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CONSIDERATIONS ON THE EFFECT OF WIND-TUNNEL WALLS ON OSCILLATING AIR FORCES 
FOR; TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW’ 

By HARRY L. RUNYAN and CHARLES E. WATKINS 

SUMMARY 

This report treats the e$ect of wind-tunnel walls on the 
oscillating two-dimensional air forces in a compressible medium. 
The walls are simulated by the usual method of placing images 
at appropriate distances above and below the wing. An im- 
portant result shown is that, for certain conditions of wing 
-frequency, tunnel height, and Mach number, the tunnel and 
wing may form a resona,nt system so that the-forces on the wing 
are greatly changed from the condition qf no tunnel walls. It 
is pointed out that similar conditions exist.for three-dimensional 
flow in circular and rectangu.lar tu.nnels and apparently, within 
certain Mach number ranges, in tu,lne/s of notzuniform cross 
section or even in open tun.nels or jets. 

INTRODUCTION 

The understancling of flutter and ot,her nonsteady phe- 
nomena requires a knowledge of the associated unsteady flow. 
In the underlying theories of unsteady flow, such assumptions 
as small displacements, linearizations, and an inviscid fluid 
are made in order to obt,ain workable ancl usable results. 
When it is necessary to investigate the cflect of these assump- 
tions on analytical results by measurements of the forces 
ancl moments on an oscillating wing in a wind tunnel or to 
treat cases that do not conform to theory, the question of the 
effect of the tunnel walls naturally arises. In the case of 
steady flow the problem of t,he effect of turlnel walls is more 
or less classic and has been treatecl by many investigators. 
In general, these investigators have been able to obtain 
relatively simple factors which can be used to modify 
measurements of the air forces on a wing in a tunnel to cor- 
respond to free-air conditions. The extension of t,he results 
to compressible flow presents no difficulties since the results 
for incompressible flow can be corrected according to Prancltl- 
Glauert correction factors. 

In the case of unsteady flow, Reissner, reference 1, and 
W. P. Jones, reference 2, have published papers showing the 
effect of wind-tunnel walls for the incompressible case. In 
both papers, the influence of the tunnel walls is found to be 
comparative1.y small for most cases, although indications are 
given that, for some ranges of a reduced-frequency param- 
eter, the effect may be quite large. In the unsteady case, 
unlike the steady case, the transition from results for incom- 
pressible flow to those for compressible flow cannot be accom- 
plished by simple transformations. This difficulty is a result 

of the fact that, in an incompressible fluid, the velocity of 
propagation of a disturbance is infinite and no time lag occurs 
between the initiat,ion of a disturbance and its effect at 
another position in the field, but, in a compressible fluid, a 
definite time is required for a signal to reach a distant field 
point so that both a phase lag and a change in magnitude 
result. Under certain conditions this phase lag can result in 
a resonant condition which would involve large corrections. 

The purpose of this report is to consider the effect of wind- 
tunnel walls on the forces on an oscillating airfoil of infinit.e 
span with considerations of the compressibility of the fluid. 
The usual method of images is employed in order to satisfy 
the condition of no normal velocity at the tunnel walls. 
First, the effect of tunnel walls on the incluced vertical 
velocity, hereinafter referred to as clownwash, of an oscil- 
lating doublet is determined and this result is used to for- 
mulate the integral equation for the clownwash of an oscil- 
lat,ing airfoil in a tunnel. This report is not intended to 
give numerical values or any detailed calculations of final 
t,unnel-wa.11 correction factors but mainly to show the csist- 
ing need for such calculations ancl to present. equations for 
calculating corrections for the two-climc~nsional case. 

SYMBOLS 

constant 
semichord 
velocity of sound 
tunnel height 
Hankel functions 
Mach number 
local pressure cliff erence 
time 

velocity 
clownwash or vertical induced veloci t,y 
Cartesian coordinates 

Euler’s constant 
angular frequency 
wave length 
acceleration potential 
velocity potentia,l 
fluid density 

I Supersedes NACA TN 2552, “Considerations on the Effect of IVind-Tunnel \Valls on Oscillatiw! Air Forces for Two-Dimensionnl Subsmic Compressible Flow” by ISarry L. Runynn 
alld Chnrles E. Watkins, 1951. 
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ANALYSIS 

EFFECT OF TUNNEL WALLS ON THE DOWNWASH OF A SINGLE DOUBLET 

The differential equation that governs flow due to small 
nonsteady perturbations imposed on a steady, uniform 
flow field is the wave equation. Referred to rectan,;ular 
coordinates, fixed relative to the undisturbed stre::m at, 
infinity, this equation is 

In this equation the independent variable J& may be regarded 
as either a perturbation velocity potential or as an accelera- 
tion potential. In treating the boundary conditions of the 
second section of this analysis it is convenient. to regard 1c/ 
as an acceleration potential. Thus, in order to b, con- 
sistent, $.J is hereinafter regarded as an acceleration potential. 
Accordingly $ is directly proportional to a perturbation 
pressure field and is therefore related to a perturbation 
velocity potential cp as follows: 

In order to calculate the downwash w=?$ associated with 

$, it is necessary to solve equation (2) for cp in terms of #. 
When #J and (p zlre sinusoidal functions of time, such that 

$(x, yJ>= eioV(x, Y> 

I (0(x, y,t)= eiut(p(x, y) 
(3) 

equation (2) becomes independent of time and thus reduces 
to an equation with one independent variable, namely 

This equation can bc intcgratecl with respect to x to give 

where the lower limit of iutegrntion is chosen for later con- 
veniencc so that cp vanishes far ahead of the point of dis- 
turbance. The downwash may be readily calculated with 
the use of this equation. In the absence of tunnel walls 
the retarded potential $,, (that is, t.he potential corresponding 
to outgoing waves) of a harmonically pulsating pressure 
doublet, located, for simplicity, at (0,O) that satisfies equation 
(1) is 

where H0(2) and Hlc2) are Ha&e1 functions as defined in 
reference 3, A is an arbitrary constant denoting doublet 
strength, u is circular frequency, and 8=J1-&fM2. The 
Hankel function Hlc2) in equation (6) becomes infinite 

( as&&g > 
as its argument approaches zero. Otherwise 

HLc2) is continuous and approaches zero as its argument 
approaches infinity. Thus the only discontinuity in $,, is at 
the location of the doublet, that is, at (x=0, 7~=0). 

In the presence of plane tunnel walls located parallel to the 
x-axis at H/2 units above and H/Z units below the doublet 
position, the potential fi of a pressure doublet may be repre- 
sented by the potential of an infinite system of appropriately 
chosen reflecting doublets, namely (see fig. 1) 

(7) 

In this equat.ion the term corresponding to n=O is the poten- 
tial &, equation (6), discussed in the preceding paragraph. 
It may be noted that only this term of the infinite summation 
in equation (7) gives rise to a discontinuity in # at any point 

within the tunnel 
( 

H -~~y~&-m<x<m 9 
> 

The in- 

finity of terms corresponding to n #O is necessary to cause 
the downmash w to vanish at all points of the tunnel walls, 

y= *$. 

+. 

_--------------- 

-0 

AY ,/-Tunnel wall 
I 

t 
m 

+.+ex 

H/2 

-0 

-----------_---_ 
FIGURE l.-Sketch showing reflecting system of doublets simulatiug 

two-dimensional tunnel walls. 
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The downwash along the midsection of the tunnel y=O is given by 

where 

represents the downwash associated with the pressure doublet in the absence of tunnel walls and 

w -2&a; e”w(‘-$) lim f% a2 s ’ - ~ -- 
1 V z-0 

-m gl(-W v ac2) [$Ji2+82(~-nH)2]dt (10) 

represents the additional downwash due to the presence of tunnel walls. Thus the relative value of w. a,s compared 
with wo+wl is the main it,em of interest here. 

The integrals appearing in equations (9) and (10) can be reduced to simpler form for evaluation but since the steps 
required to reduce one of the integrals are the same as required to reduce the other, only the integral appearing in 
,equation (9) will be treated in detail. The reduced form of the other integral can then be obtained by simple comparison. 
The Hankel function in equation (9) satisfies the following identity: 

.’ HOLY 
bY2 ( 

$2”pw) G --p2 & Ho(2) ($ J-)-g H,,‘2) ($@+B2y2) (11) 

Substituting this relation into equation (9) gives 

In equation (12) the first integral can be integrated twice by parts to give for w. 

By writing the integral in equation (IS) as the sum of two integrals, namely 

s:,=s:,+s,= (14) 

and making a change of variable 

the expression for w. may be further reduced to 

In the limit y=O the expression in braces in equation (16) reduces to the kernel of Possio’s integral equation relating 
pressure and downwash for the oscillating airfoil in compressible flow. (This result checks the results for this expres- 
sion given, for example, in ref. 4.) 
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The value of the integrals in equation (10) may be similarily reduced to give 

(1 V 

In general, this infinite-series representation of wl, equation (17)) converges to a finite value. However, for certain 
critical values of the frequency parameter wH/V, it is found that the value of w1 becomes infinite. This fact can be 
readily made evident by use of relations given in reference 5 where it is shown that an infinite series of Hankel functions of 
the type appearing in equation (17) can be replaced by an equivalent series of exponential functions as follows: 

~~(-l)flHo’2)[~2~~x’+(BnH)2 1 =n$l (-WHO 

If relation (18) is substituted into equation (17) the value of w1 becomes 

It may be seen that this expression becomes infinik for all 
values of x when the frequency parameter wE?/T’ has any of 
the values given by 

(m=1,2,3,. . .) (20) 

These critical values of the frequency parameter correspond 
to a condition of pure resonance in tbe tunnel which in the 
present case implies that a harmonic disturbance of any 
finite amplitude mny lead to a domnwssh of infinite 
amplitude. 

(19) 

Of course these infinite values of w, would never bc realized 
under practicable conditions because factors such as finite 
tunnel length, absorption through walls, fluid viscosity, and 
so forth that would give rise to damping n-ould make pure 
resonance unobta,inable; however, with damping present, 
resonant frequencies yielding values of wH/V in the neighbor- 
hood of those given in equation (20) would exist and it is not 
likely that quantitative agreement or even possibly qualita- 
tive agreement. between calculated and measured downwash 
(or forces) can be realized when t.he value of wH/T7 is in the 
neighborhood of these critical values. 
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It is interesting to note that the effect of boundary condi- 

tions such as section geometry, tunnel-wall flexibility, and so 
forth is to change the value of the critical frequency but not 
to do away wit*h the possibility of resonance. Also, by treat- 
ments similar to those employed herein, it can be shown that 
under idealized conditions resonance can occur in three- 
dimensional flow in both round and rectangular tunnels or 
apparently, within certain Mach number ranges, in tunnels 
of nonuniform cross section .(expanding or contracting sec- 
tion) or even in open tunnels or jets. 

which may be derived from equation (20) is shown plotted, 
for m= 1, as a function of Mach number in figure 3. Equa- 
tions (21) and figure 3 show that finite values of the critical 
frequency exist for the conditions M=O, V=O, and c# m. 
These conditions correspond to a compressible fluid at zero 
velocity in the tunnel. For these conditions equations (21) 
and the corresponding wave lengths 

The fundamental or smallest critical values of wH/V, cor- 
responding to m=l in equation (20), are shown plotted as 
functions of Mach number M in figure 2. This figure indi- 
cates that there is no finite critical value of wH/Vfor the con- 
ditions M=O, VSO, and c= ~0, which correspond to a flow 
of incompressiblei fluid in the tunnel. This result agrees 
with those found in references 1 and 2. 

The frequency parameter 

cf=(2m - l)ap (m=l,2,3,. . .) (21) 

IE 

12 

IO 

wH 
r8 

6 

I I u I I I I I I I 

.2 .4 .6 .8 1.0 
M  

FIGURE 2.-Fundamental critical values of frequency parameter wH/V FIGURE 3.-Fundamental critical values of frequency parameter wH/c 
plotted as a. function of Mach number 111. plotted as a function of Mach number M. 

x2”c- 2H 
w 2m-1 (m’=l, 2,3, . . .) (22) 

agree, respectively, with results found in the literature for 
the characteristic frequencies and wave lengths associated 
with transverse acoustic vibrations in rectangular chambers 
when the location of the source of disturbance is excluded as 
a nodal point. See, for example, reference 6. 

It may be of interest to note that equation (21) can be 
derived from the principle of standing waves as follows: The 
condition for resonance for the type of disturbance considered 
implies that the standing transverse waves have a maximum 
velocity at the midsection of the tunnel and zero velocity at 

3.2 

2.8 

2.4 

.8 

.4 .6 
M  
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the boundaries. A half-sine wave of wave length X=2H or any odd divisor of this length, namely, x’& satisfies 

this condition. If c is t,he velocity of sound in the medium and V the velocity of the mcclium, the velocity of propagation of 
a disturbance in a fixed plane perpendicular to the air flow is dm. Since the frequency is given by the speed of 
propagation divided by the wave length there is obtained 

or 

INTEGRAL EQUATION FOR AN AIRFOIL OF INFINITE ASPECT RATIO OSCILLATING IN A WIND TUNNEL 

In order t,o present equations from which tunnel-wall corrections for two-dimensional flow can be calculated, use 
is made of the foregoing analysis to derive the integral equation, relating downwash distributions and lift distribu- 
tions, for the effect of tunnel walls on the lift distribution associated with a given downwash distribution. 

The resultant pressure or local lift Ap associated with the acceleration potential of a single doublet located at (x0,0) 
with strength depending on streamwise position ;r, may be expressed simply as (compare with eq. (6)): 

iw t+s 
= -2p~i l$f A(xo)e ( > c&92 2 H,,@) 

bY 
$&-so)~+/32y2 1 (23) 

n-here A(x& denotes local doublet strength or lift density. The downwash due to a distribution of such doublets between 
x,=--6 and z,,=b is 

-1,” (z-“o) itot 
--2p?Tt 

w(x, t>=-7 eiwl lim 
I’ 

’ A(xde hl 
J’ 

I--lo e Fb2 a’ 

y-so -6 -co --9 Ho@) (p+w) (1.5 
aY- (24) 

For a given value of the lift density A(xo), this equation determines the downwash. For a given or prescribed expression 
of w(z$), the distribution of lift density must be determined. Thus, in this case, equation (24) is a form of Possio’s integral 
equation relating downwash and pressure for an airfoil oscillating in compressible flow. In passing it may be well to point 
out that Possio’s equation has not yet been solved in closed form but has been evaluated by different methods of 
approximation by several authors. Reference 4 gives a &sum6 of these methods of approximation. 

For an airfoil inside a two-dimensional tunnel the relation between downwash and lo& lift becomes (compare with 

For a given value of lift density A(x,), this equation deter- 
mines the effect of tunnel walls on the corresponding down- 
wash. For a given downwash distribution, the more 
pertinent eflect of tunnel walls on the distribution of lift 
density is obtained by comparing the solution of equation 
(24) with the solution of equation (25). In either case the 
summation in the second integral in braces in equation (25) 
is the same summation that was found in the preceding 
section to have critical values of the frequency parameter 
wH/V that cause the summation to become infinite. Conse- 
quently, evaluations of equation (25) for values of the 
frequency parameter in the neighborhood of these critical 
values would lead to the same resonant effects found in the 
treatment of a single doublet. Otherwise, for values of the 
frequency parameter not too near crit,ica,l values, it is 

(25) 

proposed that a fairly close approximation to solutions of 
equations (24) and (25) for effects of tunnel walls on lift 
density (or lift) mill generally yield results from which 
tunnel-wall correction factors for two-dimensional flow can 
be obtained. Expressions from which correction factors for 
three-dimensional flow can be obtained may be similarly 
derived when the clownwash of a three-dimensional pressure 
doublet is employed instead of the downwash of a two- 
dimensional pressure doublet. 

It appears desirable to solve equations (24) and (25) by 
collocation or some other approximate method to obtain 
tunnel-wall corrections for some particular cases of pre- 
scribed downwash and to determine experimentally the 
range, if any, of frequency parameter in which quantitative 
results can be obtained for these cases. 
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CONCLUDING REMARKS 

The important result shown is that, in a tunnel of infinite 
length containing a flowing fluid, a resonant condition 
involving a transverse oscillation of the fluid across the 
tunnel is possible and measured air forces at or near this 
condition of resonance might be greatly modified from those 
measured in free air. This resonant condition is a (simple) 
function of-Mach number,.trmnel height, and wing frequency 
and brings to attention a new type of tunnel-wall interference. 
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