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AUTOMATIC CONTROL SYSTEMS SATISFYING CERTAIN GENERAL CRITERIONS ON
TRANSIENT BEHAVIOR ! '
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SUMMARY

An analyiic method for the design of automatic eonirols is
developed that starts from certain arbitrary criterions on the
heharior of the controlled system and gives those physically
realizable equations that the control system can follow in order
fo realize this beharior. The criterions used are developed in
the form of certain time integrals. '

(leneral results are shown for systems of second order and of
any number of degree§ of freedom. Detailed examples for
several cases in the control of a turbojet engine are presented.
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INTRODUCTION

In the past several years, there has been increasing deyelop-
ment and interest in automatic control; in the fields of gun
direction, guided-missile control, and control of gas-turbine
engines, for instance, where very refined and accurate
controlled behavior is required, need still exists for further
development of the methods of controls analysis and design.

Recent developments in this field have been concerned
chiefly with the problem of control analysis both in the
realm of linear systems (reference 1) and in the realm of
nonlinear systems (reference 2). These analytical works
answer questions concerning the behavior of a given system
or the effect on its behavior of changing certain constanis
in the system.

Another problem of equal and, in some cases, greater
importance is that of control synthesis. Work on this prob-
lem seeks to find the method of design when certain eri-
terions concerning the behavior of a controlled system are
given. The method decided upon should give all aspects
of the system; for instance, where the system should be
linear, what the general configuration should be, and what
the precise values of all the constants should be.

This synthesis problem has hardly been broached in liter-
ature. The use of analysis as a design procedure offers a
partial solution to this problem in that the analysis of a
large number of cases may reveal, coincidently, one that
satisfies the desired criterions of controlled behavior. Such
a method is, at best, long and tedious and almost always
would result in compromises because the systems chosen to
be analyzed would probably be such that they could never
satisfy all the desired eriterions.

A method for designing a linear system to satisfy certain

»

special criterions when operating on a random input is
developed in reference 3. This method is applicable as an
addition to a control system whenever random external
disturbances are involved. A partial solution to the syn-
thesis problem is developed in reference 4 in satisfying the
criterions of noninteraction for systems with many degrees
of freedom. ,

An analysis made at the NACA Lewis laboratory during
the latter part of 1950 and presented herein _develops a
rational method of control synthesis that starts from any
arbitrary but physically realizable criterions and results in
the equations for the best system that satisfies these cri-
terions. As is shown, the nature of the eriterions, in general,
requires minimizing certain time integrals by using the
calculus of variations and the methods developed are an
application of the caleulus of variations to the problem of
control synthesis,

A careful scrutiny is first made of the whole problem, fol-
lowed by a development. of general results. These general
results are then applied in examples to the design of turbojet-
engine control systems. In general, the methods used vary
according to the order of the differential equation describing
the plant, the process, or the system being controlled and
according to the number of degrees of freedom or independent
variables. Detailed analyses are presented for application
to a system of first order and of one degree of freedom.
General results for systems of second order and any number
of degrees of freedom are developed in the appendix. ’

SYMBOLS

The following symbols are used in this report:

a,b,e gas-turbine-engine characteristic constants

¢ constant

E function of A

FH functions of ¥ and y

F(t) indicates Fly(t), y@)]

F,(y, 1) indicates partial differentiation with respect
toy

fife arbitrary function : .

fufe - weighting functions used for gas-turbine con-
trol criterions

GG, Gy functions of y

g . function used for gas-turbine-engine surge

criterion

1Bupersedes NACA TN 2378, “Automatic Conirol Systems Satisfying Ceriain General Criterions on Transient Behavior' by Aaron 8. Boksenbom and Richard Hood, 1951.
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h ' function used for gas-turbine-engine blow-
out criterion

K controller gain

L, L L, temperature limits for gas-turbine engine

N, P, T,w, deviations of gas-turbine-engine speed, com-
pressor-discharge pressure, characteristic
temperature, and fuel flow, respectively,
from values at some common ethbmum
condition

N. actual engine. accelerahon

n exponent

t time

4 time at end of transient

St variation in time at end of transient .

W, Y, 2,

Sw, 8y, 2 independent variables, functions of time

€ small number

A A, Ag, Ag arbitrary constants

G gas-turbine-engine time constants for re-
sponse to temperature

T transient time constant of controlled svstem

Subscripts:

£ initial condition of variable

f final value of variable

x setting or desired value of variable

Superscripts:

* indicates case different from optimum

The dot indicates differentiation with respect to time.
The prime indicates differentiation with respect to the argu-
ment shown.

ANALYSIS,
SURVEY OF PROBLEM

Control problem.—An important aspect of the control-
synthesis problem is a clear definition of the criterions of
desired controlled behavior. If a variable y is to be con-
trolled, a reasonable criterion is that the time integral of
some function of ¥ is to be a minimum or a constant; that is,

¢
f ' f(y) di=constant or minimum (1)
[
or

t
f 1 (y— ys)*dt=constant or minimum (2)
J0o

Equation (2), for instance, weights the error in y as the square
and according to the time duration of that error. Another
type of criterion may be that which requires a certain time
duration to be a minimum or a constant; that is,

#

£
f " dt=constant or minimum (3)
n

F The use of a single criterion, such as equation (1), will
‘usually yield f(y)=constant. This result is reasonable be-
cause f(y) can usually be made identically a constant if no
additional criterions are imposed on other variables in the
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system, Certain limiting conditions usually exist on other
variables in the system and these conditions must be included
in the original criterions.

Thus, a possible eriterion could be written

[4
J; l(y—«ys)"’a’zf:minimum
for : : 4)
. ¢
f 1f(z‘) dt=constant
0

If, for instance, y=engine speed and z=characteristic tem-
perature of a gas-turbine engine, the criterion of equation
(4) states that it is desired to design a control system such
that, for a particular value of & temperature integral, the in-
tegral of the speed-error squared is & minimum. This cri-
terion may be used if, for instanee, it is known that an over-
temperature Condltron can be toluatul for a certain period
of time and it is desired to keep the average speed error at
a minimum during a transient.

The general theory will show that as many criterions as
desired of the type shown in equations (1) to (4) can be in-
cluded together and a control system can be derived that
automatically satisfies all these criterions simultancously.

Another aspect of the control ecriferions is the end con-
ditions of the integrals of equations (1) to (4). The time in-
terval for which these integrals are to be a minimum or a
constant must be chosen. A reasonable time interval is any
duration during which essential external disturbances are
constant and during which the system to be controlled moves
from one essenfial levelof operation to another. The essen-
tial external disturbances are those that cannot be imme-
diately corrected by the control system. If an essential
external disturbance were allowed within the time interval
of the criterions, no physically realizable system could be
expected to anticipate this disturbance so as to behave prop-
erly before this disturbance occurs. An essential level of
operation is any specific condition of only those variables
that must be continuous. It will be shown that the essential
level of operation appears as a natural boundary condition
for the type of criterion used. In the case of a turbojet
engine the transient behavior of which can be described by
a first-order differential equation, the engine speed deter-
mines the level of operation. If a lag exists in the fuel
system or between temperature and engine speed, then both
engine speed and aceeleration are required to deseribe the
essential operating level of the engine.

Analytic problem.—The control system resulting from any
design method must be physically realizable. There are
two aspects to this problem. First, it is possible to set down
criterions that are not realizable with any system or are
incompatible with each other. If such eriterions are used,
the unrealizability will appear either as a requirement on
the control to look ahead into the future or as an inability
to satisfy the boundary conditions of some differential cqua-
tion. In most cases, a clear understanding of the criterions
used and of the system to be controlled will indicate incom-
patibilities. of this sort.
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The second aspect of physical realizability is purely mathe-
matieal. It is desired to derive a description (a differential
equation) of the coentrol or the controlled system that satis-
fies the criterions of control and all the necessary boundary
conditions that arise in the derivation of this equation.
Although the mathematical solution of the problem may be
any derivative or integral of this differential equation, the
physical solution of the problem requires the differential
equation that itself satisfies the boundary conditions and for

which no undetermined constants of integration exist. Thus,
such forms as
y=0C%
and (5)
y=_Cz

are not necessarily interchangeable as deseriptions of some
part of a controlled system because the forms differ by an
undetermined constant of integration. For stable linear
systems, the effeet of this constant becomes vanishingly
small; for the genersl nonlinear systems presented herein,
however, this constant must be considered.

Stability problem.—The requirement of stability is a
special eriterion that does not enter into the main body of
the methods of this report. It may enter in the final steps of
the method where the final differential equation describing
the controlled system may be the integral of a higher-order
differential equation that satisfies the necessary boundary
condition for stability. In addition, it is always necessary
to add to the controlled system a stability device that does
not affect the behavior of the system as far as satisfying the
other eriterions is concerned. This device can be described
as follows:

=0 when y=y, (6)
or, for a second-order system,
i7=0 when y=vy, and =0 (7)
GENERAL THEORY AND RESULTS

It has been shown that the ecriterions for control ean be
developed in the following forms:

3 N
ﬂ Jly)dt

ty
{(y—y,)tdt

1D

] £, (2)dt

fdt )

and so forth. If, for such a list of criterions,.one of the
integrals is to be a minimum under the condition that the
other integrals are to be constant, it is sufficient (reference 5)
to make

209
t £
ﬂ) Fydtn, £ (y—yoydi+

I3 ¢
}\zf 1fo(z) dz.‘+)\3f " lt=minimum (9)
1] 0 N
or

J:l )M =y +2ofo (2)F 2] di=minimum (10}

The N’s are arbitrary constants that enter into the control
system as the adjustable parameters and are precisely de-
termined by the choice of values that the constant integrals
are to have.

The technique of the A multipliers is widely used for prob-
lems of this type where one condition is to be & minimum
under other restrictive conditions. Indeed, the conditions
need not be in integral form and any functional or differential
relation among variables can be handled in a similar manner
(reference 6).

Equation (10) can be made very general when all possible
restrictive conditions are included. In the final equations,
which are derived later, if any one criterion is not to be used,
then the corresponding A—0. If any of the criterions is to

be zero (as for the case of a variable having an absolute limit),

then the corresponding A— =.
If, for this development, the system to be controlled is of

first order and of one degree of freedom (has one independent

variable), then the variables y and z are such that z=2(y, 7).
Equation (10) can then be written, in general, as

3
[ 1F(_y,g}) dit=minimum (11)
Jo 7

In equation (11), F is & continuous function of ¥ and g, and
y is a continuous function of time. :
The caleulus of variations (reference 5) is used to determine
y as a function of time such that the integral of equation (11)
is a minimum; that is, if the solid curve of figure 1 makes
the integral a minimum, any other curve (such as the dashed
one) will make the integral equal to or greater than the first

¥ /y=f( £)

-edt

y(?)

0 ¢ 5

3
1
FicURE l.—Hlustration of curves for minimization of f Fly,@ dt.
(]
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integral. If the two curves are very close, the condition
that the two integrals are equal will make the integral of
equation (11) stationary (maximum, minimum, or inflection
point).

The problem is similar to that of finding the maximum or
minimum point on a curve by setting the first derivative
equal to zero. Whether a maximum or minimum point
exists is deeided by the second derivative at that point. In
the variational problem, proving a true minimum involves
taking the ‘‘second variation.” As in the problem of finding
a minimum on & curve, the second variation proves, at most,
& local minimum and not an sbsolute minimum. For the
specific examples discussed herein, an absolute minimum is
proved by another method. In many cases, the physical
meaning of the equations will indicate the existence of a
unique minimum that obviates going further than the
“first variation.”

On figure 1, the curve for minimizing the integral of equa-
tion (11) is the solid curve having the value y(f) at any time.
Any other curve differing from it by a small amount is shown
as the dashed curve having the value y()+e dy(t) at any
time, where e is a small number and 8y(¢) is an arbitrary con-
tinuous function of time. The condition for the integral of

equation (11) to be stationary is
d fytedty . .
de s Fly+edy, y+edy)di=0 (12)

at
e=0

where % [8y(t)]=269(t) (reference 5). The time duration for the

integral of equation (12) is such as to start at some definite
time (t=0) but not to end at a definite time but rather
along some curve y=f1(t) (fig. 1), in order to allow the proper
boundary conditions of moving from one essential level of
operation to another, as previously discussed.

Performing the operation indicated by equation (12) leads
to

t ¢
, f‘ Fyoydi+ f "Fyo dt--F(t) 6,=0 (13)

Jo Jo
Integrating the second term of equation (13} by parts gives

ﬁtl [F”—Zi(‘l? (Fﬁ)J by d5+FzJ5y:|:+F(t§) sh=0 (14)

Because 8y is an arbitrary function, the integral and the

houndary-condition terms must vanish separately. The
geometry at the end condition (t=¢, fig. 1) gives
Sy)=[f"t)—y@)] ot . (15)

as e=>0. The two conditions that follow from equation (14)
then become

b d -
fo [Fy—;l-t- Fy) | oy dt=0 (16)
and

St { Ft)+Fy(6) [f ) —3@))} —Fy(0) sy(0)=0  (17)

The time interval during which the eriterion of equation
(11) is to hold is considered as that during which the system
moves from one essential operating level to another; in this
case, from one definite value of ¥ to another definite value
of y. Thus,

and (18)

6y(0)=0}
Jt)=0

Equation (16) is satisfied only if the integrand is zero, and,
because 8,7 0, the two conditions of equations (16) and
(17) become

F=5 @) (19w

and

F(t1)=Fﬁ(iz)y(tl) (lgb)
Equation (19a) need not hold at ¢=0 because sy(0)=0.
The only condition that need hold at ¢=0 is that F;(0) is
finite, which will be true if y is continuous at #=0. At
the start of & new transient, 3, F, F,, and F; may be dis-
continuous, whereas at other points (0<¢<4) Fy will be
continuous because of equation (19a).

Equation (19a) is the differential equation for the y(f)
that satisfies the original criterion of equation (11). The
physical answer to the problem is the first integral of equa-
tion (19a), which satisfles the boundary-condition equation
(19b). This solution is

Fly, p=yF;y, ) ‘ (20)

and whenever y, F;, and so forth are continuous,

i [ F= @) =0 21)

by differentiating equation (20) with respect to time. Thus,
either y=0 (which is true only during stability) or equation
(19a) is satisfied.

Thus, equation (20) is the description of that physically
realizable system the behavior of which will automatically
and simultaneously satisfy those criterions included in the
function F during that time interval for which the external
disturbances are constant and during which the system goes
from one operating level to any other operating level. A
stability device must be added to the system; the deseription
of such an ideal device is

7=0 when y=y, (22)

An additional condition must be met if ¥ is discontinuous
in the interval 0<t<(f;. In this case, F; must be continuous
during the discontinuity in y; 3, however, will usually be
discontinuous when ¢ is discontinuous. This discontinuity
in F; usually means that some essential external disturbanece.
has entered the system and the point of discontinuity must
be the start of a new time interval. . _
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APPLICATION TO TURBOJET-ENGINE CONTROLS

In the usual case of designing turbojet-engine controls,
the engine speed that sets the essential operating level of
the engine and, in the main, other pertinent characteristics
suteh as thrust, is to be set or controlled: Limiting conditions
of the engine are those of overspeed, overtemperature,
compressor surge, and rich burner blow-out. The following
eriterions on the behavior of this engine are typical:

~t
]U FiN =N dt for speed control

«
)

’th_, (V) di

for speed overshoot

s

.
[ sy

U P—g (Nt

U

[“rsip—r@ya

for temperature overshoot

and undershoot
(23)

for compressor surge

for blow-out

) ‘i for rise time
ot .
Figures 2(a) to 2(e) show the nature of the functions appear-
ing in expressions (23). The variable involved is essentially
weighted by the funetion shown and integrated with respect
to time. The quantity P—g(N) is the amount the
compressor-discharge pressure exceeds the safe pressure for
surge and g(V) (shown in fig. 2(f)) is the compressor-discharge
pressure for each engine speed at a safe value below surge.
Rich burner blow-out can be handled in a similar manner
(h(N) 1s shoml in fig. 2(g)).
for the S\,stem to move from one essential operating level
to the other.

The linearized engine characteristics can be expressed, by
assuming first-order behavior, as follows:

T=aN-+aoN (24a)
P=HN+cT (24b)
Thus, the integrals of expressions (23) are of the form
{91 .
["rev M 25)

where 7 is a continuous function of N and N, and N (barring
impulsive temperatures and the like) is a oontlnuou\ function
of time.

Speed control; case A.—If only the error in speed control
is considered inmportant, the criterion becomes

ﬁtlfl(N—-N,) dt=minimum (26)

where F=#(N—N,). Equation (20) becomes
_ AIN—N)=0
and from the nature of f; (fig. 2(2)), (27)

N=N;

The rise time is the total time -

SN, £V)
0 NN, N N
(a) {b}
A7) Se[P-gN]
L, L, 7 g P-g/N)
(e) (d)
AP I‘Z/N}) a(N) h(N)
P-h(N) N N

(g)

(8} Speed control.

(b} Speed overshoot.

(¢) Temperature overshoot and undershoot,
(d) Compressor surge.

(e) Blow-out.

(fy Compressor line below surge.

(g) Compressor line below blow-out.

FinvRE 2.—Arbitrary weighiing funetions for various eontrol critecions and pertinent engine
chatucteristies invalved.

This result means that, in the absence of other criterions on
the engine behavior, this speed control should keep speed
error identically zero, which is physically realizable only in

the sense of allowing infinite temperatures and the like to

keep the speed error identically zero. This result, however,
is inconsistent with the previous development of equation
(20) in that N is now a discontinuous function of time and the
time interval of the integral of equation (26) is zero. This
instance is actually a trivial case of the general problem.
The result (equations (27)) does indicate that a criterion like
that of equation (26) must be accompanied by an additional
criterion (temperature overshoot, for instance) to give a
physically realizable system.

Speed contrel with temperature-limiting criterions; case
B.—If the error in speed control and the overshoots and
undershoots in temperature are to be considered the primary
criterions of control, then from equations (10) and (11),

f L N=N)ENf(TD)] di=minimum  (28) "
0
where F=f(N—Ng+M:(T). Equation (20) then becomes

f(N— N+ M(T)=raoNf(T) (29)
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and the ideal stability device is such that
N=0 when N=N, (30)

Equations (29) and (30) describe the complete control sys-
tem.

In figure 2(c), it is convenient to let fo(7) = (T—L;)" for
T>L, and fo{ T)=(T—L;)* for T<L;,. In general, the
power n should be >1, because, when n<1, T may be infinite
and of such nature as to make N discontinuous and physically

3
unreal even though f; 1 fi(T)dt is finite. In the examples of

this report, n=2 and fi(N—N,)=(N—N,)%.

A variety of methods of setting up the control system to
realize equation (29} exists. When the preceding expressions
for f, and f; are used, equation (29) can be put in the con-
venient form

MKAJ

+(L—aN)*=ad’s "’N?

where, for acceleration, when N</N,,

N>0and L=L, - [ (31)
and, for deceleration, when N >N,
N<0 and L=L, J
aoNe

<

L-aN
s
-

Finure 3.—S8chematiec diagram of eontrol for turbojet engine for case of speed control with
temperature-limiting criterions {case B). Stability device must be added to this system.

K }11,{»—' L
N

When N < N,y N> O and L=L,
When N >N,, N< Oand L =L,

A schematic diagram of the system is shown in figure 3,
where equation (31) is considered to give a desired N for any
value of N, N,, and L. Consistent with equation (31), a
right-triangle construction is used to give a desired N. The
actual N, can be made very close to N by using a hlgh-gam
proportional controller, as shown. Provision must be made
to change the sign of N and the value of L when N—N,
changes sign. In addition, the stability condition requires
a provision for making N=0 whenever speed error is very
small or zero.

The use of a high-gain proportional controller, which fol-
lows from the requirement that N may be discontinuous,
means that the fuel-flow rate required may be infinite if lags
exist in the fuel system or in the feedbacks. But, as no
criterion has been set on fuel-flow rate, this requirement does
not violate the original criterions. If necessary, however, &
criterion on fuel-flow rate may then be added to equation
(28). Even though a eriterion on temperature is being satis-
fied, no direct measurement of temperature is used in figure 3.

Actually, the equation for temperature (equation (241)) is
used as an indirect indication of temperature.

The control system of figure 3 has one adjustable param-
eter A. For any value of ), this system will, for the value
of integral temperature-overshoot squared obtained, give the
minimum value of integral speed-error squared. The value
of X determines the actual value of the integral temperature-
overshoot squared.

The integral temperature-overshoot squared as a fune-
tion of \ is shown in figure 4 for the special case where
aN,=L; that is, acceleration or deceleration fo the speed
that corresponds to limiting temperature. In this case, the
system of fizure 3 becomes a simple first-order lag system
and equation (31) becomes

E({L—aN)=acN - (32)
where
z 1 \!/2
~(14,1)
< +a~7\
T (r-1)°
Temperature mfegra/ = 3 f TN-NJT d¢
1
Speed infegral =z J. (0 N) dt
Toes-
Maximum temperature = m
Time constant = ;
re Aise fime =%—
L0 | == —
LT A minimum rise fime
o e for corresponding
& . \ temperature inte- --Maximum
E 2 \\ ¢/ a/(from case () temperature
: ~No
§ \ \ )
Q ~
&6 T T 4
N ~Time consitan
S \\ T ;
% p: \\ P
b » ~-Minimum speed
3 N~ . integral
S ) — —
> 1=
2 —_—
L “Temperafure ntegral
L] g
— .
/
0 ]
L0 1.z /4 L6 L8 24

£=(1:5h )"

FIGURE 4.—Various control parameters as functions of E for speed control with temperature-
Hmiting eriterions (case B} when accelerating to limiting temperature.

In figure 4, the integral speed-error squared, the maximum
temperature, and the time constant for this transient are
also shown as functions of . The curve showing the mini-
mum rise time for the corresponding temperature integral
is included for a comparison that will be discussed later.
The equations for the curves of figure 4 are
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1‘(1: al\,>df=(E2}1)h
(2 an,) tt=2r

Twar—L
L—a 'V()

(33)

=F—1

. r 1
(tune constant) =%

-

The left sides of these equations have been put in dimension-
less form. The maximum temperature Tme occurs at the
beginning of the transient. The time constant r is that for
the controlled system and is shown compared with the engine-
time constant o.

From figure 4, the value of X\ is chosen as a compromise
hetween the various quantities of equations (33). For E=1
(A=), the temperature does not overshoot, the speed
integral is 0.5, and r=c. As E increases (\ decreasing),
the temperature integral and the maximum temperature

adN

\

be e I e — e e e

aeN

FiitRE 3.—Phase plane showing dynamics of controlled system for speed control with
temperature-limiting criterions (case B) where a? =1,

increase, whereas the speed integral and the time constant
decrease. A value of E=4/2 (or a®x=1) appears to be a good
compromise and is used for the subsequent discussion.

The behavior of the system of figure 3 can be best seen by

drawing the traJectoneb in the phase plane shown in figure,

5 where aoN is plotted against aN for lines of conpstant
alN, according to equation (31). Lines of constant temper-
ature are 45° parallel lines in this plot and the lines of T=1L
are shown. Each trajectory Intersects, and is tangent to,
the line T=L at N=N,. Figure 5 completely describes the
transient behavior of the system. For any starting point
anywhere on the plane (for instance, point A), the system
will automatically move the operating point to that tra-
jectory corresponding to the N, that exists (point B) and
then along this trajectory to the point T=L (N=JX,, point
C), and finally the stability condition will enter to move the
operating point along the solid vertical line to N=0 (pomt
D).

The time sense for these transients is obtained by solving
the differential equation (equation (31)) for the speed and
the temperature time responses. The equations for these
solutions are as follows:

ro alN — CI/Z\TS e - t A
B (P81 41 sink E <;+0>
fog L_a,\,>_x E*—1sinh E (——0>+ L (34

FEAVEEF—1 cosh E <;+0)+<1 ~E9

T N Mo

[N

|[ S\ Jemperature

I S~o

L ~—

L 0 -
akl; A ; .

< |
g i
2 1
s 5
2 [
S !
QG |

]

I

f

!

1 £

abe X ;] —9 + ;55

F1aURE 6.—Typical transient of controlled system for speed con:'ml with temperature-
limiting criterions (case B) where E=v/.

These transients are shown in the general case in figure 6 for
a step increase in NN,. Maximum temperature occurs at
t=0 and the temperature overshoot decreases as [V increases,
and when N=N,, T=L and T=0. The stability condition
then causes T to drop to its equilibrium value at this point.
The time scale shown in figure 6 corresponds to the specific
relative values of the ordinates shown.

218
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Minimum rise time and temperature-limiting criterions;
case C.—In order to obtain a minimum rige time for a con-
stan{ temperature integral, the requirement is that

ﬁ " [1 4N ()] dt=minimum 35)

where F=1-+x6(T). Equation (20) becomes

1Mo(T)=nao N (T) (36)

and the ideal stability device is such that
N=0 when N=N, : 37)

where N, is the desired stable N. Equations (36) and (37)
describe the complete control system. Equation (38), and
therefore the control system proper, does not include N, and,
in this case, the stability device is independent of the control
system proper.

When the same f3(T) is used as was used in the previous
case, equation (36) can be put in the convenient form

~

‘)1:+(L——(1AT)2=CZZG'ZN2
where, for acceleration, when N<N,,
N>0and L=L,
and, for deceleration, when N >N,
N<0and L=L,

> (38)

/K adj\'f, »
T—! AN
aoN - ©
L-aN \ 7 K- A EngineJ?-—
_xL‘l Ve When N<N;, N>0 ond L=L;
L NN When N>Ns, N<O ond L=L,

VA

Flaure 7.—Schematic diagram of control for turbojet engine for minimum rise time with
temperature-limiting criterions (case C). Btebility device must be added to this sytem.

A schematic diagram of this system satisfying equation’

(38) is shown in figure 7. This control system is the same as

the previous svstem (fig. 3) except that in figure 7, %
\

replaces —=" on one leg of the right-triangle construction
'\»’

and the stability condition must be Imposed outside the
control syvstem, as N, does not enter into the criterion of
control (equation (35)).

The system of figure 7 has .one adjustable parameter A,
which, as before, sets the precise values of the integrals
entering into the criterion (equation (35)), as well as all other
behavior characteristics.

The temperature integral is shown in figure 8 as a funetion
of X for the special case where aN,=L; that is, for accelera-

T2 pt T_AT.\2 A IS 3
g.fl é\ ai\\;) dt:\-1+)\(L—ai\70)2

T T T 2 T
. - Z
Temperature miegral = & | R dt =
.. - - I - H
Speed intfegral = gf/i_NI}z di
Maximum temperature= %fgw—%; ‘
{
‘Rise fime = 3«L :
L8
14 .
' Y Minimum rise-fime
0,20 :
“
R =
g pd
S0
N \ -
s - N
L8 A
3 SR
t \\ rMax;mum temperature
Q £ ™~ : 1
o B S ' -
3 ‘ L - -S‘peed mfegra/
S . S ——
= N T - M;_’Nmum speed /m‘e m/
1] f "7 or corresponding 7|
sl g temperature inte-
| ] grol /fmm cased, )
0 ‘-T;mperafure m‘;’egtr-a/
8 Lo r2 /.4 L6 1.8 20
VAL -aN,)

FIGURE 8.—Various control parameters as function of x for minimum rise time with tempoera-
ture-imiting criterions (case C) when accelerating to limiting temperature.

tion or deceleration to the speed that corresponds to limiting
temperature. In addition, the rise time, the maximum
temperature, and the integral speed-error squared are shown
for this transient. A curve showing the minimum speed
integral for the corresponding temperature integral (from case
B) is also shown and will be discussed later. The equations
for the curves of figure 8 are as follows:

a fh(LT af\')

14 . . =
2 ﬁ dt=sinh~! [(L—aN)yX]

IRUERYCETI AP
(L (ZIVO ’\,KP\

e 1 N
L—aN, VM (L—alNy)

p a9

T(L - a»l\To) ,\/K -

1
NI = V)zsmh N (E— aZ\Q)J

Again X is to be chosen as a compromise between these

In this case, —fl)\_—,has the units of

3

various quantities.
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temperature and ‘A (L—al,) is the pertinent dimensionless
parameter. For a fixed A, the initial speed N, will therefore
change the time integrals and an increased L—aN, will

The time sense for these transients is obtained by solving
the differential equation (38) for the N—¢ and T—¢ trzm-
sients. The equations for these solutions are

decrease the temperature integral and the maximum tempera- - S

ture and increase the rise time and the speed integral.

adN

AN
N

N

y.

Az, L-aN,=3v8

Tl A=}, L-aNp=2+E
\—;m, L-aNy=v8

aiN

FIiURE 9.—Phase plane showing dynamics of controlled sy:tem for minimam rise time with
temperature-limiting criterions (case C) where a (L—aNy= \"'8

The dynamie behavior of the system of ﬁgm‘e 7 is shown in
the phase plane in figure 9. This figure is a plot of acN
acainst eV, according to equation (38), for various values of
\. Lines of constant temiperatures are 45° parallel lines and
the lines T=L are shown. For any fixed A, only two trajec-
tories are followed, one for accelerating and one for decelerat-
ing. From any starting point on the plane, the system will
automatically move to that trajectory corresponding to ac-
celeration or deceleration and will move along this trajectory
until the stability condition enters (at N=2XN,) to make N=0.

The dependence of the time 1nteofral\ on Ny may require A
to vary with N,. In figure 9, Ny’s corresponding to each A
are shown such as to keep h(L—aNQ)2=8. The value of
this parameter was so taken as to have the temperature
integral in this case equal to that of the pre ious case for
purposes of comparison.

VA (@N — L)=sinh (é ;_(*>
(40)
N(T—Ly=e (+6) J

These transients are shown for the general case in figure 10
for a step increase in NV,. The temperature will jump to
some value above L, but in this case, unlike the previous one,
the temperature continues fo increase as the speed increases.
Maximum temperature occurs at the end of the transient.
Whenever N=N, (two such conditions are shown), the

stablhtv condition takes over and T is reduced to its equi-

librium value. The time scale shown on figure 10 corre-
sponds to the specific relative values of the ordinates as shown.

T y -7 -7 /}
Tempercture .—==" | :
————TT l
ro ] :
L— 1 l N-Npg=Lfe
{ N=A5'i
] !
2 !
8 !
~ i
N i
i
o
I
£ v
g ! ;
W —t ‘6
eN, ¥ a

Fioure 10.—Typical transients for controlled system for minimum rise time with temperature-
limiting criterions (case C).

Comparison of cases B and C.—In case B, a system wus
devised that, for a constant value of the integral temperature-
overshoot squared, gives a minimum integral speed-error
squared. In case C, a system was devised that, for a con-
stant temperature infegral, gives 8 minimum rise time. For
case B, the rise time is hot & minimum but can be compared
with the minimum rise time of case C. For the special
transient of accelerating to I'=L, the system of case B
reduced to a first-order system, the time constant of which
is shown in figure 4. Because five time constants are con-
sidered as the rise time of an exponential, the time constant
of case B should be compared with one-fifth the minimum
rise time of case C. In figure 4, for corresponding values of
the temperature integral, one-fifth the minimum rise time
from case C is plotted. Figure 4 now shows that the rise
time for case B is about twice the minimum possible rise time.

At corresponding values of the temperature integral,

f (N—Np)?dt for case C can be compared with the minimum
possible value of this quantity from case B. The minimum
value of f (N—N,)? dt is plotted in figure 8. It is seen
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(N—N,P dt when
minimum rise time is obtained is about 120 percent of the

. 13
minimum possible value of (N—N,)t dt.
JO

Proof of absolute minimum.—As previously noted, the
minimization of equation (11) invelves not only the condition
that the first variation be stationary, which leads to equation
(20), but also the condition that the second variation be
positive. This second condition, however, would prove at
most a loeal minimum for the condition of equation (11).
A special proof of an absolute minimum is shown as follows:

If equation” (11) is written in the form

that, for the same temperature integral, f
0

fyfF(y, ) g.g=minimum (41)
vo Y

atd 7 is considered as a function of y for the minimum con-
dition and #* is considered as a function of y for any other
possible case, then the condition for an absolute minimum is
that

[MramS-["rap%z0 w2

Yo Y ‘o Yy

or
L L
rf[:ﬁ(y,y*)—yfF(y,y):[—gZO (43)
Jva Yy Yy

where dyfg* is a positive differential. If the function F is
considered in a general form, quadratic in ¢, as

Fly, =6 +36. ) +5*G.() ‘ (44)
then equation (43) becomes
[Mg—p e w-22] %0 (45)
Yo Y Y

The equation of the control system (equation (20)) becomes,
for the form of F assumed in equation (44),

WG, (y)=6’(y)_ (46)

Using this expression for G(y) changes equation (45) to the
form

v A
f "G G —ir 0 o
Yo Z/

For cases B and C, Gy=Xa%? where A2 0. Thus an absolute
minimum is proved for these two cases.

Degree of minimum ; case B.—The left side of equation (47)
can be used as a measure of the deviation from optimum
conditions when the methods of this report are not used. If
the two cases (V for the optimum case and N* for any other
case) are compared at the same value of the temperature
integral, the left side of equation (47) is the difference between
the integral speed-error squared for any case and the mini-

mum possible value of this quantity. The ratio of this
deviation to the minimum value becomes , .

Fractional increase 2E v T*——T)2 dy

in speed integral= 71 )y, \T—T, 4%)

for the transient of acceleration or deceleration to limiting
temperature. The coefficient of the integral of equation (48)
for the value of X\ previously chosen (a?A=1) is 24/2.

Case B can also be considered as giving a minimum value
of the temperature integral for any definite value of the speed
integral. If'two cases (N for the optimum and N* for any
other case) are compared at the same value of the speed
integral, the left side of equation (45) is proportional to the
difference between the integral temperature-overshoot
squared for any case and the minimum possible value of this
quantity. This deviation can be written

Fractional increasein __ 2E
temperature integral

)2 9y 49)

for the transient of acceleration or deceleration to limiting
temperature. The coefficient of the integral of equation
(49) for the value of X previously chosen (a®x=1) is 16.4.
Degree of minimum; case C.—If the two cases N and N*
are compared at the same value of the temperature integral,
the left side of equation (47) is the difference between the

(E—‘l) Vo —

rise time for any case and its minimum possible value. This
deviation can be written
Fractional increase AM1l—alNg? T*—T\? dy
in rise time ~sinh- ‘\ » (L—aNg v, T, To/) oy*
(50)

for the transient of acceleration or deceleration to limiting
temperature. The coefficient of the integral of equation (50)
for the value of X\(L—aNy)=2y2 previously chosen is 4.54.

Case C can also be considered as giving a minimum value

~ of the temperature integral for any definite value of rise time.

If the two cases N and N* are now compared at the same
value of rise time, the left side of equation (47} is proportional
to the difference between the integral temperature-overshoot
squared for any case and the minimum possible value of this
quantity. This deviation can be written

2 dy

Vs
W—a¥ [ =r) 2,

\/A(L—aNO)Z—I—b— /_ (L —alVy)
(51)

Fractional increase in
temperature integral

for the transient of acceleration or deceleration to limiting
temperature. The coefficient of the integral of equation (51)
is 16.4 for the value of N (L—alNy) previously chosen.

GENERAL SUMMARY

When the criterions on the behavior of a controlled system
can be expressed in certain general forms, as
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P ~

b
[“raa
J0O
’;tl(y_ys)zdt
f) . Fol2) dt
o,

’0 dt

where the time interval is taken as any duration during which
essential external disturbances are constant and during which
the system moves from one essential operating point to
another, the optimum control can be considered as one that
minimizes one of the integrals of equations (8) while main-
taining the other integrals at prescribed values. The
analytical problem, according to the ealeulus of variations,
reduces to the following equation:

o

s &
Tt [ Cy—yrdit
i I
Az fg Fal2) di+k3ﬁ dt=minimum (9)

For general first-order systems, where z=z(y,7), equation
(9) reduces to

t
f 'F (y, §) dt=minimum (1)
JO

where F=f(y)+My—vo*+Nfo(2)+ 2. The equation nee-
essaryv for the control system to satisfy equation (11) and
all the boundary conditions becomes

Fly,n)=yF;, ) (20)

This equation should be followed by the control system
proper. In addition, a stability device must be added to the
system, the idealized characteristics of which would make
7=0 when y=y,.

The arbitrary multipliers X\ are then found by evaluating
the integral criterions involved in 7. The transient behavior
of the system derived is_found by solving the differential
equation (20). The degree of the minimum or the amount
sutfered when any other control system is used was evaluated
for the special cases considered. A summary of these devel-
opments follows for a special form of the F function, quad-
ratic in 7, where

Fly,n=a @ +i6G.@)+9G:(y)

Control-system equation.—For F in the form of equation
(44), the control-system equation (20} becomes

2 ¢ (y)
=)

(44)

.5

(52)

The function Gi(y} does not affect the control system and

272483—54—-15
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the control-system equation gives an explicit expression for
7 as a function of 7.

Evaluation of integrals.—If an integral of a function
H(y,) is any one of the criterions to be considered, it can be

evaluated as follows:
b o [V [Gy) | [G.y) c a2y
ﬁfﬂ%wﬁ“LnH[%\zaa Vo @v 6%

Thus the integrals can be evaluated without solving the
differential equation (52).

Transient behavior,—The differential equation (52) can
be easily solved as follows:

=V [G,(x)
dr=t—t¢
j;=?0 v G(z) °
Degree of minimum.—Equation (47) was derived to prove
the absolute minimum for the speecial cases considered and

can be used to evaluate the degree of the minimum found.
Thus,

(54)

¥ it — [ o= [ G- 52
fo H(y,y")dt fo H(y,pdt= | = G @)~y o

(55)
where J:I H(y,)dt is to be a minimum or maximum.

If Gy(y)>0 for y<y<y,, then an absolute minimum is
obtained; if G:(y)<0 for y,<y<yy, an absolute maximum is
obtained. Equation (55) also indicates that the degree of
minimum (or maximum) varies with the magnitude of G.(y).
The 7* in the denominator indicates that for any deviation
[7*—7} in g, it is better to err on the side of a larger |7*|.

SUMMARY OF RESULTS

A rational analytic method.: for the design of automatie
control systems was derived. Criterions on the behavior of
the controlled system were developed in the form of certain
time integrals. When any of these arbitrary but physically
realizable criterions were used as a starting point, those
equations that the control system must follow were derived.
The criterions developed required the minimization of certain
time integrals using the calculus of variations. The method
gave not only a description of the behavior of the controlled
system but also those physically realizable equations that the
control system can follow in order to realize this behavior.
General results were shown for systems of second order and
of any number of degrees of freedom.

Lewrs FriceT ProruLsioN LABORATORY
NaTtrioNaL Apvisory CoMMITTEE for AERONATUTICS
CrevErLanp, Onro, October 11, 1950
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APPENDIX '

SECOND-ORDER SYSTEMS OF SEVERAL DEGREES OF FREEDOM

It is beyond the scope of this report to detail the cases of
higher-order systems and those having several independent
variables. The general equations for these cases will be
developed and it is expected that subsequent reports will
cover their applications in detail.

For the case of a second-order system with two degrees of
freedom, equation (11) becomes

't
J 1]f"(y,@,'/,g'/',z,z", Z) dt=minimum (A1)
1]
where ¥ and z are independent functions of time. The
condition to satisfy equation (Al) is

d titedty . . )
deJo Fly+eby,y+edy,jredy,ztedz,

i+tebs it esHdi=0

(A2)
at
e=0

The time duration of the infegral of equation (Al) is that
beginning at a definite time (¢=0) but not ending at any
definite time but rather along some curves: y=£),7=7(t),
z=g(t), and Z=g,(¢) (fig. 11). The functions 6y and éz are
arbitrary and independent functions of time.

y=Ai(t)

g ¢ ¢

= (Y 27g.(t)

<:6(52.(f},/’

z
Ledt,
L
a t t
ty
FigurE 11,—INustration of curves for minimization of ) F(y,0,9,2,4,2} dt.

Performing the operation indicated by equation (A2)
gives

f (Fysy+Fyoy+ Fys+ Fabz+ Fosi+ Faot)di+ Fe)ot,=0

(A3)
After integration by parts,

fu [Fomif i+ 3 ) oy v+ [ Py B0+
Zt z):l 8z dt—i—(F sy+ Fyoy— F;,éy)] L EE) A+

(FéaerF;az'—— (Fg)32>:| —0 (A4)
dt y
As before, the integrands of the integrals and the boundary-
condition terms must vanish separately. From the geometry
at the end condition (¢=¢, fig. 11},

Sylty=[f/E)—y@)l &
syt =[f2" ) —§E)] 8
(A5)
sz(t)=lg/t)—2()] ot
S2(t)=I[gs Q) —E(t)] o
The three conditions from equation (A4) then become
d d? A
Fy—mg i)+ gp Fp=0
d d?
Fz—% (Fz)-{‘a?z (F=0
FeiFy 4L (P —gFy—iFsis LFy—sFs |+
e AT A AR PAC; Bl
- , Z ,
HO[F=FE) | +HORG+ @

8/ @) o= (F) | _, +e/6) P+

sy ) [ Fy =5 ) |_+5060) Fi0)+

20| P ()] +520) Fi@)=0

4

The first two of equations (A6) are the differential equa-
tions that satisfy the original eriterions of equation (Al1).
The physical solution to the problem is the pair of solutions
of these equations that satisfies the boundary-condition
equation of equations (A6). If the first of equations (A8)
is multiplied by ¢ and the second, by 2 and the equations are
added, an exact derivative is formed, the integral of which
is

PP+ G F)—iFy—iFirti & (F)—2F=C (A7)
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A study of the boundary-condition equation of equations
(A6) then shows that the physically reasonable boundary
conditions should be as follows:

If Fy#0 or Fy=K, then 6y(0)=0 and f,'()=0
1f Fy#0, then §7(0)=0 and f,/{{)=0
If F:>£0 and F; =K, then §2(0)=0and ¢,/(,)=0
If F330, then §2(0)=0 and g,’({,)=0

(AS)

Then in equation (A7), C=0 and the final solution to the
problem of equation (A1) for the boundary conditions of
equations (AS8) is

‘F JFHIJH(FE)'—'yFJ{ ZFz(Z (Ft)——-Fz—O

and either

P _ A9
Fy—3 (Fy) - (F)=0 r (49
or
d . d? N
F:—W(Fé)-s‘a?z(Fz)—o )

The meaning of the boundaryv-condition equations (AS8)
is to define the original criterions for that duration during
whieh the system moves from one essential operating level
to another. Thus, if all conditions of equations (A8) must
hold, the system goes from one definite y, 7, 2, and Z to any
other definite ¥, 9, z, and 2. The first differential equation
of equations (A9) would be of third order and the second or
third equations of (A9) would be of fourth order. If equa-
tions (A9} are integrated to obtain a pair of second-order
differential equations having three constants of integration,
the choice of these three constants can then determine a
desired end point, that is, the values of 7, 2, and 2 at some
final y.

The physical solution to the problem, then, is the pair of
second-order differential equations that are solutions of
equations (A9) with the constants of integration evaluated
so that the system goes through some desired end point.
This end point must be such as to allow the possibility of
stability. Such an end point may be written as follows:

y=0,z=2z,, and 2=0 when y=y, (A10)
which gives three conditions for the evaluation of the three
constants of integration. A stability device must still be
added to the system so that, at the point when equations

(A10) hold,

=0
and }

0

(A11)

z

Equations (A9) are symmetric in the variables y and g,
which indicates the nature of the extension for more inde-
pendent variables. Thus, if a third independent function
w exists, the original criterion would be written

J Fly, 1,1, 2,2 2w, %, w) di=minimum (A12)

This condition is satisfied under boundary eonditions similar
to equations (A8), where two additional conditions are added
on the variable w, and the following equations describe the
controlled syvstem: _

F—yF; 'ydz‘ (Fo)—gF3—zF;+ z (F)—.J"—
WwF -+ d (Fw)—uF
and any two of the following three equations:
L (A13)
'y df(Fy) T di (F;')—

d d* oy

Fom gy (F) +qp F)=0
d pya @ g
77 Tt g Fa)=0 J

The three equations of equations (A13) can then be integrated
to give three second-order differential equations where the
five constants of integration are evaluated so that the sysiem
goes through the desired value of 7, 2, 2, w, ¥ for some final
value of ¥.
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