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DETERMINATION OF VORTEX PATHS BY SERIES EXPANSION TECHNIQUE WITH APPLICATION
TO CRUCIFORM WINGS

By ALBERTA Y. ALKSNE !

SUMMARY

A series method of determining two-dimensional vortex paths
1s considered and applied to the computation of vortex positions
behind a slender equal-span cruciform wing at any angle of
bank as a function of the distance behind the trailing edge.
Calculated paths are shown for four bank angles. For a
bank angle of 45° comparison is made with the results of a
closed eapression given in NACA TN 2605. For other bank
angles water-tank experiments provide qualitative comparison.
Satisfactory agreement is found for a sufficient distance down-
stream to include most practical missile-tail positions.

The interference forces on an equal-span interdigitated
cruciform tail behind a slender equal-span cruciform wing
are caleulated for five angles of bank (including the trivial

case of zero bank) from the vortex positions found by use of

the series.
INTRODUCTION

It is now well established that the vortex wake at the
tail of a slender configuration similar to those used for
many missiles is often entirely rolled up and that the down-
wash field at the tail can be obtained by use of a single
discrete vortex as an approximation to thevortex wake trailing
from each wing panel. If attention is confined to configura-
tions for which the ideas of conventional slender-body theory
can be used, the problem of determining the steady-state
vortex paths becomes an exact analog of the classical prob-
lem of the motion of a system of parallel rectilinear vortices.

Sacks, in reference 1, has investigated the case of an
equal-span cruciform wing at 45° angle of bank where the
symmetry of the problem permits the writing of a closed
analytic solution for the vortex paths.
of his method to other angles of bank where no such sym-
metry exists does not appear feasible.

In the present paper, in order to avoid the requirement
of symmetry, a series has been developed to define the vor-
tex paths. Paths computed by this method are compared
with the analytic results of Sacks for 45° angle of bank, and
with the results of water-tank experiments for three other
bank angles. Calculations are made of the forces on a tail
due to vortices in the computed positiens.

The direct extension

1Supersedes NACA TN 3670 by Alberta Y. Alksne, 1956.

ANALYSIS
AXIS SYSTEM
The coordinate system used in this report is a wind-axis
system as shown in figure 1, where the origin lies at the
trailing edge of the wing center line. The angle of attack
is required by the limitation of the theory to be small and
{ ; :
the trailing edges of the wing panels are assumred to lie in
the =0 plane.

Fraure 1.—Axis system.

SERIES SOLUTION FOR VORTEX MOTIONS

Analytical solutions for the motion of a system of parallel
rectilinear vortices are given by Grobli in reference 2 for the
case of three vortices with certain restrictions on the starting
positions and strengths, for four vortices with a plane of
symmetry, and for 2n vortices with n planes of symmetry.
The solution for four vortices as given by Grébli contains an
error ? but is given correctly by Sacks in reference 1 and is
there applied to the case of the vortices behind a slender
equal-span cruciform wing at 45° angle of bank, that is, to
four vortices of equal strength starting in the form of a

2 Page 147 of reference 2, equations 23 and 24.
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square. The solution in this case depends on the existence
of a plane of symmetry and cannot readily be extended to
cases of arbitrary vortex strength where the symmetry is
lacking.

The present analysis undertakes to define the positions of

— (s ),f0+((’” ) )

,__(”),_0+< ) +<([1;1>,=

The coefficients of this series can be determined by using
the Biot-Savart law for two-dimensional vortices parallel to
the z axis. For a system of free vortices, if »; and w; are
the  and z components of the velocity of the ith vortex due
to a vortex of strength T'; situated at ¥, z; the required
vortex laws are:

el T D e ) — ()
li(f)“([’t yi(\t)—j;&i o S 2
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where

r*=[y@)—y;OF +[z:()—2,O))

Now if the positions of all the vortices are known at t=0,
it is possible to write the coefficient of the first power of ¢
in equation (1) for all the vortices concerned by simply
substituting the initial positions into equation (2) to get
((h/‘> and < > - Thus the first two terms of the series

dt /-0 dt J,—o
are known for all the vortices, that is, ¥, and z; can now be
written as linear functions of . Substituting these first two
terms into equation (2) and differentiating with respect to ¢
and then setting ¢ equal to zero gives the coefficient of the
second power of £.  Now three terms of the series are avail-
able for substitution into equation (2), etc. Note that at
cach step the unknown terms of the series are of no signifi-
cance in the process since they still contain ¢ as a factor after
the differentiation and therefore disappear when ¢ is set to
Zero.

The following formula for differentiation of a product of
two functions is convenient for use in obtaining higher order
terms:

a> n d f(]”_l nin—1)d ,d*?

Jﬁ [f(f).(,(f)]_ 7”71 /+1|({7 ;[{r;—l +779| (H' Jltrz—zfl+
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. 1
In the present case, 1f_f(z‘.):ﬁ then g(¢) represents (z;—z;)

([n ([714-1 1/1

W lun—[—’”} = gt :];, e ‘isrequired, and (y;—1,)
1" gyt T, d* y— JJ
when —— g W= g1 % Z T is sought.

Now it can be seen that if the positions can actually be
described by such a series, the only restriction on problems
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a number of vortices of given strengths and initial positions
in terms of a Taylor’s series in powers of the time, ¢, thereby

eliminating the dependence on symmetry. Expansion
around #=0 results in the following expression for the
position of the 7th vortex:
,i [n > tr
.) +<({f” ,:0”!+
(1)
f2 ([n” tr
"+ +<(h‘" (,n!+

to be solved is that the series should converge rapidly enough
to be practical for the desired values of ¢ and that the work
of evaluating the coefficients should not be prohibitive.

As a test of the method the coefficients have been deter-
mined out to the fourth power of ¢ for the case which corre-
sponds to the equal-span cruciform wing at any angle of
bank, that is for four vortices initially placed at the corners
of a square with diagonally opposite vortices of eqaal strength
but opposite sense. Furthermore, since there was a closed
analytic solution available for this configuration at an angle
of bank of 45°, five additional coefficients were found for
that case with a view to increased understanding of the
behavior of the series.

INITIAL POSITIONS AND STRENGTHS OF VORTICES

In accordance with the work of Spreiter and Sacks (vef. 3)
all of the vorticity behind a wing has been assumed to be
concentrated in vortex lines springing from the centroid-of-
vorticity positions at the trailing edge and subject thereafter
to the two-dimensional vortex laws. Since the circulation,
I, is equal to the jump in potential, Ag, and since slender-
body theory leads to an elliptic spanwise distribution of Ag,
the centroid of vorticity at the trailing edge of each wing
panel lies at a point =/4 of the distance from the center line
to the wing tip. Thus, each vortex pair has a span of 2a.
where a= (7/4)s,, as shown in figure 2.

Z

Freure 2.—Assumed vortex positions at wing trailing edge.
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The lift of the equal-span cruciform wing, L,, that is, the
force in the direction of the positive z axis, does not vary with
angle of bank but remains throughout:

L= T, Ca) 4)
where T', is the circulation around the horizontal wing at
angle of bank ¢=0. At other angles of bank the vortex

strengths are related to T', as follows:
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For ¢=0, which corresponds to the case of a plane wing,
vortices 1 and 3 are nonexistent since I''=—T3=0 by
equation (5). This leaves only the vortex pair, 2 and 4, for
which the strengths and positions are given correctly by
equations (5) and (7).

For the special case treated by Sacks, that is, the equal-
span cruciform wing at an angle of bank ¢==/4, there is a
plane of symmetry and the series is simplified so that the
labor of evaluating the coefficients is a great deal less than
for the general case. For this case coefficients were found

out to the ninth power of £. Since sin ¢=cos ¢=1/4 :2, and

the series can be written, letting

4:3:sin ¢— (1+sin? ¢) T— (sin ¢)'I"-’-;]§ sin® ¢(1-+2 sin? qb)T"—;E sin ¢(3—4 sin* ¢ cos? ¢) Tt . .
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2
(sin® ¢ cos ¢) T3—= (sin? ¢ cos ¢)(sin®> p—-cos® ¢)T* . . .
(3]

=8 din ¢— (1+sin? ¢) T+ (sin d:)Tzf‘l;— sin® ¢(1-+42 sin? ¢>)T3—}—% sin ¢(3—4 sin? ¢ cos® ¢) 1™ .

where the vortices are numbered as in figure 2.
SOLUTIONS

The use of equations (1), (2), (3), and (5), together with
the fact that the initial positions of the vortices are known
in terms of the wing semispan, s,, and the bank angle, ¢,
leads to a series for the vortex positions at any time ¢.
Cofficients have been found out to the fourth power of ¢,
and with the substitution

B
47a®

(6)

the series can be written as follows:

3
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RELATION BETWEEN 7' AND x

As pointed out previously, the vortex laws used here apply
to straight-line vortices, parallel to the z axis, extending to
infinity in both directions, and changing their position with
time. Their use in the situation to which they are to be
depends on the three-dimensional steady-state
vortex picture showing relatively gradual variations in the
z direction.  Within the limits of slender-body theory the
correspondence is exact, and the results obtained in the
previous section can be used to compute the three-dimen-
sional vortex paths behind a slender equal-span cruciform
wing by means of the relation

applied

T— T (9)
Now since
[Nt
'Iv:: w - H.
4ma* )
and
Po— oo UL (2a0) (4)
and in slender-wing theory
Cr=(7/2)Aa (10)

the positions of the vortices at any downstream station,
&/s,, can be found from equation (7), or for 45° bank from
equation (8), by use of the relation

x = 71.‘('\,".)'_’ rlvi 7r:‘('\'ll‘)2 'Iv
== Y Y o . .
Sw 4( L ".*S w 24 u'St ww

(11)
where @, 1s the “attitude angle,” that is, the angle between
the center line of the cruciform wing
direction.

and the free-stream

“as for triangular wings, then equation (11) can

be written:

¢ m Ay T (12)
Sw 1607, 8a,, i
Equation (12) provides the relation used in the present

report.
EXPERIMENT

In order to provide a qualitative means of judging the
results of the computations for angles of bank for which no
closed analytic solution 1s available, experiments were run
with small models in a water tank. Water miscible paint
spread on the trailing edge before each run remained floating
on the surface of the water behind the model and made the
vortices visible. For various was considered
inadvisable to attempt quantitative comparison. For one
thing, there i1s no general agreement as to the point in a
vortex swirl which is to be considered the center of the core,
and the centroid of vorticity, which is the quantity calcu-
lated in this report, is even more difficult to define. FKor
another thing, the best pictures were obtained at angles of
attack which were too high to be entirely compatible with
the assumptions of the theory. However, the water-tank
experiments were expected to demonstrate the trends in the
variation of the vortex patterns with bank angle.

reasons, it

ADVISORY
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WATER TANK AND MODELS
The water tank used in the present experiments was the
same as that described by Sacks (ref. 1) and is shown in

)

figure 3. Three different models were used, all equal-span
cruciform wings constructed of sheet metal 0.050 inch thick.
One model had an 8-inch span and an aspect ratio of 2.
The others were One

Various

smaller, having only a 4-inch span.
aspect ratio of 1,

of these had an the other, 2.

Ficure 3.—Water tank with eruciform model.

angles of attack were tried. The most successful runs were

E ™
=0
¢ 3§ A= ——] [F9)rT.
made at 5 15
provided a record of the distance traveled by the wing as
well as of the changing vortex patterns.

As in reference 1, motion pictures

The water tank was not deep enough for the 8-inch-span
model to continue running much beyond two span lengths
below the surface. However, the camera was kept running
after the model stopped and the time, measured in frames,
was used to determine an equivalent distance.

ACCURACY AND REPEATABILITY OF EXPERIMENTAL DATA

[t was found that runs made with the two small models
showed excessive influence of currents set up in the tank
by the supporting mechanism and by various outside dis-

turbances. The vortex paths behind the model with 8-inch
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span showed little effect of stray disturbances but, since
the water-tank diameter was only 22 inches, there was a
large systematic error due to wall interference.

A comparison was made of the vortex patterns at corre-
sponding distances behind the three different models for
¢=mx/4. The choosing of the particular runs in which the
symmetrical vortex pattern typical of this symmetrical con-
figuration was maintained eliminated most of the irrelevant
disturbances which made data from the small models gen-
erally unsatisfactory. Measured in terms of the half span of
the model, the 7 coordinates of the vortex cores at corre-
sponding distances behind the three models did not differ by
more than 10 percent. However, the z coordinates behind
the large model differed from those behind the small models
by about 25 percent.

A wall-interference correction consisting of a constant up-
wash, computed on the assumption of four discrete vortices
(see Appendix B) was sufficient to bring the results for the
large model into very good agreement with those for the
small models. Since this was the case for the bank angle of
45° where the general nature of the vortex pattern was
known, and since the upwash at =0 was found, under the
same assumption, not to vary with bank angle, it was as-
sumed that the data obtained from the large model for other
angles would also be satisfactory when the same correction
was applied. The water-tank pictures shown in this report
are those taken with the large-span model and the necessary
corrections are indicated by additional reference points
marked at the sides of the prints.

No allowance was made for the effects of stopping the
model before the runs were complete. The influence, if any,
should have appeared as an additional downwash at the
surface near the end of a run, but none was noted in com-
paring runs made with the large and small models.

RESULTS AND DISCUSSION

Computations of vortex paths behind a cruciform wing
have been made using equations (7) and (8) for four angles of
bank, ¢==/16, /8, 37/16, w/4. Figure 4 shows the paths
with /s, plotted against z/s, for various values of z/s, in a
coordinate system in which the z axis lies in the stream direc-
tion and the bank angle is measured from the z axis and is
positive when the starboard wing is rotated down. The
points shown are for 7'=0, 0.276, 0.352, 0.449, 0.517, 0.582,
0.650, and 0.766, which for an aspect-ratio-2 wing with a
lift coefficient of 0.82 (a=m/12), corresponds to z/s,=0, 4.1,
5.2, 6.6, 7.6, 8.6, 9.6, and 11.4; that is, this figure may be
considered either as a time history or as a representation of
three-dimensional vortex paths.

Computations have been carried out to a value of 7" corre-
sponding to the “leapfrog’ position of reference 1, that is, to
the value at which the two upper vortices pass between the
two lower vortices for a bank angle of 45°.

Figure 5 shows water-tank pictures taken with the 8-inch-
span model at an attitude angle of 7/12 radians and at bank
angles of 7/16, 7/8, and 37/16. Choice of the appropriate
frames from the motion picture film made it possible to pre-
sent pictures corresponding very closely to most of the values
of 7T used in the computations. No comparison is shown for
small values of 7" where the vortices were in the process of

421874 57— 2

rolling up and the visible vortex cores were not only poorly
defined but did not yet correspond to the centroids of vor-
ticity. As can be seen from the first picture of each series,
the solid white markers indicate the point at which the
trailing-edge center line entered the water. The open white
markers indicate the corrected position of this reference
point, shifted upward to account for the upwash due to the
presence of the tank wall. (See Appendix B.) It can be
seen that the variation with angle of bank found by the
calculations (fig. 4) is similar to that shown in figure 5.

In figure 4(d) the positions as calculated by the formulas
of reference 1 are shown for comparison with the series re-
sults at a bank angle of #/4. For this bank angle the ninth-
order terms of the series were available from equation (8).
Points are also shown computed with terms out to the fourth
order as for the other angles of bank. Even at the “leap-
frog” position (last point computed) the agreement is good
if ninth-order terms are used. If only terms out to the fourth
order are used, the largest error appears in the z coordinate
of the fast moving vortices 1 and 2, but at a point which, for
a=12, would correspond to a distance downstream of four
times the wing span, the error is still less than 10 percent of
the total change of position in the z direction, or about 5
percent of the wing span.

From this comparison with the work of Sacks, together
with the fact that the water-tank pictures for other angles
of bank also show qualitative agreement with the computed
vortex positions, it appears that the series computations give
satisfactory results for a distance of several wing spans
behind the trailing edge.

As a further check on the dependability of the series method
the results for ¢=m=/4 using successive terms of equation (8),
are presented in figures 6 and 7, again in comparison with the
results calculated from the formulas of Sacks. In these
figures the values of y/s, and z/s, are plotted separately
against the parameter 7', which is related to the downstream
distance as in equation (12), so that

ool

2Cy 16
(O s A
Sl it

It can be seen from these figures that the series appears to
converge quite rapidly for small values of 7', and to converge,
although more slowly, even for the highest value of 7" used.
Figure 8 shows the sum of the first # terms plotted against n,
out to n=9, for 7'=0.517 for all four vortices. (The first
term, n=0, is not shown as it is simply the initial position.)
It can be seen that the series for y/s, converge very quickly.
Note also that only the odd powers of 7" appear in the series
for y/s,. The series for z,/s, and zi/s, alternates and that
for z;/s, and z/s, does not; however, both approach the
correct value very rapidly at 7=0.517.

Figures 9 and 10 show /s, and z/s,, plotted against 7" for
each of the four vortices for a bank angle of #/8. Only
fourth-order terms are available for this case, but it can be
seen that the behavior of the series is very similar to that
observed for ¢==/4. Figure 11 shows the sum of the first
n terms for ¢=m/8 plotted against » out to n=4 for each
vortex for 7'=0.517, further substantiating the statement
concerning similar behavior, although the convergence is
slower.
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Froure 4.—Vortex paths behind a cruciform wing at four different angles of bank, caleulated by use of equations (7) and (8).
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/16

(a) ¢

Photographs of wake at various stations behind a cruciform wing of aspect ratio 2, for three different bank angles; a==/12.
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Frcure 6.—Variation with the parameter 7" of the lateral position
y/s» of vortex 1 and vortex 4 behind a cruciform wing, calculated
using successive terms of equation (8); ¢==/4.
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Frcure 7.—Variation with the parameter 7' of the vertical position
z/s, of vortex 1 and vortex 4 behind a cruciform wing, calculated
using successive terms of equation (8); ¢=m/4.
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[t appears from these considerations that for small values
of T only two or three terms of the series are required and
that the inclusion of fourth power terms is enough to give
good results out to about 7=0.5. Beyond that point the
results become somewhat doubtful if only terms out to the
fourth power of 7"are used, but provide a fairly wide range of
useful values, as can be seen from the fact that for a lift
coefficient of 0.5 and an aspect ratio of 2, 7=0.5 corresponds
to about six span lengths behind the trailing edge of the wing.

CALCULATION OF LIFT ON A CRUCIFORM TAIL

The lift on the tail of a slender wing-tail combination due
to the vortices from the wing can be computed by reverse
flow techniques as discussed in reference 3, on the assumption
that the tail does not influence the positions of the vortices.
The equation

3 . b
N;=Tp.U.s { _g‘“{‘
S¢

NV E BT ] o

given in reference 4 yields the normal force on a component
tail, or tail plane (see fig. 12), due to a single vortex. Note
that a factor has been placed in front of the outer radical to
take account of the case of 6<{0. The effects of all the

vortices must be summed for each component tail and the
components of force in the z direction added to give the lift.

The configuration chosen for the present calculations was
a cruciform tail interdigitated behind a cruciform wing as in




figure 13, where the tail components are designated V and
I1 as shown. Note that the tail center line is an extension
of the wing center line, whereas the » axis lies in the stream
direction. Since no account was taken of the effect of the
tail on the vortex paths, the vortex positions used in the
force calculations were those already computed in the
absence of a tail for the station corresponding to the tail
trailing edge.

The normal-force coeflicients on each tail plane have been
computed from equation (13) for five angles of bank for
three ratios of tail span to wing span, and for 7’=0.247 and
T=0.411. 1t should be noticed that varying 7" corresponds
to varying either the tail length, the wing lift coefficient, or
the aspect ratio (see eq. (12)). For (;=0.5 and A=2 these
values of 7' correspond to z/s,=6 and 2/s,=10. The results
are shown in figure 14.
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Fraure 9.—Variation with the parameter 7T of lateral position Y/Sw
for each of the four vortices behind a cruciform wino, calculated
using successive terms of equation (7); ¢==/8.

DETERMINATION OF VORTEX PATHS
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using successive terms of equation (7); ¢==/8.
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Ficure 11.—Variation of partial sums of equation (7) with number of
terms used; ¢=m/8; T=0.517.

In figure 15 is shown the lift coefficient of the tail due to
the presence of the vortices, that is, the interference lift
coefficient, (';, measured in the positive z direction (the
same direction as the lift on the wing). It is interesting to
note that for 7=0.247 and s,/s,=1, and also for 7=0.411
and s,/s,=1.2, there is very little variation of interference
lift coefficient with angle of bank.

A comparison with analytical results obtained by the
method of reference 5 for 45° angle of bank is shown in
figure 16, in which the interference lift is plotted against the
tail-span to wing-span ratio. The agreement is very good, Fraure 13.—Cruciform tail interdigitated behind a cruciform wing
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Ficure 14.—Variation of interference normal-force ' coefficient (’_\vl with bank angle ¢ for an interdigitated cruciform tail at two values of

the downstream distance parameter 7" behind a cruciform wing.
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Fraure 15.—Variation with bank angle ¢ of the interference lift
coefficient CLI on an interdigitated cruciform tail at two values of

the downstream distance parameter 7' behind a cruciform wing.
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as of course should be expected since the vortex positions
agree so well.
CONCLUDING REMARKS

Computations of vortex paths and of forces on a tail
behind a slender equal-span cruciform wing have been made
using a series to determine the vortex positions as a function
of the distance downstream. The results show that, for a
bank angle of 45°, only a few terms of the series are needed
to provide satisfactory agreement with the known analytic
solution at downstream distances encompassing most prac-
tical missile tail positions. Comparison with water-tank
pictures of the vortex patterns for other angles of bank, and
consideration of the relative size of successive terms of the
series, indicate that the same number of terms will be
sufficient also for the general case where no analytic solution
1s known.

AMES AERONAUTICAL LLABORATORY

NaT1oNAL ADVIsOrRY COMMITTEE FOR AERONAUTICS
Morrerr FreLp, Cavir., Feb. 8, 1956
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APPENDIX A

PRINCIPAL SYMBOLS

(2¢)*
S

one half the distance, at t=0, between the two
vortices associated with a component wing

distance of a vortex from the plane of symmetry
of a component tail !

maximum chord

aspect ratio,

[J
(,Dm[, v‘xz 2)S

(The reference area used in this report is the
area of one component wing.)

lift coefficient,

interference lift coefficient (approximate)

interference normal-force coeflicient

tail surface that is horizontal at ¢;1 for mter-
digitated tail

perpendicular distance from a
plane of a component tail

lift, force in the z direction

force in the z direction on a cruciform wing
(invariant with bank angle)

projection of the interference normal force on
the z,z plane (approximately the interference
lift)

interference normal force, that is, normal force

on a component tail due to the presence of

vortex to the

vortices

positive integer

radius of a cylindrical boundary ; specifically, the
-adius of the water tank

V=) (z—2))?

area
(The reference area used in this report is the
area of one component wing.)

W

LU

@

«@

w

! By “component wing”* (or “component tail”’) is meant a wing (or tail) consisting of two “panels”

12

semispan at trailing edge (maximum semispan)
N Lot s
parameter used in series, —*“
Ta’

time, related to z by z=/_t

=
free-stream velocity
tail surface that is vertical at d)zz for inter-
digitated tail
velocity components in y and z directions due
to two-dimensional vortices
complex velocity, »—iw
Cartesian coordinates, origin at center of wing
trailing edge, = axis in the stream direction
(See fig. 1.)
angle of attack, radians
attitude angle of cruciform wing, that is, the
angle between the free stream and the center
line, radians
circulation, positive counterclockwise
reference vortex strength, invariant with bank
b
angle, o U.(20)
complex coordinate, iz
Y—1z
mass density of air at free-stream conditions
o
parameter used in series, —
175
perturbation velocity potential

wing angle of bank positive clockwise
SUBSCRIPTS

tail
wing

lying in the same plane.




APPENDIX B
WALL-INTERFERENCE CORRECTIONS

As in the case of tunnel-wall corrections, the effect of sur-
rounding a group of vortices with a solid eylindrical boundary
of radius R can be calculated by the method of images when
the vortex positions and strengths are known.

For each vortex within the boundary, the position is given
as {; where {=y-+iz and i=+y—1. The position of the
image outside the boundary is then known and is R*/,
where {=y—iz. Then at a point ¢ the complex velocity due
to the image vortex is

L ; B2
Wev—iw=oa [ 401 19 (1L

Y (B1)

b

If the field of interest is confined to a small area in the center
of the cylinder and if the vortices also remain in this area,
¢ may be neglected as very small compared to R*/¢; and the
complex velocity due to a number of image vortices may be
written

, 1(—=T,5) o
1I '—‘}g ‘)71",)’ (B..;)
Then
% 7 F] = n. T s
w3} oS #iT=3
(B3)

Since the present report is concerned with an equal-span
cruciform wing, there are assumed to be only four vortices
within the boundary and the relation between their strengths

18
]‘[r =3 I‘;;: F,,- Si]l d)
(5)
= —TI%=—T, cos ¢
Then at the center of the cylinder
7”:2i}:)3 [(r—ys) sin ¢+ (14— 112) cos ¢]
(B4)
= /))[( 21—23) SIN ¢+ (24—25) cos @]
where 1, 72, ¥3, Y1 and 2z, 2s, 23, and 2z, depend on ¢. At =0

the positions of the vortices are known in terms of ¢ and the
semispan, s,, and the expressions for w and » simplify to

W— l‘u"ﬁ'u‘

i (B5)
p=0 J

= : ks % 1

For the special case of 45° bank angle, sin ¢=cos d):—;

A

and symmetry provides relations between the vortex posi-
tions so that

for any angle of bank.

= (h=ta
Rz o (B6)

=—{0 J

at any time ¢.  Furthermore it is known (see refs. 1 and 2)
that for this case (y,-}w4) is constant with time so at the
center of the cylinder

w=constant; »=0 (B7)
as long as symmetry with respect to the z axis is maintained

Since, near the center of the eylinder, the upwash for all
angles of bank is the same at =0 and the upwash for ¢—=n/4
does not change with time, it has been assumed that one

correction, namely,

W= 0 u'S w
4R?
could be used throughout. This resulted in a correction of
I'ys b : ; :
—47,.,"’t to the z position at any time, ¢, where R is the radius
22 2

of the water tank.
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