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UNSTEADY OBLIQUE INTERACTION OF A SHOCK WAVE WITH ii PIiANx DISTURBANCE l 
By FRANKLIN K. MOORE 

SUMMARY 

Analysis is made of the jlow Jield produced by oblique im- 
pingement of weak plane disturbances of arbitrary prolfle on a 
plane normal shock. Three types of disturbance are considered: 

(a) Sound wave propagating in the gas at rest into which the 
shock moves. The sound wave refracts either as a simple isen- 
tropic sound wave or as an attenuating isentropic pressure wave, 
depending on the angle between the shock and the incident sound 
wave. A stationary vorticity wave of constant pressure appears 
behind the shock. 

(b) Sound ulave overtaking the shock from behind. The 
sound wave resects as a sound wave, and a stationary vorticity 
wave is produced. 

(c) An incompressible vorticity wave stationary in the gas 
ahead of the shock. The incident wave refracts as a stationary 
vorticity wave, and either a sound wave or attenuating pressure 
wave is also produced. 

Computations are presented &for the$rst two types of incident 
wave, over the range of incidence angles, for shock Mach num- 
bers of 1, 1.5, and ~0. 

INTRODUCTION 

The unsteady one-dimensional interaction of normal shock 
waves and disturbances, such as sound waves or other shock 
waves, has been studied quite thoroughly (an example is 
Kantrowitz’ paper on shock stability, ref. 1). The steacly 
interaction between normal shock waves and plane Mach 
waves has been treated by Adams (ref. 2). 

The general class of unsteady flow problems is currently 
of increasing interest, in connection particularly with sta- 
bility of high-speed aerodynamic and combustion processes. 
The effect of a shock passing through a flow field (or vice 
versa) is likely to be important in many applications. For ex- 
ample, a hot-wire anemometer intended to measure thefluctuat- 
ingfield of turbulence in a supersonic stream will actually meas- 
ure the turbulence as modified by passage through the nearly 
steady bow shock of the probe. 

Considering, for simplicity, that the flow interacting with 
a normal shock is a nonviscous field of weak disturbance, it 
may usually be considered irrotational and isentropic (such 
as produced by a moving slender body) and therefore can be 
imagined to be composed of a suitable array of sound waves. 
Another possible type of weak nonviscous disturbance would 
be a stationary, incompressible flow of variable vorticity 

(turbulence which is convected rapidly past the point of 
observation is commonly thought of in this way). 

Either of these two types of flow may be represented as a 
linear combination of plane waves (each wave either a sound 
wave or a rotational wave, depending on the type of flow 

to be represented) of various amplitudes, wave lengths, 
and orientations. Thus, if the interactive effect of a shock 
and each constituent wave may be found by a linear analysis, 
the complete problem may in principle be solved by linear 
combination of the resulting flow fields behind the shock. 
The interaction between a turbulent field and a wind-tunnel 
screen or contraction, or both, has been successfully carried 
out in references 3 through 5 by this method. 

The present report concerns the interaction of a normal 
shock met obliquely by a plane sound wave or by a con- 
vected plane vorticity wave. Since sound waves may im- 
pinge on a shock either from upstream or downstream, both 
cases are considered. The oblique interaction of a shock 
and weak vorticity wave is also treated in a current investi- 
gation by Ribner (ref. 6). 

The shock is considered to bc moving freely into gas nominally 
at rest (as in a shock tube, when wall effects are neglected). 
Of course, if the observer moves at a constant speed with the 
shock, the flow appears as that associated with a steady 
shock, under different stagnation conditions. The shock- 
tube point of view is adopted in order that there be no question 
of how the equivalent steady shock is “anchored”; that is, 
end effects on the shock are not contemplated. 

GOVERNING UNSTEADY EQUATIONS 

In the following paragraphs, the equations will be derived 
which pertain to the propagation of a plane normal shock 
wave through a gas at rest, as modified by the influence of a 
weak pattern of unsteady disturbance. 

If the shock propagates without disturbance, its instan- 
taneous position is x1=5?, in a coordinate system fixed in 
the fluid nominally at rest ahead of the shock (fig. 1). (All 
symbols are defined in appendix A.) The constant velocity 
of the shock front is V, and the corresponding constant 
velocity of the gas behind the shock is U, in this system. 
This one-dimensional motion is considered to be perturbed 
slightly by the presence of a weak field of unsteady plane 
flow. The velocity ahead of the shock is written as ul(x,y,t), 
vl(x,y,t); behind the shock as U+u,(x,y,t), v2(x,y,t). Pres- 
sure, density, and temperature are written as P-I-p, Rfp, 

I Supersedes NACA TN 2879, “Unsteady Oblique Interaction of B Shock Wave with B Plane Disturbance,” by Franklin K. Moore, 1953. 
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and e+O, respectively, where the capitalized symbols refer 
to the basic steady-shock motion, and the lower case to the 
unsteady disturbance. Throughout, subscripts 1 and 2 are 
used to specify conditions ahead of and behind the shock, 
respectively. As a result of the unsteady disturbance, the 
shock front itself undergoes a small unsteady displacement, 
given by f(y,V. Thus, the position of the shock at any 
instant is Vt+t(y,t). 

SHOCE RELATIONS 

Because of the rapidity with which changes occur across 
a shock wave, the disturbed shock may be regarded as bc- 
having in a locally quasi-steady manner; that is, in a coordi- 
nate system fixed in the shock at each instant, the usual 
Rankine-Hugoniot relations apply. Because of the disturb- 
ance, the shock is slightly oblique in such a coordinate system 
(see sketch). Because the shock is only slightly oblique, the 

\Shock 

shock relation concerning the product of velocity compo- 
nents normal to the shock front ahead of and behind the 
shock (ref. 7) may be written approximately as 

The assumption of a slightly oblique shock also provides 
that the equations of conservation of norma. energy and 
mass, respectively, may be written: 

; (v+m42+~ (eI+eJ= 

a("-U+E,-ul)z+~i(e,+s?) (lb) 

(R,+PI)(T-+51-ul)=(R2+P,)(T,‘--+F,--u2) UC) 

The remaining oblique shock relation states that the velocity 
component parallel to the shock is unaltered by passage 
through the shock. Because the shock is assumed to be only 
slightly oblique, this relation is, approximately, 

or, 
(14 

The shock relations for the basic undisturbed shock propa- 
gation are obtained from equations (la), (lb), and (lc), 
with small quantities neglected: 

GM 

Terms of equations (la), (lb), and (lc) which are of first 
order in small quantities yield the conditions which the dis- 
turbance field must satisfy at the shock: 

PlV+~1(4‘t--u,)=P2(T’-U)+Rz(El-u2) (3c) 

Equations (2), the state equation 

P= JR0 (basic flow) 1 

$=i+i (perturbation flow) 
1 

(4) 

b I XI 
I 

t Vf d 
.-i 

Position of shock front if --” “--lnstontoneous position of 
there were no disturbonce disturbed shock front 

FIGURE l.--i\‘ot.ation for shock wave propagating into a region of 
weak dist,urbance. 

and the assumption that the incident flow ahead of the shock 
is isentropic permit equations (3) to be simplified, yielding 
the following set of disturbance shock relations (eq. (Id) is 
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also included), which relate the disturbance fields ahead of 
and behind the shock: 

(54 

(5b) 

(5c) 

(54 

where the coefficients are constants depending on the Mach 
number of the undisturbed shock M=.V/a,: 

j-+-L2 
Y+1 M2 ( 1-y-l TM2 

> 

B2zY-’ 2 __ -~ 
-y+1 rA4? 

Cl,=-” 
I+?-$ J,f2 

(6) 

EQUATIONS OF PLANE DISTURBANCE FIELD 

In addition to the perturbation shock relations (eqs. (5)) 
which are concerned with the compatibility at the shock of 
weak disturbance fields ahead of and behind the shock, the 
equations satisfied by the disturbance fields themselves are 
required. The nonviscous equations of motion are written 
in a coordinate system at rest relative to the gas ahead of or 
behind the shock. That is, the following equations apply 
in the coordinate system of figure 1 for the disturbance field 
ahead of the shock, and in a coordinate system moving with 
velocity U, for the disturbance behind the shock. Subject 
to interpretation of the coordinate system, the same equa- 
tions apply in both regions, and therefore the subscripts 1 
and 2 are omitted for the time being. To first order in small 
quantities: 

Momentum: 

3 

Continuity: 

Energy: 

State: 

P ,+Rh,+v,) =O (8) 

c,Re,+p(u,+v,)=O (9) 

These equations may be combined to yield the equation for 
the pressure disturbance: 

[$-a2 (&+g2)] p=O; a2-g w-3 

the equation for the entropy disturbance (which may be 
shown to be proportional to (p/P) --y(p/R)): 

(11) 

and the equation for the vorticity (u,--u!,) of the disturbance 
flow: 

(12) 

Thus, the pressure disturbance satisfies the wave equation 
(lo), and any entropy variation (eq. (11)) or vorticity varia- 
tion (eq. (12)) is steady, relative to the main flow. Any 
disturbance field satisfying these linear equations may be 
regarded as composed of two parts, one steady and the other 
unsteady, in a coordinate system at rest in the main flow. 
From equations (11) and (12), variation of entropy and vor- 
ticity may be assigned to the steady flow; and from equation 
(8), the associated velocity components satisfy the incom- 
pressible continuity equation. From equations (7), pressure 
variations must be assigned to the unsteady flow, satisfying 
the wave equation (10). The unsteady portion of the flow 
may then be regarded as produced by a pattern of sound 
waves. A weak nonviscous disturbance field may therefore 
be considered to include: 

1. An unsteady, isentropic, irrotational disturbance, which 
may be regarded as produced by a pattern of sound waves, 
and 

2. A steady rotational disturbance of constant pressure 
and (in general) variable entropy ancl density. 

TYPES OF INITIAL DISTURBANCE CONSIDERED 

The present analysis concerns the interaction of a shock 
wave with three types of initial plane clisturbances: 

A. SOUND WAVE OVERTAKEN BY SHOCK 
The shock moves into a region in which a plane sound 

wave is propagating in a direction oblique to the direction 
of shock propagation (fig. 2(a)). Since the shock velocity is 
supersonic relative to the gas ahead, it will overtake the 
sound wave, whatever its direction of propagation. The 
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solution for the interaction of such a wave with a shock may 
in principle be generalized by linear superposition to pro- 
vide analysis of the passage of a shock through any isen- 
tropic field of small disturbance. 

A general plane sound wave may be represented as follows 
(the particular profile of the wave need not be specified): 

$= Alf ( 
mxl--ly+alt 

x1 ) 

+=A,f ( mx,-ly+aJ x 1 ) 
g=Asf ( 

mxl--ly+ad 
1 

x 1 ) 

(12aJ 

@=AJ 
mxl--ly+alt 

1 x1 >J 
where 

l=sin fiI; m=cos gbl (13) 

and x1 is a length characterizing the scale of the disturbance. 
If the function f were a sine wave, X1 would be equivalent 
to the wave length. By equations (la), (ll), and (7), 
respectively, 

ZA1= -mA, 
1 

&=Y& L (12b) 
A,=--$ A, 

1 

The disturbance is of the type 1 discussed in the previous 
section (unsteady, isentropic, irrotational), and is longi- 
tudinal; that is, the fluctuating velocity component is in the 
direction of propagation of the sound wave. 

B. SHOCK OVERTAKEN BY SOUND WAVE 

The sound wave propagates relative to the fluid behind 
the shock, in such a manner as to overtake the shock (fig. 
2(b)). Thus, consideration will be restricted to cases for 
which -a2 cos &,> TT- U. The initial disturbance may be 
specified in a manner similar t,o that employed for the pre- 
ceding case. 

The subscripts 1 and 2 have been introduced to clenote the 
flow ahead of and behind the shock, respectively. In the 
present problem, the entire flow disturbance occurs behind 
the shock. The subscript 2 is therefore appropriate to both 
the incident and reflected waves, which will hereinafter bc 
clistinguished by second subscripts 1 and 2, respectively. 

u+EA,J(mx2-~y+alt) 
21 , 

mx,-ly+a,t +=A2.f (PA 
21 

$$=As.f ( 
mx,--ly+ad 

2 x 21 ) 

0 44 

Pertinent equations of motion provide, as before, 

LA1 = - mAz 

As= Y-4 
1 

AI=-m:GA3 
J 

0 4b) 

The coordinate system xz,y is fixed relative to the flow behind 
the shock. 

C. STATIONARY VORTICITY WAVE OVERTAKEN BY SHOCK 

The shock moves into a region occupied by a stationary 
plane shear disturbance of constant density, oblique relative 
to the shock front (fig. 2(c)). A system of such waves may 

(a) Shock overtaking sound wave. 
(b) Sound wave overt,aking shock from behind 
(c) Shock overtaking stationary shear wave. 

FIGURE 2.-Types of initial disturbance considered. 

be employed to represent a turbulent field (refs. 3 and 4). 
Therefore, the effect of the passage of a shock through a 
single oblique shear wave may in principle be generalized by 
Fourier superposition to provide an analysis of the passage 
of turbulence through a normal shock. 

The incident vorticity wave, of arbitrary profile, may he 
representfed as follows: 

From equation (g), 
mAl=lAp 

(15) 

(16) 

The disturbance is therefore a special case of the type 2 
discussed in the previous section (a steady vorticity disturb- 
ance of constant pressure), and, by continuity, must be 
transverse; that is, the fluctuating velocity component is 
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parallel to the plane of the shear waves. Since the wave is 
transverse, there may be a component of velocity disturbance 
parallel to the shock (perpendicular to the plane of fig. Z(b)) 
which may be of arbitrary amplitude. 

This type of interaction (problem C) is treated in refer- 
ence 6. 

ANALYSIS OF INTERACTION BETWEEN SHOCK AND 
IMPOSED DISTURBANCE 

THREE TYPES OF REFRACTION AT SHOCK 

It has previously been shown that the equations of motion 
imply that any weak disturbance field may be divided into 
two parts: an unsteady isentropic irrotational field, and a 
steady vorticity disturbance. This point of view may be 
adopted with regard to the disturbance downstream of the 
shock, produced by the interaction. 

Simple refracted sound wave-problem A.-In the case 
of a sound wave overtaken by a shock (problem A of the 
previous section), it would seem reasonable to expect that 
for +I near either 0 or r (fig. 2(a)), the isentropic part of 
the downstream field would simply be a refracted sound 
wave traveling away from the shock. This is indicated by 
the sequence of events shown in figure 3 (a). At time il, 
the initial wave intersects the shock front at point PI. At a 
later time tz=tl+ at, the sound wave has moved a distance 
a, at, the shock has moved a distance Vst, and the intersection 
occurs at point P,. In the meantime, a cylindrical sound 
wave has been generated at point P, as a result of the shock 
interaction and expands with velocity a2, while being con- 
vected with a velocity U. Thus, at time t2, the effect of the 
intersection at t1 is felt within a cylinder of radius a26t, with 
center at point Q?. According to figure 3 (a), an cnvelopc is 
formed and may be identified as a simple refracted sound 
wave. 

Attenuating refracted pressure wave-problem A.- 
Figure 3(a) is drawn for a rather small value of &. If $Q is 
increased, there appears a critical value Gcz (fig. 3(b)) bc- 
yond which no envelope may be drawn. Thus, when I/+>$~~, 
t,he influence of intersection P, is felt at P2 before the inter- 
section arrives at P,. However, as $I is further increased, 
there appears another critical angle tic, beyond which simple 
envelopes may again be clrawn (fig. 3(d)) and simple sound 
wave refraction occurs. 

When *‘cl<$~<ticu, the clownstream pressure disturbance 
cannot be a simple sound wave. The cylindrical sound 
waves produced by the interaction at the shock do not 
coalesce, but rather continue to expand independently, thus 
diminishing in strength as time progresses. Accordingly, the 
isentropic part of the downstream disturbance may be ex- 
pected to die out at large clistances downstream of the shock. 
This attenuating disturbance may, however, be expected to 
remain planar, because both the incoming clisturbance and 
the shock are plane. This attenuating wave has been called 
a pressure wave rather than a sound wave, because, as will 
be shown subsequently, it does not propagate at the local 
velocity of sound. 

Expressions for $cI and ticU in terms of shock Mach number 

may be obtained from the following equation derived by 
inspection of figure 3(b): 

uz2- (V- ?7)2= (V cot tic+@ csc #J2 (17) 

The solution of this equation is shown in figure 4, labeled 
“sound wave.” The curves labeled “stationary vorticity 
wave” will be discussed subsequently. The curves both 
approach a value of 180° for M= 1, and have a half-order 
singularity there. As M+- QD, the curves become symmetric 
about &=9W’, because a, becomes insignificant compared 
with V. The limiting value of $C/eL is 67.8“. 

Steady vorticity wave-problem A.-If a vorticity disturb- 
ance is created at the shock-disturbance intersection (fig. 3) 
and is thence convected with a velocity U, a vorticity wave 
appears along the line coMecting P2 and Q2, whatever the 
value of #1. 

Thus, of the three types of refractions discussed, the 
“steady vorticity wave” always appears, in combination 
with either a “simple refracted sound wave,” or an “at- 
tenuating pressure wave”, clepending on the angle &. 

Vortlcity ,j 
wave- , 

(a) 

‘I f2 

(cl 

(b) 

Vorticity 
wave,- 

\ I 

sound wave 

(d) 

FIGURE 3.-Formation of waves behind shock, because of interaction 
with sound wave (problem A). 
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Expectations for problem B.-In the case of the shock 
overtaken by a sound wave, it may be shown in constructing 
figures similar to figure 3 that a simple reflected sound wave 
will always occur, in conjunction, of course, with a steady 
vorticity wave. 

Expectations for problem C.-In the case of the shock 
overtaking a stationary shear wave, sketches may be drawn 
similar to those presented in figure 3, except that the incident 
wave does not move in the time interval 6t. The qualitative 
character of the downstream disturbance is expected to be 
the same as for problem A. Despite the fact that the initial 
disturbance is not a sound wave, sound waves are produced 
by the interaction and form envelopes when O<J/1<Ic/c2 or 
J/cu<$LI<~. In this case, the values of tica and ticU are ob- 
t,ained from equation (17) with the term involving a, omitted. 
The solution, which is presented in figure 4, is symmetric 
about fi1=900, approaches 90” at M=l with a half-order 
singularity, and has the same asymptote at M= m as in 
problem A. As in problem A, when J/cL<+l<~cU, an attenu- 
at.ing pressure wave occurs, and for all values of &, the steady 
vorticity wave appears. 

The foregoing discussion may be summarized as follows: 
In case A, the incident sound wave refracts, as either a 
simple sound wave or as a more complicated attenuating 
pressure wave, and an oblique steady wave of variable 
entropy and vorticity appears. In case B, the incident 
sound wave reflects at the shock as a simple sound wave, 
and a steady vorticity wave appears. In case C, the initial 
“vorticity wave” refracts to form a stationary vorticity 
wave in which, because of the action of the shock, the entropy 
also varies. In addition, a sound wave, or pressure wave, is 
produced by the interaction. 

SOLUTION OF PROBLEM A 

In the problem of an oblique plane sound wave overtaken 
by the shock, there are two different solutions to be ob- 
tained-one for O<$l<$cl and $cU<#l<?r and another for 
~Cl<5h<9CU. The first is the simpler and will be presented 
first. 

Solution when O<&<ficc or tio<&<r.--The initial clis- 
turbance ahead of the shock is described in equations (12) 
and (14). The discussion of the prececling section has es- 
tablished that, in these ranges of fil, the pressure variation 
behind the shock is associated with a simple sound wave. 
Accordingly, the disturbance pressure is written 

ax2+Py+a2t g=Kf( x 
2 2 

) (18) 

where K, (Y, p, and x2 are to be determined. In order that 
the pressure satisfy the wave equation (lo), 

a2+fi2= 1 (19) 

Equation (1s) is written on the assumption that the profile 
of the pressure clisturbance carries through the shock un- 
distorted, though its orientation, magnitude, and scale may- 
change. This assumption may be regarded as a trial, the 
correctness of which is inferred from the self-consistency of 
the entire solution so obtained, 

1 

In view of the requirements of the shock relations (eqs. 
(5)), the arguments of the downstream pressure wave (eq. 
(18)) and the initial wave (eq. (12)) should match. At the 
shock, x1= Vt and x~= (V- v>t. The matching requirement 
therefore is 

b(V-WSa21 t+Py=hV+aJt-Zy 
x2 x1 (20) 

Equating coefficients of y and t yields 

where 
r= u/v 

(21) 

(22) 

Equations (19) and (21) yield a quadratic equation fol 
X2/X1, the meaningful solution of which is 

where 
n=llm= tan til (24) 

ISOg 
I I I I I 

Jr 
\ 

cl _. -- I--- 

601 
/- 
2 3 

Shock Moth number, I+/, E; 
6 7 

FIWRE J.-Critical angle of incident wave for forrnat’ion of refracted 
sound wave behind shock. 
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The other solution corresponds to a wave moving in the 
same direction as the shock and is rejected. (Inspection of 
fig. 3(a) shows that two families of envelopes might be indi- 
cated mathematically, and that only one is physically sig- 
nificant.) Thus, the inclination and scale of the pressure 
wave are fully determined, and only the magnitude K re- 
mains to be found. 

The vortikity Gave will also be assumed to have a profile 
given by the function f. In view of equation (12), its argu- 
ment can be a function only of z2 and y, and must further- 
more match the argument of the incident wave at the shock, 
in order that the shock relations may be satisfied. At the 
shock, the argument of the incident wave is given by the 
right-hand side of equation (20). Also, t=x2/(V- v), at the 
shock. The argument of the vorticity wave must therefore 
be 

m-!-l/M 
l--r x2--lY 

x1 (25) 

The inclination and scale of the vorticity wave arc thus de- 
termined. 

The density fluctuation behind the shock consists of two 
parts-one part associated with the pressure fluctuation to 
form the sound wave, its magnitude determined by equation 
(11) ; the other part associated with the vorticity wave. Thus, 

Likewise, the velocity components each consist of two 
parts, the first. associated with the sound wave and the set- 
ond associated with the vorticity wave. Acrortlingly, 

$=Ff ( 

+"f ( 

(23 

mf l/M 
l-r x2-ly 

Xl 
(2% 

The requirement that all terms in the shock equations (5) 
have the same functional form and the same argument 
suggests that 

&=VL.f 
(m+ l/M) Vt-ly 

x1 1 
n 

p4u=l+l/mM 
(m+lliM) Vt--lY 1 

(29) 
x1 

(Cross-differentiation shows that these two equations are 
compatible.) 

The solution is completed by the algebraic determination 
of the various unknown constants. The coefficients F ancl 
H may be found in terms of K through equations (7) ; I may 
be found in terms of G from the incompressible continuity 
equation. The remaining unknowns K, Q, G, and L may be 
successively determined by use of the four shock relations 

(eqs. (5)) when it is recalled that the arguments of all quan- 
tities have been arranged to match at the shock. Neither 
the details of the remaining procedure nor of the final solu- 
tion are particularly interesting, and therefore the analysis 
has been completed in appendix B. The numerical results 
will be discussed in a subsequent section. 

Form of attenuating pressure wave when~~#~I<#l<#GU.-It 
is intended to form the solution for this range of $1 in essen- 
tially the same way as was done in the preceding paragraph 
An essential step in that solution was the assumption tha 
the refracted sound wave has the same profile as the initial 
disturbance. Therefore, in order to proceed with the analysis 
of the case +/cz<#l<#~Ur it is first necessary to determine the 
form of the pressure disturbance just behind the shock and 
the manner in which it attenuates with distance behind the 
shock. 

Tentatively, the pressure is written as a function of two 
variables only: 

where 

Tj Es -; [x2-(V--u)1] 
i=$ (ax*+PY+cw I 

(30) 

(31) 

and the constants d, Q, fi, and c require determination. The 
variable 11 is proportional to distance behind the shock front, 
--22+ (V- Lqt. Neither the undisturbed shock front nor 
the incident wave has curvature. Therefore, it is expected 
that along any one of a family of planes moving with con- 
stant velocity, any variation of pressure would be due solely 
to the attenuation associated with distance behind the shock. 
This consideration leads to the definition of the second vari- 
able <, such that the equation <=constant defines a plane 
moving obliquely with a constant velocity. 

The wave equation (10) is satisfied if 

(&+$) j&o WW 

a=-$ (1 -T)C (32b) 

$ [d2(1 -r)“-c2]=d2-(a2+p2) (324 

The boundary conditions to be appliecl in solving La- 
place’s equation (32a) are 

(33) 

ancl a condition (eq. (5~)) at the shock providing compati- 
bility with the initial disturbance. In the following discus- 
sion, this information will be used to infer a likely form for 
the pressure wave. 

Part of the downstream velocity variation is associated 
with the pressure to form an isentropic irrotational flow. 

I._ -- 295189-54-? 
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For this part of the disturbance field, a velocity potential 
(p(v,{) may therefore be defined such that 

Wa) 

P v2=py=- cpr 
x1 

In view of equations (7) and (34), 

g grad ‘p= -k grad p?; gf= --cpl 
2 

Therefore, 

(34b) 

(34c) 

In the case of the simple sound wave, compatibility at the 
shock was obtained by supposing that the profile of the dis- 
turbance (the functionf) carried through the shock undis- 
torted. In the present case, the corresponding assumption 
would be that, just behind the shocB at q=O, the various 
disturbance quantities each contain a term proportional to 

f(c) and that { should therefore match the argument of the 
initial disturbance at the shock. From equation (34b), if 
Q(O,{) is to contain a term proportional to f(l), then the 
potential must contain a term proportional to 

v(1) = 1 -- 
7r s 

-0, J(7) tan-l + dT 

which satisfies equation (32a) and hence the wave equation, 
satisfies boundary condition (33), and has the property that 
qr(‘) (OJ) =f(<). This solution may be regarded as the result 
of a distribution of singularities along the plane of the shock 
(v=O). In the skew coordinate system o,<, these singulari- 
ties may be identified as potential-flow vortices. Therefore, 
from equations (34a) and (34c), u2 and p, would each contain 
a term linear in f(c) at the shock and, in addition, a term 
linear in 

where P.V. denotes the Cauchy principal value of an im- 
proper integral. 

Of course, vz would likely contain a term linear in g(l) at 
the shock also, and therefore the potential would have an- 
other part 

@I=-1 2g s _S_.iWW++ r>‘ld7. 

satisfying equations (32a) and (33), and having the proper- 
ties: 

‘pr’7’ w> =.do ; PvC2) Ku> = -f(r) (35b) 

This solution may be regarded as a distribution of potential- 
flow sources along the plane of the shock in the v,{ system. 

Thus, the quantities associated with the attenuating pres- 
sure wave may tentatively be written in the following form: 

(36) 

where 

1 (37) 

and the constants K(l) and Kc2) require determination. At 
the shock, equations (35) and (36) provide that: 

@+KWf(j-)+K’*)g({) 
2 

Examples.-(a) If it happens that f@)=sin 2rrc, then 
g(l) =cos 2~{, and 

c@(l) =e-*W sin 27q+ 

Thus, 
E=e-*Tv[K(l) sin .zT{+K@) cos ZT{] 
P2 (3% 

and, therefore, the disturbance undergoes a phase shift in 
passing through the shock and subsequently attenuates ex- 
ponentially with distance behind the shock. 

(b) If f([)=(l$[*)-‘, then g([)=-{(1$[2)-1 (see ac- 
companying sketch), and 

1 
g=(l+tl)‘+Tz [K’l’(l +T)-K”’ i-1 

Solution when tiGJ< til<tio.--The form of the pressure 
wave has been adduced in the previous paragraph (eq. (36)). 
The quantities d, CY, /3, and c may be found by using equations 
(32) and the requirement that the disturbance function f 
have the same argument ahead of and behind the shock. 
At the shock, x1= Vt, x2= (V- U)t, this requirement leads to 
the equations 

/3=-l (3W 

m+l/M--c 
a=-l-) 

Equations (32b) and (39b) yield 

c= m+llM 
l-5 (l-r)2 

and equation (32~) may be solved for d: 

(3 gc> 

I V2 
-2 c’+a*+l” 

d= a2 

1-s (1-r)2 
(3 94 

The vorticity wave is expected to involve a linear combi- 
.---.- I 
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nation of the profile functions f and g, just behind the shock, 
and is not expected to change its form subsequently, because 
it is not time-dependent in the xz,y coordinate system and 
therefore cannot attentuate, as does the pressure wave, or 
otherwise change character. A matching procedure at the 
shock yields, as previously, the argument given in expres- 
sion (25). 

The remaining analysis parallels that following expression 
(25) in the paragraph Solution when O<#I<#cl or #cU<#l<r. 

m+llM 
!-+$ ?+ Q”’ f l--r x2--lY x2--lY 

Xl 

m+l/M 
l-r x2--LY 

+l’@‘l +$V2’&2’+@‘)f __. 
Xl 

m+l/M 
l-r x&y 

Gc2) g 
Xl > 

m+l/M -~ 
l-? x2-ly 

+pl’~~l’+$p~~pc~~ +I(l)f -+ x1 > 
m+l/M 

l---r x2--lY 
I (a g 

Xl > 

(40) 

(41) 

(42) 

--EU= &M;l 
m+ l/M)Vt-ly 

Xl -1 + 

L(2)g (m+l/M>Vt--ly 1 Xl 1 j (44) 

The various unknown constants remain to be determined 
algebraically through equations (7), the incompressible con- 
tinuity equation, and the shock equations (5), as before. 
These equations suffice to determine a greater number of 
constants than were required in the previous case because 
the functions f, g, a(‘), and a(‘) and their derivatives form 
two separate groups of functions whose coefficients may be 
separately equated. Details of this procedure are provided 
in appendix B. 

SOLUTION OF PROBLEM B 

The analysis of problem B (sound wave overtaking shock 
from behind) is identical in all essential respects to that of 
problem A when only a simple refracted sound wave is in- 
volved. The only differences which arise are the slightly 
different matching of arguments at the shock and a slightly 
different form assumed by the shock relations (5). 

The equation (18) is adopted in the present case to rep- 
resent the reflected sound wave. Matching the argument of 
this expression with that of the initial disturbance (eq. (14)) 
yields 

& { [aV(l-r)+a&+py}=k { [mV(l---T)+a2l~---Ey~ (45) 

whence, 

1 x22 
a=i=r x,, i [ 

m(l-r)+$ --; 1 3 (464 

Equations (19) and (46) provide a quadratic equation for 
x22/~21, the useful solution being: 

x 22- 
$--(I -r)” 

x”-(1 -r)2+2 t$ m(l -r)+$ 
(46~) 

The other solution is x2Jxz1= 1, corresponding to the incident 
wave itself. 

The right side of equation (45) is used as the argument in 
the expressions for ~~ and &,: 

b=VL.f{ [mV(1--r)+a21~-~y} 

+-!L - Lf{ [mV(l-r)+u2]t-ly} (47) 
l-r+& 

1 

The right side of equation (45) also yields the argument of 
the vorticity wave, when the substitution t=x2/(V- U) is 
made: 

[ mf- V(lui r) 1 x2-ly 

X21 
(4% 

Equations (26), (27), and (28) may be adopted to complete 
the description of the flow, except that expression (48) must 
be used for the argument of the vorticity wave. The analysis 
is completed in appendix B. 

SOLUTION OF PROBLEM C 

The only differences between problem A ancl problem C 
(stationary vorticity wave overtaken by shock) involve the 
shock equations (5) and the matching of arguments at the 
shock. The difference in matching is due to the fact that in 
the present case, the disturbance is stationary, while in prob- 
lem A, the clisturbance moves with velocity a,. Accordingly, 
when O<#l<#cl, equations (18), (21), (23), and (25) through 
(29) apply directly to the present case if the quantity l/n.1 
is omitted wherever it appears explicitly. When ~cl<~l<~cu, 
equations (36), (37), and (39) through (44) may also be 
adopted, again by omitting terms proportional to l/&f. The 
remaining cletails of the analysis are provided in appendix B. 

As previously mentionecl, an initial disturbance of type C 
may have a third fluctuating velocity component parallel to 
the shock, which might be represented as follows: 
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(see eqs. (15)). The amplitude A, is arbitrary, within the 
limitations of linear analysis. This clisturbance will pass 
through the shock unaffected and become part of the steady 
vorticity wave behind the shock. Thus, 

The shock front itself will not be aflcctecl by this purely 
transverse disturbance. 

SINGULARITIES AT $.I AND $c. 

Equation (23), which applies in the refracted sound-wave 
solution, contains a radical which vanishes at tic2 and ficU, 
and becomes imaginary when #cZ<+1<$6U. It may be shown 
that the quantity under the radical vanishes with a nonzcro 
slope. Accordingly, the quantit.y X,/X,, though finite, has a 
half-orcler singularity at ticl ancl #CU. Furthermore, this 
quantity is involved in all the formulas characterizing the 
refractecl sound wave (see appendix B). In the range $cL 5 
$1 I tie*‘, the attenuation coefficient d (eq. (39d)) vanishes 
with half-order singularities at $,Z and #,, and si.milarly 
affects the rem.aincler of the analysis. 

The reason for this singular behavior may bc inferrecl from 
figure 3. According to figure 3 (a), when O<$l<lc/cl, the 
refractecl sound wave is the envelope of an Lmagined succes- 
sion of cylindrical waves, as shown in the following sketch. 

Refracted 
Shock Shock 

At #cl, however, according to figure 3(h), the cylindrical 
waves all meet at a comm.on point of tangent\-, as shown in 
the sketch. Therefore, successive waves reinforce at ona 
point, giving a singularity of the flow. This singularity, of 
course, depcncls on the fact that the theory is linear. An 
exact analysis would presumably show steep, though not 
singular, flow gradients. 

This situation is si.milar to that arising in the lincarizccl 
analysis of compressible flow about bodies: as the Afach 
number of the flow approaches 1, the 1Iach waves have a com- 
mon point of tangency at the nose, and the wave drag shows 
a reciprocal half-orcler singularit\- in 1Sach number. In the 
present case, the physical quantities remain finite, but have 
infinite rates of variation with G1. 

The preceding cliscussion applies to problems A and C, 
but not to B. 

RESULTS AND DISCUSSION 

In the following paragraphs, the results (prescnt,cd in 
graphical form) will be clcscribccl for problems A and B. 

Results for problem C are presented in reference 6. The solu- 
tion for each problem has essentially three elements: 

1. Disturbance of the shape of the shock front 
2. Characteristics of the isentropic pressure wave behind 

the shock 
3. Characteristics of the steady vorticity wave behind the 

shock. 
Computations have been carried out for three Mach num- 

bers, 1, 1.5, and infinity. Of course, the case M=l is really 
degenerate, because the shock is then a weak sound wave, 
and therefore the interaction with the incident disturbance 
is obtained by linear superposition, the initial disturbance 
passing through the LLshocl~” with no change. Also, M=l 
is a singular point, because the range of angles of incidence 
of initial disturbance for which the attenuating pressure 
wave appears in problems A and C vanishes with a half-order 
singularity (fig. 4), and in problem B, because the inciclent 
wave is unable to overtake the “shock” moving with sonic 
velocity. 

The results will show that the critical angles fiGl and #cU 
are also singular points. In many instances there are not a 
sufficient number of points near the singular points for which 
computations have been macle, so that not all the curves can 
be faired with complete confidence. For this reason, the 
computed points are shown circled, so that the basis for the 
fairing will be clear in each case. 

No m.ention will be made of the temperature disturbance 
behincl the shock, which may be obtained directly from equa- 
tion (4) if the pressure and clensity disturbances are known. 

All disturbance quantities found by the linearized analysis 
of the present report will be proportional to the intensity of 
the incident wave. Therefore, results are divided by the 
pressure amplitude of the incident wave A, (see eqs. (12a) 
and (14a)). 

PROBLEM A-SHOCK OVERTAKING SOUND WAVE 

1. Shock front disturbance.-In figure 5 are shown the 
amplitucles L(l)’ EL(~)/& and L (*)’ EL(‘)/& of the incre.mental 
velocity of the shock front, clue to the interaction. From 
equations (29), (43), and (44) these amplitudes are associ- 
atcd, respectively, with the functions f (which defines the 
profile shape of the incident wave) and Q (which is an addi- 
tional profile function arising when I/~~<$~<$~~) to give the 
actual incrcmcntal velocity. The variations with fil are 
quite extreme, particularly at the critical angles, .where, in 
fact, there are half-order singularities. The variations with 
1Inch number are equally scvcre. 

When &=O (incident wave moving parallel to and toward 
the shock), the figure shows t.hat the shock front is retarded 
by a pressure wave. In the case iVf= 1, this is because the 
velocity in an incident compressive sound wave, relative to 
which the shock (really a weak co.mpression wave) propa- 
gates as it m.oves through the disturbance, is directed against 
the shock. When the inciclcnt compression wave moves in 
the samr direction as the shock (Gl=a), the shock front is 
speeded up for 10-w shock 1fnch numbers; at Al= 1, this is 
true because the incremental velocity clue to the incident 
wave is in the same direction as the ‘Lsliock” movement. 
Whothcr &=O or 7r, there is a smaller accelerating effect due 
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PI 

8 1 -8 I .- 
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a 

FIGURE 5.-Problem A: shock front disturbance (shock overtaking 
sound wave): 

to the higher velocity of sound in the incident compression 
wave-that is why the curve for M=l is not perfectly 
antisyrnmetrical about I,!J~ = 3r/2. 

When M= 0, the curves are symmetrical about $Q= P/Z 
because the incremental sound-wave velocity is vanishingly 
small compared with the shock velocity. 

For each value of M there is a value of & for which the 
shock intersects the incident sound wave permanently at 
one point on the traveling wave, and the problem becomes 
essentially steady, so that the increment in shock velocity 
vanishes (though a steady displacement occurs). This hap- 
pens when ul=-7nV or fi.l=sec-l(-M), yielding 131.8O 
when M= 1.5, and 90’ when M= 03, and is the case of 

360 

320 

Y f’ 
r Pressure wave 

% 
Lw- ,I 

I” I 

.i 7 
I , ‘I 

280 I 

80 

0 20 40 60 80 100 120 140 
Inclination of incident wove, $, deg 

160 10 

FIGURE 6.-Problem A: inclination of refracted pressure front. (shock 
overt,aking sound wave). 

steady interaction of a Mach wave and a normal shock which 
has been treated by Adams (ref. 2). 

2. Characteristics of pressure wave.-(a) Inclination of 
refracted pressure front: Figure 6 shows the angle between 
the directions of propagation of the shock and the refracted 
pressure wave behind the shock. In view of equations (18) 
and (31), this quantity is given by the equation 

Of course, when $‘E1<$l<$eu, this wave is not a sound wave, 
and the inclination shown refers to a front parallel to which 
physical quantities depend only on distance behind the shock. 
Outside the range ficl<$l<$cU, the pressure wave is a sound 
wave. When M= 00, the curve is symmetrical about #I = 7r/2. 
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FIGURE 7.-Problem A: attenuation of pressure wave behind shock 
(shock overtaking sound wave). 

(b) Coefficient of attenuation of pressure wave: Figure 7 
shows the coefficient d which appears in equations (31) and 
(39d). This quantity vanishes at 1c/cz and #cU, indicating that 
the sound-wave solution and attenuating wave solution meet 
continuously at the critical angles. When M is either 1.5 or 
m, the maximum value of d is about 1. This implies a 
rather rapid attenuation-if f(c) =sin 27r{, it has been shown 
(eqs. (38)) that the wave attenuates as erp(-27rt). From 
the definition of t (eq. (31)); when d=l, the attenuation 
factor becomes e-l at a distance behind the shock approxi- 
mately equal to 112~ times the wave length of the incident 
sound wave. 

(c) Propagation velocity of pressure wave when 1,4~~<#~< 
GcU: Figure 8 shows the quantity c of equations (31) and 
(39c), combined with other quantities to give propagation 
velocity as a fraction of the speed of sound CL,. Since the 
solution when +Cz<+l<IC/GU meets the sound-wave solution 
continuously, the propagation velocity is equal to the speed 
of sound at #cl and #cU. The change of sign of c is taken 
into account in figure 6 by the 180° shift of direction shown 
at the angle for which c=O. 

(d) Ratio of scales of pressure waves behind and ahead of 
shock: Figure 9 shows the quantity X2/X1 (eq. (23)), which 
was defined o&y for the sound-wave solution. However, 
inspection of equation (31) shows that the equivalent quan- 
tity when #,l<+l<+/eu is (cx+P’)-~/~. 

The reversal of sign of X2/x1 signifies a reversal of the direc- 
tion of propagation of the pressure wave relative to the shape 
of the incident wave. For example, when 11/1 = 0, the incoming 
and outgoing waves might appear as follows: 

m,,- y:“;;:-;;;-“~“’ /L\ 

j_ ShOCk 

whereas when $*=a, they would appear thus: 

u -1.61 I I I I I I I I 
60 70 80 90 100 II0 120 130 140 I50 160 170 180 

Inclination of incident wove, $,, deg 

FIGURE S.-Problem A: propagation velocity of pressure wave behind 
shock (shock overtaking sound wave). 

40 60 80 100 120 140 
Inclination of incident wave, I),, deg 

160 180 

FIGURE 9.-Problem A: ratio of scales of pressure wave upstream and 
downstream of shock (shock overtaking sound wave). 

The difference between these two cases consists of a difference 
in sign in the arguments of the refracted wave in the two 
cases, and arises formally in the present analysis as a change 
in sign of X2/X1. 
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: I.6 

1.6 

20 40 60 80 100 120 140 
Inclination of incident WOVB, +,, deg 

160 180 

FIGURE 10.TProblem A: amplitudes of pressure disturbance behind 
shock (shock overtaking sound wave). 

When M=1.5, the magnitude of X,/X, is greater for &=r 
than for &==O, because, when the incident wave is traveling 
in the same direction as the shock, the shock requires a 
longer time to traverse the incident wave than when the two 
waves travel in opposing directions. 

(e) Amplitudes of pressure disturbance behind shock: 
Figure 10 shows the coefficients (of f, or of @(I) and @(*) 
when $cL<3/l<$c,J which describe the pressure wave behind 
the shock: K(1~2)‘=K(1~2)/A3 (see eqs. (18) and (36)). As in 
figure 5, the flow is shown to be singular at the two critical 
angles and to vary markedly with both & and M. At 
M= 1.5, near &=P, the refracted sound wave is seen to be 
very weak. D 

1.6, I 
’ Mochbmber,I pi 

20 40 60 80 100 120 140 160 180 
Inclination of incident wave, qt, deg 

FIGURE Il.-Problem A: coefficient for part of up associated with 
pressure wave (shock overtaking sound wave). 

Since the pressure wave is isentropic, the coe5cients of 
the corresponding part of the density variation are equal to 
l/y times the pressure coefficient. 

(f) and (g) Coefficients for velocity components in pres- 
sure wave: Figures 11 and 12 show the coefficients for the 
velocity components associated with the isentropic pressure 
wave behind the shock (eqs. (27), (28), (41), and (42)). The 
velocity resultant is longitudinal with respect to the direc- 
tion of propagation of the pressure wave, except when 
~Lcr<lCI1<hL. -_A-- _.. ~ - 
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-. 8 0 20 40 60 80 100 120 140 160 180 
Inclination of incident wave, +, , deg 

FIGURE 12.-Problem A: coefficient for part of u2 associat,ed with prcs- 
sure wave (shock overtaking sound wave). 

3. Characteristics of steady vorticity wave behind shock.- 
(a) Inclination of the steady vorticity wave: Figure 13 
shows the inclination #3 of the vorticity front behind the 
shock. From equation (25), 

~,~cot,-lrl+limMi 
L m-a 

(b) Ratio of scale of vorticity wave to that of incident 
sound wave: From equations (12a) and (25), this is 

I 
,ity 
8- 

‘1 ’ / I I, I, 

0 20 40 60 80 100 120 140 
Inclination of incident wove, $1, $eg 

160 180 

FIGURE 13.-Problem A: inclination of vorticity wave behind shock 
(shock overtaking sound wave). 

4 I I 
Mach number, 

M 

0 20 40 60 80 100 120 140 160 180 
Inclination of iticident wave, 4, deg 

FIGURE 14.-Problem A: ratio of scales of vorticity wave behind 
shock to that of incident sound wave (shock overtaking sound 
wave). 

which is shown in figure 14. When AI= 1 and +I= T. the 
scale ratio goes to ~0 because the “shock” is unable to over- 
take the incident wave. 
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-.40 20 40 60 80 100 120 140 160 180 
lnclinotion of incident wove, +,, deg 

I~‘IGI’RE 15.-Problem A: amplitude of density variation in vorticity 
wave behind shock (shock overt.aking sound wave). 

I I 
Mach number, 

M P 
1 

/I 

z I---- I -I 

; 0 - 
-cl ; - 

$- 6 
P 
x .Z 
.u -.4 

z > 
f 
‘5 
‘0 
L 
.P -. 8 

-. 4O 20 40 60 80 100 120 140 160 180 
lnclinotlon of incident wove, +,, deg 

FIGURE 16.-Problem A: coefficient for part of US associated with vor- 
ticity-wave (shock overtaking sound wave). 

1 -1 
20 40 60 80 100 120 140 160 I80 

lnclinotion of incident wove, +,, deg 

I”I(:I’RE Ii.-Problem A: coefficients for part of u2 associated with 
vorticity wave (shock overtaking sound wave). 

1. I I 
O90 
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100 I IO 120 I30 140 150 160 170 180 

Inclination of incident wove, qz,, deg 

FIGURE 18.-Problem B: shock-front disturbance (sound wave over- 
taking shock). 

(c) Amplitude of density variation in vorticity wave be- 
hind shock: Figure 15 shows Q(l)’ and Qc2)’ (eqs. (26) and 
(40)). Apparently, when M is of order 1.5, the vorticity 
wave is very weak. 

(d) and (e) Coefficients for velocity components in vor- 
ticity wave: Figures 16 and 17 show the coefficients for the 
transverse velocity field associated with the vorticity wave. 
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O90 100 I IO 120 130 140 150 160 170 180 
Inclination of incident wove, $Q, deg 

FIGURE 19.-Problem B: inclination of reflected sound wave (sound 
wave overtaking shock). 

PROBLEM B-SOUND WAVE OVERTAKING SHOCK FROM BEHIND 

Consistent with the previous analysis, computations have 
been carried out only for values of fizl (incident-wave incli- 
nation) sufficiently close to 180’ that the component of 
propagation velocity in the clirection of the motion of the 
shock is greater than the velocity of the shock relative to 
the fluid behind. These values of $1 are 134.5’ and 112.2” 
for M= 1.5 and m , respectively. 

1. Shock-front disturbance.-Figure 18 shows the ampli- 
tude of the incremental shock-front velocity L’=L/A,. 
When tizl is near 180°, an incident pressure wave displaces 
the shock ahead. 

2. Characteristics of reflected sound wave.-The clown- 
stream pressure wave in problem B is always a simple sound 
wave. 

(a) Inclination of reflected wave: The inclination qzz= 
cot-’ (-a/p) (see eq. (18)) is shown in figure 19. In effect, 
the incident and reflected waves coalesce into a single wave 
at the critical angles. 

(b) Ratio of scales of reflected and incident sound waves: 
This ratio is given by equation (46~) and is shown in figure 
20. At &I=~, the scale ratio is greater when M=1.5 than 
when M= ~0, just as in problem A, and for the same reason. 
At the critical angles, the ratio becomes 1, because the incident 
and reflected waves coalesce. 

(c) Amplitude of reflected sound wave: The pressure 

Inclination of incident wove, +,,, deg 

FIGURE 20.-Problem B: ratio of scales of reflected and incident sound 
waves (sound wave overtaking shock). 

lnclinotion of incident wove, +,, deg 

FIGURE 21.-Problem B: amplitude of reflected sound wave (sound 
wave overtaking shock). 

amplitude K’=K/A, (eq. (18)) is shown in figure 21. At 
tiz, = g, an incident compression wave reflects as an expansion 
wave with a strength which is greater the higher the Mach 
number, but always less than that of the incident wave. 
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50 

Mach number, 

0 
Inclination of incident wave, qz,, deg 

FIGURE 22.-Problem B: inclination of vorticity wave produced 
behind shock (sound wave overtaking shock). 

The velocity components associated with the reflected 
sound wave are obtained simply from K’ and are therefore 
not plotted. 

3. Characteristics of steady vorticity wave.-The toe%- 
cient Q’ of the density fluctuation in the vorticity wave is 
simply proportional to L’ (combining eqs. (B26) and (B27) 
of appendix B) and is therefore not shown in a figure. 

At M= I. .5, Q’= -0.147L’ 

AtM=m, Q’=-1.43L’ 

(a) Inclination of vorticity wave: From equation (47), the 
inclination is given by 

$23=COt-’ ; 
i [ 

l 1+----- f-h/V 
m(l-r) II 

which is plotted in figure 22. 
(b) Ratio of scale of vorticity wave to that of incident 

sound wave: As in problem A, this ratio is given by 
(l/l) sin & and is shown in figure 23. As for the reflected 
sound wave, the scale ratio is larger for M nearer enc. 

(c) and (d) Velocity variations in vorticity wave: Coeffi- 
cients G’ and I’ of the transverse velocity fluctuation (eqs. 
(27) and (28)) in the vorticity wave are shown in figures 24 
and 25. 

4. Wave reflection at critical angle--The analysis and 
figures show that at the critical angle the incident and re- 
flected sound waves coalesce to form a single sound wave. 
This statement may be interpreted to mean that a sound 
wave incident at the critical angle reflects as a steady vor- 
ticity wave only. Therefore, the shock disturbance and 
vorticity wave characteristics may be expressed in terms of 
the pressure amplitude of a single inciclent sound wave of 
strength A3+K=A3(1+K’). 

O90 loo 110 120 130 140 150 160 170 180 
Inclination of incident wave; ez,, deg 

PIGURE 23.-Problem B: ratio of scales of vorticity wave behind shock 
and incident sound wave (sound wave overtaking shock). 

b 

Inclination of incident wave, +z,, deg 

FIGURE 24.-Problem B: coefficient for part of ZLX associated wit,h 
vorticity wave (sound wave overtaking shock). 

lnclinotion of incident wave, qz,, deg 

FIGURE 25.-Problem B: coefficient for part of og2 associated with 
vorticity wave [sound wave overtaking shock). 
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CONCLUDING REMARKS restricted to the range for which the sound wave overtakes 
In principle, the interaction of a shock with any weak the shock. For purposes of superposition, however, all inci- 

flow field may be obtained by first constructing the initial dence angles must be considered. Inspection of figures 6 to 
flow field as a linear combination of plane waves of varying 12 shows that a sound wave of any incidence angles between 
strength and orientation. From the present analysis the 0 and r may be identified either as an incident wave or as a 
interaction of each constituent wave with the shock may be reflected wave, in the sense of the analysis. For purposes 
found. Assembling the resulting waves behind the shock of linear superposition, the distinction between incident and 
then would yielcl the desired solution. Regrettably, the reflected waves is of no significance. The point of view may 
formulas for the interaction depend on the angle of incidence be adopted that whatever its angle, a constituent wave of 
in a rather complicated way and it would in general be diffi- the initial flow has associated with it another sound wave of 
cult to evaluate explicitly in>egrals in which these formulas another angle and a steady vorticity wave. The notion of 
are used for the distribution functions. Numerical pro- cause and effect is not needed. 
cedures could be used for this purpose, though a technique 
would be required for dealing with the singularities at the 
critical angles qCl and tic,. LEWIS FLIGHT PROPULSION LABORATORY 

The nature of the solution of problem B perhaps requires NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 
a clarification, in that, the angles of incidence &I havejbeen CLEVELAND, OHIO, February 8, 1954. 

APPENDIX A 
NOTATION 

The following symbols are used in this report: 
A, A?, A, A coefficients of incident disturbance (eqs. 

(12a,), (14a), or (15)) 
a velocity of sound 
II,, II, coefficients in shock rclatious (eqs. (6)) 
Cl, G coefficients in shock relations (eqs. (6)) 
c dimensionless velocity of propagatiou of 

pressure wave behind shock (eq. (31) or 
WC)) 

>I, D, 
specific heat at constant volume 
coefficients in shock relations (eqs. (6)) 

d coefficient of attenuation of pressure wave 
behind shock (eq. (31) or (39d)) 

F coefficient of part of uz associated with prcs- 
sure wave (eq. (27) or (41)) 

f profile function of incident wave (eqs. (12a), 
(14a), or (15)) 

G coefficient of part of uz associated with vor- 
ticity wave (eq. (27) or (41)) 

g additional profile function appearing behind 
shock 

(=i Y. V.J:- .[(T) (T- {)-ld~, eq. (35s)) 

H 

hn 

I 

J 
K 
L 
1 
M 
m 

z 
P 

coefficient of part of 21~ associated with pres- 
sure wave (eq. (28) or (42)) 

functions involved in solution when Il/cr< 
#l<$/cu (eqs. (B19), appendix B) 

coefficient of part of v2 associatccl with vor- 
ticity wave (eq. (28) or (42)) 

gas constant (eq. (4)) 
coefficient of p2 (eq. (18) or (36)) 
coefficient for l(y,t) (eqs. (29) or (43)) 
sin & or sin &, 
Mach number of shock (= T’/a,) 
cos $, or cos &, 
tan $, or tan tiz, 
mean static pressure 
p&urbat.ion in static pressure 

Q 

R 
7 

u 

U 

T’ 

V 

x,. .I-.’ 

Y 

11 

8 
0 

E 
P 

ut x 

coefficient for density fluctuation in vor- 
ticity wave (eq. (26) or (40)) 

mean gas density 
ratio of U to TT 
time 
mean velocity of gas behind shock (fig. 1) 
perturbation of velocity component in x- 

direction (fig. 2) 
mean velocity of propagation of shock in 

gas at rest (fig. 1) 
perturbation of velocity component in y- 

direction 
coordinates measured in the direction of the 

shock propagation, relative to which the 
gas is (on the average) at rest ahead of 
and behind the shock, respectively (figs. 
1 and 2) 

coordinate orthogonal to z1 or r2 (figs. 1 and 
3) 

functions defining pressure front (eqs. (21) 
or (39)) 

ratio of specific heats ( = 1.4 for air) 
variable upon which pressure wave depends 

when #c~<9~<$cu (eqs. (31)) 
variable upon which pressure wave depends 

when $c~<th<#cu (eqs. (31)) 
mean static temperature 
fluctuation in static temperature 
scale of pressure wave (eq. (23)) 
displacement of shock front (fig. 1) 
fluctuation in gas density 
functions appearing in solution for L (eqs. 

(B9) or (B31), appendix B) 
function associated with pressure ‘wave when 

$c~<ih<#cu (eqs. (37)) 
velocity potential associated with pressure 

wave when lCI,~<~~<~cu 
angles of inclination of incident waves (fig. 

2) 
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11’2, *22 angles of inclination of pressure wave be- 2 conditions behind shock 
him1 shock (figs. 6 or 19) Double subscripts 21 and 22 (problem B), incident and 

$3, $23 angles of inclination of vorticitywave behind reflected waves, respectively. 
shock (figs. 13 or 22) Superscripts : 

+cz, +cu lower and upper bounds, respectively, of (1) coefficients associated with f at shock 
the range of +I for which the attenuating (2) coefficients associated with y at shock 
pressure wave appears (eq. (17)) Primed coefhcients are referred to intensity of incident 

Subscripts : wave. (A3 in problems A and B,dm in problem C). 
Subscript notation for partial clifferentiation has been Primes are also used to denote ordinary differentiation of 

used where convenient. f and 9 with respect to their arguments. 
1 conditions ahead of shock 

APPENDIX B 
COMPLETION OF INTERACTION ANALYSIS 

PROBLEM A 
The solution of problem A is found in two separate ranges 

of &, for which the solution involves a refracted sound wave 
in one case and a refracted attenuating pressure wave in the 
other. The analysis will be completed in that order. 

1. O<$,<#Cl, $cU<$l<?r.-Equations (27) and (28) are 
substituted into equations (7), ancl coefficients of f’ are 
equatecl, yielding: 

F=-+; Ka! 

II=+, Kp 
(Bl) 

When equations (26), (27), and (28) are substituted into 
continuity equation (8), the quantities associated with the 
sound wave combine to satisfy continuity. The terms asso- 
ciated with t,he vorticity wave then must satisfy the incom- 
pressible continuity equation (uz+v,= 0) because the corre- 
sponding density term is time-independent. Thereforr, 
equating coefficients off’ yields 

I=l+W?n G 
n (1 -r) (B2) 

The shock equations remain to be satisfied; it should be noted 
that the arguments off for the various quantities have been 
matched at the shock, so that coefficients off may be equated. 
From equations (5a), (27), (29), and (12a), 

G=L-F-B,(L-A,)-BB,A, (B3) 

From equations (5b), (5c), (5d), respectively, .with the neces- 
sary substitutions made, 

Q=C,(L-AA,)+C’,A,--+ (B4) 

K= D1 (L - AJ + D,A, (B5) 

L=‘+;tMm (H+I-A,) 036) 

The terms II and 1 in equation (B6) may be expressed in 
terms of L by using equations (Bl), (B2), (B3), and (B5). 
The resulting equation for L yields the result 

1 
‘+Mm a 

-$, P (Dz $+D2)+ ncl--rj [$, a (D, $4+D2)-(B1 $+B2)]-& 
L’+- 

3 1 
‘+Mm 

“nl +$, BD,-vm7(l+y$ an,-&) 

‘+Mm 
or, from equations (6), (21), and (23) : 

where 

ancl 

LL$ 
1+x-T+ ++gJ 

n(l-r) u=----- 
1+1 Mm 

1 

( 

rfl 1+a2 112 
xc l--2 

-Y--l 1+7j-r )J 

c 

(B7) 

C-1 

1 and (22) that 

T=T&(l-&) 

(B9) 1 ($=(1-r) (1+? r) 

1 When L’ is known, the remaining coefficients follow from 
and where use is made of the results from equations (2), (6), 1 equations (Bl) through (B5). 

- -. - 
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2. *~L,c<~~<~~~.-Equations (36) and (41) substituted intc 
(7) give 

F”‘$ (1) +F’2’&(2) = -%+‘h”’ +JQ2’@,z2(2)) (Blo) 

From equations (31) and (37), 

,z2(1* a = -- x” @p+~$p2) 

1 

Equations (37) show that 

$(l) =ar (21 ; Q’r”’ = 4$(2) 

Accordingly, equation (BlO) may be written: 

(l--T)dF”‘~,“‘-ccF’“~~‘2’+(l--r)dF’”~,,’2’+cF’2’~,” 

-$+dli”‘+, (1) _ &-‘l’~P,‘2~ _ r~jTp~~‘2’ $.&(2)@.11(1)] 

By equating coefficients of a4(l) and @11(P) separately, 

(1 -7.)(l$7’” +&w 2&p - &p) 

(1 -7.T)(jF’2’ -f$(‘) 2&&p+ &“‘) 
(B11) 

Similarly, equations (36), (42), and (7) yield: 

(I--r)dH’2’-CH’l’=~alT”’ I 0312) 

When equations (41) and (42) are substituted into equation 
(8), and coefficients of j’ and g’ are equated, the following 
equations are obtained: 

1 
I(1) = l+Mm G’l’ 

n(1 -T) 

1 
I(2) = l-km G(2) 

n(l-1’) I (B13) 

The shock conditions remain to be applied. Equations 
(5a), (5b), (5c), and (5d) yield, respectively, the following 
four pairs of equations, when the coefficients of j and g are 
separately equated: 

G(l) =L”‘.mF”‘-&(L”’ -Al)-B2A3 

> 
0314) 

Y(“=Cl(L”:--A,)+C2A,--K(‘)/r 

> 
0315) 

Q”’ =[TILGJ -K(2)/y 

L’l’=lfWm 

nr 
(IF" +I"' -A2) 

L’2’=1+wm 

nr (fP2’ .I’“‘> 

(Blf-2 

0317) 

Equations (Bll) through (Bl7) may be combined to yield 
the solutions for L(l) and Lc2) 

where 

L’l’ h,h2-($+$) 6532 
L(l)‘= ---- 

A3 h22+h32 

h,t($+$) h, 

h22+ hs2 

kg=-- 2d(l -r) 

@l@ 

031% 

Equations (B16) are substituted into equations (Bll), 
which may be solved to yield 

where 

4 2 

hi=yS-l& 

Similarly, 

h~~2”da(l-r) v2 - J 1(1 + u’) a, 

0321) 

i 

0322) 

The remaining quantities follow from equations (Bl4) and 
B15). 

PROBLEM B 

The solution of problem B is restricted to angles #21 for 
V which -m>- (l-r), and involves a reflected sound wave 
a2 

Lnd vorticity wave behind the shock. The momentum equa- 
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tions (7) provide 

cB23) 

and the continuity equation (8) provides that 

I=+ (rn+g; G) (B24) 

All perturbation quantities vanish ahead of the shock, and 
shock relations (5a), (5b), (5c), and (5d) yield, respectively, 

G=L(l-B,)--F-A, (B25) 

Q= ClL-A4-K/y (B26) 

K=DIL-AA3 (B27) 

L=“(1-r)+u2/1/T(H+I+A) 
II 2 

By solving the foregoing set of equations for L, 

where 
n rJE 

1+ a2lV 

m(l-r) 

J l--r 
x=-(k+m) Y---l 1+- 1 

@29) 

I (B30) 

2i 

The remaining quantities follow from equations (B23) 
through (B27). 

PROBLEM C 

The analysis of this problem parallels that of problem A. 
1. O<til<tic~, #cU<+l<?r.-The equations of motion (7) 

and (8) provide 

H=-+;Kp 

I=-!2 
n(l-r) 

The shock equations (5) give 
G=L--F-B1 (L-Al) 

HUV3?) -=L h,(L”)’ --I)+ahsL’z)’ 
~/AI~+A~~ u 

H(2)’ z 
H’2’ 

=I hJ’“‘- ah, (L”‘‘--I) 

3L!LTzu 

The remaining quantities follow as before. 
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Q=GG--J--K/r 

K=Dl(L-AA,) 

L=$ (H+I-Az) 

These equations may be solved to yield 

LfEJ~12~A22=z 
[ 

’ 
r+1 

4 1 +x yrflTn;’ I u2 ( d l-r 

where, in this case, 
u =n (1 -r) I x~ l-‘?Z!$r 

( 
lfcr2 112 

l+y--lr 
)I 

0331) 

2 

2. ~cz<h<~‘cu. The analysis is essentially identical to the 
corresponding part of problem A, except that the constants 
Bz, Cz, and D, do not appear in the present case, and the 
Mach number M does not appear explicitly. Except for 
these differences, equations (Bl4) through (Bl7) may be 
carried over to the present case. The solutions for L(l) and 
Lc2) may be written as 

The definitions of the h’s follow those of problem A (eqs. 
(B19) and (B21)), with the exceptions that 

and, in this case, c=n(l---r). The solutions for the F’s and 
H’s are: 


