16-25-6 0.04
. 1871
.30
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FIGURE 6. — Variation of prineipal stresses with proportionate radius distance.

RESULTS AND DISCUSSIONS

The radial and circumferential stresses o, and og, respec-
tively, obtained for the circular membrane are plotted against
r/b in figure 6. Two curves, taken from reference 3, cor-
responding to calculations for about the same pressure used
in the present calculation, are included in the figure for com-
parison. In the present calculation, the 7(y) curve given in
figure 1 of reference 3 and the same infinitesimal-strain defini-
tion based on. the original dimension are used. The initial
thickness A, is also used for consistency in the calculation
rather than the instantaneous thickness kA, which is used in
reference 3.

The variations of a with the radius for the rotating disk
and with the radius for the infinite plate with a circular hole
are plotted in figures 7 (a) and 7 (b), respectively, for different
loads and materials. The variations of a with v, (or loading)
at various radii for the rotating disk and the infinite plate
with a circular hole are plotted in figures 8 (a) and 8 (b),
respectively. Similar curves for the ratio of the prinecipal
stresses o,/cp are shown in figures 9 (a), 9 (b), and 10. Com-
parison of figure 7 and figures 9 (a) and 9 (b) shows that the
variations of « with radius are very similar to the variations
of o,/es with radius, although the relation between o and
a./os is not linear.

Numerical examples for & membrane with a large strain are
not calculated herein, because the result of reference 3 is
sufficient to give an approximate variation of the ratios of
principal stresses along the radius during loading, although
the infinitesimal-strain concept is used. The variations of
the ratio of principal stresses with radius for different loads,
based on the values of ¢, and ¢p given in figures 8 and 9 of
reference 3, are calculated and plotted on figure 9 (c).
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FIGURE 7.—Variations of parameter & with proportionate radius distance for Inconel X and
16-25-6.

The values of o, are plotted against os at various radii
under different loads for the rotating disk and the infinite
plate with a circular hole in figures 11 (a) and 11 (b). The
heavy solid and dashed curves represent the values of o,
and ¢ at different radii for any given load and are called
loading curves. The loading curve moves away from the



12 "REPORT 1021—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

T T

/rnconel X | T

-===/6-25-6 Proportionate
radial —

distance

L6

12— === == === == ===

=T = e e~ — =] .9

10
(2)

EN

Parameter, a

1.8 w

1.2 -

—F===J 2

.8 == == /5

1.0

(b)

4
o N 2 .3
Maximum octahedral shear strain, 7T,

(2) Rotating disk.
(b) Infinite plate with hole. .
FIGURE 8.— Variation of parameter « with maximum octahedral shear strain at different radii.

origin with increasing load. The light solid and dotted lines
connecting the different loading curves at a given radius and
extending to the origin represent the values of o, and oy at
different loads for any given radius and are called loading
paths. Also shown in the figures are the yielding surfaces,
which are ellipses under the deformation theory.

A clear picture of the variation of the ratios of principal
stresses in this group of problems with different loads for
Inconel X, 16-25-6, and the material used in reference 3 is
given in figures 7 to 11. It is evident that the ratios of
principal stresses remain essentially constant during loading.
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FIGURE 9.— Variations of ratio of principal stresses with proportionate radial distance.

The deformation theory is therefore applicable to this group
of problems, at least for the materials considered.

The variations of v and v/vy, with radius are plotted in
figures 12 and 13, respectively, for the rotating disk and the
infinite plate with a circular hole. It is interesting to note
that the curves in figure 13 for different loads for the same
material are quite close together. For different materials,
the curves of figures 7 and 9 are also close, but the curves of
figure 13 are not as close together.
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The distributions of principal stresses and principal strains
along the radius for the rotating disk and for the infinite plate
with a circular hole are plotted in figures 14 and 15, respec-
tively. For comparison, the variations of oe/(s0)s, €s/(es) », a1d
v/v» with radius for both the elastic and the plastic range are
plotted in figures 16 and 17. (The equations for the elastic
case are given in appendix B If only the stress distribu-~
tions for the elastic and plastic cases are compared (figs.
16 (a) and 17 (a)), it is seen that the stresses are more uniform
in the plastic state; but if the distributions of the principal
strains and the octahedral shear strain for the elastic and the
plastic cases are compared (figs. 16 (b), 16 (¢), 17 (b), and
17 (¢)), it is evident that a less-uniform strain distribution is
obtained in the plastic state. It is of special interest in the
case of the finite plate with a hole to note that with plastic
deformation and stress-(tangential stress) concentration
factor around the hole is reduced; instead there is a high
concentration in principal strain and in octahedral shear
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strain. A similar conclusion regarding the concentration
factor around a circular hole in a tension panel is given in
references 21 and 22.

The quantities as/(08) s, 0,/(0+)0, €&/(€:) 0, a0 €5/(€s), along the
radius for the rotating disk and ¢s/(ve), and e/(es), for the
infinite plate with a circular hole are plotted in figures 18
and 19, respectively. The curves representing o./(s,),, &/(&) o,
and e/(e), for Inconel X and 16-25-6 and different values
of v, are close together; but the curves of os/(0s), are quite
far apart for the two materials, as well as for different values
of v,.

The relation between the rotating-speed function p(wb)?

and v, for the rotating disk and the relation between the
tension per unit original circumferential length #,/hs,:, and
v, for the infinite plate with a hole are plotted in figures 20 (a)
and 20 (b), respectively. It is shown in these figures that
p(wb)? and ¢,/hi increase considerably for Inconel X and
increase only slightly for 16-25-6 as the value of v, increases
from 0.04 to 0.30.

Figures 7, 13, and 16 to 19 show that for the plate with a
hole, the variations of «, v/v,, €/(¢;),, and e/(e), with radius
are essentially independent of the value of v, for the plate
and the 7(y) curve of the material, at least for the materials
considered. These results show that the deformation that
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can be accepted by the plate before failure depends mainly
on the maximum octahedral shear strain (or ductility) of the
material, which would not be true if the strain distributions
were a function of the r(y) curve. For the rotating disk,
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however, a slight effect of v, and the 7(y) curve is apparent
on the strains; this effect seems to be caused by the body-
force term of the disk.

The stress distribution that will determine the load which
a member can sustain is now considered. Figures 16 to 19
show that the variation of ¢4/(s9), with radius depends on
the +(v) curve of the material and on the value of v, for the
member. Figure 20 indicates that the load also depends on
the 7(y) curve. It therefore follows that the added load
that the member can sustain between the onset of yielding
and failure depends on the 7(y) curve of the material. The
octahedral shear (or effective) stress and strain curve of the
material should be used as & criterion in selecting a material
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for a particular member under a particular loading condition,
because consideration of the maximum octahedral shear
strain only (or duectility only) of the material is insufficient.

The variations of «, v, ¢,, 03, €, &, and y/v, with radius for
three rotating disks with a hole are shown in figure 21. The
values of the ratios of outer to inner radius b/a of these three
disks equal 5.32, 12.45, and 28.12. These disks were made
of Inconel X and had a maximum octahedral shear strain
vo of 0.3 at the inner radius of the disk. The tangential
stress o9, the tangential strain ¢, and the octahedral shear
strain v are much less uniform for the disk with a hole than
for a solid rotating disk. The ratio of maximum to minimum
octahedral shear strain v,./vs is equal to 7.41 for a disk with
b/a=>5.32, 11.75 for a disk with b/a=12.45, and 14.1 for a
disk with b/a=28.12; for a solid disk of the same material,
the ratio v./vs» is about 5.3.

The load, rotating-speed function p(wb)?, for disks of
Inconel X reaching a maximum octahedral shear strain v, of
0.3 at the inner radius of the disk and having different ratios
of inner to outer radius a/b is represented by the solid curve
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in figure 22. The dashed curve in figure 22 is obtained by
extending this solid curve toward a/b=1, where the value of
p(wb)? can be determined by considering a rotating ring with
a/b—>1. The figure indicates approximately how the load
p(wb)? varies with disks having different ratios of inner to
_ outer radius and reaching the same maximum octahedral

_shear strain at the inner radius of the disk. The value of
p(wb)? for a solid rotating disk made of Inconel X with
v0,=0.3 at the center of the disk is indicated in the same figure.

CONCLUSIONS

The results obtained for a membrane, a rotating disk
without and with a hole, and an infinite plate with a hole
strained in the strain-hardening range in which the elastic
strains are negligible compared with the plastic strains for
Inconel X and 16~25-6 in the absence of time and tempera-
ture effects and unloading show that:

(1) The method developed not only accurately solves
the plane-plastic-stress problems with axial symmetry in a
simple manner but also shows clearly the octahedral shear
strain distribution and the ratio of principal stresses during
loading.

(2) The ratio of the principal stresses in the cases investi-
gated remained essentially constant during loading and,
consequently, the deformation theory is applicable to this
group of problems for the materials considered.

(3) The distributions of principal strains and octahedral
shear strains in the plastic state are less uniform than those
in the elastic state, although the distributions of tangential
stresses appear more uniform in the plastic state. The
stress concentration factor around a hole is reduced in the
plastic state, but instead there is a high concentration of
principal strain and octahedral shear strain.

(4) The ratios of the strains along the radius to their
maximum value are essentially independent of the value of
the maximum octahedral shear strain of the member and
the octahedral shear stress-strain curve of the material.
Hence, the deformation that can be sustained by the member
before failure depends mainly ‘on the maximum octahedral
shear strain (or ductility) of the material.

(5) The stress distributions depend on the octahedral
shear stress-strain curve of the material. Hence, the added
load that the member can sustain between the onset of
yielding and failure depends mainly upon the octahedral
shear (or effective) stress-strain curve in the strain-hardening
range of the material.
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APPENDIX A

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY FOR
INFINITESIMAL STRAIN IN TERMS OF « AND ¥

The final forms of the equilibrium and compatibility
equations for small strains are given in this section. The
concept of infinitesimal strain is defined as follows: The
changes of dimensions are small compared with the original
dimensions but are large enough so that the elastic strain
can be neglected. The equations presented can be obtained
either by direct derivation as was done previously or by
reducing the equations for finite strains through expanding
the ¢/“7 terms in series and neglecting the small terms.
For infinitesimal strain, the coefficients (functions of « and v)
A, B, C, D, E, and F of equations (25) are each denoted by
a superscript prime but the coefficients (functions of @ and v)
are simpler than those for large strain

A’ r + B' r o’
fa <k> fa (/c)
(25a)
D’ r +E' r
fa (k) td (k)
For the circular membrane under pressure,
A’=4/3 cos a}sin a )
B’ =(4/3 sin a—cos a)—‘l; Z—;
C'=2cos a
D’=(+/3 sin a—cos a)y g (36)

E' =—(+/3 cos a-}sin )

vk

2 Boins
B’ =2+/3v cos J2 nit
V37 cos at 6 | 7(+/3 sin.a—cosa)_| J

=

For the rotating disk,
A’=+/3 cos a-tsin « )

B'=(+/3 sin a—cos a) I

21
0'=2 cos a-—\/g o (wh)? <%> !

) G

(37)
D’'=(+/3 sin a—cos a)vy
E’'=—(+/3 cos a-Fsin a)
F'=24/3 (cos a)y J
For the infinite plate with a circular hole,
A’=1/3 cos a+tsin « A
=(+/3 sin a—cos a) %—g—;
C'=2 cos «
- . (38)

D’=(+/3 sin a—cos «)
E’=—(\/—3: cos a-+sin )
F'=23 (cos a)y J

For small strains, the coefficients A’, B’,C’, D',E’, and F’
are used in equation (29) instead of 4, B, C, D, E, and F,
respectively.
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APPENDIX B

EQUATIONS FOR ROTATING DISK AND INFINITE PLATE
WITH CIRCULAR HOLE IN ELASTIC RANGE

ROTATING DISK
For a solid rotating disk with the radial stress at the

periphery (r=b5) equal to zero, the principal stresses can be
expressed by the following equations (reference 23, p. 68):

2 b

o=
(39)
3 1+3 .
gp— —8}—1} pw262_ —lé 4 prr..
where » is Poisson’s ratio. At r=b,
1 272
(w)b:Z pw?b¥(1—v)
Dividing equation (39) by (o4). yields
¥
(Ue)b 2(1_7’)[ ( >:|
(39a)

gy _ 3—{—V
(co)y 2(1—w)

1+ 3v < ) :I

3+

The stress-strain relations of plane-stress problems in the
elastic range are:

6’22177 (o,—vas)
(40)

1
éaz—E“ (o’o— Vo‘,)

where E is the modulus of elasticity in tension and com-
pression.

Substituting equations (39) into equations (40) yields:

er=8iE(1—v)(3+V)(Pw Ll"ggj:) %ﬂ (400)
a
=gz (1 v)(B*VXPw?b?[ Hl/( >]
or
(:er)b:?)—g—y[ _3(31;7) b>] (40b)

(T?’X:3gy[ 54::<b>]

The equations for the octahedral shear stress and strain
given by equations (4a), (4b), and (5a) can be applied to both
the elastic and the plastic ranges, but equation (5b) can be
applied only in the plastic range. The octahedral shear
strain in the elastic range can be calculated by equation (4b)
or by using the following equation:

_2(+y) x/2
E

=2(1E_,*_y) (0', —a,a’g—!—af)”z (41)

Substitute equations (39) in equation (41) to obtain:

V2 (14
12E(3+ )

[G+r—sa+a6+0 (5) +a+z+m0(5) |7 @

or

(pe?d?)

y__ 1
Yo 2(1—11)

[ +0r—40 493+ (5) +a+2vt7 )] @m

The value of Poisson’s ratio » for the two materials are:
»=0.29 for Inconel X (reference 24)
»=0.286 for 16-25-6 (reference 25)

INFINITE PLATE WITH CIRCULAR HOLE

For a uniformly loaded infinite plate with a circular hole,
the principal stresses are (reference 23, p. 56):

a,=%+20
T4 (42)
0’9=—T2—+ZO

where A and C are arbitrary constants. For the plate con-
sidered herein, the boundary conditions are:

o,=0 at r=a
(77:((77-)[7

These boundary conditions are used to determine the
arbitrary constants A and C, which yield

), 2(’92‘21\
=) ()

at r==5

e {42a)
(o), <E> i
=) @)
or -
O
EEEONG)
r (42b)

og 1 <£>2+ !
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Substituting equations (42a) into equations (40) yields

oy =7 (2)2—(1+v>\

o=
SROENO]
e (43)
ZI% oo, (1_,,)(>+(1—I—V)
1—( ) <E> J
or )
W (1—v)<£>2_(1+y)
(ée)b_[u —»+(1+») (%>2:| <2>2
9 (43a)

(1—v>( )+(1+v)

[(1—v)+(1+»><b) ( )

Substituting equations (42a) into equation (41) yields

_2+/2(14%) (o), <§>4+3 (44)
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