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CHARACTERISTICS OF THE LANGLEY 8-FOOT TRANSONIC TUNNEL WITH SLOTTED 
TEST SECTION 1 

By RAY n. 'YRI OIlT, VIRGIL . Rn ' IlIE, and ALBIN O. P 8AR.O:ol 

S MMA RY 

A larg wind tunnel, approxhnately feet in diameter, has 
been con vel'l ecl to tl'an sonic operatio n by means of slots in Ow 
bounda7'y extmding in the direction of flow. The usefulness 
of such a slotted wind tunnel, already known with resp ct to 
the Teduction oj the ubl>onic blockage interjerence and the 
production oj cuntinuou 'ly variable supersonic flows, has been 
augmented by devising a 810t .shap with which a supersonic 
te. ·t l' gion with excellent fl ow quab'ty could be produced. The 
flow in this }~-open lotted test ection wa· urveyed extensively 
ancl calibratecl at jjia(h numb r up to about 1.14- . The uni
jormity and angularity characteristic' oj the flow were entil'eLy 

atisjactory for te iing purposes. The unijorm ]Y[ach number 
in the le t region wa· infinitely variable up to supersonic NJach 
number without change oj tunnel geometry. The power re
quired jor operation of the lotted tunnel wa considerably in 
exces oJ that jor the closed tunnel but could be somewhat Teducerl. 
The flow principles involved in the ol)eration of S1tch a wind 
tunnel are d1'scussed in some detail. 

The reliability of pre sure-distribution measurements jor a 
fineness-ratio-12 nonlijting body oj revolution in the lotted 
te t section was established by compw'i ons with body pres ure 
di tributions obtainedjrom theory, jromfree:fall tests, andjrom 
other wind-tunnel tests. The effect oj boundary inte7jerence 
on the body pre sure clistribution measured in the slotted test 
section were hown to be negligible at subsonic Mach n1tmber 
and at the higher upersonic 11!fach numbel' obtained. it low 
super onic Mach number , however, portions oj the body pr s
sure di tribution w re influenced by boundary-reflected di turb
ances which increased in intensity and moved down tream with 
increase in Mach number. The effect oj the disturbance on 
body pr ure was a 'certained and their effect on body drag 
was shown to be mall, particularly when the body was located 
off the te t- ection c nter line to red1lce jocusing oj the l'eflected 
clisturbance wave . 

Expe7'imental location ' oj detached hock waves ahead of 
axially symmetric bodie at low 'upersonic peed in the lotted 
test section agreed ati factol'ily with prediction obtained by 
u e oj exi ting approximate method . 

INTRODUCTIO 

In rcleren ce 1, a type of wind tunnel having a 10 Lted Le L 
ecLion is described in which the tunnel boundary interfer

ence du to solid blockage can be greaLly decl' a ed 01' 
reduced to zero and in which tunnel choking does not exi t. 

1~he tream ~hch number in lhc 10tLed tcs l scction can b e 
varied continuou l~T up to and Lhrough a valuc of l.0 and 
Lhc ?\lach number ill Lhe upersonic range i , moreov r, 
conLinuou ly variable. 

In order to Lakc adyanlao'e of lhe e fa\~o rablc chal'aeLrr-
I . Lie the Langley -TooL higb-speed lunnel, which wa 
operated with an ax i ymmctrical fl.-xed nozzlc (0 produ ce 
ub onic )'la h numbcr up (0 0.99 and a super onic .\Iach 

numbcr of 1.2 ( co ref. 2), wa co nverLcd lo sloLlcd-lunnel 
opcraLion early in 1950 and hcnceforth will bc de ignalcd a 
Lhe Langle~~ -TooL Lran.onic Lunnel. The prc enL papcr 
de cribes thi modificalion and t he sub cqucnL chanO'c 
necc ary to produce a lc t section wilh uniform ),[ach 
number. In addiLion , an inve Ligation \Va made (1) to 
survcy and calibraLe Lhe flow in the loLLed le L ecLion and 
(2) Lo ascertain Lhe reliabiliLy of prc LIre-eli LribuLion 
mea UL'ements for a Lypi cal nonlifting ll'an onic model in 
he lo tted te t ecLion. The laLLer part of Lbe invesLigaLion 

included extensive pre Ul'e mea Ul'ements an l chliel'cn 
ob ervation needed Lo evaluate lhe nature and approximale 
magniLude of Le t-secLion boundary effecLs on Lhe model 
pre. ure . 

SYMBOLS 

a peed of sound in air 
(YD body drag coefficient ba cd on body fronLal area 
L M axial eli Lancc r eq L1ired for free- Ll'cam lIach lin e, 

tartinO' at model no e, Lo tray r e Lhe upcr
sonic flow Lo te l- ection bounelary and 1'cflecL 
back 0 urfaceofmodelnearte L- ection eenlcr 
line 

Ls axial di tan ce req ulTed fo1' model no e shock to 
lravcl' e th uper onic flow to tcst- ection 
boundary and reflect back to surface of mo leI 
ncar te t- ection cen tel' line 

l ba ic length of body-of-revolution model 
M :Y.fach number, ria 
M Tc ~lach numbcr conc poneling Lo raLio of Lrcam 

total prc ure Lo prcssure in LesL chamber Ul'

rounding Lhe 10Lted secLion 
~;[o avcrage ~1ach number in test section; s trcam 

lIach number ; ~1ach number ahead of hock 
MJ :vlach numbcr behind shock 

P pre sur e coefficient, PI-Po 
go 

I uperscdes N AC A Research .\[cmoran<1um L.;l l [\ 0 by Ray IT . Wright and Virgi l . Rilchie, 19S I. and NACA Re carch ,\[emoran<1um LSI KJ4 by Virgil S. Ritchie and Albin O. Peal' on, 
1952. 

1 



~--- -----.~---

2 REPORT 1389~NATIONAL ADVISORY COMMITTEE FOR AERONAUTI CS 

P sonic 

J'SB 

Y SB 

(3 

p 

maximum chanO"e in pre sure coefficicllL at 
modcl urface due to effect of boundary
reflected disLl'ubancc at supersonic spccd 

pre sure coefficie nt co rresponding to the peed 
of ound 

local tatic pressure 
tream sLaLic pre sure 

1 · 1 1'2 trcam c ynamlC p re su re, 2' p 

air pccd 
axial distance down trcam of lo t origi n; cli tancc 

downstream of model nose 
a..\:ial disLance from onic point on body Lo loca

t ion of deLached shock ahead of body nose 
radial disLance from tunnel center lin c 
radial distance from body ee ntcr lill e to ollic 

poinL on body lllJace 
anglc of aLtack of model 
acutc a l1O"lc beLween wcak hock wa\'c and Lhe 

flow direcLion 
mcall flow inclinatioll to the horizontal (meas

ured in vertical plane through ccntcr line of 
tunnel) , po iLivc for upflow, dcg 

rna clcn ity of ail' 

APPARATUS A D METHOD 
DESIGN OF TEST SECTro N 

The modification of the Langley -foot high-speed tunnel 
wus limiLed by the c\c ire Lo preserve intact the oriO"inal n'ill
forced concrete tructure. The length available for the tc t 
ecLion \,as therefore ]'e LricLed to the 15-foot-long region 

between Lhe dO\\'J)stream end of the entrance cone and thc 
upsLream end of the cliITu er; the maximum transve]' e 
dimension could not exceed thc approximatel)- 96-inch 
minimum diamet('r of the enLrance cone and diffuscr. :\101'0-
oyer, becausc of Lhe nece ity of Laking into the c\iA'uscr the 
low- peed air [rom th e mL'Cing region aL the slot fillCl hecause 
of Lhe expansion required for supersonic flow, th e cros -
e 'Lional area at the Lill'oaL had to he reduced Lo a valu e less 

than that at Lhe difl'user en Lrancc- a bout 20 perC'cnt Ie as 
sugge ted b.y the experiments of reference 1. 

In or leI' to accomplish Lhis reduction of area aL the th roat, 
a liner \\'as inserted inLo the original tunnel. The liner and 
tesL secLion were made polygonal in cro section to facilitate 
construction and to provide plane urfaces for window. The 
Lwelve-sided regull1.r polygon was cho en, a it provided a 
ufficiently ncar approach to the circular cros sectio n of Lir e 

entrance and diffuser to make eno ugh pace ava ilable for Lhe 
UppOl'ting st.rucLure at all poinL beLween the original CI1-

Ll'ance cone and the liner and Lo allow the fairing in Lo Lbe 
circular diffu er nLrance Lo be relatively es y. The sides 
were ufliciently wide Lo accommodate win do\\' approx
imately 12 inches quare. A cuLaway view of the in LallaLion 

hown in figure 1. 
The shape of Lhe enLrance liner, given in figure 2, wa 

based on that of the pIa LeI' nozzle described in reference 2. 
This entrance shape, which ncar it dOlvnstream end divCl'O"ecl 
to an angle of 5 minutes wiLh the center line of the tunnel, 
wa designed to produce a very gradual expan ion , 0 thaL 
the :\Iach number at tunnel tation 0 (origin for tapered 

slots) i nearly un iform and, for all u per onic te t-. ection 
Mach numbers, i equal to unity aU over Lhe cross ection. 
The boundary-la~'el' development is r e ponsibl (ee ref. 2) 
for the fact t hat the efl'ective :minimum scction (ero section 
at whi ch the Mach number is un ity) exi t at 01' ncar the 
lot origin rather t han 32 inches upstream at the geometric 

minimum ecLion. With this liner the maximum possible 
ratio of diffu er-entrance cros - ectional area to till'oat cros -
ectional area i abou t 1. L . 

The test ection wa made of steel panel reinforced on the 
back and su pported at the ends. B etween the panel , at the 
corner of the polygon , slot pace were left ufficiently wid e 
10 permit th e attachment of trip forming rOLlnded slot 
edges. By cbanging Lhe e slot edges, con tructed of wood to 
facili tate their mod ification, variou sloL shapes (plan form ) 

ould b e tesLed. The spaces between the pan els were mad e 
uffici entl~' wid e Lo permit lot width on iderably in exce s 

of the width eor1'e ponding to a total opening of one-ninth of 
the periphery, \\ h ich i the ratio of open to toLal jet boundary 
judged from r eference 1 to be r eq uired (with 12 equally 
paced slot ) for zero oliel blockage. 

In the original de ign , \\'indo\\' were placed in three 
panels on ('acb id e of the te t section , but in a embly, in 
order to facilit ate modcl ob ervation , one of thc e glazed 
panels wa inLerch a nged with thc top panel (fig. 1, ection 
C-C). 

The panel werc oj'igillall ~' in taIl ed with a divergence 
angle of 45 minut c rclat ivc to tll C CC lll cr lille of the tunnel. 
To reach th i cii\' ('f'gcnC'(' from lhc 5-m inut c diverO"ence at 
the dO\\' n t1'eam ('nd of th e app roach sect ion , the upstream 
end of ev('l'~' pa ne! was g radually curvcd OVC1' the fir t 1 
inches. The shape of this cu n 'cd rcgion is hOWD in figure 
3 (a) . 

The sLrcam-sidc urfaccs of the panels and of the down
str cam 10 feeL of Lhe entran ce co ne were carefully machined, 
and precau Lions w I'C taken to a LIre the moothne sand 
co nLilluiL.,- of t he urface. In parti cular, co n iderable care 
\Va cxerci cd to minimize any differencc in surface level 
at the juncture bctween the panel and th entrance cone. 
Inaccllracies in w in dow in tallation causcd disturbance 
which W l'e l' moycd by fairin g the cdo'e 01' b~' rein Lallation. 

At 125.6 inches from their up tl'eam end the panels joined 
with a tran iLion ect ion (fig. 3 (a») which led into the circular 
diffu er enLrance at Lhe 1 O-in ch tation. Thi tran ition 
ection wa made up of curved clem en t and flat triangular 

part as shown in figure 1. The triangular flat made au 
angle of approximately 20 30' wiLh Lhe ceuter line of the 
Lunnel so Lhat a disconti nuity in lope exi ted at the 125.6-
in ch Lation. The LransiLion section was slo tted but the 
lo t co uld be fill ed and Lhu stopped at any po iLion between 

tbe 125.6- and 1 O-inch tation. B ecause the panels were 
of e senLially con Lalli width, the slo t width in this divergent 
r egion increased from 2.6 inches to about 3.5 in ches. 

A indicaL d in nO"ure 1, section C-C, Lhe tructure of the 
panel was uch Lhat open chann el exisLed under the lot. 
Becau of the tUl'bul nt mixing at Lhe 10L and the expan
ion to uper onic flow , the jet must expan I into Lhe channels. 
ontinuity Lhen requires, since the chamber urrounding the 

lots is s aled, that air \\'h ich came ouL Lhrough the slot 
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mu L reenLer and pa in to Lh e diffuser . In order to guide 
Lhi ail' into the diffuser entran ce, nose were placed in the 
cha llnel at the down tl'eam end of th e slots a hown in 
figure 3. everal differen t nose hape were tried , the .fir t 
of wh ich i indicated in fig ure 1. The nose hape used for 
mo t of Lhe Lest di cu cd in Lhi report i shown in figure 
4 (a). Th i no e could be moved up Lream or down tream 
lo match the position of tbe downstl' am end of tbe slot. A 
later modification (fig. 4 (b», including side plates which 
restri cted the dowllsLream channel width wa de igned to 
reduce Lhe power consumption. (ee r ef. 3.) The flap 
(fig. 4 (b», whi ch \Va open for ub onic operation and clo ed 
for uper oni c operaLion , wa designed to r elieve a ubsonic 
D('gative ~Iach number gradient i.ntroduced jn to the te t 
region by Lhi nose hape. 

The original dome- hapecl te t chamber wa used a th e 
ealed tank UlTounding the slot. (Se fig. 1.) This 

chamber was adeq uately large, having a maximum diamete r 
of 40 feet. It nowh er (' approacb ed the slotted test ecLion 
clo er than 6 feel,. Gla s ob (')"vaLi n port were proYided 
in th Lop, at one ide, and in be chamber door . 

SLOT HAPES 

The sloL hapes le ted arc hown in fi gure 5. For th e 
rectano-L1la r shape (number 10) originally de igned , the 
edge were made of steel , and Lwo or Lhese e lge contain ed 
rOw of pre sure or ifice. Figure 6 shows the location of 
the e and other orifice row. The other slot shapes Le Le I 
were on Lru ted with wood edges to fac ilitate their modifi ca
t ion . 

F LOW- n VEY J STn UME 'rATTON AN D METHODS 

The ch aI"acteri s li cs of the flow in the lotted te t ec lion 
" 'ere il1\ e tio-ated by mean of pre ure mea urement and 
chli eren ob ITat ion near the cen Lel' li ne and by mean 

of p reSSUl'e meas uremenls at Lh e wall. 
Pressure and temperature measurements.-· tatic-pre 

lire mea Ul'ement were obtained from 0.031-i nch-diameLer 
orifices located in the surface along the center li ne of 
di ametrically opposed wall panels 5 and 11 , a nd in the 
mface of a 2-inch-di ameter cy li ndrical W"vey Lube (fi g. 1). 

The wall orificc \1"('l"e located approximately 2 inche apart 
axially in Lh e lo ttecl ection and as Jar a GO incIte up Lr('am 
of the slot origin . Th e cylindl'i cal-Lttbe oriflce were ar
ranged in fOLir ax ia l row spaced 90° apart. ingl0 row 
co n Laine 1 ori fi ces I cated 6 inch es apar t in a 60-incb-long 
region immecliatrl~T 1I p tr am of the lot origin, 2 inche 
apart in a 24-inch-long region ju down tream of the slot 
or igin, 6 in he apart in the 24- to 60-inch down tream region, 
and 2 inche apart in the l'egion ex"Len l ing hom 60 to 160 
inche down tl'eam of Lhe 101, origin. The three 0 her rOw 
contained or ifice pac cl 2 inche apart in the r egion from 
about 72 to 112 jnch down bream of the lot orig in; in 
thi region the orifice location in the foUl' row w r lag
gered 0 th at tat ic-pres ure mea uremen ts co uld be ob
tainecl at ~~-i nch interval . TIl e ureace of the cylindrical 
Lube wa kept free of irregulariti e in the vicini y of pre ure 
orifice. 

Th e cylinlrical Ul'vey tube wa ali ned approximately 
parallel to th e geometric ce nte r line of Lh e lotted te t ection. 

The no e oj' the tube wa located abou t 9 feet upst ream of Lhe 
lot origin and \Va held in po ition by mean of three 0.060-

inch-diameter stay wire paced 120° apart aogularl.\' ; the 
clown tream end \Va located in the Lunnel difluser and was 
supported by mean of the modcI- uppor t y tern bo,,"n in 
fi o- ure l. A mall amou nt of sag exi ted along the un up
ported length of th e tube but Lhi did not aHect the pres LU'e 
measurement. The t ube was capable of ax ial movement to 
permit mea Ul"Clllent at intervals a clo e as de ired. Inter
changeable of}' ot adapters were u cd to locate the tube 6 
inches and 15 inche off th e center linc at any de ired angular 
po ition. 

Local LaLic-pre ure mea uremenL obLained by mean of 
the orifi ces in the wall pancI and in the cylindrical- tube 
urface were a um d 1,0 be equal to those ou t i Ie he 

boundary layer except in th viciniLy of a shock wh er 0 Lhe 
pre ure change would occur over an axial eli tanee o-r 0atcr 
at the urface than outside Lhe boundary layer . 

'tt am total-pre ure mea llrement were obLained in the 
ub onie flo\\' r('gion up lream of the lot origin by mean of 
everal Lota.l-pr0 ure tube, on 10 ated in th e Hip oidal nO e 

of the cylindrical urv cy tube (fig. 1) and Lb e oLher jn the 
low-speed sect ion up tream of the conLraction cone. 11"ea 
lU"emen L al 0 wer obtained ncar Lhe center line of the slotted 
te t ection by u ing a total-pressure rake consisting of 0igh t 
0.050-inch-diameLer tube, 3 inches long, moun ted ahead of a 
10 includ 0d-angle wedge . 

P res ure were mea ured b.'- u e of multiplc-Lube manOJ)1-
('Ler con Lainino- teLrabrom.oeLbane and by u e of U-Lubes 
conaining 1\ ero ene. All manomelcr tube were photo
graph ed si J11 ultan eou ly. 

The t mperature of the Dow m.ixtU l'e in tb e t unn 01 ,,-as 
co ntrolled in order 1,0 r educe possiblc humidil.'- efleet on the 
now in t he te t ect ion . T emper ature measurcmenl were 
obtained at a numbC'l' of taLion between the Lunne] c01ller 
lin e and wall in tb e lo\\-speed eclion up 11"('am of the con 
traction cone by U 0 of Lhermocouple in conj un clion with a 
f e ording potentiometer. 

Schlieren optical system.- In ordcr to supplement the 
pre sur mea mement, cbliel'en ob erval ioD of flow phe-
nomena were mad0 b .v U 0 o[ the t0mpOl"Ul" ingle-pas 
.rstcm shown in fi gure 7. This system utiliz0ell -foo -diam

('t('r parabolic minor and wa mOunte 1 on large movable 
uppor t sLl'UC ur(' wIDch permilled ob el'vations al an.'

d0sired t(' t- ection windo'ws in th e horizontal plane or in a 
pl ane 300 from the horizontal. A spark Olll'Ce was u ('d for 
photographi c r ecording. The ent ire ystem wa localed 
within ('11 Le t chamber and was operated by remoLe conlrol. 

Determination of Mach number.- The flow 11ach n umber, 
tb0 parameLer used for pre enL ing mo t of lho result of the 
present urveys, was obtained b)' rclatino- imultaneou ly 
mea ured value of Lhe lrcam total pre m'e and local tatic 
pres ure. Indi cations of Lhe flow Mach number wer(' al 0 
obLained from mea ured value of the angularity of weak 
hock wave pl'ocluc cl b)T mall two-dimensional ul'face 

irregulariti e on oppo ite wall panel. on ical bock w u,Y(' 

produc d by a 10° included-angle co ne of I-inch maxim.um 
diameter wer e u eel not only for indicating the value of the 
stream ach number but al 0 [or incli cati ll o- the degree of 
flow uniformity in Lhe 10tLed Le t ect ion. 
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Flow angularity measurements.- The meftll angularity of 
lhe fiow with J'C peel to a horizontal plane near the cenLer 
line of the lotted te L eelion was mea Lll'ed by u of th 
null-pres ure-type instrument hown in flgW'e This 
in trument , a 3° included-angle con, containecl 0.010-iuch
diameter latic-pressure oriflce located ymmetrically in 
opposite ul'faC'cs . The ensitiyity of this inst)'umrnt to 
anglc-of-aLlack changcs, expH' cd in Lerm of the pre sure 
clifl'e]'('nlial bet ween orifices in oppo ite urfftces and in the 
plane of angle change, wa about 0.6 percenl of the slream 
dynami c pres ure pel' clegrce change of angle in lhe lran onie 
speecl range . This sensili"ity, though not great, was within 
the pos ible ('1'1'01' in instrument-altitude mea uremenl . 
u·h mea urements , obtained by careful u e of a ca thetom

etel' during adual tes ting, were e timated to includ e 
po ible inacClll'acie not exceeding 0.1°. The procedlll'e for 
mea lll'ing the flow inclinalion con i ted of, fir t , orienting 
the in trument so that pre me orifice in opposite urface 
were iluated in the verl.ical plane of mea Ul'emenL, and 
econd, yarying the instrument altitude by mean of a 

rernot 1y conll'oll 1 angle-changing mechanism in the up
porl sy Lem unlil the pre SUl'($ at Lhe opposite surface 
\\-ere cqual. The instrumenl altitude wa determinecl care
fully h)T means of cathetometer readings for thi indicated 
null-pre nre condition, and the procecl w'e wa repeated 
wilh the inslnmlent inyerled . The arithmetical a \'e rage of 
instrument-attitude mea w'cmenls made with the instru
ment erect and il1yel'Led \Va a umecl to compensal for 
po sible asymmetry of the in trument and to indicale the 
mean direction or the flow. 

Rapid yariat ion of the flow angulari Ly wi th t.ime were 
indicated by mean of pre sUl'e-fl uctuation meaSLlrements 
in t.he 10Lkd te 1 eclion. For these mea urements a 3° 
included-angle ('one wa equipped with a mall eleclrical 
pro ure cell (mounted ill ide the cone) which connected 
directly with stalic-pressure orifice located 1 0° apart in 
the COlle slll'face. Periodic differences in pre Slll'e between 
the orifice in opposite urface of lhe ('one were mea med 
hy mea,ns of a rcC'o rcling oscillograp h. The inclicatec1 pres-
ure c1ifl'erence \\-ere expre cd in [,erm of fiow-anO'ularily 

change by usc of a steady-stale calibralion of Lhe pres me 
cl ifl'eJ'ential bel \\-een ori fices in oppo i te surface of the cone 
with re peel, to ('one-altitude cha11O'e in the plane of the 
orifices. This pre me differential in the lransonic range 
was ahouL 5 pounds per quare foot per degree ('hange in 
cone aLtitude with respect to the fio,,' , whereas the ensi
ti,~ily of the pre ure cell was approximately 0.25 pmmd pel' 
square foot. The accuracy of the pressure cell \\-a main
tained over a frequency range from 0 Lo 300 cycles pel' 
second . 

Jet-boundary interference effects .- In oreier lo a certain 
the yalue of Lhe lotte 1 le l sec tion for te ting purpo ('s a 
high-finenes -ra.tio body of I'm-olution \Va te ted a,t Z('J'O 

angIe of attack through the ;-'lach number range from aboul 
0.60 to 1.14 and the mea uJ'ecl hocl)r-surfaC'e pres ure eli tri
butions were compared with essenlialLy int rfereJlce-free 
eli tl'ibutions from other so urces. The particular boel)T hape 
u cd in thi inwsligalion, a fineness-ratio-1 2 hody for \\"l1i('h 
coordinales arc gi,'en in I'd('l'ence 4, \\·as selected becau e of 

the a,ra ilabiJity of theorelical ancl experimental pressure 
eli lribution. The \\~ind -tunnel model eonsi ted of the 
f rwal'cI 3.7 percent (33 .5 inc'hes) of a 40-inch-Iong ba ie 
body; a 3.25° emiangle. upport ling joinccllhe body at the 
3.7-pereent talion ( ee fig. 9). Thi model contained 
tatic-pre ure orifice (0.020 inch in diameter) paced 2 

inche apart axially along the length of the body and ar
ranged in row at val'iou angular location (ref. 5) but only 
the pres LU'e measurements aL the upper and lower surface 
were used for lhe com pari on ho\\'n in thi report. mall 
urfaee eli continuiLie exi Lcd aL moelel-component jlUletur , 

at an cmbeelded minor in the upper urface, and at fairecl 
urface over filleel bolL hole . 

The reflection of eli tUl'hance from lhe 10tlec1-le l- ection 
bowldary and Lhe effect of uch reflection on model pre sure 
eli tributions \\~ere examined by te ting both the bo 1y of 
re,-oluLion (fig. 9) anel a winO'-body combination (fig. 10) 
at super onie pecci an 1 eorrelal ing the mea ured pre nrc 
at model and wall surfaces with chli eren pictLu'e of the flow 
field ncar the model ut'face. The wU1O'-bocly combination 
('on i Lcd of the preyiou ly de C'ribed body of reyolution 
(fig. 9 (c)) fiLled with a 45° weptback airfoil of ACA 
65A006 ection, 12-inch semispan, and 1- quare-fool, plan.
form area. tatic-presstLre orifice (0.020 inch in diameter) 
\\'el'e located in lhe upper and lower surface of the airfoil 
at fj,re semi pan lation (ee ref. 5) but fot' the pre ent Ul'
veys pressures were mea ured mainly all he 60-percent and 

O-percent semi pan stal ions where the airfoil chords wero 
about 5.70 and 5.05 inehes, J'e pectinly. Pres ure orifices 
at lhe ewing tations were located aL chordwise interyal 
no greater than 10 pcrcent of lhe cbord . tatie-pre ure 
orif1ces (0.01 inch in diameter) al 0 were located at axia l 
intervals of aboul 0.75 inch along the length of the model-
uppol'l ting in order to mea me pre mes in Lhe compr ion 

J'egion at the ba e of the model and to a id in locating wa11-
reflected di turbance. Transition wa flxed at 10-pcrcent
chor 1 and 12-percent-bocly-length tation for the wing and 
body of revoluLion, re pec tiycly. 

The control of model aLtitud e cluring le t in lhe lott ed 
te t seclion \\-a eHected by mean of eathetometer ob el'\~ a

tion and a remotely conLrolled angle-changing mechani m 
in the model- upport sy tem. 

PREel IO OF DATA 

The maximum random errol' in tb e indicated 11ach num
ber, a obtained from pres m e measuremenl throughout the 
transonic range covered b)- the e Ul-Ve)~ , ,,~a e timaled to 
he no grealer than 0.003 in shock-free flow. For mea ure
ment behind shocks an additional CITor in the inclicated 
~lach numbcr \Va po sible because of failure Lo correct for 
change of Lh s tream tolal pres nrc through the hock; 
this (,l'ror, however, wa negligible at the lo\\'er upel' onic 
;-'lacb !lumbers and did not exceed 0.002 for !lormal shock 
at a ;-'lach number of 1.14. 

Probable errors in ~1ach number indica ted by alJO'ularil.v 
mea urement of ,,~eak shocks in uperso ni· flow were about 
0.002. This Cl'1'or corre ponds to an e timated inaceuracy 
of 0.2° in the measurement of the allgularil)~ of t\\~o-climen

sional SllOCks from the te L ection \\·all. Th e angularity of 
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sharply defined conical shock could be mea ured with an 
inaccuracy of only about 0.10. 

The differences between :Maeh number determined from 
pre sure mea urement and those from shock-angularity 
measurements at supersonic peeds corre ponded clo ely to 
the e timated probable error in determining Lhe Mach 
number. (ee fig. 11.) 

E timated po ible elTor in the model- uriace pres ure 
coeffieienL. obtained from test in the slo tted te t ection 
were generally about 0.005 and did not exceed about 0.010. 

The en itivity of the chlieren optical system, when 
properly adju ted, wa ufficient to permit the detection of 
a conical shock who e streno"th corre ponded to a Mach 
number change of about 0.003. 

The maximum po ible error in measuring the flo,v angu
larity,,-a estimated to be about 0.10. A ljJ~e enOl" in m eas
uring the model angulariLy introduced the po sibili y of 
error a OTeat a 0.20 in model alinement with re pect to 
the flo,,' direction. 

RESULT AND DISC SSIO 

PRELIMINARY I VESTIGATIO, S 

Ina much a the -foot tran onic tunnel \Va the fir t 
large lo tted tunnel con tructed at the Langley Laboratory, 
the fir t ta k was to tudy it general characteri tic. uch 
a study wa facilitated by the laro-e size of the te t chamber, 
,,-hich permitted direct observation lurulO- tunnel operation 
from po ition ncar the 10Ls. uch ob ervation wa limited, 
howeyer, by the noi , which became painful aL ~lach 

number greater than about 0.6, and by he danger of a 
udden large pre sure inerea e due Lo power failure at large 
~[ach number, "hich might re ult in phy ical injury to the 
obseryer. The test chamber was al 0 uncomforLably hot 
becau e of the nece sity of operating the tunn el with high 
Lagnation temperature, up to 1 00 F, in order to prevent 

condensation difficultie . 
In an investigation of t he noise, the natural fundamental 

frequ ncy of lhe yslem of te t chamber and lots wa roughly 
e limaLed al about 3 cycles per econd. Mea urement of 
the frequency and in ten iLy of the sound in the te t chamb 1" 

indicated a vibration wiLh abot7t thi frequency, but the 
areater part of the enel"O-Y was rather widel)- di Lribu ted in 
general noi e. Thi noi e, which aro from the lunnel fan, 
from the vorticity and g neral turbulence in the slot , and 
from the general diffuser flow, reached an inten ity in exce s 
of 130 decibels at N[ach numbcr neal' unity. In ad lition, 
ections of the test-chamber floor vibrated, apparently with 

Lheir natural frequencie , but these vibration w'ere not ex
ee sive. To minimize nois and vibration, blunt diffuser 
enlranee nose are beli ved to be desirable, because harp 
noses mio-ht be exp ted Lo produce oscillations w hen truck 
b)- lhe vortice proceedinO" down tr am just outside Lhe slo t. 

Tn a lclition to Lhe vibraLion, a general circulalory move
ment of th air in the Le t chamber wa ob erved. Th crub
bing acLion at lhe 10L entrain ail' from the te t chamb r 
an 1 can'i it along toward the diffu er enlrance, where it i 
eparalecl from the lunnel Aow at the cliffu er enlrance nose, 

defleded out into the lllTounding chamber, and circulated 
back toward the up treum ends of lhe slol . 

The fir t te t were made with the rectangular lot shape 
and with a panel divergence of 45 minutes. The indicated 
Mach number di tributions at the variou orilice row's are 
hown in figure 6. In this fio-ure ]vITO i the Mach number 

corresponding to test chamber pressure. The total pre ure 
for these and all other Mach number distributions pre ented 
in this report i that ncar the center of the tunnel Lream. 

The Mach nnmber distribution hown in figw'e 6 i evi
dently unsati factor)T for model te ting. A pointed out in 
reference 2, the flow di Lurbance in a circular tunnel are 
concentrated at the center; a might be expected, the 12-
ided tunnel with regular polygonal cro ection behayes in 

a similar manner, that i , Lhe ~Iach number 0 cilla tions 
shown in fio-ure 6 are con iderably greater near the center of 
the tunnel than at the cenLer of a panel. pecial care is 
therefore required to obLain a model te t region with uniform 
Mach numb r. The olution to thi problem wa deduced 
from test wiLh variou lo t widths and shape, from addi
tional te ts which had previousl)" been carried out in the 
apparatus of r ference 1, and from a fundamental conception 
of the part Lo be played by Lhe lots in producing Lhe llper
sonic flow . Previou tesl had already led to the beli f that 
one of t.he mo t important cau e of the ~Iach number 0 cLUa
tion wa the overexpan ion in tb upstream parL of the 
loLLed ection, unilar to Lhat which occurs when a uper
onic jet debollche inLo a region having a pres ure less than 

that at the jet exit. The function of the lo t hape i con
ceived to be the control of Lhi expan ion in uch a way that 
the l\Iach number will gra [ually approach it final Le t- ec
tion value wiLhout exceeding thi value at any ection. With 
th 45-minute divergence of the panels such control \Va found 
to be impossible, although a number of dillerent lot hapes 
were tried, becau e the flow expan ion produced by the 
curvature and divergence of the panel already exceeded 
that required. 

The po sibility exi ted of removing mo t of this divergence 
by tmnlng end-for-end th part of the panels between ta
tion 0 and 125.6 inche. Thi modification a accompli hed 
i shown in figure 3 (b). The panel arc lraio-ht for the first 
107 inches with a 5-minute lope cont inuol! with lha,t of 
the entrance cone. The curved parL of Lho plates now lies 
beLween the 107- and 125.6-inch station , and curved liners 
have been added between Lhe 125.6- and 141.6-inch stations 
in order to relieve the di continuity in slope at that Lation 
and Lhu to prevent larg flow di turbances wiLh attendant 
hocks in thi region. 

The effica y of changi ng Lhe panel divero'ence from 45 Lo 
5 minutes i hown Ul [i.o-ure 12. A considerable reduction 
in Lhe Mach number oscillation ha been obtained, par
ticularly ncar Lh center of the lunnel. The slo t is now ful
filling it funcLion of controlling the development of the 

uper onic flow, and change in lot hape might Lherefore 
b utilized to improve Lhe ~Iach number eli tribution at Lhe 
cenLer of Lhe Lunnel. 

INVESTIGATIO OF SLOT HAPE 

The e Labli hment of uper ollic fio\\- uilably uniform for 
model testing in the loll ed region of the Langley -foot 
iran onic tunnel wa the primalT purpo e of the inve liga
lion of lo t hapes, in cc the production of sati facLorily 
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uniform flow at speeds up to and lightly exceeding the 
speed of ouud was easily achieved simply by the installa
tion of rectangular-plan-form lo ts. (See fig. 13.) The per
fOrInance of rectangular slo ts, reported in reference 1 for the 
case of a 12-inch-diameter throat, was verified experimentally 
in the 8 -inch effective-diameter throat of the Langley 8-foot 
transonic tunnel. A characteristic feature of super onic flow 
in a throat cquipped with rectangular lo ts is a rapid initial 
expansion and a sub equent compression of the flow imme
diately downstream of the slo t origin. At l1ach numbers 
greater than about l.02 disturbance a sociated with the 
initial expansion-compression appear in the slotted-test
section flo,,-, and the magnitude of the di turbance increa es 
with l1ach number. Tbis performance is illustrated in 
figure 13 , which pre ents Lhe rc ults of flow surveys in the 

-foot unnel wiLh rectangular lots and with the throat 
geometry of figure 3 (b ). The disturbances hown in figure 
13 are sufficien tly evere to preclud e Lhe u e of rectangular
plan-form slols at upersonic speeds in Lhi test section. 

The usc of Lapered slo ts Lo reduce lhe rapidity of tbe 
initial flow expan ion and the severity of Lhe accompanying 
disLurbances, which was originall)- reported in reference 6, 
was followed in investiaating uitable lot shapes for the 
Langley -foot transonic tunnel. For thi investigation the 
lunn el throat geometry of figure 3 (b) was main tained. 
For some of these tests, the curved liner shown in figure 3 
was replaced b)' a "boaL-tail" as indicated at Lhe top of 
figure 14, but thi change did not significantly affect the 
flow in the test ecLion . The first slo t shape inve tigated was 
a straight-tapcr de ign, somewhat similar to one for ,,-hi ch 
fairly good fio\\' characteristics werc reported in reference 6. 
This slo t hape is identified in figure 5 as hape l. The 
slo t originated a a point at the effective minimum section of 
tbe tunncl (staLion 0) and opened with an angle of 0.77 0 

between the edge and center line of the slot. The tapered 
portion extended 96 in ches (l.09 jet diameters) do\\ n tl'eam, 
after whi ch the slo t width rcmained co nstan t. In this re
gion of constan t slo t widlh, the open porlion of the boundary 
compl'i e 1 approximalely one-ninth of the toLal periph ery 
of the tunnel wa.11. The flow characteristic of Lhe lotted 
section equipped wilh lot hape 1 (sec fig. 14) corresponded 
approximately to lho c for the tapered slo t reporLed in 
reference 6 for it 12-inch-diametcl' Lunnel tlu·oa(;. Th e 
upersonic flow in both tunnels attained approximately the 

same maximum and minimum 11ach number at e luivalent 
distances (jet diametcrs) downstream of the slot origin. 
The ex i tence of thc compression region following the initial 
expansion was sufficient , however, to ju tify investio'ating 
the control of slotted- ecLion flow characteris tics by means 
of slot- hape modifications. 

Otllel' tapercd slots were Lhen inve tiga ted in an attempt 
to reduce Lh e initial flolV ovel'expan ion and Lhe compression 
that followed. Th e :flow characteristics for slo t shapes 4 
and 9, which opened with onl)- about half tb e angle of slot 
hape lover th e first 4 inchcs downstream of the slot 

origin ( co fig. 5), arc hO\YJ1 in fio'mes 15 ancl16, respectivel)-. 
Comparison of these data with those for slo t hape 1 indi
cated that the reduction in the initial rate of opening of the 
tapered lot produced a corre ponding reduction in the rate 

of flow expansion ; also, the slight overexpan ion and fol
lowing compre sion of the supersonic flow produced by lot 
shape 1 was practically elimina ted by u e of shape 9. The 
flow expansion produced by slots 4 and 9 were almost identi
cal in pi te of the fact that slo t shape 4 opens more abruptly 
downstream of the 4 -inch station. In the test ection the 
degree of flow uniformity was slightly Ie for shape 4 than 
for shape 9, and it is therefore urmised that small flow
uniformity gaios may be expected by changing the slo t 
shape gradually over the downstream portion of it taper. 

lo t hapes 6 and 7 ( ee fig. 5) utilized over their first 12 
inches of length es entially the same initial taper angles a 
were employed for hapes 9 and I , 1"e pectiv Iy; but fo11ow
ina th is 12-inch traight-tapel' region lots 6 and 7 opened 
with grcater angle of divergence than did shapes 9 and 1 
and attained their full-op 0 widths at 76 and 74 in hes 
down Lream of Lhc lot origin. Th e 1'e ult of flow urveys 
for these slo t shapcs, presented in figures 17 and1 , l'e\~ealed 

that the upersonic flow down tream of the initial straight
taper region expanded more rapidly and compre d more 
severely than did thc :flow £01' slot hape 9 and 1. Th e data 
for slo t shapc 1,9, 6, and 7 indicated that , for tapered slol 
who 0 initial open ing anglcs are no greatcr than the 0.77-
degree half-angle taper 1.1 cd for shape 1, the important factor 
in controlling the flow expan ion and C'ompre ion i the 
propcl' haping of the slot over the long rcgion in ,,-hieh most 
of Lhe opcning to full lot width takcs place. 

, lot shape , ,,-hich opell ed in a straight taper of l.] 0 

half angle over its fir t 4 in 'he from the slot origin ( ce 
fig. 5), produced the ~Iach number distribution hown in 
figure 19. The supersonic-flow expan ion occurred more 
rapidly for slo t hape than for any of the other tapered 
shap s inve ligated, a might be expected from the O'l'ealer 
angle at which it opened. At the higher ~Ia h llumbcrs the 
eli tribution became adclle- haped. 

From the cc ntcr-line .i\1ach number di tl'ibutions C01'1'C

spo nding to lot shapes 1, 4, 6, 7, ,and 9, the po ibility 
now existed of relating lot- hape changes to the C01'1'C pond
ing ~IaC'h numbcr changes and thereby cffecLing modifica
tions designed to improve the di tribution . For the direc
tion and a qualitative indication of the magnitude of the 
slot-width changes required, the conception of the function 
of the lots in proclucing the super onic flow ervcd as a 
guide. Thus, for in tance, if at ome point along the ecnter 
lino the flow has expanded to a ~1ach number in exC'c s of 
that indicaLed by the test-chambcr prc sm'e, this overC'x
pansion can be traced back along a :Mach lin e to a region Oll 
the Lunnel boundary; if in this region the pre u1'e on the 
panel is greater than that in the te t chamber, a decrea e 
in lo t width is indicated in order to recluce the How expan ion 
at that ction. 

In electing a slo t hape to serve a a ba i for th e n w 
des ign, hape 9 was chosen because it already produced a 
super onic flow of con iderable uniformity. In addition to 
the changes in tenclccl to improve the flow uniformity, ,,-hich 
were accomplished by interpolating among the lot shap 
previously tested and by applying the idea di cu sed in the 
previous paragraph, a further modification wa made in 
order to decreasc the length required for e tablishmen t of 
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Lhe uniform flo,,-. For tbis purpo e the aDo-Ie of taper at 
the up tream end was increased to a value approaching that 
for hape Thi increa e in taper angle at the upstream 
end was consistent wiLh a decrea e between the 55- and 75-
inch tations, where such a decrease wa belie\Ted to be de
s u'able in order to decrea e the Mach number 0 cillation in 
the test region . Th final lo t hape i shm'll a number 11 
in figure 5. 

The re ult of the flow urveys with slo t hape 11 , which 
arc pre ented in figure 20, show a light improvement in flow 
uniformity at ~Iach numbers greater than 1.1. The over
expan ion with ub equent compre ion i pracLically elimi
nat el, and, moreover, thi uniform flow is reached in a 
horter ii tance than wi th lo t sbape 9. The length of the 

e sentially gradient-fr e region available for te Ling purpo es 
varies from about 0 inehe at a stream :Mach number of l.07 
Lo approximately 40 inche at a lream Mach number of 
abou t l.13. Extcn ive survey, including tati -pressure 
measurement at axial intervals a olo e a ~ inch, in the 
lotted ction equipped with tapered slo t hape 11 indicated 
~1ach number deviation no greater than those hown in 
figure 20. In a typical model-te ting r egion approximately 
36 inche long and 30 io che in diam tel', the l1ach number 
d viation increased with 'Mach number to \Talue not 
exceeding ± 0.006 at a stream Mach number of l.13 . Thi 
degree of flow uniformity wa con iclerecl saLisfactory for 
model- testing purpose , and lot shape 11 ,,-a therefore 
cho en for the final test- ection co nfiO" uration. 

The coordinate for slot hape 11 are given in fi O"ure 2l. 
A1 0 included in th i figure is the approximate hape of the 
lot edge, 'which was lightly O\Ter 0.5-inch thick and which 

remaine 1 e sentially the arne for all the lo t hape inyesti
gated. Immediately oul ide the lo t edge , th e channel 
bebveen the edge and the te t chamber opened abruptly a 
indicated in ection C-C of figure 1. If the thickne of 
the lot edges and the iz of the channel immediately out-
ide lhe lot opening had been greatly different, the charac

ter istic of the flow through the slot might have been 
influencecl sufficienLly Lo have r ulled in a final lo t hape 
omewhat different from shape 1l. The large ize of the 

channel res ult in th e maintenance of the pres m e ju t out
sidetl! 10L atavahle\TCl"y olo etothat inthe le tchamber ; 
and the thinne of lhe slo t edge tend to r du tho inertia 
effect clue to flow in lhe lot ) which might aggra\7aLe tho 
o cillation in the te t region. The rounding of the lo t 
edg s may not be necessary, bu t wa Laken a a procaution 
again t di tmbance that might ari e from flow eparation 
at harp corner. 

TE '1'- E TIO CALlBRATIO 

Flow uniformity .- Th 1'e ult of oxten ive pre m e Ul"yeys 
ill the slotted te t ecLion using lo t hape 11 are pre ented 
in figur 22 and 23 in lerm of lhe local 1\Iach number. 
The slream to tal pre me II ed, in conj unction wiLh local 
tat ic pres m e , to determine tbe Mach number eli Lr ibutions 

of figure 22 and 23 wa found to be e entially con tant 
throughout the smyey region near the Lest- ection center lin e 
and wa in clo e agreement with yalu measured in 10w- peed 
ree:ion upstream of the lotted section. The lvIach number 
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distributions hown in figure 22 arc a oeiated with the flow 
characteristic soon aiLer in tallation of tbe loLLed throat 
and with a diffu er-enLrance nose located 142.5 inche down-
tream of the lot origin (no e ). Figure 23 presents wall 

and ceuter-liue Mach mmlber distribution obtained from 
uney conducted at a la ter date and with a longer diffu e1'

en trance no e (no e B, ref. 3) locat.ed 114.6 inche downstream 
of the lot origin. 

The Mach mmlber di tribution in the lo tted te L ection 
with diffu er-entrance no e A (fig . 22 ) indicated thaI, (1) the 
itOV? in the lotted te t secLion wa e sentially free of gradient 
(except in the Mach number rang from about 0,90 to 1.0 
where a light po itive 1\lach lllunber gradient exi ted), 
(2) the lenO"Lh of tbe uniform-flow region available for model
testing plU'pose decreased with Mach number but was 
approximately 60 inches 10nO" at a Mach number of 1.13, 
(3) the Mach number mea m ed near the center line of the 
uniform-flo\\- reO"ion agreed r ca onably well with tho e aL the 
wall, and (4) ihe quality of the flow in the slotted te t ection 
with slo shape 11 was fully equal to that in th most care
fully de igned two-dimen ional olid nozzle. This re ult 
i the more remarkable when it is realize 1 Lhat the 101. hape 
was reached without tho benefit of any uch theory a i 
available for the olidnozzle design and that , mol' over, thi 
uniform-flow te t region wa attainecl in a tunnel of approxi
rna ely circular cro ection, for which Lhe olid nozzle design 
i particularly critical. It seem rea onable, therefore, to 
conclude that the de ign is much Ie s critical for the lot ted 
nozzle than for the olid nozzle. Thi a ing of ih design 
requiremen Ls i perhap due to the facL that the lot in con
jlll1ction wiLh the panel produce an effective integra ted 
dampecl ela tic pres m'e bowlclary in co nLra L to the unyield
.Ln 0" solid boun lary of Lhe olid nozzle. Thi pre sm'e bOlll1d
ary i incapable of supporting the larO"e pres m e O"radient 
that can exi t at a compleLcly olid boundary and, therefore, 
all disturbances at the boundary tend to be pre. d out into 
hallow 0 ciUation in tead of b in O" concenlrated inLo hocks 

a may 0 cur in a solid nozzle. 
In other respect the flo\\' in lhe 10 Lcd nozzle i imilar Lo 

that in a olicl nozzle. 'rhu , just as in a oEd nozzle, irregu
laritie on the soli 1 urface produce di Lurbances eXlending 
into the interior of Lhe IIow. DisLurbance produced by 
st ring 0.010 in h in diameter on the top and bottom panel 
at a :\Iach number of l.074 are hown b~- the chlicren photo
graph in et in fi gure 24. The e disturbance are prupagated 
along line at angle ver~' close to the Mach angle. This 
behavior cor1'e pond with the as umption, involvecl in the 
derivation of the slot hapes, that Lhe onl.\' parL of a slot 
efYective a l a point of the flow is that up lream of the in Ler-
ecLion of Lhat lot wiLh the upstream 1Iach cone Lhrough 

th poi.nt. 
'l' he resul t of urveys in the 10Lted te L ect ion after a 

long period of model Lesting anel with diO:u el'-cntran e nose 
B (fig. 23) indicate that the :\Iach numbCl' atLainablc at 
maxinlUm Lunnel power was increa eel lightly but lhe test 
ection wa hortened aL iL clown tream end by usc of the 

new diffu er-e11 trance-no e arrangement. Th e' 1\Iach number 
distribution of figure 23 also indicate a decrea e in the 
uniformit~- of the te t-sect,ion flow in ee tb e Lime of the 
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initial SUlyeys; on'r a 36-inch-Iong region the maximum 
deviations from the average stream 11a,ch number indi
cated in figLU'e 23 \\e]'e a mu ch a 0.010 as compared with 
deviations of as much a 0.006 in no-me 22. Thi deteriora
tion of the flow was as Llmed 1,0 be due to the effect of discon
tinuitie appearing in the wall-panel urfaces, a ncar window 
edge, during prolonged periods of Lunnd operaLion when 
in ufficient aLtcntion \Va g i ven Lo main tenance of wall
panel moothnes. 

The deo-ree of lest- ection flow uniform ity indicaled by 
Iach number eli tribution was verified onr a portion of 

tbe Le t region at super onie spced by cxamining sc hlierell 
picturcs for the presence of tream distu rbance equal to or 
sLronger than a hock of knO\\"ll strength introduced into Lhe 
flow. The resulLs of Lhe [low-uniformiL.'- check arc illus
b'ated in figure 25. A 10° include I-ano-lc COlle was alilled 
approximatel)- parallel to the flow Ileal' th e te t-section 
center line, and schlieren pieLure were made of the flow 
field about and ahead of Lhe cone at tream 1Iac h numl ers 
of 1.035 and 1.075. The chlie}"en pict ures were obLained 
for onl~- th e horizonLal plane (light palh Lhrough window in 
panel :3 and 9) since Lhe largest wa11- mface eliscon tillU itie 
were known lo cxis t on wall panel) 2, and disLurbances from 
tlli panel were mosL reaelil.\· deLected from horizontal 
s hlieren urvey. The attached conical hock were the 
onl)- di turbances visible in the c111i e1'e11 picturC' (fi g. 25) 
and, since these shocks were thrce dimensional and therefore 
mOl'e cI i[fi eult to deLect than l wo-c\ imensional disturbance , 
it ,,-a concluded that 110 abrupt disturbance of g l'eatC'r 
s lrengLh Lhan that of the conical hock cx i ted in the flo"~. 

(B eeau e the con ical shocks shown infigul'e 25 were weak , 
t hey arc n OL ve ly distillct in the schlieren pi tures; dot hayc 
thordo l'e heen llperimposed on the shock line to empha ize 
their loca tion.) The trengLh of lh e alta 'hed conical hock , 
expl'es cd in terms of the :"Iach numbe]" decrem ent through 
Llle shock, is no greater than 0.004 and 0.00:3 aL tl'cam .\lach 
ltumbC'r~ of l.035 an d 1.075, r espeet i\-ely (fig. 25) . :"Laclt 
number dccremcn ts calculaLecl from conical-fl ow th eo r)
(ref . 7) nrc in close agreeDlenL with the t\\·o experimental 
points. In dctermining lhC'sc C'xpcl'imC'nlal points lhe .\[ach 
llumber cI(,C1'eDlent ac ross the CO IlC shocks \\'ere obtained 
by u I' of oblique-shock theory (r ef. ) with hock angl('s 
m ea ured direc tly from the se hliel'en picture . For (he 
tream .\Iach )lumbers ancllhe test- eet ion region co ncern ed, 

tue expcrimenLal chlierell-surny d,lta of figure 25 appNlr 
1,0 be co nsi tent with Lhe press ure- urve~' cia La in indica ting 
the pre ence of no abrupL tea cl.\·-f1 0 \\' clisLurbances of 
significanL trenglh' 

The me<"1 ureJ angularity of conical shocks (fi g. 25) ofl'('l'ed 
indicalions of the yalue of Lhe upel" onic .\Iach number which 
were con i lenL with those ind icaLe t by pre sure m ea ure
ments (fi o-s. 22 and 23 ) and by lhe angula riLy of \\'cak t \\'0-
dim ensional eli turbances from wall panels (fi g . 11 ). 

Flow calibration ,- The st ream flo\\- in t,he lotted tes t 
sec lion \I'll calibrated \l'ith re pccL lo the pre s ure in the 
chamber sUlTollilcling the lolted ection, a procC'clul"e em
ployed for smaller lott ed tunnels in the iJwe tigat ions 
r eport ed in references 1 and G. 

A typical calibration curve with the model r emoved from 
the (,unnel hows the yaria('ion wi('h test-chamber Mach num
ber of the average Mach number over a region 30 iuche in 
diameter and 36 inche long ncar Lhe te (,- ect ion center lin 
(fig. 26) . The data for thi calibration were taken £-rom the 
di Lribution of figme 22, An average value of the tream 
}Vlach number oYer Lhe 3Q-ineh-diamet.er region was obtained 
by fairing Lhrough the te t poinLs from the ten different po i
tions of the w'ny tube. This faired yulue for the ayerage 
sLl'eum "Mach number varie t almost lin early with, but was 
alway malleI' than, the indicaled te L-chamber Mach num
bnt'. The Mach number mea med at the (,en mny loca
tions did no(, differ from Lhe average Lream Mach number 
by more than 0.004 and 0.006 up to 1Iach number of l.00 
and 1.13, r e p ecLivcly. 

In figme 27 a comparison i made of flow ca.librat ion a(, 
th e test- eclion cenler line for a r egion 3G inche lono- (from 
68 to 104 inch ('s down t1'oam of Lhe 10(, ol"igin) with the model 
l'cmoyecl hom the tunnel. The data of Lhe eompari on arc 
Laken from figme 22 (cady sWT ey with diffuser-entrance 
nose A) and from figure 23 (laler U1"\-e), with diffu e1'
entrance no e B ). The agreemenL between th e two urvoy 
is hown to be very good for Lhe particular flow region 
cal i bra Led . 

The effect of a moelel on Lhe Mach number of the incoming 
[low up tream of l,he model test region wa examined . The 
use of press ure measurement at the " 'all to yerify the trend 
oJ the Lream flow ahead of Lhe model wa con ielel'ecl appli
cable , partieularly at supersonic peed where di turbance 
arc propagated approxin1ately alono- :'Iach lines. Thi up
posilion was checked experimentally by comparing :'1ach 
number eli tl'ibuLions along the lotLed- ection wall up tream 
of a wing-fu elage model (fig. 10) wi Lh wall distributions for 
the mo(lel-remoyec1 ea e. The re ults o[ lhi eompari on for 
maUlift ing a ltitud e of the moclel (fig. 2 ) indicaled d o e 

agreement hetween model-in and model-removed .\Iach 
numbe!' eli tributions up tream of the modellocaLion. The 
only discrepancy in the clatt), of fi gure 2 appeal' immediately 
ups tream of the mo(kl no c at a te t-ch<1mber :'1aeh number 
of 1.02.5 , \\-here the bow \\'a \'e ahead of the nose influenres the 
model-in :'Jach number li ghtly. The e\-ideuee of fi gure 2 
wa supported by additional mea Ul'em ents with the same 
model at highcr angles of attack (fig. 29 ). The latt er date), 
are presented to sho\\- Lhe yariation with lest-ehambe]' .\Iach 
number of the model-in and modcl-remoyecl :'fach number 
aL the test-section wall approximately 10 inche. upstream of 
the model-no, e location. Th e da ta hown in figw'e 29 w re 
obtai ned o \-or a 10llo- period of Lime and included m ea ur -
menl with Lhe " ' ing-fuselage model at angle of attack a 
o-r eat a :20u and with diffuser-entrance no I' ~\ and B ; the 
data from Lhe many sqJarate nUl ' were in rclati\~cly clo c 
agreement. The ("ombint'c1 da ta of figure :2 and 29 reyeal 
generally tha t , for Lhi' ratio of mod el ize to llUtne1 ize, the 
press urps on the te I-section waU ahead of lhe model wcre not 
greatly influenced (,mel therefoJ'e th e Yalidit.,- of th e Dlodel
l'emo \' ed ca. lihration \Va not mueb aHecLecl) by the pl"l'SenCe 
01' the model at difJ'erent lifting attitude. 

Although no quantil ali \-e compari Oll arc pre ented , it i 
believed from pa t experi nee in the calibration of high-speed 
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wind tULUlelS that the overall preci ion of calibration of a 
lotted test section, when the test-chamber press ure is used 

a a calibration r efer ence, is uperior to that of a conven tional 
10 d te t ec tion for ub onic peed . In par ticular , the 

use of the pressm e in the sealed chamber smrounding the 
RIots as a reference pressure in calibral;ing the stream flow is 
believed to avoid the incon istencie which may ari e from 
the use of the static pre sure indicated by l1 wall orifice 
located upstream of the minimum section. 

Flow angularity.- The mean angulari ty of the flo w in the 
slotted ~e t section was measm ed at a center-line station 5 
inches downstream of the lot orio·in . The mea m ements 
were limited to the ver tical plane and employed the null
pressm e-type in trum ent of figure and the methods ouL
lined earlier. A 20 included-angle wedge was first used for 
the flow-inclination mea m emen t bu t it proved inadequa te 
because of excessive benc1ing neal' the leading edge and dam
age to the leading edge ca used by the impact of foreign par
ticle in the airstream. The 30 included-angle cone was less 
sensitive than the wedge but wa uperiol' in its relative free
dom from tip bending and damage. The flow-inclination. 
1'e uILs (fig. 30), ob tained from average mea urement with 
Lbe cone erect an d inver ted, indica Led a mean upflow angle 
of appro)\'lmately 0.1 0 which did not appear to ch fL nge ap
preciably wiLh :Mach number . The scat ter in mea Ul'ement 
ranged up to about ± 0.1° from the mean indicated angu
larity. Careful measurement of the angulari ty of waH 
panel 6 and 12 revealed that the geometric cenLer line be
Lween these two panels differed from the horizontal by 
approximately 0.05 0 in the direc tion of the indicated upfJ ow. 

FlucLuations of the stream angularity with time were 
mea urcd by means of an electrical pres ure piek up in Lhe 
30 included-a ngle cone. T he re ul ts of these measuremenL 
indicated rapid variation of about 0.40 from the mean fl ow 
fLllgle shown ill fig LU'e 30. The fluctuation.s were grea te t at 
frequrl1 cies from approximately 10 Lo 5 cycle per second 
Lh:roughou L Lh e tra n oni c speed range. 

MODl<; L TESTING AN D B Oll DAllY INTE RFER E NC E 

A preliminary inve tiga tion of bound ary in terfere nce 
effect on pressure-distribu tion and drao' meaSUl'emen ts for a 
nOlllifting body of revoluLion (fig. 9) in the loLLed test sec
tion was condu cLed in order Lo ascer tain the reli fLbili Ly of 
typical model tes t data ob tained from the 10tLed t L ection 
of Lhe L angley -fo ot transonic t unnel. Thi inve tigation 
imroln-d Lh comparison of experimen tal body daLa from the 
10Ued test ecLion wi th essen tially interferen e-free da La 

from oth er ource a ncl the examina tion of Lhe lotLed-te t.
section data for Lhe presence of oEd blockage and boundary
reflecLion efrect. Experimental data from the inve tigation 
were also used in examinin'" several flow phenomena of con
cer n wi Lh regard to transonic tes ting in the lot ted test ec
Lion. The tremn :Mach J1lU11ber aL which body data were 
obtained in Lb e slotLed te t ec Lion ranged from abouL 0.6 to 
1.136. The test R eynold numb er, ba cd on model length, 
ranged from approximately 9.5 X 106 to 11.0 X 106

. 

Flow phenomena, including shock refl ections , with non
lifting body of revolution and wing-body combination at 
center line of slotted test section .- Some 80w phenomena 

of interest in connection w·jth tbe tran onic te tiug of models 
in the slotted test ection are illu trated in figm'es 31 and 32. 
These data were ob tained from tests of Lhe nonlifting body 
of 1'e olu tio n (fig. 9 ( )) and the wing-body ombination 
(fig. 10) a t the center line of the lotted tes t section. 

At very hi"'h ub onie speeds (fig . 31 (a ) to 31 (c) the 
super onic-fiow expansions around the maximum-thi ckne 
region of the body of revol ution (and the local hock forma
tion a so iated with model- Ul'face discontin ui ties and wi th 
the compression region near the base of the body ) did no t 
extend to the tes t-section boundary . The fail ure of the 
model-field expan ion to affect significantly the Mach 
num ber distributions at the te t- eclion wall a t a stream 
Mach number of 0.990 (fig. 31 (c» offered evidence a Lo the 
e sential ab ence of boundary interiCl' nce fo r the model 
size u ed and also indicated an alleviaLion of choking in Lhe 
lotted tcst cction (tes t of the body in a clo ed te t secLion 

of the sa-me size would have resul Led in choking a t a Lr am 
M ach number of about 0.9 5). 

At low super onic peed (figs. 31 (d) to 31 (l ) and 32 (a) to 
32 (d» Lhe model-field shocks and eXpfLl1 ions are hown to 
impinge upon the te t-sec tion boundary a t axial locations 
which permit th e reflec tion of disturbance back to the sur
face of the modeL The model no e hock (bow wave) and 
the expansion over the upstream. por tion of the model are 
Lhe di Lur bance of concern with regard lo the producti on 
of boundary inLerfel' n e effects on model measurements. 
The hock-wa e reflections are illu tra ted (fio·s. 31 (d) to 
31 (n ) and fig. 32) by means of boLh sch1i ren pictLU'es and 
model-surface and waU 1\11ach number elistribu tion . In 
these [io'm es the lines drawn to onnect the schlieren-field 
shocks wi th hock loca tion (maximum compression region ) 
at Lbe wall do not necessar ily represe nt accurately Lhe act ual 
boc k curvature in either t!1 e stream 01' the boundary b ye!'. 

Effect of boundary interfer ence on pressure -distribution 
and drag measurements for nonlifting body of revolution at 
center line of slotted test section.- Th e compari 011 of 
flgures 33 1,0 35 were employed to a cerLain Lh e reliabi lity 
of body pres LU'e-eli Lribu Lion meas Ll rement in the loLL ed 
t esL ccLion and, in parLicular , lo obLain approxima te eO'eeLs 
of boundary inLerfcrence on th e body pre sures a l supel'so nic 
peeds. The in terference-free model-surfa ce pres ure eli -

LribuLions given in figure 33 include lho e obtained from 
theory for the ba ic hape of Lhe body (fig. 9 (a»), from free
fall test for a 120-inch-Iong model (fig. 9 (b)) , and from 
test 01' the wind- tunnel model (fi g. 9 (c)) in Lh e 92-inch
diameter axisymmetrical clo ed te t sec tion of r eference 2. 
The clo cd-test- ection data, which were obtaincd a t high 
subsonic speed , were corrected for blockage effect by mean. 
of rela Li ons des ribed in r eference 9. Th e free-fall and 
theoretical di tl'ibuLion shown in figUl'e 33 were ob tained 
from reference 4, which u tilized linearized theory and 
PranclLl-Glauer t adju Lmen ts for the LheoreL ical di tl'ibu
tion at ubsonic stream l\ih ch mm1bcrs up to 0.95 a nd 
m eLhods of reference 10 for Lhe di Lributions at M ach nurn
bel' of and larger than abouL 1.05. The c entially in ter
fer n e-free pI' Ul' di tributiol1 hO I n in fig LLr 34 and 
35 were obtained from te ts of the wind-Lunnel model in the 
slo t ted Le 1, section of the Langley 16-foot transo nic tunnel. 



- -------------------------------- - -- - --

10 BEPOR'!, 13 9- KATIONAL ADVISORY COMMITTEE FOR AEROKAUTI C 

TJlc \\"ind-tullllC'l pr(' urc coeffic i('nts us('d ill figures 33 to 35 

\\'C1'e averaged from co(' ffi cien t [or upper allcllower urfa ces 

inoJ'cl('r to r educ(' possibl(' d('vialion du e lo modrl ali nen1cnL 

errors and surface iIT('gularitic ; coe fficient from thc Langley 

-fool tran onic tunn('l \\"ere al 0 ave rage valuc from a 

number of difl'c'rcllt runs \\'hi ch repeated lIl e model pre surc 

mea uremenl dosely . 

• \ l ubcritical peeds (JJo ~ 0.95) no ign ificanL effects o[ 

boulldary in ted ('l"{'n("c on body pr(,SSUl"es \\"('re exp ec ted, sin cc 

rdeJ'('ncc 1 r eported e se ntially ze ro interfercllce foJ' a ))on

lifting hody in a sloUcdle t eetion with a raLio of body Cr O s

scc tiollal area to tunnel eros - ecl ional area of 0.123 , a nd thc 

ratio \\'a only aboul 0.0014 for the body and test sec tion 

llsNI ill lhe prc ent il1ve tigatioll. Th e close agr eem enL 

expcclcd bel ween th e pres ure dis tribution from thc lolled 

te t cet ion of thc L anglcy -foo t tran oni c tUlmcl and lh e 

var io u inle rferc nce-frec di tributions ""a realized (fig. 33 

(a), 34 (a), 34 (b), a ncI 35), except [or disc rcpa ncie in Lh e 

comparison with frec-fall dat!tin the maximum-thickne 

rcgion of Lhe body (fig. 33 (a )). Thcse de cr cpa ncie cannot 

he read ily expla ill ed unle lh e free-fall body, which was 

t1lrce limes the size of the wind-tunnel model , difl'el'ed ligh tly 

in hape from the win I-t unnel model aDd the basie shapc in 

this region. . \ pparcnL discrepancies in the comparison wiLh 

free-fall and thcOl'eLi al pr(' ure di tribution Il eal' the ba e 

o[ Lh e body (fig. 33 (a)) ar e to he cxpccted ill ce the s]l ape 

of both the basic body and Lh e fr ce-faJI body difJ'el'ecl from 

UlaL of the wind-tunnel model in this reg io n. 

A L upereritical st ream 11ach numbers h om abouL 0.95 

to 1.00 the ag reemenL of the prcs ure-eli t l'ibutiotl measure

ments from the sloLted t t ection of the Langley -fool, 

trall on ic tunnel \\"ith tho c from the Langley] 6-fooL tr a n-

onie tu nn cl (fig. 34 (b)) a nd from free-fall te t (fig. 33 (a)) 

" "as con is tent with the agrcement at lo \\"er speeds; thi 

agrecmc n t altc tcd the c se niial absence of boundary

illterference cffe ,ts on pre su re measUrement for thc model 

(e ro - ectional arc'a of mod('} only 0.14 perceut of tunuel 

('1'0 s-sect ional area) in til(' }6-opcn lolted tes t sect ioll at 

tream )'laeh number up to 1.00. 

.U \"ery 10\\" upe rson ic :'Iaclr number (J[o ~ 1.025) llO 

appreciable efrects of houndary-rcnccted comp rc iOll wave, 

on moclel- urface pre urc could h e detected (fig. 3 ] (e), 

33 (b), 34 (c), and 35) but s ignifieant errcel of )'(' f\ ecie'd 

oyprcxpansiolls " "ere illdicated (figs. 34 (r' ), 35 (1) ), 11nd 35 

(0)) . Pre urC eli tl'ibution from thc Langlc.y J 6-fool 

tl'3llS011ic tunllcl , 1.1 cd a a basis for referC'nce ill figurc 34 

a nd 3:3, were not availab le aL ).Iach numbe' r intC1'val close 

ellough to defill e' complct('ly the varialion of the interfercllcc

frec pressurc dist ri bution with 11a('h numher, nor did thc 

do la appeal' to be cnt irely free of in tcr('crenC'c cfl'c'('(s at a 

).Iaoh number of l.0] 9 wherc oyc rexpaus ion (apparell tly 

due to )'e(] e('[ed boundary disturbancc imil a )' to thosc 

described for the Langley -foot transo ni c tunn cl) wero 

illdi cated Uig . 34 (e) and 35 (f)) . Tll e data \\'('['e s uffi ciPllt , 

ho\\"cveJ' , to provide approximate in di cation of boundary 

('(rcds on pl'C s urc-d i tributiOll m easur eml'll t for thc body 

ill thc lolt cd tcs t ec tion of Ul (' Langley -Joo L trallsonic 

tunnel. 

At upersonic ).fach numhel' slightly g )'('alt'r than 1.025, 

the effeets ot l'efl ec tcd comp l'e iOll hock on moclel- mface 

pre surc bccam e ig nificant and in Tea cd with )'la ch num

bpr. . \ t ).Iach numbcl' of and greater than about l.040, the 

r fl e'ted hock w rc vi ible in chli cl'cn pic-lure (fio- . 31 (g) 

to 31 (n)) and influ enced the modcl- tIl'face pre ure Lrongly 

(fi gs. 33(b), 34(e), and 35(b) to 35(f)). T bemodel- urfacepre

SUTe dO \\Tn lrcam of Lhe rco-ion a ffectcd by tbe reflected com

prc ion waye wcr e influenccd by OYel'expan iOll and Lho c 

upst l' ('am of th e ('ompres ion rcgion were frce of boundary 

in terfel'enco. . \ t M'?;. 1.120 th e rcfl ected compre ion wa 

downs tream of Lhe model ha e (fig. 31 (ll )) and no boundary 

illterfel'cnce \Va apparcnt (:fig. 33 (b)) . Th e aO'reement at 

;-'lach Humber 1.2 of interfe]'e tl ce-fn'c pr e ure di tribution 

from test of th e model in the 92-in cl!-cliamelel' axi ymme tri

cal closcdlest cet ion of reference 2 with lheoretical a nel free

fall eli t ribution from l' fc rcnce 4 icon is lent \\"ith that of 

the illLerfel'encc-free lott ecl-tes t- ec tion data at lower uper

so ni c :'-Iacit Jlumbcrs (fig. 33 (b)). Th e dose agl'eemenL of 

int crfel'ellcc-free body- urface eli tribution from the lolted 

and do cd te t ections of thc Langley -foot tran onic 

t unnel wilh theoretical eli tr ibution (fig. 33 (b)) con tilute 

an expcrimental vcrification of the m th ods of refer nee ] 0 

fo r computing pre m e eli tribution On a slenclcr body o[ 

r evolutio n at uper onie p eeds. 

Tll e maximum effcct of boulldary-renected Ii turban cc 

o n lltJace pre s ure for th e Dnene -ratio-J 2 body o[ r evolu

tion in tIl e Langley -fooL tran onie tunn el aL upel'so nic 

pceds (fig. 36) were clol.ennin ed from m ax imum cliff r ence 

betwcen expcrimental pre L1rc coeffi cicnls from the L a no-ley 

-fooL a nd 16-fooL transon ic tunnel as s11o \\' n in figure 35. 

T he cxp a n ion compoll ent of bo undary-ref! c teel eli [ul'b

a ll GC for th body tested in th c ;~-open lotted lc t ection 

of the L anO'ley -foo t tran onic tunnel \\"('1'0 hO\\'11 to a O'ect 

body- urface prc Sure more stro ngly th an did th e omprc

s ion component at lream :\Iach number Ie than l.035, 

\\"hel'ea tlle revcl' c wa indicated at :\lach numbers O'reater 

t lr an 1.035. Th e ind icatio n of figul" 36 arc on ly approxi

mate, howcver, becau e of the limitcd amount of data avail

able from the Langley J 6-fooL tran onie tunnel. 

Th e efI'ecL o f boundary-rcflee-tcd dis tUl'bance on pressure 

dis tribution for the nonlifling body of revolution aL the 

('entcr lin (' of Lhc slotted test scc tion of the LallO'ley -fool 

trail onic t.U11llel (fio-s . 33 to 36) \\'e1'e in tt' rpl'eted in term of 

(·fl'(,d Oil body drag eoe fficient. 1n a ccrtain ing the e 

c fl~cct , the body drag coorTici('nls obtained from pre m e

di tribution a nd force Le t in the lotted te t eelion of the 

Lallgley -foot tran ollic tUllnel \\"cre compaJ'cd ",ith e _ 

t'n t ially in terfcrencc-frce data from frce-full le t (rcf. 4) 

a nel f rom pressurc-el i trihution test in thc Langley J 6-foot 

tran oni c tunnel (sligh t interfercn(,c efrect prc ent in the 

la tt er dat.a mea Ul'ed at 1\10 = 1.019 \\" (' rc rcmoved, approxi

matcly, befor cletcJ'lnining thc prcs ure drag) . (Sec fig. 

37.) Th e drag coeffi cicnts from pres un'-d isL ribution tc t 

\\' C1'e obtained by integra ting mca urcd model- mfa ce prc _ 

s urcs alld included skill-fri cLion draO' e timate from l'ci'cl'e ll cc 

11 . Thc force-te t body drag coem e- ient h own in ugure 

37 wCJ'e obtain ed from unpublish cd pxpel'imclltal data for 

thc model cle cribed ill reference 12 and we['e cO rl'cc ted fo[, 

ting- upport tare . E s timated maximum jnacc ul'acie of 
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the body drag coe ffi cienl (based on body frontal area) 
'hown in ftgure 37 were approximaLely ± 0.016 for Lhe dala 
obLained from for e tests in lhe Langley -fooL ll'anson ic 
tunnel a lld within ± O.OLO for those obtained from free-fall 
tests. 

.\pproxima lo boundary-interference effects on body drag 
mea urement for lhe nonlifting body of )'evolution aL Lhe 
center line of lhe Langley -foot Lran onic lunn el sloLled 
LesL eclio n WNe laken as lhe diO'erences hetwee n the c 
drag mea uremenl and Lhe inlerference-fl'ee measurements 
(fig. 37) . Correlation of Lhe e drag difference (fig . 37) 
wilh COlTe poneling bocly- urface pre ure di lribution (figs. 
33 Lo 35) r vealed Lh cIo e in tel'relation of lhe pressu re 
di tribulion an 1 drag mea urement and Lhe dependence of 
Lhe clrag-coefFic ien L ehanO'e on Lhe eA'ects of bou ndal'Y
reflecLed di lUL'bancc . The indicated body drag decrement 
(:fig. 37) at ~Iach number from 1.00 to 1.02 were apparently 
due lo Lhe eA'ecL of )'eflecLed oYCJ'expansioll slightly up tl'eam 
of lhe maximum-lhickne region of Lhe body, wh el' a drag 
incl'emenls at ~Iach number from 1.0~ lo 1.07 and d rag 
decrements at 1Iach number from 1.07 Lo about 1.12 were 
duc lo the passage over the real' porlion of the body of 
reflected overexpallsion and compl'C ion , J'e pecti vely. 
.\ L ~[ach number grealer than about l.]2 the light eli -
cl'epancy between Lhe fr ee-fall data and Lho e from fo),ee and 
pressure-eli lribution te l in lhe Langley -fooL transonic 
Lunnel ould be aLtribuLed to diR'erenccs in body hape or to 
posible inadequaci s ill ling- upport Lare corrcctions, but 
Lhe magnitude of Lhe indicaLed discrepancy is with in e li
mated pos ible inaccuracic in the expcrimen tal elata. Tll c 
maximum efl'e t of boundary reflccLions on body drag 
coeffici nt wiLh. the body at Lhe lotted-tc t- ection centel' 
line did not exceed about 0.04 whcn coefficient were ba ed 
on body frontal area. ..Although Lhese maximum boundary
reflection effect werc not much great r than the errors 
of mca u['ement normally pre ent wben the internal balance 
ystem is u d for mea uring modcl for e , they were con 
idc['cd uffici n t to justify a brief experimental inve tigation 

of a pos ible mean of r ducing tbe effects. 
Reduction of interferenee effects at supersonic speeds by 

testing model off center line of slotted test section,- \n 
a Lempt 0 reduce the in ten i Ly of boundary-reflected el i -
tU1'bance at Lbe model was made by te ting Lhe nonli fLing 
body of r evolution (fiO'. 9 (c) ) at a distance of about 10.3 
inche of[' the geometric center line of the slotte 1 te ection. 
Body drag coefficient obtained from pre Ul'e-di tribution 
measurement with the body 10caLed oR' tbe test-section 
c ilLer line wcre aA'ected Ie b.\' boundary inLel'fel'ence than 
were those obtained from tesL of the body a tbe center lin e 
( ee fig. 37). Tbi r eduction in interference effect on body 
draa can b a tribuLed to a light red uction in intensity (anel 
to di tl'ibution over a greaLcr axial distance) of boundary
reflected di tUl'bance aL the body urface, a hown by Lhe 
eompari on (fig. 3 ) of center-line and off-centcr body-surface 
Mach. number di t)'ibution at a Cream Mach number of 
1.050 (Lill M ach number wa u ed for the comparison in 
oreler that effect of bOLh compres ion and expan ion com
ponent of boundal'y-refleced di tUl'bances might be illus
trated). The off-center location of Lhe model appears 

advanLagcou ,,"ith regard to the reduclion in intcn il.'" of 
boundary-reflect d disturbances, e pccially the expan ion 
componcn t of uch di Lurbances, and lhe attendanL reduc
t ion in in terf ('renee efl'ccLs on model drag and pl'essure
distribution mea U1'ements. A eli advantage of the ofr-cenlcr 
location , however, li e in the ignificant ]'edudion in length 
of Lhe region available for slr i cll~' inlerfel'ence-free supc rsonic 
te Ling. 

Model lengths fo r interference -free supersonie testing at 
eenter lin e of slotted test section,- lL has b en shown thaL 
at upeJ'sonic Mach numbers the mod I-surface pres Ul'CS 

up trcam of Lhe region affcC'Led by Lhe houllclarY-J'cf!eclec! 
compres ion arc free of boundary-interference effect (fig. 
33 Lo 35) and Lhat for a gi veil :Mach number lhe length of 
the interference-free l' gion is grcatest when lhe model i 
located aL Lhe cenler line of Lhe test eelion (fig. 3 ). The 
axial distance Ls required for Lhe bow wave ah ead of lhe 
model L reflect from the te t- ecLion boundar.'" an I strike 
the surface of Lhe model at lhe Lc t- eeLion cell LeI' lin c' is 
shoWJl in fiO'ure 39. Thi eli tance, obtained from ('hli('l'c11 
picLu]'es and pressure measurement at LJ'eam 11aeh num
ber from 1.04 Lo 1.126 and from pre sure mea urem al at 
Mach numbcr as low as 1.025, i expre sed in tcrInS of th e 
d islancc L J { required foJ' Lhe reDe tion of ).Iach line from 
th e tunncl wall. The raLio Ls/LM inerea ed from a value of 
about 0.35 at a stream l\[ach number of 1.025 to about O. 1 
at a Mach number of about 1.10, afle r which Lhe ratio 
remained approxjmatel~" conslant except.. neal' a 1Iach num
ber of 1.109 where it Lended to increase li O'htly and then 
decrease as the reflecLecl hock approached and moved 10\\"n
stream of the ba e of the model. This influence of the model 
tail hock on the progl'e of Lhe reflecLed hock past the 
base of the model i illu tmtecl in figUl'e 31 (l ) and 31 (m), 

n Ls/LJIf value of O. 15 obLained from Lest of a somewhat 
imilar body aL a tream Mach number of 1.2 in the cIo ed 

nozzle of reference 2 wa con i tent with Lhe raLio hown in 
figure 39 for :Mach number greater than about 1.10. At 
the low upersonic Mach number of this inve tigaLion, Lhe 
Ls/Lu ratio wa approximately tbe ame for both the axi ym
metrical fuselage and Lhe weptback winO' aLtached to Lhe 
Iu clage. 

The di tan e ratios given in figure 39 neglec · the effect of 
the mod I boundary layer, which permit Lhe compression 
clue to the incidenL shock to be tran mitted everal inches 
upsLream of the hock location , an I are therefore not stricLly 
repre en Lative of axial di tance available for in erferenee
free uper onic te Ling, If Lhe compre ion region is as
umed to extend abou t 3 inchc up tream of Lhe hock loca

tion, the axial dis ance available for interference-free 
upersonic te ting with the model at the center line of the 
10tLed test ection would range from about 4 inches at a 

ach number of 1.025 Lo approximately 36 inche at a 
Mach number of 1.14 (fig. 40) and would not exceed 75 
percent of the axial disLance requil'ed for the reft cLion of 
Mach line. At the very low upel' onic Mach numbers Lhe 
lengLh of h e in terference-free test region is influenced to 
orne extent by the location of the deLached shock wave 

ahead of the model. 
Loeation of detached shocks ahead of axis ymmetrica 1 

nonlifting bodies ,- . chlie1'en and pre urc data for th bodv 
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of revolu t ion ( ('e fig. 31) and schlieren p ictures of hocks 
ahead of blunt-llo e (900 angle) total-pre ure tube (fig. 41) 
tc t,ed in the 10tLed section of the Langl y -foo t tran on ic 
tu n ncl provided experimental information concerning the 
location of detach d hock wave ahead of axis ymmetrica 1 
bodie at low-super onic peed. The exp rimenLal data 
hom the Langl e:v -foot transonic tunnel arc oJll.pared 'with 
expcrimental data from other sources (ref . 4 and 13 1,0 15) 
and with approximate theory (ref. 13) in figure 42. The 
data u ed in the e comparison arc exprc sed in term of 
Lhc ratio of shock distance ahead of the body on ic point to 
the body radiu at the onie point, xsB/lIsB, a parameter used 
in refer ence 13. The sonic point for the body of revolu tion 
tested in the Langley -foot tran onie tunnel was obLained 
from body-sw'face pre sure measmemen t (averao-e values 
from a large number of run ) at eaeh t I, 11ach number; 
Lb e onic point for the 90 0 body (Lotal-pres ure tube) te ted 
in th e Langley -foot transonic t un nel was a sumed to occur 
at th e shoulder of the body for all Mach number . 

The experimenLal location of the bow waves ahead of the 
b dy of revolution in the slotted te t ection of th Langley 
-foot tran onic tunnel agreed closely with experim en Lal daLa 

from references 4 and 13 0 15; tho e for tll 90 0 body in the 
Langley -fool, ransonic tunnel agreed d osely except at 
trcam Mach number of l.015 and l.036 (fig. 42 ). Th e 

apparent discrepancie offered by (;hese Lwo experimel1 Lal 
poinL are not due to enol' in mea m oment; they arc be
lieved to be due to the two-dimensional nature of t he bow 
wave ahead of the row of total-pre ure Lubes. (R ef. 13 
how that the ratio x B/YSB is much larger for the two

dimensional ca e than for the axisymmctl'ical ca c.) Th 
single bow wave existing ahead of the 1'0"- of eigh t total
pre me tubes a(; Lhe low- uper onic Mach numbers of l.01 5 
and 1.036 change to individual bow """aye ahead of each 
tube at higher Mach number (fig. 41). 

The g neral agreement of the experimenLal da(;a wiLh the
Ol'etical approximation (geometric and contin ui ty method ) 
from reference 13 icon idered aLi factory. Th experi
mental data appeal' 1,0 aO"ree more closely wiLh the geometl'i -
m thod approximation at very low up l' onic Mach num
ber and with tb continuity-method approximation at 
sL ream Mach numbers greater than approximately l.1 O. 

A pplicability of boundary-reflection information from pres
ent investigation to tests of other models in slotted test sec
tion.- Althouo-h ach wind-tunnel test model o.A'ers a dif]'eren t 
problem with reo-aJ'd to the effects of bou.ndary-reflecLed el i -
Lurbance , the re ults of the body-of-revolut ion test re
ported arlier in thi paper should prove u cfu i in predicting 
eli turbance phenomena and evaluating experimental data 
for other model . 

For strictly interference-free super onic te ting (;h e model 
lengthi dependent on the axial di stance requ.ired for model 
di tmbances to reflect from the te t- ection boundary back 
Lo th e model wJace; hi di tance varie with Mach number 
and i greatest when the model is located aL the te - ct ion 
center line. The hock-refl ection di tance shown in figure 39 
and the in terference-fr e model length given in figure 40 arc 
applicable only for center-line te tiDg of model of approxi
mately the ize and shape of the body of revolution u cd in 

this inve tigation; larger model of thi hape 01' bluff bodies 
of the ame maximum d iameLel" will produce bow waves 
located farther upstream and tbereb:,- reduce the reflection 
listances and model lengths sllo\\' n in figures 39 and 40, 

respect ively. The approximate in terference-free model 
length for a gi ven axial ly snnmetl'i c hap can be e Limated 
by u c of figure 39 and 42, together with kno\dedge of the 
sonic-point loca(;ion and the moclell'adius at the sonic poinL. 
At very low supersonic Mach numbers th e u e of figure 42 (;0 

ascertain detached -shock locations ahead ofaxiall.\' symmetrie 
bodie is limited to ingle bodie; e\' eral adjacent axiall y 
ymmetri c boel ie located in the ame plane of mea uremen L 

may produce detached hocks 10caLed considerably up Lream 
of the shock for a single body ( ee figs. 41 and 42 ). 

For super onic Lesting of models whose lengLh permit the 
impingement of 1 oundary-refiected disturbance , the effect 
of boundary in terference on the free· air characteri. tics of the 
models are dependent on Lhe model co nfio-uratio ns and Lhe 
model 10 ations with re peet to the te t- ecLion ce n LeI' line 
(in terfer nce effects arc Ie s for model off center lin e than for 
one on center line) . The effects of boundar:,' reflections n 
pre sUI' and drag mea urement for the finene -ratio-12 
body of revoluL ion used in the presell t in ve tigation a rc appli
('able only for model of approximately Lhe ame ize and 
hape, but t he de cribed flow phenomena witb Lbe bo 1y of 

revoluLion in the lotted Lest ection hould be u eful in 
interpr eLing the direction of boundaly-reflection eHect on 
test data for other model. The influence of model-attitude 
changes on incl icated bounciar.\T-reflectio n effeets for Lhe body 
of revolution was not included in Lhe pre ent inv st igation, 
but approxinl.ate influence ma~- be inferred from experi
mental res ul ts given in reference 16. R ference 16 al 0 
i ndicaLe Lhat flow cl ist u rbance capable of in Lroducing drag
co fflcient cbange of approximatcl.\- 0.002 (drag co fflcient 
based on wing plan-form area) ma.\- noL greatly afl'ect Lhe 
lift a nd p itchin o'-moment chara cteristics of a complete a ir
plane model. Additional sLudie arc needed to verify and 
upplement the e preliminary inclications of boundar. -reflec

tion e(:recl on mod 1 at liftin o- altitudes in the lotLed 
Le t sec t ion. 

GE ER AL D ISC SI ON 

TJ IC Lheory of Lhe ub onic operation of the sloLLed te t 
ection has b en pre ented in reference 1. It is of intere t 

lo consider in a q uali taLive man ncr . ome features of the 
upe!' onic operaLion. A poinLe L out in reference 17, the 
uper oni e flow in a tunnel wiLh porou wall i e tablished 

by expan ion through the lVall . In a 10tLed tunnel a 
imilar expansion roll L OCCUI' through the . lots, but this 

expansio n rou t be inAuen eed by Lhe boundary layer on the 
panel. In fact, a general kno\d edge of Lhe behavior of 
boundary layer indi cate that in tbe expansion lhe boundary 
layer Lend to run off Lhe panel into the lot. The effect 
of the slot mu t Lbu be extended over the whole periphery 
of tb e tunnel. It therefore seems that the slot,ted tunnel 
would behave more lik a porou -wall tunnel than might at 
fir t be suppo cd. The role of Lhe 101, in controlling the 
expan ion has already been noted. 

The development of the uper onie flO\ in 11 slo tted 
test section will now be consid reel in detail. At ub sonic 
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sp eel the pressure in th te t chamber evidently mu t take 
a value wbich i omc weighted aveJ'aO'e of the pre ure at 
the lot. Moreover, in accordance with tbe quation of 
motion , as the pre surcs in the d iJfu er (incl uding that at 
the diffuser entrance) are decrea eel, tbe speed in tbe tunnel 
mu t increase until a Mach number of l.0 i reached at the 
effective minimum ecLion, section 8-8 in fiO'ure 1. onsider 
fir t the ca e of a wall divergencc of 45 minute. With the 
fir t attainment of a Mach Dumber of l.0 at the minimum 
, ection, the ?-./fach number in the slotted te t section has been 
found to b also essentially l.0, as i sho lvn for a different 
divergence angle in figure 13; bu on the curved urfaces of 
the panel (fig. 3 (a)) supersonic r gions terminated by 
hock re ulting from the higher pre SUfCS in the slot must 

already have appeared in conformance with gen ral flow 
theory . The flow within the slotted Lest section is th us not 
ab olutely uniform, but con i ts of slightly super onic region 
terminated by hock , which arc in turn followed by lightly 
sub ooic r eO'ion . Tbi flow pattern can be repeated several 
times because in any subsonic region the pre Ul'e may be 
greater than tbat in the chamber surrounding the slots. 
Equalization of tbe p re ure throuO'h the lot Lhu a.ccelerate 
the flow, and if the panel is curved in that region or if a 
hange in hape occu r' , tb e flow may agai n become upersonic. 

Wh en the pres ure at the diffu l' entrance i decrea ed 
(by increasing the rotational speed of the tunnel fan) below 
that just nece sary to produce a :Mach number of l.0 at the 
throat, the pressure decrea e cannot be transmitted up tream 
tbTOugh the uper onic region in the lotted te ection. 
Thi pres m e decrea e i , however , iran miLted out t lu'ough 
the lots in the reo'ion jut upstream of the diffuser entrance. 
The pre ure in the surrounding chamber i thu decreased 
and, a a re ult of the reaction through the up, tream part 
of the lots, the flow in the ub onic r eO'ion i further 
acccl rat d, the shocks are moved downstream, and the 
uper onic region arc expanded. 

Thi movement of the shocks dO lm tream has been noted 
in schlieren observations. If the curvatme and divergence 
of the panel are small, only a small clecrea e of pre ure 
below that l'equlred for the establishment of a Mach number 
of l.0 at the throat i sufficient to weep the shocl;:s out 
of the te t ection. In uch a ca e one shock only may exi t. 
With the configuration of figure 3 (a) thi shock: i located 
lightly down tream from the di continuity io slope at the 

125.6-inch tation. It j evidenced in figure 6 by a rather 
sudden decrea e in :Mach number to value less than l.0, 
which occur between the 130- and 140-incl Lations. At 
thi po ition the hock extend acro he whole central 
part of the £low. In all of the upstream slotted te t ection 
the tream Mach number is then gr aLel' than 1.0 . At the 
up tream end the boundary layer flow out, so that the 
tream i allowed to expand, as it musL do if the 'Mach number 

i to increa e from the value of unity at the thI'oat to orne 
greater value omewhat downstream . Thi outward How 
mu t evidently be balanced by an equivalent rate of mass 
fiow into the slots n ar their down tream ends. Pel'hap 
becau e of induced velo ities due to flow throuO'h the slot , 
the pre me (indicated by Mach number in fig. 6) near 
the lot edge are Ie than those near th center of a panel, 

and the te t chamber pre ure lie generally beLween ihe e 
two extreme . 

Except fo r Lhe improvement in conLrol of the expansion 
obtainable by means of the lot , which ha all'eady been 
mentioned, the manner of operation of the slotted te t 
ection w.ith 5-minute divergence i imilar to Lhat w.ith 

45-minute d ivergence. However, becau e with the 5-minute 
d ivergence the curved region of the panels j located at the 
down tream end, the hock mu t fir t form at that end, 
leaving the upstream end es entially hock free, even at 
Mach number nem' uniLy. .:\..n indication of thi freedom 
from shock Ii turbance wa afforded by limited schlieren 
observations and is indicated in the ~Iach number di tribu
tion (fig. 13 to 20) . Wi til the 5-minulo divergence of the 
panel the ho k-disturbed :Mach number range ncar unity 
is thus elimin ated, and uniform te t section IIach numbers 
continuously variable Lhrough l.0 arc po ible. 

The condition at th e clown trcam end of the 10 ted 
ection will now be co n idered. In this region, for th e con

figmation d i cussed in th i report, the ail' flow which ha 
been extruded from the ups tream part of the slot must be 
taken back into the tunnel stream. Bceau e of the turbulent 
mL\:ing with the air in the chamber un-ounding the 10ls, thi 
extruded air ha 10 t most of its kinetic energy ; but once 
I;hi air ha reenter ed the lots, it i again accelerated by 
mixing with the main siream. This miA'ing proce s is be
lieved to be accelerated by vorticity generated by illflow 
over the slot edges. 

The mixing i known Lo be an inefficient proce and mu t 
in any ca e entail a power loss ; but even greater power 
10 es may 0 cur if, b cau e of the inLake of thi low-energy 
ail', the diffuser flow j poiled. Oonditions are necessarily 
particularly critical near the diffn er entrance, both because 
of the inflow of the 10w-enerO'y air and becau e in thi region 
th kin tic energy of the main tream i large. Becau e of 
the mL'{ing (ejector principle) some diffusion would occur in 
thi reo'ion even if the expansion angle of the cliffu er were 
zero. Indeed, the mixing i so trong that, a may be een 
from figure 13 to 20, the diffu ion tarL even slightly 
up tream of the cliffu er entrance no 

Becau e of pace limitation the original e"'-"Pan ion anO'le 
at the upstream end of the diffu er was made greater than 
wa con idered desirable, and when the panels were rever ed 
thi angle was increased still more, to 3°45', a hown in 
figm e 3 (b) . In the region of the diffu er entrance no e the 
eff ctive eA"Pansion i somewhat Ie s than this value becau e 
the upper lll'face of the nose fall outside the panel mfaces 
(fig. 3). At orne sacrifice of tcst- ection lenO'th, nose hape 
B (fig. 4 (b)), which extended farther up tream, furni h d a 
hort region of e sentially constant effective cro - ectional 

area at the beginning of the diffu cr. ueh a lenO'th of 
essentially constant or only lightly varying diffu e1' area i 
believed to b desirable in order to provide a mL'{iug region 
without too great diffu ion, but no inve tigation have been 
conducted Lo determine the proper length or divergen ce of 
uch a r egion for minimum power. 

The need for a length of diffuser with mall or zcro ex
pan ion near the diffu er entrance i accentuated by the 
pre ence of the hock. In reference 2 it wa hown that in 
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uch ,1 rrgio n thr boundary laYl'r bl'hind a shock trrminating 
thl' tl'si rl'o-ion at a \[a ch Ilumbl'r of 1.2 rl'coYl'rcd rapidly 
wilhout sl'~(lrat ion. In a divcrging c'hannel , on lhc othel' 
hanel , uc)) a hock migh t casily lcad to separation . TllC 
hocks i ndicatcd at t h c di (J'US('l' cntrance in figu rc 13 lo 20 

apprul' to be obl ique rathrr than normal shocks, sinC'r the 
O'['ealt'l' eli turhanc(' occur at thc c('ntl' l' and that at thc ,,'all t-> 

i sp rcad out and doc not dcc['ca e the indicated :'lach 
numhcr below unity. Thc usr of a region of zcro rxpan ion 
at tilc (lifru er entl'HnC'e houhl sprcad these eli turbance 
till fartlwr and may vcry \\'cll rffect the ir practical 

elimination. 
The hock at thc difl'u cr c'ntrancc is similar to onc which 

might exist ahcad of a no c inlct. Because the lligh-spcccl 
flow is limitrd to a jl't, howcver, it hould bc po ibl c Lo draw 
thc shock dO\\J1 into thc difl'u er , but in thi case thc' powcr 
rcquil'rel \\'ou lel almost c('\'ta inly hc' grcater thall if thl' shock 
wcrc' closc to thr din'uscr cntrancc. The mo t favonlblc 
configuration, for minimum powcr, i belicvcd to be that for 
" 'hich the shock tands jusL in ide an c rnt ially zcro
divcrgcncc rcgion at the elilruscr cntrance or ha bcen 
practically eliminatcd in tilc mixing rcgion. 

The minimnm clifl'usrl' rntrance cross-sccLiona,l area con
sLitutes, in effect, it sccond throat. If this eco nd throat is 
Loo small the flow will be cbokcd and the ;'1a ch number 
ittLa in able \\'ill be limited. Becau e of the Lhick boundary 
layer formed by the inflolV Lhrough the slo Ls, the requircd 
al~ea of t he scc~n.d tbroat i, greater Lhan would be necessary 
for a closed nozzle with the same size of fir t minimum. 
\lith increase in upcrsollic 11ach number the requil'ed area 
of the econd throat increascs on account of boLh the increase 
in entropy through the hock and the increasing flow 
through the slots. , ,\-iLb the configuration of figure 3 (b), a 
clifl'u e1' minimum area 13 percent greatcr titan the fir, t thl'oftt 
area was sufficient to pel'mit tlte at.tainment of a l\Iaeh 
number of 1.14. With the reduction in slot area and tbe 
provision of an e sentially consLant-area mi.:(ing region 
provided by nose B, the required area at the second minimum 
wa reduced to a value 9 percent greater than that at the first. 
Because of the thick boundary layer, choking i not sbarp at 
the econd minimum; but after a Ma ch number of l.0 has 
been reachcd in the main stl'eam, the volume flow can sLill 
be increased by acceleraLion of the boundary layer, though 
the co t in power rapidly becomes excessive. 

B ecause of the larger minimum diffuser area requircd for 
Lhe supersonic flow, the liffuscr entrance area is grcaLer than 
that required for the sub onic flow. in ce the flow attaches 
to the dift\1 er entrance noses, diffusion, and consequently 
negative :\Iach number gradient, occurs upstream from Lhe 
nose. This effect \Va ufficiently evere in the case of nose 
hape B to require the provision of flaps which, whcn open, 

permitted the entrained "flow Lo pa s over the no e and thu 
prevented attachment of Lhe main flow. Moreover, inas
much a the diffu er entrance area affect the diA'usion, phy -
ieal onsiderations would lJO"ge t that the power req uired is 
also affected. Tests ea l'l'i erl out in the Langley 24-inch 
tunnel have shown this to be Lhe ca e. An increase of the 
cliH'u er minimum cro ecLion appreciably b e)-ond the ize 
nece sary for tbe required 11ach numbcr resulL ill an in-

crea e in the pOWCl' rcquired. An inerca e in noise and \'ibra
tion i also bclieH'cl to be likel~·. IL is sugge ted that, in any 
future lotted tunnel in tallation similar to that eli cus eel 
herein, the effect ive cliflu e1' entran ce area be made adjustable 
by mcans of radially adjustable diffuser cntrance no e . 

It was Lhought Lhat the heavy boundary layer due to the 
inflow into the slots migbt spoil the diffu er, buL an cxten ive 
ill\'e t igaLion hy mcan of tuft failed to reveal an~- epara
tion, though separation ma)' have exi ted on the diffuser 
entrance no c. Becau e of the large amoun t of kinetic 
encrgy in thaL region, the possibility of ignificanl power 10 s 
i greater neal' Lhe diffuser entrance Lhan farthcr down tream. 

An examin at ion of powcr daLa for varying sloL a rca ho\\'ecl 
that, a miglI t bc' expected, the PO \\'CI.' req u ired for a givcn 
:'Iac11 numbcr dccreascs a Lhe slot area clccrea cs. Po \\-cr 
consumption is thcrefore also lc s if the difruscr ent ran ce 
110se i as ffll' up tl'eam as po ible. This cA'ceL may be 
expeclcd to bccome rclatiwly Ic important a thc :'1ac11 
number i incrca cd, becau e thc in crcasing requircd outflow 
through thc up trcam part of thc lots an(1 the COl'rc ponel
ing inflo\\' at thc dO\nl tream ends i only \\'l'akIy dcpendenL 
011 thc lot arca. It also appeal' likely tllat \\' ith increasing 
inflow of thi lO\\' -l'ncrgy ai l' thc cssc nti ally cOJ] tant-area 
mixing rco-ion required f01'it acceleration might havc to be 
increa eel in order to avoid spoiling the cliA'uscr flow . Econ
omy of powcr mio-ht indeed, at higher :'Iach number , re
quire that this low-enero-y ail' be pump cd t approximately 
lream total prc mc by means of a eparaie compl'c. or 

rather than by mcan of Lurbulen t mixing in the diffu er. 
The us of a eparale compre or, howevcr, might affect the 
use of thc tank prcs lire as a ref ercnce prc ure for detcr
mining :'1ach numbcr. 

Th e powcr ab orptioll per square foot of tbroat arca in 
the Langley -fooL transon ic tunnel i hO\\'!l in figure 43. 
These elata Wel'e Laken from a number of clin'erent runs, as 
indicatcd in the figure. The power data have been adju ted 
Lo the same tao-nation prc sure and tempcrature throuO'h 
the assumption Lhat, foJ' con tant geometry and 1Iach num

bel', power is proportional to Pr/Tt, whcrc Pt is the tagna

tion pres me and T t is Lhe absolute valuc of thc stagnation 
temperature. Thc po\\'er for the 10tLed tunnel is compared 
with that for Lhe Lano-ley -foot transonic tunnel with lo ts 
closed, that for Lhe pIa tel' nozzle of reference 2, and that 
for a clo ed- unncl estimate based on reference 1. The 
reduction in pO\'Ie1' due to the installation of diffuser entrance 
no e B (fig. 4 (b») is seen from a compa1'i on of the power 
for th i no e with that for 110 e A (fig. 4 (a» . A more de
tailed inve tigaLion of the power losse i given in reference 3, 

o CL DING REMARK 

The Langley -foot high-speed tunnel wa converted to 
tran onie operation and th characteri tics of th e tran onic 
flow in the lotted to t eotion wel'O inve tio-ated. Th e 1'e

ults of How urveys with variou slot shape , and with and 
without a typical model in the slotLed test cotion , warrant 
the following co nclus ions: 

l. As a 1'e ult of the inve tigation of the flow charactcr
istics of the tunnel willI variou slot shapcs, a configuration 
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which produced nearly uniform uper onic flow ha been 
devised. 

2. With tbis onJiguraLion the ;"Iach number \Va con-
tinuou ly variable. up to the greaLe t value, approximately 
1.14, p rmitted by the power available; the quality of the 
flow was entirely atisfacto ry for te Ling purpose and com
parcel favorably with that in tbe best two-dimen ional 
olid super onic nozzle. Deviation from the averaae 
Lream Mach number in a model te t region 36 inche long 

and 30 inches in diameter generally increased "ith 1Iach 
number but did not exceed approximately 0.006 aL Lream 
;"lach number up to 1.13, provided the tunnci wall surface 
\\ ere kept ufficiently mooth. 

3. The 1'-.1ach number distribulion wa foun 1 to be af
fecled by the letailed slot shape if the divergence angle 
b tween lhe panels and the center lin e of the t st section 
wa suffici ntly small. 

4. The power required at a giv n :Mach number wa con·· 
iderably in excess of thftt nece sar:'{ for a clo cd Lu n ne1 ftt 

the ame ~ {ach number. 
5. The raLio of tile te t-chamber pre ure to the tream 

Lotal pre ur provided a reliable index of lhe te t- eclion 
1ach number independent of model configuration or 

attilu le. 
6. The direction of the airstream agreed within the limits 

of experimental error (0.1°) with the geometric center line 
of the te t ection. 

7. The u e of slots Lo reduce choking limitation at str am 
11ach number ncar 1.0, reported earlier for mall tunnels, 
was ub LantiaLed by te t of ft 3.33-inch-diameter body of 

revolution in the appeoximately -inch-diameter lotted 
te t ection. 

. Interference effeeLs due to boundary-reflected di
turbance were present in pI' sure-distribution and drag 
mea urement for a 33.5-inch-long nonli.fting body of 
r evoluLion with a finene, ratio of 12 in the lotted te t 

ction at low supersonic speeds; Lh effect were red uced by 
testing the body off the te t- ection center line in order to 
avoid focusing of the reflected disturbance wave. I 0 
boundary interference wa pre, ent at tIl(' higher super onic 
peed attained. 

9. The model lerwtll for interference-free upersonic 
te ting increa e 1 with 1'-.Iach number but did not exceed 
about 75 p rcen t of the axial di tanc required for r flection 
of Mach line .. 

10. Experimental location of bow waves ahead of axially 
symmetric bodies were in sati factory agreement with 
th OJ'etical location predicted by the approximate methods 
of JAO TN 1921. 

11. An experimental verilicftLion of the method of JA A 
TN 176 lor predicting pre sure di tribulion over lcnder 
bodie of revol ution at supersonic speed i afrorcled bv the 
clo e agreemen t of theoretical pre ure di trihuLion for a. 
finenes -raLio-12 body of revolution \\ ith inlerferencc-free 
distributions mea ured in the Langley -foot transonic 
tunnel. 

L .\NGLEY AEHo AUT I AL LABORA'l'ORY, 
ATIONAL ADVI ORY Oi\Ii\rIT'fEE FOR AERONAUTIC, 
LA rGLEY FIELD, V.L, J uly 3, 195 
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Sect.Of. B-B 

Ay~~?'('\.~WOIi panel 

Ay 10 , 2\>-
H H 
-rS t -3 -
H H W'ndow-

~~cr~~ 
Secllon C-C 

FIGURE I.- Views of t hroat region of Langley -foot tran on ic tunnel howing slotted te t ection, cylindrical urvey tube, and uppor t sy tern. 
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CHARACTERISTICS OF THE LA GLEY -FOOT TRANSONIC TUN TEL WI'l'H LOT1'ED TE l' EC'fIO 

Tunnel center line 
.-----r«~---------------- ---'------

Sta tion 0 \.. Slotted section 

---- 180 In -

- --234 in. -

x y x y x y x 
(in) (in) (in) (in) (in) (in) (In) 

0 43.700 24 43.668 48 43.685 140 

2 43.697 26 43.666 50 43.692 150 

4 43.694 28 43.665 55 43.715 160 

6 43.691 30 43.664 60 43.748 170 

8 43688 32 43.663 65 43.793 180 

10 43.685 34 43.663 70 43.851 190 

12 43.682 36 43.664 80 44.018 200 

14 43.679 38 43.665 90 44.266 210 

16 43.677 40 43.667 100 44.618 220 

18 43.674 42 43670 110 45099 228 

20 43.672 44 43.674 120 45.735 230 

22 43.670 46 43.679 130 46.555 234 

x=Distance upstream of station 0 
y= Distance from tunnel center line to center of panel 

FIGURE 2.- Coordinate of approach to lotted region of tu nn el throat. 

y 
(In.) 

47.593 

48.882 

50.459 

52 .365 

54.641 

57.333 

60.488 

64.480 

69 .200 

73.680 

74.860 

77. 188 

Cross section 
at station 0 

17 
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125.6-ln. 
slation 

I 

"Diffuser - enl rance 
nose 

169-ln. 
stollon r ; 

, I 
SirOlghl ,45' dlvergence----------t-_ Straight ,2°30 divergence 

Sial l ed region 

18- ln. 
sta,tion 

Coordina tes of curved region 

x 
(,n) 

o 
2 
4 
6 
8 

10 
12 
14 

16 
18 

((n) 

0 105 
083 
064 
047 
033 
020 
012 
006 

001 
o 

liner 
Diffuser - enlrance 

nose 

125.6-ln. 141.6-ln. 169-ln. 

180-10. 
stal lon 

I 

/" ) 

>" ,,> '''''''''1 
107-10. 
stallon 

I 

1 

I 

stq"an station stat ion 

! I 

1 ( 1 

(b) 

I 
\- - -- StrOight ,5' divergence >;< Curved 'l"- StrOlght ,3°45' divergence 

Slot led region 

125.6-in. j/Y 14 1.6-in 
sta,lion ~ to t lon 

Caardinales for liner 

x 
((0) (,n) 

1256 0 
1280 0132 
1300 204 
1320 242 
1340 250 
1360 240 
1380 200 
1416 030 

(a) Orig inal wall-pan {'1 armngCIll C' n t. wi t h -I5-m inute di \'(' r~ l' n ce in tes t sec tion , 

(b) R evcr ed walll;ancis wi t.h 5-111inllt l' di \'(' l'gl' nct' in t{''l t. sec tion , 

F I GURE 3.- Tunnel t.hroat geo met.ry including clifill se r-cnt.rancl' nose shapc and \I'all d i\'('r~ (' n cl', 

, ; » 

);" , '''7'7 



142.55 - in 
stat ion 

I 
9.5 In 

CHARACTER! 'J'ICS OF THE LAI GLEY -FOO'J' 'l'RANSO IC TUNNEL WITH LO'J'TED TEST ECTIO 

Parallel to tunnel center line I 

y' 

Tunnel wall 

Parallel to tunnel 
center line 

3° 45' 

7 

----------

x 
(in) 

142.55 

143 

144 

145 

146 

147 

148 

y y' x y 
(in) (in) (in) (in) 

0 0 149 4 .21 

1.31 1.70 150 4 .51 

217 305 151 4.81 

2.71 400 152 5. 12 

3.14 478 153 5.39 

3 .50 5.49 154 5.62 

3.87 6 .13 155 588 

y' x y 
(in) (In) (in) 

6.72 156 605 

- 157 6.28 

- 158 6.43 

- 159 6.62 

- 160 6.79 

- 161 6.92 

- 162 7.04 

169-ln 
station 

I 
\ 

x y 
(in) (in) 

163 7. 12 

164 7.23 

165 7.26 

166 7.38 

167 7.44 

168 7.50 

169 7.59 

x=Distance downstream of statIOn 0 
y=Distance from diffuser-entrance-nose reference line to inner surface 
y'= Distance from diffuser-entrance-nose reference line to outer surface 

(a) Shapc A . 

FJGlJRB 4.-Caordinatcs of diffuscr-entrancc no. e .-hapes. 

19 
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:'/~'~ 1L':=J
IOI \~\'-7.7~1':'~'-'~\=-:-:::-~~:::::=J=======~=:=:==~ =======:['"'15In

=-==. ==---=--~- In __ ~~~~~~~~ 
1 ?""",,,:::--""-"')--=--=--=--- --

Side ploles 

98.88-10. 
slallan 

16.13 10. / 

114.63-ln. 
station 

FlOps open for 134.50-10. 
subsonc operollon~ sla:,an 

~------

(b) hapc B. 

FIGURE 4.- Concludcd . 

140.88-ln. 
5101100 

(i~J (lhJ 

114.630 

115 .42 

115.50 .47 

116 .48 

~ .52 

go .55 

22 .59 

124 .62 

(i~~ 
0 

.47 

.67 

.85 

x 

Parallel 10 tunnel 
center hne 

OnJ (I~) y' 
(i n.) 

126 .65 3.33 

128 .71 3.82 

30 .82 

x ~ Dlslance downstream or slal lon 0 

160-ln. 
stallon 

x 
(In.) 

146 

148 

150 

152 

154 

156 

158 

160 

'328 

y ~ Distance from diffuser-entrance-nose reference line to Imer surface 

y' = DIstance from diffuser-entrance-nose reference line 10 outer surface 
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CH ARACTERISTI CS OF THE LAl~GLEY -FOOT TRANSONIC T UNNEL WITH SLOTTED TEST SECTIO ' 

10 1 ..---::: ~ 
P"' V Y 

Iv1: V V/ ./' 
V kf l£ 

V l1' ~4 /' 
V V 

Initial half- Length of Shope 
/ ~ 1 k; 1 number angle of straight 

V / / v6 t V r; opening taper 
/ (deg) (i n.) 

~ 
V; V V / ~/ 

/ 
/ j I 0.77 96 

V ~ V II ;;,-,/ V 4 .37 48 / 

V V l/v 
~ 

V 
/ 

V 6 .38 12 

V ~ ~ V v j V 9 7 .76 12 

----- 8 1.18 48 
V l.e d ~ ~ ~ --- 9 .38 48 

~ V ~ ~ 
I--"'" 

10 90.0 -
t:-V (Finol shape) II 1.18 1.5 . . . . . . 

10 20 30 40 50 60 70 80 90 100 110 120 
Oistance downstream from toonel station 0 x in. . . 

l 

Len gth to 
open full-

st at ion 
n.) ( i 

9 6 
6 o 
7 6 
7 4 

7 4 
9 4 

0 
9 . 6 

130 

FIGUR E 5.- Various slot hapes inves tiga ted in t he J~angley -foo t high-speed tunn el with 5-minu te wall-panel divergence in test section. 

i Slot plan form 

,::::::: ',",',',',',',: '.',:"" ~ 
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Distance from tunnel station O.x ,in. 

FIGURE B.- Comparison of Mach number distribu tion mea ured axially along tunnel center line wi th t hose mea ured a lonO' center and edges of 
wall p anels. No e A; slot shape 10 (rectanO'ular); 45-minute divergence of wall panels in test sect ion; M TC= 1.092. 
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Camero 

I-foot-diameter 
parabolic mirror 

(5-foot foeal length) 

r----- 3" ----1 
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--
Screen for visual 

observation 

Tunnet wall 

Spherical 
mirror 

~-' 

I-foot-dlaneter 
parabolic mirror 

(5-loot foea length) 

~ Spark light source 
(for photographiC pictures) 

Continuous light source 
( for visual observations) 

FtG RI> 7.- T emporar.,· schliercn systcm LI S cl in connection with s loLlr cl- i il i-sec iion flo,,' slln'ry~ . 

Circular cone 

Static-pressure Orifices (0010" dlom) 90° aport 
L-58-2506 

FlGU RI, 8 .-:\ull-prcs~ure-(.I'p e in strull1 r lli (30 cOil e) used fo r measuring angu larity of flo\\" in slottecllest Hcc tion. 



CHARACTERIS1'ICS OF 1'HE LANGLEY -FOOT TRANSONIC TU TNEL WITH SLOTTED TES,[' SECTION 

Maximum thickness ;0.0833 I ~ 

i~-0.5-1-'---') ·---~I 
(a) i E "' I 

0.0161 

========"",0:=::-- , ----------

(b) 

(c) 

I" 0.922 I 

0.041 1 

I 
~I 

Cylinder 

~_._._,_. ___ --=¥,-~~_._-~o -

je: 0.837 l -------~.i ~cone 
(a) Basic body shape. 

(b) Free-fa ll body. 
(c) II 'ind- tu nnel model. 

23 

] 

FIGURE g.- Body of revolu t ion Llsed for co mparison of body-surface preSSUI'e di t ribu t ion . obtain ed from wind-t unn el tests wi th those from h e -fa ll 
te ts a nd t heory. 

4 3743-5,9--4 
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'-----14.25"- --+-- 7.15" r-----r-- 0 .25-chord line 

1.640" diam. 

----<~-----

60-percent 
semispan station 

7.2" 

- ----2 O. 2 7" ------+-- 5.7" 

f----------33.5" ------------1 

Sting 
/ 

:~------===--~-~~----___J 

12" 

I 

3.33" 
24 " 

F I GURE lO.- T m ll so ni c-a irpl a ne model im'e'Ugated in co nn cc tio n with fl o\\' UI'\'c)'s in slo ttcd test section . 
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0.010" diameter string ~ 
/ 

}---- Wall pane ls 

\ 
Cylindrical survey tuhP----' 

.008 

.004 
-) 0 

~M 0 () v 0 

0 

0 
- .004 

-D08 
1.00 1.01 L02 1.03 1.04 1.05 1.06 1.07 1D8 L09 1.10 1.1 1 1.12 1.1 3 1.1 4 

Mach number near center line, M 

FIGURE ll.- Agreement of flow l\Iaeh number obtained from pre tire mea urcment at te t- eetion center line wit h tho e indicated by measured 
angula ri ty of weak shock produced by O.OlO-inch-diameter string fast ned to wall panel. /::.]1.1 i t he bch numb r from pre ure measure
ment minn the Mach number indicated by shoek angle. 
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CHARACTERIS'fICS OF THE LANGLEY -FOOT TR NSO IC TUNNEL WITH SLOTTED TEST SECTIO 1 
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coefficients for a 33.5-inch-long non lifting body of re \'o]u t ion in the 
slotted test ection. 
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Body producing bow wave LS obtained from 

o Fuselage (wing removed) } 
o Fuselage (wing attached) 
O Wing (attached to fuselage) 
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FIGURE 4I.- Shock formations at transonic speeds with total-pressure rake (O.050-inch-diametel· tubes projecting 3 inches ahead of 1 0 included-angle 
wedge) near center line of slotted test section. 
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Detached shock 

Approximate theory from reference 13 
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0 Geometric method --
Continuity method ----

22 Experimental data 
8-foot transonic tunnel 
o Fuselage ,3 .33-inch diameter 
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References 13 and 15 
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6. 35° cone, 0 .25-inch diameter «Z?222L 
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