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ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION RELATING THE LWT AND
DOWNWASH DISTRIBUTIONS OF OSCILLATING FINITE WINGS

IN SUBSONIC FLOW 1

By CIIARLES E. _VATKIN'S, 1lARRY ],. _r_UN'YAN', P.l'ld DONALD S. '_VOOL_TON-

SUMMARY

Thi._' report treats the kernel.functlon oJ an integral equaHon
that relate_ a known or prescribed downwa._h distributi¢,x to an
unknown lift distribution.for a lmrmonically o._cillating finite
wing in compressible subsonic flow. Tl_e kernel Junction is
reduced t_, a Jnrm that can be accurately eealuated by separating
the kernel functiol_ into two parts: a part in u'hieh the singular-
itie._ are isolated and analytically expressed and a 7_onsingular
part wt_ich may be tabulated. The.form oJ the kernel fuTwtion
for the sonic case (.][ach number of i) is treated separately, h_
addition, re.qults for the special cases of .][ach number of 0
(ilwompre._sible ease) and frequency of 0 (steady case) are given.

TI, >deriratlon of the integral equation which involves this
kernel functio7 h originally performed elsewhere (see,for example,
N.IC=i Technical .][emorandum 979), is reproduced as a_
appendix. Another appendix gi_,es the reduction of the formc_
the kernel fu_lct_on obtained herein .for the three-dlmensional
ca.,'e to a known result of Possio Jor two-dimensional flow. A
third appendix contains some remarks on the evaluation of the
kernel _/unction, and a Jourth appendix presents an alternate
Jorm oJ expression Jor the kernel functlo_x.

INTRODUCTION

The analytical determination of air forces on oscillating
wings in subsonic flow has been a continuing prol)lem for the
past 30 years. Throughout the first and greater part of
this time, efforts were directed mainly toward the determina-
tion of forces on wings in incompressible flow. These efforts

have led to important closed-form solutions for rigid wings
in two-dimensional flow (ref. 1), to solutions in terms of
series of Legendre functions for distorting wings of circular
plan form (refs. 2 and 3), and to many approximate, yet
useful, results for wings of elliptic, rectangular, and tri-
angular plan form (see, for example, refs. 4 to 12).

Although these results for incompressible flow play a
highly significant role in applications of unsteady aerody-
namic theo_-, the advent of higher and higher speed aircraft
during the last 15 years has brought a growing need for
knowledge of the effect that the compressibility of air might
have on unsteady air forces, or for analytically derived un-
stead)- air forces based on a compressible medium. The
transition to results for a compressible fluid from those for

an incompressible fluid is not likely to be accomplished by

i Supersedes NACA T,N" 3131, 1954.
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applications of simple transformations or correction factors,
such as the well-known Prandtl-Glauert factor for stcady
flow. This (lifi3culty is associated with the fact that the time
required for signals arising at one poi,_t i,l the medium to
reach other points gives rise not only to changes in magni-
tudes of forces but also to additional phase lags between
instantaneous positions, velocities, and accelerations of thc
wing and the corresponding instantaneous forces associated
with these quantities. In order to ohtain results for the
compressible case, it therefore appears necessary to deal
directly with the boundary-value problem for this case.

The boundary-value problem for a two-dimensional wing
in compressible flow has been successfully attacked from two
points of view. First, by consideration of an acceleration or
pressure potential, Possio (ref. 13) reduced the problem to that
of au integral equation relating a prescribed downwash dis-
trit)ution to an unknown lift distribution. The kernel of this

integral equation, which is a rather abstruse finn'tion, was
reduced to a form that, except at singular points, couhl be
evaluated. Schwarz (ref. 14) later isolated and determined
the analytic hchavior of the singular points of Possio's resuhs
and made fairly extensive tables of the kernel function.
These tabular values were used by various investigators
(for examples, refs. 15 and 16) to obtain, by numerical
procedures, initial tables of force and moment cocflicicnts
for oscillating wings in compressible subsonic flow.

The second successful approach to the solution of the
boundary-value problem for a two-dimensional wing (see
rcfs. 17 to 19) is achieved by a transformation to elliptic
coordinates followed by a separat ion of variables that reduces
the boundary-value problem from one in partial-differcntial
equations to one in ordinary differential equations of the
._Iathicu type. The solutions iuru out as infinite series in
tcrms of 5[athieu functions. Numerical results obtained

recently by this procedure a_'ee with results previously ob-
tained 1)3" the numerical procedures using the kcrncl func-
tion (see, for example, ref. 20).

With regard to boundary-value problems for finite wings
in compressible flow, it appears that the procedure of sepa-
ration of variables eouhl be a feasible approach only for
wings of very special plan forms such as a circle or an ellipse.
In any case, the development of the appropriate mathe-
matical functions for a particular plan form wouhl hecome
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highly involved. On the other hnnd, it appears that approxi-
mate procedures stroll:u" to those used for two-dimensional
wings might afford an approach to solutions of these prob-
lems which, though laborious, might be handh'd by routine
numerie'd methods.

The kernel function of the integral equation relating pres-
sure and downwash for the three-dimensiomd case appears
as an improper integ,'al. The purpose of this report is to
treat and discuss this kcrlwt function. The improper integral
is red(iced to a forln that can bc accurately evaluated by
numcrical procedures. The form and order of all its singular-
ities ave determined and an expression for the kernel function
is derived in which the singularities are isolated. Special
forms of the kerncl for the sonic case (M-= 1), the ineompres-
sibh, case (3/'=0), and the steady ease (k--0) arc prcsemcd.
A series expansion in powers of the reduced-frequency param-
eter k is developed.

The availability of the kernel in a form which can be
rapidly evaluated makes possible the use of numerical pro-
cedures, similar to those used in tile two-dimensional case,
to obtain aerodynamic forces for finite wings.

L,L

K(.ro,Yo)
K' (xo,Yo)
k

Lo,L_

l
M

P
r = [3._F_o_+ z°"
S
l
I"

V'(z,v)

x,y,z,_,:?

Yo=Y--n
=,,_--M _-

V

--'_' 0 , M dO

4,

P

SYMBOLS

velocity of sound
Ilankel functions of second ldnd of zero

and filet order, respectively
modified Besscl functions of first kind of

zero and first Order, respectively
Bessel function of first ldnd of zero order
modified Bcssel functions of second ldnd of

zero and first order, respectively
kerln'l function of integral equalion
singular part of K(xo,Yo)
reduced-frequency parameter, ho/V
modified Stmtve functions of zero and first

order, respectively
unknoult lift distribution

reference length
Math number, V/c
pressure

region of x/i-plane occupied 1)y wing
time

forward velocity of wing
amplit ude funct ion of prescribed downwash,

w(z,y,t) =d_'_'(x,!l)
Cartesian coordinates

Euler's constant

velocity potential
acceleration potential

fluid density
circular frequency of oscillation

ANALYSIS

INTEGRALEQUATIONANDORIGINALFORM Or KERNELFUNCTION

The main pro'pose of this analysis is to treat ill(, kernel
function of an integral equation that relates a known or
prescribed downwash distribution to an unknown lift dis-
h'ibution for a harlnonically oscillating finite wing in com-
pressible subsonic flow. The intcgr'fl equation referred to
can be obtained 1)y employing the I)randtl aeeeleration
potential to treat linearized 1)oundary-vahw wol)lems for
oscillating finite wings by means of doublet distribulions.
Dcrivation of this integral equation from the linearizcd
boundary-value problem for a wing is a preliminary task
that has t)een clone elsewhere (see, for exaInple, ref. 21), but
it is reproduced herein as an appendix for the sake of com-
pleteness.

In keeping with the concepts of line'u' theory, the wing is
considered a phme impenetral)le surflwe S which lies neqrly
in the Xy-l)lane as indi(.atcd in sketch 1 :

V _J

/

Sketch 1.

The _',y,z coordinate system and the surface S are assumed to
move in the negative x-direction at a uniform velocity V.

In terms of these coordinates, tJm integral equation may be

formally written as

,s

(U

where _(x,y) is the amplitude function of the prescribed
downwash, K(x,,yo)=K(x--_, y--n) is the kernel function
and physically represents the contribution to downwash at
a field point (x,y) due to a pulsating pressure doublet of unit
strength located at any point (_,r/), and L (_,_) is the unknown
lift distribution or local doublet strength.

I[[:l
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The kernel funelion may 1)e mathem'_!ivally drfim.d by the
following improper integral expression (see eq. (A12),
appendix A) :

i_,, f eiz(x-M_ ;;_') (lX (2)
K (x,, 7,.)= l im O:2 e• :_(, J--= _ X2+_:!/o24-f12z2

where 3[ is _Iach number, 5=,,'1--3/r:, _=%/1"132, _o is the
circular frequency of osei]lution, l" is the velocity, and
X is the variable of integration. Evalualion of this inte_'al
constitutes a main difIi('ulty in obtaining aerodynamic
coefficients for oscillating finite wings in compressible flow.
The present analysis is therefore devoted to reducing it to a
form that can be accurately evahlated by numerical pro-
eedures combined with the use of tabh,s of certain talmlated

functions. The form and order of all its singularities are
determined, and an expression for the kernel fimction is
derived in which the singularities are isolated.

REDUCTION OF THE KERNEL FUNCTION

In considering the reduction of the ],:ernel function
K(zo,yo), the integral involved can, for convenience, be
written as the sum of two integrals, namely

f f', ei_(X- M_f _-_)
__ <'x-_+r_

Therefore,

_X2+r. _ dX+

, eiZ(x-.v(_+--;-_-,_ - dx
(3)

_2 i_ro _2 twro

KO'u'YO=lim bzY e-T(F)=lim OJ e-T (F_--/F_) (4)
.'-_,[I z_O

where

F_=L ® e-_:(x+M_ _-_V + r-_ dX (5)

and

" .,o _x__ <Ix (0)

and where r=_,'yo2+ zL

The integrals F_ and F2 are treated separately in succeeding
sections. The final forms are given in equations (15) and
(I 9), respectively.

Evaluation of F1.--The integral F_ can be converted to a
form that can be more easily handled by writing

F1= -- e- i_.'_J"_r_
V'X:+ P dX

and introducing the following relation (see p. 416 of ref. 22)

£= J0(TX) e-_4r:-'w:_'
t: _}T2_II:_ _ T dT--

_0"_2= Clir'_ f31zE':-T:i. &(TX) .(_T _ T dT (7)

In the first integral of these last two integrals, make the
subst it u tion

_/T:_=

and in the second il,tegral make the sul_stituli(m

Then
<_3125-'-T;= r

(,-- i=._ f -,,'x '_r_r-'
f=,-'" Jo(X_'? !B_) dT--

,,'X2]_ r-'_ j0

fo "llF_ , ,__-- =_
i ( .... &(x_ 3I-,o-- _-) ,I_ (s_

(It is of interest to ,tote, in the expression on the left of eq.
(8), that X and r appear in the same manner. The roles of
these two quantities eouhl, therefore, be interchanged in
the expression on the right.)

With use of equation (8), tt,e equation for Fl call be
written as

Changing the order of integration in each integral (which is
a legitimate step because the integrands involved satisfy
the continuity conditions required for such operations) leads
to the following expression for F,:

[I° +
.if f free-'" dr [fo _ e-_x Jo (X-,"-lI2: '-_) dX] (10)

The integrals within the brackets in equation (10) may be
evaluated from tables of Fourier or Laplace transforms as
(see, for example, pair no. 55 of appendix III of ref. 23)

'_ e-'=x Jo (x_"#_) dX= 1

= e_,_ x & (X .il/r_ ) _ --i

so that

fO _ _ - rr _ - i rr
F_= dr-- f._t_= _ dr (11)

_'r_--_2_ _ jo _!r2+f12_o_

The first integral in equation (11) can be written as

e-'" lr= [ =(tr--i I e-'"
= _ "= c__- r," • ['a_, d r

or

&,,_ ,t_= e-_: ......"_ ,/O--2J_. _-_: ..... °dO (11a)
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Tile first integral on the right of equation (1 la) is given oil
page 1S1 of reference 22 as

_ e-_ ...... h e de= IG (¢15r)

where ICo is the modified Bessel function of the second kind

of zero order. The second integral on the right of equation
(lla) is given on page 33S or reference 22 as

i C"t" dO=--_-_riEIo(_gn')--Lo(SVor)_--2a -.n e-e: .... o

where /0 is the modified Bessel flmction of the first kind of
zero order and Lo is the modified Struve function of zero
order. Then, the first inte_al of equation (11) can be
_Titten as

£_ e- r_ . _ rri. /r____,.7o," d r= Ko(flwr)--_ [Io(_r)-- Lo(_r )]

_.o(>,,,
Lo (V,/_) ] (12,

Note that the end result indicated in equation (12) is in-
dependent of Maeh number. The second integral in equa-
tion (11) may be written in another form as

---- -- dr= dr (13)

This integral has not been redueed to dosed form; however,
it is nonsingular and can be readily handled by numerical
methods.

Coml)ining equ'ttions (12) and (13) gives tin, following
expression for F,:

,.',o-F

,'_yo=q-za)J--L - (14_r.. " dr (14)

By performing the differentiations indicated in equation (4),
there is obtained for the first part of equation (4) the follow-
ing expression :

, * ) b( )lm ._-25_2-- . w rri w w ,
,-o 0z I'_0[ 7]yo ] ---ff Flyo [ -L,

?e 'Y --vlYo [ ..'T_rae-'v'l'd'dr (15)

All terms of tiffs expression other t.han the integral may
be evaluated at small intervals of yo fl'om existing tables,
exempt at yo=0 where the function is singular. The integral
is well bdmved and can be aeeuratdy evaluated by numerical
or approximate procedures. The type and order of the
singularities at yo=0 are discussed in a later section.

Evaluation of Fa.--In order to reduce the integral F2,
equation (6), it is convenient to make t.he substitution

X=r sinh 0 (16)
so that

-- 1 .t'_
/*sinh --

F_=J0 r et_,r(sinhO_McoshO)dO (17)

Noting that z appears only in r and performing the differen-
tiations indicated in equation (4) yiehls

-- l YO

/x2 7:,, i_a Osinh --

[O £-__ _ ,w, / eiv0i(sinh 0--5I eosh 0) e_-_[_°I(_,,_h0-.v¢o_h 0)dO Xo d: (_o-i_)
\o-_ ],.o-lyoi3o , ,_w_ "._.2" y0 _x0 +¢_ Yo

" }4-- ,'%inh

=-- "_ 7 ,Z e¢ (,,-,w,_)_ " | o,_01[B2eosh 0--(cosh O--M sinh 0)] e_ol_°l(sInhe-Mcosh 0)dO

.... [_._,--_')-_-,°....,,o,1-.-:_ f '," eosh0_=_,,,(_,._0-...oo._.,do (18)

or, by reverting completely to Cartesian coordinates through
equation (16), there is obtained

(o!e;_ =_ <I'_°_ (',--",_) l
\ bz_ "1"-° I Yo.(xo +fl Yo _lly,,

k.

e__.woI_,l]_i_r53[yoa,}o_*oe_ (x-.x&,_:) dX t
0 9)

This expression vanishes, as it should, for xo=0 and, like
that in equation (15), has singularities at yo=0 which, also,
will be handled in a later section. The integral that remains,

like the integral remaining in equation (15), is nonsingular
and simple in form and can be readily evahmted by numerical
procedures.

Expression for the kernel in terms of nondimensional
length variables.--Equations (15) and (19) can now be
combined to give a reduced form of the kernel function
K(xo,Yo). However, in application, the variables :Coand y0
are employed, for convenience, in nondimensional form.
This is accomplished l)y considering these variables in a
new sense to mean that they have been referred to some
chosen length I and by introducing the reduced-frequency
parameter lc=I_/V. The variables will be used in this new
sense ttu-oughout the remainder of the report. The kernel
can be written in terms of these nondimensional varial)les as
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K(xo, yo)=e -me p (FI+F2),=0

/_'_ "1,.. _-1_ _=_ e-'_z0 K,(k y0 )--6k .-y./,,[I/k Y0)-- L,(t y0 )] +

/'M/B

i.]/_'[_/0'_-{-fl.l/fl(_'710) _ e iMklYd--JoB 3'1 -t- r z e-f_:v"%lr -

i /

3 l (kyo)2_'(kxo)2 + B2(kyo) 2

M@o)_3o d _ dx (20)

An alternate and perhaps more desirabh, form of expression

for the kernel function is given *in appendix D.

Note that this expression for K(xo,yo) can be considered as

a functioD of tufty three parameters, namely, ]ciy0[, _'x0, and 3[.

To be nmrc specific, the first two terms are fimctions only of

kly01 ; the next. two terms are flmetions of klyo[ and 3[; and

the last. two terms are functions of k]y01, k.ro, and 3L

Equation (20) constitutes the principal result of this report.

Some partial checks as to its correctness are: (1) For k=0,

it reduces, as discussed subsequently, to the downwash of a

pressure clout)let in steady flow and (2) an integration with

regard to the y-direction between the limits --,_ to +

yields Possio's result for the two-dimensional case. This

integration is carried out in appendix B. Other special forms

of the kernel function for .'if: 1, 3I: 0, and k= 0 are derived

in subsequent sections. A power series expansion of the

kernel which is applicable for certain ranges of tim parameters

kiy0I, kx0, and M is presented. In the section immediately

following, the orders and types of the singularities of the
kernel function are discussed.

DISCUSSION OF THE SINGULARITIES OF THE KERNEL FUNCTION

As previously indicated, the kernel fun('t ion becomes singnl-

lar or indeterminate at 7./o=0. The forms that the kernel

function takes when it becomes singulm' are of particular

importance in applications to lifting suHaee theory. It is

therefore desirable to extract and treal the singtflarities

separately.

This extraction can be conveniently made by considering

the value of K(xo,Yo), equation (20), at points on the semi-

circumference of a small ellipse (see sketch 2), the polar

equation of which may be written as

xo= _ sin 0 t
yo=_ cos 0

(2D

where, t)eeause of the s3anmetry of K(xo,yo) with respect to

y0, only the limits --7r/2 =<0<7r/2 need be examined. Note

tllat ill these equalions values of 0 in the range --r/2 < 0_0

correspond to field points ahead of or upstream from the

doublet position and values of 0 in the range 0_0 < r/2, to
field points behind or downstream from the doublet position.

In particular, 0= r/2 corresponds to points directly behind or
in the wake of the doublet.

0 : - _r/2

"/o

0 : *'/2

x o

Sketch 2.

After substituting these expressions for x0 and .7/0 into

equation (20), the results may be written as

_e-'""'°( k. cos (k_ _os 0)K(_, 0)=/_;2 cos_ 0 -_ /_ 0 K, -- --

(,].4o,10)_ gl (_'_Ts_)] +

ik,_ COt O _k¢ (sin 0--M)
fkM_ cos $

e _' e a' .+ike_ cos 0
/1I ?,I fl_-- e

n PM/8 -- _ffk_ cos 0_

sin 0e *_' r_n_-.ma, /c%_ flze°s_ _'1._o "_'l+r_e t )'dr+

,,o _k a_ _t.(_e)d_. IV (22)M do

With the use of the following series expressions for K_(z) and

[I_(z)--L_(z)] (which can ])e obtained from ref. 22--for/x'l,

see p. 80; for I1, see p. 77; and for L1, see p. 329) :

1 /z+Sz _ 5z s + " " ")

where _ is Euler's constant (y=0.5772157), and

z 2z _ z _ 2z _ z _
[I_(z)--L,(z)l=_---_q 16 45_r F3-_+ " " " (24)

it is found that for vanishingly small values of e the limiting

value of the expression for KIt, O) in equation (22) is for
M< 1

e -*_''t°e{ --_ . ik k" kffl--sin 0)K(e,O) = l_-- _(1 _sisin O)-I-T--_- log 2(1--_]1)

k2[ " 1 1 /.. . " "
(25)
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where 0(d _) represents terms of oMer d' fin" 77>_-1. Expressed
ill terms of :"uand 7/+ equation (25) l)ccomes

.... e .f-(._o+_X,, , 2yo)

_,_,0,v0J_ z_ 1. v_?\_:+/vo_ -_ ,.,-:+/:/

l,.(&o:+_l:y,?--.ro ) I,:-[_, 1_ lo_ 20-Mi -T L 2

y.ro_+ _2yf

Examination of equation (25) shows that the kernel function
K(cO) has singularities with respect to -- o-r_ j,, as
follows:

.fl(o). ;k. k _
_,, -;-, -_ [J2(o)+log E] (27)

wln, rl,, h'om equation (25),

.f,(0)=__. 0-0-_(leos=+Sin00) }
(2s)

k(l--sin 0) , k cos _0
.f:(0)----log 2(i---3i) --log 2(1-2:11)(1 +sin 0)

Although of no particular significance in applications, it is
of intcresl to note that the quantities.f_ and .f2 each have

minimum ,-alues (I.f,l,_*,=_ and ,J2l,,,,=log _:1/)at

O=--r/2, which corresponds to points directly ahead of the
doublet position; and, as 0 increases from -_-/2 to + r/2, the
values of these quantities continuously increase from these
minimum values to infinite quantities as follows:

f, i/__!=lim _L (-)]]=li,n 12#1

,.., co+(;_OI,+,0-,
(-)

f2 (-_)!=lim log ...........

Tlms K(xo,yo) is singular for 0=_-/2 even when the distance
fl'om the doublet is not necessarily of zero order. This

implies that. the doublet l)roduoes a wake of discontinuous
downwash that extends downstream fl'om the doublet

position to infinity.
With knowh, dge of the singularities involved in the kernel

function K(:ro,y0), an expression can t)e written in which the
kennel is separated into a singular part and a nonsingular

part (as was done by Schwarz, ref. 14, for the two-dimen-
sional ease) as follows

K(Xo,Vo) =-[K(.ro,yo) - K' 0"o.Vo)]+ K' (xo,yo) (30)

where K(xo,yo) is dcfined in equation (20) or (22) and

e-":" r _,z,, ,/3 ,io _,ro+ ?X
K'(.,,_,,71.)=-I=, -- ;, : ; __ ° o• L ?/,,,'*'o%_"uo_ -,:ro---t-_-:/

xo-- 3/_ x,, +.8 y,, Z"_lo,"
2if" ,_xu2-F_"-ffo2 2 _ 2(1--.11) j

or ill terms of e and 0, introduced by equations (21),

(31)

K,(_,O)=e_-;tl ,In 0 _2 ['-_-- (Sill 0--3I)--- d(1--sin 0) ,

--'-'log _'4_ --si'2 0)1
2 2(1--M) I

(32)

The term [K(.ru,y_)-- K'(x0,yn)] in equation (30) is a continuous
function for all vahles of k, Xu, and y0 and for values of 3/in
tile range of 0 <_3i< 1. The term K'(xo,yo) is discontinuous
at the dout)h't 1)osition (x0=0, y0-0) and at all points in
the wake (xo>O,yo=O). It is to be noted, however, that
each term of K'(xo,yo) possesses a simple indefinite integral
with respect to y0 or with respect to _=Y--Yo, a fact that
may be useful in some numerical applications. Ttw manner
in which these integwals are to be evaluated is indicated in
a subsequent section that deals with steady flow. The
linfiting values at y0=0 of [K(:ro,yo)--K'(xo,yo)] for both
subsonic and sonic flow are given in appendix C together
with some remarks on evahlation of the kernel function.

TREATMENT OF THE SONIC CASE

Because of its special nature, tile bor<lerline case, 3/=1,
between subsonic and supersonic flow deserves and requires
separate treatment..

As 3I--+1, the expression for the kernel function given in
equation (20) becomes indeterminate. It is possible, how-
ever, to obtain conditional linfiting values for the kernel by
considering the integral F, equation (4), and breaking it into
two integrals, Ft and _, as was done for the general ease.

With regard to F,, its linfiting vahle and the wdue of its
derivatives with respect to z at z=0 can be shown [o be zero
as 3/--->I. Front the form of F_ given by equation (14),

tlinl F1 = hIn Ko(_,yo+,)-wrlo(w,yo-rz)
3I_1 31_l( ",..V / /" L \V /

, +,, r-,,,o

• :co,
-- ._rl +,'

il _ -f dr (33)

But since (see ref. 22, p. 172)

_ [': cos D- d_=--Ko(i')
d,_ -¢_1-l- 7_

(34)

l[li l'.
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and (see ref. 22, p. 332)

• f= sin _'r dr=_ri
t,j,, -,i 1+ r:5 2- [[°(-0--L°(f)]

(as)

il may l)e con('hl<h'd from equation (33) ihnl

tim F, = lira ( _-!F' _=0 (:36)
.'lI_l 31_1 , 022 ,]

The fetal conlributioli lo K(.l'u,yo} ill 3[= 1, therefore, arises

fi'om the limit of F_, equalion (6), n.,; .1/--+1. "Flit, limiling

form of F_ may be written in terms of nondimen_ional co-
ordinates as

i/, t .... --<
:_ i__ [X--.'/, k-+_'+(yu-+.-, ]

lira F° = lira [1 dX (37)
.u-i " .w_l do .¢X-_+¢:(71.2+ z_)

In approaching the limit 3[= 1 (fi'om lhe subsonie side) in

equation (37), it is convenient to relfiaee ]I by

.1[= 1 --_

where _ is infinitesimally small so that

Witl, this approximation, equation (37) may be written as

ik , _(#r'+::)

0 <._t{ X--lk<(l--') [ l+ _ ]}Ox
lira F= = lira / -- : dX
._[_l .-.o do ._X'++2_(.qoLt - Z2)

it:.I yo:+ z-%

=d,, _ (lx (for a'0>0) (aS)

From physical considerations, the right side of equation (38)

is to be considered zero for x0<0. This is in keeping with
results that wouht l>e obtained if the limil under consider-

at.ion wore sought fi'om theory of supersonic flow, ][_>I.

The integral in equation (38) cannot be completely

expressed in lerins of known fimelions. Furt]wrmore, since

it is singular at its lower lilnit, furlher treatment is required

to reduee it to a form such that its derivatives with respect

to z can be numerieally evaluated. For this purpose the

integral may be written as two integrals, namely

(F_)_.,=&'+F/' (a9)
wh ere

F .... ['_e2_ _x /dx (40)
: 3o X

and

_ ( x_ ,j,.,+ ,-:"_

._o C 2 ",, X ]F_" = :._ X dX (41 )

The limits of integration in equation (40) are so chosen lhat

the integ,'a[ in this eqttalion e'ln be reduced to a known forrn

by nlakiug the subslit lllion

x=-_ =-(yo +:)--_ or _=,_ t?/°'+z-_-x
/

394619--56--2

Whusj

F'= ® e-_k" r= c-iO:4_)"
a £ ,r,+(yo,+z,)dr=Jo _ dr (42)

Equation (42) may be written in terms of the integrals

involved ill f t (set' eqs. (34) alld (35)), namely,

Fa' =I;0 (l:, y0=+ P) _ [:_ (Z', y0'+ P) --L,,(X', ry0_+ Z_)]

--2

(43)

Differentiating this restih twice with respeet to z and then

set, ling z=0 gives

_ K,(CyoI)-(>_Y""_ __ - i:,.,7001\ _YJ,=o=Y

";E2_'_o I ll(k[ Y" 13-- Z'(J['[Y° 3-- (44)

Differentiating equation (41) twice with respect Io z and

setting z=0 gives

f(oW"_ __< _ £ +i t TM
k be' /,-o- l_kk_y0= /c3,vo, x= dx t4a)

After performing an integration by parts and collecting

terms, equation (45) may be written as

a-=-],=o=F LI,'%: _=yo'e_

i ['_'° k(x__>"_ "]

_- i e'-' " w-" dxj (46)k"yJJ* _e

Equations (44) and (46) m'e combined to give baF°"

Then, in accordance with equation (4), there is obtained

for K(xo,yo)_-l :

For a_o>0,

K(.%,yo).,,=,:_ "'<' { 1 . , rri .re-- , , ti,(klYoi)--orl,,: .I,(/qY0!)--
/_"I ,t/o r -'_i,loi i..

L_(t,:,yo!)-- 4- 1 _ " (_.-_+°"_
• k-_yo_ k Yo

! f"_-_(-T)dx } (47a)l?yo='J <_,,,r

and, for x0_-<0,

K(.r°, yo):..r=_=0 (47b)

The integral appearing in equation (47a) is finile and

proper and Pan be or°hi°ted by numerical procedures.

TREATMIENT OF THE STEADY AND INCOMPRESSIBLE CASES

It is of interest to consider the form of the kernel function

given ill eqllatioll (20) for some particular valtleS of ]i aild _.'.

In the following seclions a discussion is given for the steady

ease (X'- 0) and the ineomln'essilde east, (M-0). The two-

dimensional case is handled in appendix B.
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Reduction of the kernel for the case of steady flow,--In
order to obtain dw redu('tion of the kernel for the cnse of

stea(ly flow, consider the expanded form given 1iv equation
(26). .ks k_(), there results the following expression

(±+ (48)

which represents dw downwad_ of n pressure doublet for
steady flow. This result serves as a partial cheek as to the
con'eetness of the expression re,' K(zo,!/o) given iv equ._lio,;

(20).
By replacing yo in equation (48) by y-r/ and inlegraling

from --1 to 1 with respect to n, there is obtained

_f'v*°'Y°?"'--7 L xg-(y-_) _0(y+l) J

(49)

where the symbol 4 indicates that a principal value or

finite part of the improl)er integral must be taken. (See,
for example, ref. 24 for n discussion of finite parts of su('h
integrals.) This result (.orresponds to the dowmvash pro-
duced by a simple horseshoe vortex two units wide. An
equiwdent expression for ineompressil)le flow is given, for
example, in reference 25, where in contrast to the present
notation, x0 has been chosen as positive forward.

Reduction of the kernel for M=0.--In order to efh'et the
reduction of the kernel for the incompressible case, the

expressions for F_, equation (15), and F2, equation (18), will
bc examined for' the limit .1/--+0:

From equation (15)

0:t_, k f . , , _i[i_(k]yo[)_L,(k]yoi)]+i) (50)
.w--mlimi_z-----2=yo _. --//_ 0Fiy°i)-_-

z-d)

and from equation (187

(50

. i)"F= ik F._oh-' "----_
lm -_-., =q_l,,' I II'dsinh 0e<;,ol_o_odO--5t--.o oz" ,y<Jo
z.-,O

XO

yo'_£' eit'xu

3"0 eikr °
2 ; 2 2y0 _,xo + yo

(5.'2)

Integrating by paris yMds

limb"F: ik ik . k fo_O -.,,__-a:' =v0'-E+_ .@o_+V e"_dx-
z--,O

Combining the results from F, and F: gives for" the kernel
function

e-*_*o£ k . , irrkK(Xo,V0).,,.0=_r- -:_ K,(kj.,;ol)-__o i [z,(t-]y0i)-

, _ .re _,_k_.llt'_xo_+y_ _el,.,o+
:,,zq--yo=" "

y,"

By selling xo=0 in equalion (53), a ro,.m is oblained whi(h
can be shown to a_'ee with results derived bv Ktlssner for
the ease 3/-0, xo=0 (ref. (26)).

a SERIES EXPANSION _'ITH RESPECT TO "k"

An approximation for the function

[h'(._0,yo)-h" (x0,.,;o)]

for small values of b can be obtained by making use of the
series expansions for t(_ (eq. (23)) and for (I_--LI) (eq. (24))
arr(l expanding all other terms of K(xu,yo) (eq. (20)) into a
power series in terms of k. After performing these expan-
sions and collecting terms with respect 1o powers of k, Lher(,
is obtained for 3/<1

,,e{ yo -_a'o +5"yo _ x° -r_ yo

i xo 1 i_r__
.(a.o_+_y0_ _ "r--:_ 2

log
2(1 -M) l-

•i]c a [- (1 -- 3 _'_12)Xo2 -}- (2 --3 .lI 2) _"y02_"] ,

322taxo_ +

4 (33I 4+ 63P-- 1) xo_+ 12l__-(.1I _+ 23I 2-1) xoyo_

12fl_y0_ log k (._/xo_+f'yo_--Xo) .i,.6f_0yo_]+20-M)

136_g[ (15_'tI4+ 10:_I2-- 1)XoZ_/Xo_+ e=?lo2-

4M_(5+M_)xo_+ 3,e'Vo' 12aI_BZxoyoa_._-_
_,xo +f_ yo

5_4 (3_lF--1)yo',"x_-+ fl'y0"]... } (54)

For values of dw parnmvwrs that satisfy th,' following
inequalities

_-_(x0-3&_'° =_ y_) <

equation (54) yMds results lhat are correct to within about
2 l)ercent.

[l|ll
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Correspondingly for 3[:1, equation (47) can be expanded
(o obtain

( _' F {_7
-__o_ 2e _.... /Xo _e _/-¢

= z, L- y;;' Ly+*,,:Y-

]o_" J,/(, ' 1 (, xo x02 _'i
l--'y-- _ 2=_ o_, [yU) 2Yo2 2 _-y +

iz.ar. x0x+ :lyo=yo,e 2 [q_
L 2 4yo' + 4xo 4doll

I

96 9yJ--6_'yo2--6yo 21 _'/c]y°r _h'_± x°4
2; -Yo

i'kx07

4 yo6e-2 14-3Xo_-b6yo 2 log xO -4-Y°:
lYol xo 2_ _]

it. rzoo
xo3w 3xoyo_. Yo' Yo_ . Yo*e-2 [ _ (56)

_L20yo' :_ --2 - Zo- i2zj- 207_-o_.J J

Fox" values of the parameters tha( satisfy the following

inequality:

I. __ k2Y')2--o (57)
_Xo kx_, <""

equation (56) yiehls results that are correct 1o within aboul

2 pereenl.
CONCLUDING REMARKS

The main purl)ose of this rep(>rt was to presenl the kernel

function of the inlegral equation relating lhe downwash to

the lift distribution in a form that can be computed. This

purpose has been achieved by the presentation of the keTnel

in a form given in equation (20). This equation has been

converted to a form more suitable for calculation by isolating

the singularities as shown in equations (30) and (31). The

special case of ._l=l is given in equations (47). The forms

of the kernel function for other linIiting cases, namely it'=0

and ._/=0, are given in equations (48) and (53), respectively.

LANGLEY AERONAUTICAL LABORATORY,

NATIONAL .,kDVISORY COMMITTEE FOR AERONLkUTICS,

LA_'CLEY FIELD, VA., September I8, 1953.



APPENDIX A

DERIVATION OF THE INTEGRAL EQUATION THAT RELATES THE DOWNWASH AND LIFT FOR A FINITE WING BASED ON
REFERENCE 21

In keeping with thc (.oncopts of linear theory, the wing is

considered as a nearly ])lane impenctrahle surface. Let this

surface S lie nearly in tilt, xy-phme, as indicated in sketch 1

of the body of the report, and h't it and the a'. V, z coordinate

system to which it is referred be assumed to nmve at a

muform speed I" in the negative .r-direction. At the same

time, let each point of the wing be assuw.e<l to undergo

harmonic translations of small amplitude Z,,(x.y,t) at

circular frequency + and let c represent velocity of sound in

the medimn.

The probleln for an oscillating wing consists in solving the

wave equation subject to ce,'tain boundary conditions. The

wave equation in rectan_mflar coordinates is

_Y_+_)"$+i):_ 1 (1, b+i)'_2/,= 0 (A1)bx _ by 2 _---_ bx _tJ

The independen! variat)le g, in equation (A1) is regarded

herein as an acceleration potential; as such it is directly

proportional to a perturhation pressure fiehl and is related

to a velocity potential ¢ as follows:

_¢-" _)¢ (A2)=N -T" 67

In order to complete tile boundary-vahw problem for the

wing, it is desirable to ('al('ulatc the downwash w(x,y,z,t)----_z.

asso('iated with ¢. Assuming this downwash to be lmrmonic

with regard to time implies that. both potentials ¢ and _ are

harmonic with regard to time and can t)e written, therefore, as

¢(x,y,z,t)=e '_' 7p(_'.y.z))
¢(x,V z,0=d" _'(x,y, z) J

(A3)

Wit.h these expressions fiw ¢ and ¢, equaliov (A2) becomes

independent of time and reduces to an ordimuT equation

with one independent variable, namely

• "7 , _, (Qa (A4)
_ twcp-i- r

This equation can be integrated with resl)eet to x to give

i,,o2"

-- e V ['._

¢=W J__ _(x,:/:),Tvdx (AS)

where the lower limit of integration is (.hosen, for later

eonvenienee, so as to salisfy the condition that ¢ vanish

as £--->--co.

Th,, 1)oundary-vahw probhml for tile wing may now be

expressed matlwmaticnlly a_, follows: '('ndcr lhe as_,uml)tion

of harmonic motion the differential equation, equation (A1),

becomes

8-"_, b2_, 82_ 1 (t" b . a (A6)

In order to insure tangential flow at the wing surfa('e, the

potential mu.q satisfy the (lownwash condition

b¢
",'.*Z/z=O \

(A7)

where _ and Z,_ are aml)litudes of velocity anti displacements,

resI)ectively, and are assumed to l)e knoum from the motion

of the wing. At z=O, the pressure

p = - p(_) _-0 (AS)

must be zero at all points (x,y) off the wing. At. all points

on the wing ¢ is allowed to 1)e diseontimmus and the value

of p at a given point is determined 1)y the magnitude of the

diseontinuity in ¢ at the point. In the neighl)orhood of the

trailing e,'lge p nltlSl go to zero, corresponding to the Kutta
eonditiom

One other condition, that 4, vanish fat' ahead of the wing,

is iMwrentty satisfied by tlle relation between ¢ and f given

in equation (A5).

Tlw potential ¢_ at poinl (.r, y, z) due to a harmonically

l)ulsating doul)lct located in dw zg-plam, at (L _, O) that

satisfies equation (A6) is

where

6z R'

R'= _,(x-_)'-'+ __(g- n)_+_z _

(A9)

and lilt, fach)r .1 is a slrcngth and dimensionality factor that

makes possibh, different uses and interl)retations of the

potential _.. If _,, is considered as an n('('cleration potential

and substituted into equation (As), there is obtained a

corresponding velocity potential 4)o which may be written as

[ ), MX /¢

a , _ _J-fxf _e'_ kt+v+vy-_)-'_ 7; =- - - dX (A10)
¢o=-1 _ e It

10

[l|il:i
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where

R----_'X2+_ 2 (y-- _)2-_-t_2z2

_60
The downwash i)z associaled with ¢_ may be written as

540 52 -_*° r=oe_ (x-.ar4x--_-9
4 5z 2e _ d-|_ _X2-t-r _ dX (All)5z

where xo=x--_, w=o_/V_% and r=_"(y--n)_+zL With the
use of this equation and the concept of solving linear
boundary-value problems by means of superposition of
elementary solutions to the governing differential equation,
the boundary-value problem under discussion can be written
as an integral equation, namely

11

_(x,y)=I._noA L(_,n)e v de,d,_..j_® -v'_+r' dX
s (A12)

where S represents the surface of the wing and L((, _)
represents an unknown lift distribution or doublet strength
on S. Equation (A12) may be seen to correspond essentially
to equations (1) and (2).

If the distribution function L((, v) in equation (A12) is
determined in accordance with the boundary conditions
discussed in the preceding para_'aph, equation (A12) can
be considered as a complete solution to the boundary-value
problem for an oscillating finite wing in compressible flow.
It is also to be notcd that equation (A12) can be considered
to represent a solution to the so-called "indirect" problem,
that is, that of finding the doumwash distribution associated

with a given lift. distribution.

APPENDIX B

REDUCTION OF THE KERNEL FUNCTION FOR THREE-DIMENSIONAL FLOW TO THAT FOR TWO-DIMENSIONAL FLOW

The purpose of this appendix is to show that integration of
the kernel function K(xo,yo) from --co to -1-co with respect
Io n=y--yo leads to a known result for two-dimensional flow.
The kernel is first modified to a form that, for the present
case, is easier to handle. Then, after performing an integra-
tion by parts on the modified kernel, the form of the kernel
for the two-dimensional ease is given (eq. (B18)). In addi-
tion, the special cases of 3I=1 (eq. (B23)) aml 3I=0 (eq.
(B30)) are also shown.

The integration under consideration with respect to n is
equivalent to an inte_-ation with respect to y,_,namely

lf :=K (zo,y--n) d,_=l f_iK (xo,yo)dyo (Be)

It is remarked in advance that since z has been made zero

in the expression for K(xo,yo), equation (20), it is necessary
to employ the concept of "finite parts of infinite integrals"
when inte_ating this function across the singularities at
yo=0. Use of this concept gives the same results that
eouhl be obtained by the more arduous task of performing
the integrations before setting z equal to zero.

Modification of the kerneI.--In order to effect the desired

modification of the expression for K(zo,Yo) given by equation
(20), consider the first integral of the expression, namely

o,'a/O

- k_J0 _-4- r _e-tkl_°l" dr (132)

This integral can be written as

£7lim--k 2 _ r_e-'(6+_1_o1) dr@k" _,l+r _ e-_IuoP dr
_-,0 ,do IB

(B3)
but according to page 331 of reference 22

£®,d_ r=e-,('+'k[_'ol) dr=2(_klyo] ) [lt,(Sq-ik[yo',)--

Y_(_ 4 ik]y01)] (B4)

where H, is the unmodified Struve function of first order and
Iq is the Bessel function of the second ldnd of first order. In
the limit as _i---->0these expressions have the following values :
For the first expression in the bracket (see rcf. 22, p. 329)

lim H,(6÷iklvo[)=H_(_kluol)=--L,(klyol) (B5)
,5--,,O

and for the second expression (see ref. 22, pp. 77 and 78)

lira I"1(_ + ikiyol) = --ill(" (/k[yo) + i& (ikl:_ol)

,-,o _2,,; K, (kluol)- L(klyoD
"/1"

(B6)

where H_ m denotes the Hankel function of the first kind of
first order. With the use of equations (B3) to (B6), expres-
sion (B2) can be writtcn as

--keJo x_lq-r= e-_t_°[" dr=k_ /s_'l+r _ e-_luof dr+

{ K_(klyo])+ 2 i [I_(klYol)--Lt(k]YoD] )(B7)

Substituting this result into equation (20) of the text gives
the modified form of K(zo,yo) sought, namely

+,, i"'q'°l
-' " 13tkl°°[ 1

K(xo,yo)= e " i_lo_ e " --

Mxo+_%_ +_yg e_ (,0-_4_ +

® ik r_. i_ -- "]k =f -V_i+r = e-_*l'd" dr+_;'.,I e_(X-5t4x'+m°')dX
Jd 31/0 llIyo'Jo

(B8)

Integration of modified kernel.--Since the expression for
K(xo,yo) is symmetrical with respect to Y0, that is, K(xo,--y.) =
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K(xo,+Yo), the integration under consideration can be
expressed as

If]® K(xo,[yol) dyo=2lL®K(xo,yo)dyo (B9)

where, on the right, the absolute-value signs on Y0 can be
dropped.

After performing an integration by parts by letting

e- i._ody___o, e-i_° 1 (B 10)
dr=2 --[- yo=, v= -- 2 --i- y--o

and

i]*lkyo i3lky* fk (xo-- M _)

u=-_-ikY°:" _ 1 a Mxo+__ e_+M e M_,_o 2 +

• . z i_k --

k2yo2fM/a_Yl+r2e-i_"dr+_kfo'es'(X-MVX'+_¢)dX (Bll)

or

ik3fxoyo ikyo _(_° M _ .

r® e-_ky,, r,,e_ (_-M r'+_) }Eyo| _ dr+k2yo| _ dh dyo (B12)
dMta.¢l+r do _'X +p Yo

there is obtained for uvl ®

-]® .e-'_o I" 1 FilC_oatt'u_-_°__ 1 i._vo

, =o +±'_(,._.,,_)+
'xo_+ _Yo2 ._U "

d.xm Afdo /_o=o)

(Bl 3)

This expression vanishes at its upper limit yo=o: and is
singular at its lower limit yo=0. However, by not making
z---)0 in the derivation of K(zo,yo) mltil after this stage is
reached, this singular value is canceled by other terms thai
have otherwise been dropped. Thus, the expression (B13)
may be considered to be zero, which is the value of its finite
part. The integration under consideration is then reduced

Lto the value of -- v du which is

r= e-'_° f® ;F (F'Xo , ik:_lxo .

-Jo _du=2_- j,, _L(,o2+-_:)_,_,_-+-_j+
• it e* _k

zk e_ (_°-i_) E e- _0,
'_]2702 + "2y02] LI/t_ "_ff_ T 2 dT-_

Jo dh dyo

ik _ (zo-M._) +

,"° c",,, ,',,e;'(_-i_') q
J._m_q-_r _dr+E l ,_ dXl dyodo yX-_+CFyo_ j

(B14)

The terms of this expression are treated separately in the
next three equations:

First (see ref. 22, p. 180)

2L ®/ik:_l ik-_o 4 _'xo_+_ yo ) ) i_'M

ik . i_zo _®/I I e--_Izdc°sh_ao--ae_(z*-M_:) dyo-_- e_; [ / lx°l ,_lcosh 0+1
J0 kXo

_° /kMIxo!\ (2)- E (B 15)

second

and third (see ref. 22, p. 180)

2k2L ® ['® e-rote " , p® dr l®e_t_vo,dY°J,,m _/l_ dr= 2E_J M/ai; 14 _22 dyo

r_,,ll @ r 2

1+[3
=--2ik log M (B 16)

ik ,. r--" i'k

- - ii tX-M_, _'_'+_2Vo_) _ i_x /, =e--a- 7 _.1_,_, 2]t. 2 [,% itx = i_,'.',1 , 0 _212 ('z ikX® ' -- . F ---- [h:eosh

e.'-',O,jo e r. , _o=-_-Jo °,_Ho,_,(-_!!x@xL ayo_-_-J o
Go Go ,r' x +a YO Go ,'A_

(]317)

Ill :I:
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Substituting the results in equations (B15) to (BI7) into

equation (B14) gives

ikr o .

K(xo,yo)dyo=--o,_ k t- Xo

iZlo(,.) ( k21Ilx,,/_']+ 2i l+fl+
k B'-' /J _ fll°g_-

/"z _kX

o g
i/CJo e : //o'2'(_)dX) (BIB)

This result is a form of the expression for tile kernel function

of Possio's integral equation relating pressure and (h)wnwasb

for a two-dimensional oscillating wing in subsonic compres-

sine flow. It cheeks the results given, for example, in
reference 27.

Reduction of kernel for M=l.--The kernel function for

M= 1 may be written as (see eq. (47a))

k2

K(X°'Y°)M='-=P e-'k_{--t_y]I IQ(kIyo,)--_' _ri [I,(k[yol)--

1 2 e_" \_ _oj+
Ll(k[yoI)- -+ k2go_ k29o_

r,ol _,u-', -,
e2\ x }dX_k y0 3o k yo 3o

0310)

The second integral appearing in this equation can be shown

to cancel several of the terms so that the kernel becomes

ik [/0 2 ,

e ''_'-' r 2 z(_o--;:_ _,r-o e-_'A--_-"'_"'hlK(xo,yo) M= 1 _ JLYo Yo Jo

(B2o)

so that the kernel for the sonic case in two-dimensional flow

may be written as

• l fkUo _

c ' 9 "Y" _ o
K(x°'y°)M"dY°=--_t'e L® Yo 2--dyo-

•iX m ik2Y°2
• e

iL"% e_ dX//® dyo (]321))
Integrating equation (B21) by parts with respect to Yo, re-

taining tufty finite parts of the integrated results, and making

use of the relation

i L e-'':dr=2zl _ e-'O__:dr='_F_a

yMds

f ,

ikgo2 _ kx_ ih

Xod-_ ' I d.

( ....] z )}---- e 2 _ e _ dyo
yo -_ X =

iX

)"_' 5 I_'°_ dx (B22)

Finally, the kernel for the sonic case ill two-dimensional flow

may be written as

Fol K(xo,yo)M= flyo= 1 _, 2

e _ --ik_ _" J. e-V dX (B23)

It may 1)e noted that the integrals in this equation are readily

expressible in terms of Fresnel integrals

fo -C(x)= cos _- t:dt

and

S(_)=l _._"sm _ t-_dt

Reduction of kernel for M=0.--For 21/'=0 it is convenient

to modify the kernel function before integrating wifl_ respect

to 5'o. For this purpose use is made of the relation (see eq.

(B7)) :

k i_rk

--_ K,(/_lYo[)--2]_o[ [I,(IclYoi)--L,(l_[YoI)]

=k:f0 = _,_--+ r_e-_lvd,dr

-- k2 f= .(yo_-{- X_e-'*XdX (B24)-- 2
yo 30

and the relation

_do d o yO J- o

With these relations the expression for K(xo,Vo)M-O, equation

(53), can be written as

K(xo,yo)M.o=e -**_' _ Zo e__,,.4 ik_,'Xor_-_£ e_,,+
_"_ ( yo',_Xo_ + yo ' yo'

O326)
yo _,)-_o
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But

,Ix (B27)

t h el'e[ol't!_

g-ikzj l_ C- f_'X
K(.ro,y,,).v=o= -- ' ! _-a/_ dX (B2S)

l-" J__o(!/o-'+x )

Integrating with respect t,o Yo gives

t ,, _,o (yJ+X'_)a"

2 e_,_,, ' [= e-*_×dX
=--2- ., _.,, x-"

2 e__.,o dX-- dX
=-7 _ x-_

(B29)

Integrating each integral in equation (B29) and retaining
only finite parts yields

f _'=K(,r,,,yo)i=odyo=---{ / ea_° ('= e-_xl 2 e-_*o ( .... ik ] dX--
', xo v-_ -X-

ikf[ e'_xx-dX)

/ d_,, /'= sin kX2 e- _*'_o %. dX--

ib _,lX+t: - X dX
0 *Jz0 "

4_d, / 1 i {Ci=- I t,-2;_._o+_ c"', (k,o)+

where Ci(kxo) and Si(/:xo) denote, respectively, the "cosine-
integral" and "sine-integTal" functions defined as follows:

Ci (x)=--£ = -c-Ttdt

Si(x)=;__ =sin' "-y- at

The results in the braces of equation (B30) cheek with results
given for this ease in reference 14.

APPENDIX C

SOME REMARKS ON EVALUATION OF THE KERNEL

FUNCTION

Exact expressions for the kernel function K(xo,yo) are

given in cqmttion (20) for 0-<31_1 and in equation (47)
for 31=1. Corresponding approximate forms are given in
equations (54) and (56).

Equations (20) and (47) are valid for any set. of values of
3I, k, x,, and Y0. To calculate the value of the kernel fi'om
these equations, it is necessary to evaluate numerically
the integrals which appear. Values of the other terms can
be obtained by making use of existing tables. Extensive
tables of the Bessel functions K_ and It may be found in
reference 28 and a table of rite Struve fimetion Ll with second
and fourth differences for interpolation purposes may be
found in reference 29. Sample values of the kernel are

given in table I.
For certain ranges of values of 3/, k, x0, and Y0, as indicated

by equations (55) and (57), the kernel can be evaluated
by making use of the power series expansions given by
equation (54) for 0 =<.11< 1 and equation (56) for 3[--1.

The various expressions for KOo,yo) become singular when
yo=y--_,xo>=O. In order to 1)e able to evaluate the kernel
in such circumstances, it has been separated into two parts
as shown in equation (30). One of these is denoted by
K@o,yo)--K'(xo,Yo) and is not singular; the other is denoted

by K'(xo,yo) and contains all the singularities. Obtaining
the value of (K--K') from the form of the expression given
in equation (30), however, may be troublesome. This
particular value for y0=0, z0>0 can be obtained from the
following limiting form :

lim [K(zo,yo)--K (x0,yo)]=_- .27d+ (1 T'1'[)"_¢ I+M-v_-.o 2xo )

e= _a..a.-_r2+,at o . ( a-_0M_
2,0= x0 _'_kiq-_ -'v-_°g \I+M)--

Ci \]+M) Si (l (C_)+M/- 2 j j

where v denotes Euler's constant (V=0.577216) and Ci and
Si denote cosine-integral and sine-integral functions, re-
spectively. (These fun(.tions are tabulated in reference 30).
For 5[----l, this expression reduces to

e-_o t'ik _:_ ik

lim [K(xo,yo)--K'(.ro,yo)]=--12 t 2 e '_ --_-t-

3 \.re . kxo . 'kxo rri
k-"[2.--2"r--l°g( 2 )-f-Cl(-2-)-t-_ Si (2-)-- 2"]) (C2)

I[li I_
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The kernel function is not singular for .to<0. For yo=0

aml xo<0 it may be written for M<I as

. _,_-;,,.( ":_,..,,,_,.o_[-/-+;z, O-3t)- llira K(--xo,yo)=" /b (-_: ')!= , /--vQ--¢ k 2J'o2 -ix< -_

\l-M� \__;U± 2_if (cm)

The expression for K K' for .,',.I.0.71.=0 may also be useful.

It, is

(, ik Urq I {

lira [K(--.r0.y0)--K'(--xo,v°)]= !21 #" ik
,0-o • l" 2J:g ix0!

---- g: _'ol

-_ ;k (l--M)\ -('gr2x02 o_ je -" -
_ P'-Ol /

2LkTI 1 , [/C[Xo['_, ,-,.[kI.ro!'_M-'°g

i si \!_3i/ _-jj (c4)

For 3I= 1, K(-- xo,Vo) =K(-- xo,vo)--K'(-- x0,9o) _- 0.

Some results of evaluating the kernel and its nonsingular

part are given as examples in table I. (In order to obtain

these results the required integrations were performed

numerically by manual computing methods.)

APPENDIX D

ALTERNATE FORM OF EQUATION (20)

Subsequent to the derivation of equation (20) as given in

the text, it was found that the two integrals involved in this

equation can be combined in a manner that leads to a more

concise and, for many purposes, a more convenient form of

expression for the kernel function. The purpose of this

appendix is to derive this alternate form.

Consider first the integral

G i F __o _: B-i4_-_-_v0_:]
,=]]_)2J(, e" ,lX (Ol)

and make the substitution

I (k_3l,X_+B2(icyo)2)=_k]yo] r (D2)

or

X=kiy0[ (.]/_ l_@-- r) (D3)

This substitution gives for G_

7-- / _'-X'I'vot <zo-._r#_,-_-XTo:)(:Air __ l) e_ik;,o." dr' -;llk[yo[,)_r/a \_1 + r -_

[,-_ (,_-.w_) _ e-<,o:, dr (D4)i

kl Yo:;d.,r'a _/1 + v2

Consider now the integral

/'31/$ _- 6
G:=/ -_ 1+ r" e -+_'!v`l"dr (DS)

do
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and integrate by parts 1)y h, tting

_l=_, l+r 2

]l,:(-il, y, r dT

so that

r dr
du:

al _r "2

This integl'ati(m gives for G.,:

_-_z'l,Vo!_ " -zl,vo---z',vi,i +_, ,T_,:
-- - e -ik:v';'dr (I)6)

Sul)tracling G: from G, (eqm (D4) and (DO)) gives

i i _i.w:_vot 1 -LM<v°J

G'-G=C_ol ;_Cyole _ _r_'W _ _ +

1 ; (z0-M4_)__ i _',,r/_ r

;tBug _ _-_,':i_olJo _.'T_-__

i

_-l,Ll

i

Cyol

i

___ e--i_Iv,,'.,dr+

r_ _ (,_-M4_)__ a_.iy_[ r e_a.lvo!,dr
d Mla _'127 r_

• fM_!yd ik

_:llk[yol+fl -" .' -_ 1 _ (_o-.w.,1_:_++a'T_)+
---- _ e _' t ._ ,, e'3[#(kyo) 3 [(_ y0)

__ f_ (_o-=W4_ -_) r ei_:,_,.!_dr (DT)
Jo r| 27 r _

Substituting this result into equation (20) of the lex( gives

for K (.ro,Yo)

_XO, yo)= _ 2- Z._ '" I t_" t VOr,)- _[ [ll(kt_lOl)--Vl(_'iYol)]_-

i kxo e__ [*_o-.w_l +
klyo] (kyo)_'(k, ro/ ÷#(tWjo) _

• , }k'_yoI ,)o d_l_"I"dr (D8)_'l+r _

The integral in this equation is in general more amenable to

numeri('al evaluation than either of the two integrals appear-

ing in equation (20). Furthermore, with tiffs expression, it

is not necessary to consider the ineompressil)le case as a

special ease, since no trouble arises in setting 3I=0. Simi-

larly, for the sonic ease no trouble arises and Qfis expression

gives for xo>0:

k_e-_, f 1
K(,,<vo).,,<- F _-a:',y,,l K,(Z-Iyo])-

• . i V; _ (&'y_l:'!

2z,r,jol " L

• l

k[yol L (_-_) ''_ @;'+dr _ (D9)
_"l+r d
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TABLE I.--VALUES OF TIlE KERNEL

xo Y0 k

1.5

1.5

0.125

.125

6.0

6.0

AND ITS NONSINGULAR PART AT 31=0.7

1.0

.1
3
5

.7
1.0

K (.ro,yo)

--63. 827569+ I. I12400i
- 63. 801759+ 3. 290793i
--63. 513049+ 5, 408405i
--63. 127659+ 7. 466762i
--62, 396691+ 10. 445693i

--126. 263912+ 19. 142811i
--114. 855158+ 55. 631898i

--92. 964383+ 86. 829346i
--62. 878740+109. 92702_;

--8. 792808+125. 223964i

.31 -.
• +.

.5 +.

.7 +.
1.0 --.

15 +/
.7 +.

1.0 --.

019271+ . 016639i
007493+ • 020950i
020861+ .001545i
009570-- .017888i
018833-- . 006290i

027209+ .020038i
002452+ . 028186/
021871 + .013305i
022588-- .008980i
004786-- .022987i

K (xu,Yo)- K' (Xo,yo)

0.144529--. 667824i
--.003441--.669879i
--.009423--.192655/
--.018114--.374807i
--.035609--. 756548i

.141754--.028841i
--.031317--.056060/
--.123447--.115703i
--. 283001--.133318i
--. 581313 +. 022309i

--. 000039--.006699i
+.007793--.(149064i

•036165--.115145i
• 095337--.181254i
• 305627--. 239070i

--.00905 --. 006215i
--.005415--. 041401i
--.007432--.109920i
--•026790--. 232786i
--.190134--.523276i
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