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All INVESTIGATION OF AIRCRJWT HEATERS

XXIV . TH3 HEAT METER IN THE TRAESIXHT STATE

YOR UNIDIRECTIONAL HEAT TIWJSFEIl

By L. M. K. Boelter, H. R’. Poppendiek,
R. V. Dunkle, and J. T. Gier

SUMMARY

This report describes the hehavlor of the heat meter
when It is used in thermal circuitra which are under the in-
fluence of transient potentials. The transient heat trans-
fer eyeterns oonsldered are ae follows:

I. A heat meter suddenly placed upon a hot eurface
,

II. A heat meter mounted upon the Interior eurface of
the cabin wall of an uninsulated airplane, which
is climbing through air of decreaelng temperature

III. A heat meter mounted upon the interior surface of
the com~oalte cabin wall of an insulated air-
plane, which is climbing through air of decreas-
ing temperature

Analytical and graphical solutions for cases I and II
are presented. ghe analytical eolutlons were derived for
idealized syetems composed of lumped resistances and capac-
itances the graphical solutions were effected by the Schmidt
method (appendix A). In general, good agreement wae obtained
between the analytical and graphical solutions.

The solution of the differential equations which accu-
rately deecribes a compoeite thermal syetem of di~tributed .--
resistances and capacitances ie difficult bo cbtain; thue,
for case III only the graphical solution is presented.

...-
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This report Is intended to show how analytical and graph-
ical solutions for the transient state can be used to inter-
pret the results obtained when heat meter read:qgy..arp. taken

s---- .duri-ng.the “ellmb-of--an ’airplane. “The .solut_ions presanted may
not be direetly applicable to a particular problem; however-
the toohnlques used should serve as a guide for analy~ing
slmi?.ar problems.

IHTRODUCTIOE

In previous reports (references 1 and 2) thb heat meter
has bsen desoribed and stead~ etate added oircuit .resistanoe
and temperature corrections are presented therein. !J!hisre-
port contains an analysis of the heat meter when it is used
in tran~lont hoat transfer systems: tho effect of added cir-
cuit resistance and heat meter temperature corrections will
not be considered for the traneient state. In some thermal
systems the temperature po%entialm are functlone of time.
Xnowle&ge regarding the manner in which the heat meter re-
eponde to transients is therefore neceseary. Analytical and
graphloal solutions for the transient state can be used to
Intorprot the resulte obtained wken heat meter readings are
taken during tho climb of an airplane. Tho solution of the
differential equation whioh accurately desoribes a oompoeite
thermal system of distributed re6intances and capacitances*
is difficult to obtain. An idealized thermal eystem consist-
ing of lumped re~istancee ar,d capacitcmcee* readily yields to
description through a soluble differential equation. The
distributed resiataucee ehould be small compared to the ther-
mal resistance of the remainder of the circuit in order to
obtain good approximations with this method. In the case of
n heat meter mounted upon a wall, the method consists of
treating the wall as a lumped capacitor looated at the center
of the wall inetead of a distributed capacitor. The thermal
resistance of the wall ie considered to be di~ided equally on
both sides of this central capac5tor. Similarly the oapao-
itance of the heat meter is lumped as a eingle capacitor at
the center of the meter, and the thermal resistance of the
heat meter is split equally to both sidee of this capacitor.
The Schmidt graphical method of solving a transient eystem
should be used when the system contains a relatively large
amount of distributed resistance and capacitance or when-the
temperature potentials or some of the circuit resistances

*Distributed and lumped resistance and capaoitanoes are
diecussed in appendix C.
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vnry in somo irregular manner with time; as under these
dltionta the differential equation demcrlbing the system
oomee unwieldy. .. -,.-- -. .-.... ..-.... ..-- - -
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SYXBOLS

A

a

c1

Cm

Cw

‘P

e

fc

k

L

aree. through which the heat .Ie being transferred, . fta

thermal diffusivity, fta
-K

.
1/2 thermal. uapaoltance of heat meter, ~

thermal capacitance of heat meter, Btu
~

Btuthermal capacitance of wall, ~

13tuheat c%pacity, ——
lb ‘F

base of natural logarithms

unit thermal convective conductapoe, Btu

hr fta ‘E .
atu

thermal conductivity,
hr fta (°F/ft)

a significant dimension In equation (8), ft

n1cna~n30n4 constants obtained by simplifying equations- .
(see appendix B)

ql heat flow from airplane interior into heat meter, Btu
F

. .—. -- — .-



Btuhsat flow from heat meter into airplane wall, ~

Btuheat. flow from .airplane- wall t-o outside air, —-
hr

rate of heat tranefer through heat meter, Btu
F

rate of heat transfer through heat meter at steady state,
~
hr

1/2 heat meter resistance plus heat meter-alr Interfaao,

‘F hr
alr gap resistance plus 1/3 heat meter resistance, —

Btu

1/3 heat meter resistance, % hr
m

1/3 heat meter resistance plus heat meter-air interface

o? hrrenietance, —
Btu

1/2 heat neter reaifitance plus contact reeietance plus
‘F hr1/2 wall resistance, -—
Btu

1/2 wall resistance plus outside air-wall interface
‘F hrre61stnnce, —
Btu

absolute temperature of air, OR

t~.ta the temperatures of the hot and cold Junotione of
the heat meter thermopile, ‘F

tm heat meter temperature at midsection, ‘F

tw surface temperature, ‘F

Urn true airplane speed, ft/Oec e
.-

a defined by equation Ta = Tc - ae, OE’/hr

‘Y weight density, lb/ft=
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Ax-.. L

e.

7,

‘a

TG

f*

f

Ra

time increment between eteps in graphical method,

~istanoe inerernenli, ?t ,.. .. . - ... ...

time, hr “

ambient atr temperature, ‘r

5

hr

alr temperature

air temperature

equivalr3nt unit

outside plane, o~

inside cabin (constant), ‘F

thermal conductance for ra~iatictn~
Btu

~

unit thermal oonductanoe due to radiati-ozk and amvec-..
tlon,

Btu

hr fta ‘~
‘~ h

air gap resistance plus 1/2 heat me~er”--~fince~ .~ Btu

THXRMAL S~TZXS AK) SOLKTTIOMS

I. A Heat Mater Suddenly Placed upon a Sot %mfaoe

A heat meter initially” at alr temparlrtumw Tls is

suddenly placed against a hot Burface. The time-.tap=ature
history of the heat meter under those .Condfti.ons .is.desired.
Tho thermal system consists of a hot surface, an alr gap
(contact rosistanco) , tho hoat”rnet-er, and. a unit thermal” ean--
ductance due to convection and radd.ation (heat met-or-air
interfaco rasistanus). Experlme~tal data werm taken for’the
above conditions. Initially the. t~mpmtures of the air, heat
meter, and air- gap were at 76° Y, while the .t-empemzture of the
hot surface was at 122.6°’E’. A thermwmu~~e -1.-acat-ad.uader.tk s
‘first lamination of the heat ma+er-was u8ed to ob%ain a tim8-
.temperaturs hiato~.of the hbat.me.tar (ehawn4n fz 1). l’- :
tenaperdure of the hot surfaca..izcr~ -su@tly a~%lw
bat’ meter .w~..plao-ed.upon the eurfa.ce.. At etaady.=tab~ the
uni~..tharma.l conductance -(fc.+fr) was ~ari.ueata3~ tier- .

mbd to be 2 3tu/hr f%” ‘If. The pro~rtka..~f.tis.ale~nt~
in the thermal. system are as lndi~dd~.~ble I. !l!haprod=. .
Uet YCp fop air is .small-amd..o.aa.,beaozd.d~:ti be .aeio

—.~-—.

in the air gap for-this system. -....

~. ■ ✌ ■ —m.mm.m ..—.—.
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~, Analytloal determination of the time-temperature—.—
~$or~ of a heat meter W.ddenly placed on a hot surface.

II.
..-

Air
?1

\ 0

Ii&t–m-te;

Cm thermal capacitance of heat meter, ~ot~

31 1/2 heat meter res18tance plus eurfaee rea%mtance,

Ra atr gap resistance plus 1/2 heat meter resistance,

6

.

‘~ hr

Btu

‘Y hr

Btu

t~ aver~ge heat meter temperature, ‘r

tw hot surface temperature, ‘F

6 time, hr

T1 aabtent air temperature, ‘r

Equattng the heat flow from the wall to the meter to the
rate of heat storage in the meter mlus the heat flow from the
meter surfaoe to tho surroundings lpostulatlng unidirectional
flow: I.e., heat flow from edges = O)

or

(1).

I —. . . —— —. .
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or

,

where

cm
d.t~

(
Rl+R

—+
)

~tm= ~+~
de RIR= R= Rz

.. ... ~.-”-....-“,,.-“

tlt~
~e- + Ptm = Q

P.A (RI + R=

cm )RZR= s ‘=; (2+2) .

7

(2)

(3)

The solution of the differential equation (3) Is (see re”fer-
enco 9):

Substituting for P and Q

or

where (y: j) Ie a time constant whioh is a funation of

the heat neter resistance and capacitance and the air gap and
heat meter-air Interfaee resistance.

This equation represents the temperature-time histor~
for a heat meter suddenly placed O= a hot surface, of, con8tant _
temperature. The results are tabulated in table II and plot-

------

ted together with experimental points In figure 1. The dis-
crepancy between the exp~rimental and calculated points is
mainly due to the fact that the hot plate temperature . .-

L. .-
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Increased slightly dne to the increased thermal resistance
added by the heat meter.

B. Grauhioal .determtnatlon of the tide~k-dmuerature.
blat 01’?7 of & heat meter euddenly m~oed umon a hot eurfaoea
Figure 2 exhiblte the Schmidt solution of the time-temperature
history of a heat meter suddenly placed upon a hot surfaoe.
An explanation of the Schmidt techntque for sol~lng transtent
heat transfer problems is given in appendix A. The time-
temperature history at a point inside the heat meter where the
thermocouple is located is taken from the Schmidt 6olutlon,
figure 2, tabulated in ta%le III, and plotted with the exper-
imental data in figure 1. The deviation between the experi-
mental and Schmidt time-temperature histories is seen to be
negligible. Experimentally it took 2.1 minutes for the tem-
perature of the heat meter to reach 95 percent of the steady
state heat meter temperature. The time required for the toh-
perature of the heat meter to roach 95 percent of the steady
state heat meter temperature as determined by the two methods
la tabulated below.

Experimental result Analytical result Graphical result
[zd.n) (nin) (rein)

2.1 1.4 2.0

C. Anal~tlonl determination of the tlm e-heat flow
hletor~ of n heat meter euddenly placed on a hot surface.
When the capacitance of the heat ~eter is lumped into two
capacitors the followlng equat~on of heat flow through the
keat meter as a function of time resnlte:

The ratio of the heat flow through the heat meter ‘ali“my
t%me ~ to the steady etate heat flow (e= Infinity) 19
g%ven by

1.
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w-b ma + E=+R4+R ‘J
nl 0
0

~M ~ nl - na (ni - na) Cz R3 R .

,, ----

[

‘+ ‘n~ ‘+’. --.113 -+”114--+R5 ‘“” ~na g””-”--““-

(Da - 1
(6)

nz - na nl) c1 Q= R4

1’
I

The method used in solving this equation and the defini-
tion of the terms nl and na aro given In appendix B.

When the values nl~ na~ R3# R4g RB~ 020 and 0 are

evaluated for this particular eaee, the following results:

qM -153 e .,2~50 e
— = 1 + 4.13 e -5.13 e (7)
q~

Table IV and figure 3 exhibit the time-heat flow history
of the heat meter as given by equation (7).

D. Grauhlcal de~errnination of the tlmo-heat flow
&%stcl r of a heat meter sudder~ly placed on a hot sW~a~.-
3ecau~e the Schmidt method yields the temperature throughout
the heat meter as a function of time, the temperature dlffer-
eace eoross a fixed resistance in the heat metem (as measured
ky the heat meter thermopilo) is known ae a function of time.
Tho heat flow-tirno history of the heat ~eter calculated from
tha drop in tonperature across the fixed resistance as ob-
talnod by tho Schmtdt m~th~d ig txbulatod in tablo P and
rlotted in figure 3. The Schmidt meth~d reveals that the
heat flow throu~h the heat meter is within 5 percent of the
steady state heat transfer rate after 1.4 ninutes~ while the
analytical eolution yielde 1.7 minutes.

II. TransZent Behavior of a Heat Meter Mounted upon the Inside

of an Uninsulated Cabin Wall of an Airplane in 311ght .

An airplane leaven the ground, flying at tho rate of
146 feet per second with respect to the still air, and at an
angle of 20° with the horizontal. Thue the vertical rate -

e of climb is 50 feet per second. The airplane climbs at
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this rate for 9* minutes, at whioh time an elevation of
2?,760 feet has been reached. The temperature of the still
air on the ~ound is 600 T, while at an elavation of 27,750

- . . .i.r.-feot--it-ie-_400 U. Some of the atmospheric-data at different
elevatlone are tabulated. In table VI. (See rOference 3.)
How long must an airplane fly at 27,750 feet, after having “
attained that elevation, before the rate of heat transfer
through the heat meter mounted’ on the inside of the cabin
wall is within 5 percent of the ~%eady ntate rate of heat
transfer? As the airplane climbs, the air temperature, air
densiiy, and the outsids unit thrsrnol convective conductance,
vary. The average unit thermal oonvectlve conductance be-
tween the air and the outside of the cabin wall may be sx-
prossod, as (of. reference 4):

f= = 0.64 ~“”s
(:’ )

O.B

0.E)7
(8)

The significant dimension chcsen in this case Is 6 feet.
(The significant dimension L in equation (8) is the length
of a flat plate over which the average unit thermal convec-
tive conductance ie desired. An average unit thermal oonveo-
tlve conductance over a 6-foot length wae obtained.) By US-
Ing the data tabulated In table VI (reference 3), the unit
thermal oonvect#ve conductance Ie calculated ae a function of
elevation and time of flight as ~hown In table VII. The
propertied of the elemente of tbs tkermal s~atem are an indi-
cated In table VIII. The unit thermal co~duct~nca due to
coavectlon and radiation on the inside of the cabin is postu-
lated t~ he 1 Etu/hr fta ‘F.

A. An~lytical detorminatlon,—

Symbols

B= integration constant

a constant defined In equation @7)

B4 Integration constant

8- b constant defined In equation

c oonstant defined in equation(~)

n= Dn4 oonstante defined in “equatlon(Bll)
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first lumped thermal resistance, Inside eurface resist-
.

anoe plus 1/2 heat meter roei stance, or Btu
;~

eecond lumped thermal resistance, 1/2 heat meter re6imt-
ance plue contact resistance plus 1/2 wall resistance,

#

average wall temperature, or

or .-
coefficient of temperature drop ~ith tlme~ - = conetant.—nr

The System .

Cabin air
‘c

Heat
ueter

Outside air

‘2 = ‘c - ae

twand~are
located at the center
of the rail and heat
meter,respectively

wall

TheZ’ml Ciroult

“\__ _/ “\_ _ _/
Heat muter Cabin ?.-11

—- ———— . . . .
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The outside air temperature, ‘am varies linearly with tins
and may be e.xprqeeed ae Ta = T=-(ZB. (a is a constant. )

. .. ““The’‘cbmplete analytical solution 3s o’ontainkd in 8ppen-
dlx B. The differential equation obtained is:

: [Cmc’::;’) ‘““4R;::8)IROmCw.S-.#+

( )(+.Rl+Rs+R7t

)

.E1+Re+R7 ~ ~g
m=” a- (9)

‘1 R8 R7 R1 Re R7 Re R7

(Thie equation and equation (B6) in appendix B are identical. )
The rate of heat tranefer through the heat meter as a funo-
tlon cf time 5s

ae baR1 Re R7_ + Cm a RIn.. =

nd e
ue

[

b u= RI Re R,

(n4 -
1+

n3)(Rl + Ite + R7) R1+Re+R7

(This equation and equation (B26] are Identical. )

R~ +R7)

Cm Rl n

2 11
cm;“A](10)
\

Tho physical meaning of this equation can be explained
as follows:

Yhe first term represent~ the heat flow If a steady state
is reached at each point. The second and third terms together
represent the lag in heat flow re.adlng duo to the capacities
in the eystem, after the effect of the initial candltions has
vanished. The last two terms re~rosent the effect of the iai-
tlal coz~itione. The whole equation repreeente the heat flow
as read by the meter as a function of-tima.

V?

The numerloal evaluation of this equation Ie plottod In
fl~nve 4 and the calculated valuas are given in table IX.
Three curves are present In figure 4. Curve I shows the heat

—- ..— —. .—-.— . . —--- ---- .... . — “—
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flow through the wall without the heat meter if a steady
stnte is reached at each elevation. Curve II gives the heat
flow reading which would be indicated by the heat meter if a

. .. ‘Stit’e%d’y’’”titatbwbkk”ke-iiclieii at each elevatlon. Curve III gives
the heat flow as read by the meter under the aesumed condl-
tlone. In figure 8 tLe calculated values of heat flow are
plotted with the values obtained by the Schmidt method, The
greatest difference between the two curves Is due to the fact
that an average thermal resistance between the outside air
and the wall wae employetl for the anal~tlc~l solutlon; where-
as, for the graphical solutlon,the appropriate variable re-
eistnnce wae used.

The equations (9) and (10) apply to the climbing air-
plane, but the heat flow curve after the airplane levals off
10 also plotteE. The differential pa.uations and solution
for this case ars noarl~ the ~ame an before, the difference
being that 78 ig now cocatnnt. The initial conditions are
chosen at tie instant the plane levels off, The solution is:

(11)

where 33 and B .A are deter~l.neii!by the beat fl~w conditl~ne
at the instant tha plane levele off. When the appropriate
value6 are substituted, tk.e reGultant equation 10:

= e.7.o - 4.13 e
-435 e -55.5 e

‘E
+ 28.83 e (12)

The calculated values of beet flow are given In table IX and
are also plotted in figure 4 and repres~nt the part of curve
III for values of time over 0.155 hour. It is seen that
after leveling off, it takes approximately 0.G35 hour, or
2.1 minutes for tbe heat meter reading to reach 5 percent of
the steady state value.

I?. Granh+~al determination.- The Schmidt solution of the..—= —
tine-temperature k.iStOPy=hrOUghOUt a heat ❑eter which was
attacked to the inside of the wall of an eirplane in flight
was constructed in the following manner. First , the thermal
raei-ta~can of the circuit aler:entra of the Byatem were repre-
~entad b~ a convenient scale. 19ext, the initial temperature
dlstri%ntion was I>dlcated. Since the thermal resistance-of

> the oabln wall was negligible, It ,was represented by a line
on the Schmidt solution. The thermal capacitance cf the air
gap wae small and ne~lected. Thus the temperature gradient
for a particular time increment waa conetant acfoss the air——

.- .— —.—
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gap . The heat meter was divided into one slab only as the
tem~erature gradlen& was rather enall. Since Ax = 0.004 footI.. an-d- s = 0.00264 ft /hr. the time increment wae.-

== ().004=
~((1.00264)

= 0.00303 hour or 0.18 minute. The outside
2a

air temperature anil the value of k/fc are plotted agalnat
time in figure 6. .Thus for anytime (determined by the number
of time increment) the directional point R can be deter-. .
mined. Table X and figure 8 exhibit the ‘time-heat flow re-
eults through the heat meter obtained by the Schmidt method
ehown In figure 7. It would take 1.25 minutes for rate of
heat transfsr through the heat meter to reach 5 percent of
the eteady etate value after tho airplane leveled off.

Yhe steady etate rate of heat tranefer la that rate
which would occur at each particular elevation if the plane
were to level off and fly. at that elevation for an infinite
time. From fi~re 8 It can be seen that the transient rate
of l.eat tranafer as measured by tke 5eat meter is greater
tha:. the eteady state rate of heat transfer. This observa-
tion can be explained as follows:

A Ereater amount of the heat stored in that section of\
the heat meter nearnst the decreasinfl outsid~ nir will flow
or.t of- the ksat motcm than th%t stor’{d in the section of
the hca.t meter which Is f,artha~h from the outside air. !?hue
the t~mpcr~ture of the first section will. be decroasin~ at a
freat~r rnt= thmn thzt of the sccor.d s~ction, and since the
h~at meter” tliermoFil~ msasuros the tnnpcraturo difference
between these two sections within tke heat motor, tho tr~n-

elent rntn of bent transfer as mcasurnd h~ the heat meter

will he greater thnn the etoady ~tata value.

III. The Transient Behavior of a Eeat Meter Mounted upon the

Instde of an Insulated Cabin Wall of an Airplane In Flight

lf a heat meter le attached to an Ineulated cabin wall

of an alr~lane flying under the urevlously specified condi-
tions (Illustrative example II), how long must the airplane
fly at q7,750 feet in ort!er that the heat flow through the.
heat ~eter 3B wlth~n 5 percent of the steady state heat flow

when the heat meter Ie mounted between tie wall and Insula=
tton, and when the heat ~.eter is mounted at the insulatlon-
cabln air interface? The thermal circuit consiete of an out-
si~e unit t>.ezmal conductance, a cabin Wallj a heat meter, a
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contact resistance, an insulation material, and an inside
unit thermal conductance as ehown in figure 9. The dletrlb-

... uted resistance and capacitance of the heat meter Is negligi-
ble oonpared to the large di.etributed reeletance and capaci-
tance of the insulating material. Thus the heat meter very
nearly meaev.res a rate of heat transfer that would occur if
the heat raeter were not in the thermal circuit. Since the
system contains a relatively lnrgo ditatrlb-ited resietanoe and
capacitance of the izeulating matierial, the anal~tloal method
of lumplng the circuit constants becomes cumbersome, and the
Schaidt method of solutlon is used. The Dronertiee of the
insulating material are:

.-

o~
k = 0.025 Btu/hr fts —

ft

‘Y = 5 lb/ft3

Thioknees = 0.5 inch

‘P =

8 =

0.40 Etu/lb ‘~

k 0.025
—=-
Cpv 0.40X..5

Thermal Circuit

= 0.0125 fta/hr

outside air.
cabin wall / , Air gaps ‘=
interface

f
reels ante

// , \
In~ation

Cabin air-
heat meter’
intarface
reOiOtance

‘- f’ ‘- -
\- -M

Cabin wall Poesible location of /
heat meters
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The Sohmldt solution (fig. 10) wa~ carried out a~ in the
previous case. The insulation was divided into eight small
slabs; Ax = 0.0052 foot and the time Increment was

Ae = (0.0052)a
— = 0.001085 hour or 0.065 minute, Tables 11

2(0.0125)
and 12 and figure 12 exhibit the time-heat flow history of
the heat meter mounted on the cabin wall as denoted abowe.
The tlues required for the heat flow Into the insulating ma-
terial as meaeured by the heat meter from the cabin and the
heat flow out of the cabin wall into the outside air to be
within 5 percent of the steady state heat flow value after
the plane has leveled off, are tabulated below:

Heat flow Into Insulation Heat flow out of wall
(rein) (rein)
3*: 4.2

COITCLUSIONS

1. The analytical and graphical solutions of the partic-
ular transient heat transfer problems presented In thie re-
port may be used ae a guide in analyzing transient heat trans-
fer problems in general.

2* If n heat meter is ueed in a thermal syotem where any
of the a.uantities such as ‘an TCt or fc vary in some ~-
known manner with time so that it is impossible to obtain
analytical or graphical eolutions, the heat transfer rates as
measured by the heat meter cannot be readily interpreted.

3. In the ease of a heat mater suddenly applied to a hot
surface of constant and uniform temperature, a heat meter
reading cannot be made until steady etate obtains (when the
temperature is constant with time). The time required for
steady state to occur can be predicted analytically or
graphically.

----
4. In the case of a heat meter mounted upon the cabin

wall of an airplane and the temperature of tho outside air
decreasing linearly with time, analytical and graphical aolu-
tione reveal that large errore in determining rates of heat
transfer can be made by taking readinge during the transient. -
and considering them as steady etate. For the specifio ocr~e
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presented in this report, the difference between the eteady
state and transient heat tranefer ie directly proportional

...tothe rate..of qhqngq (m) of.,the ambtent air temperature and
Is given by:

..

(J (A)–s = -0.038 a
~~flteady 8tate tranalent

6. nor an airplane oabin with an appreciable amodnt of
Insulation the thermal cirouit is diffioult to solve by ana-
lytical teohniquee presented beoause the system contains rel-
atively large dletributed remistancee and capacitance whic?h
do not lend themselves to the analytical method of lumping
circuit constante. For thoee cases the Sahmidt method ean
be ueed. A knowledge of the thermal capacitances of the ln.-
.eulation may be obtained experimentally (in flight) by using
heat meters in the thermal cirouit; one could be placed on
the side of the insulation contiguous to the cabin air, and
the other Gould be placed between the insulation and the
cabin wall. The amount of heat stored In the insulation may
be calculated from the difference in the two heat meter read-
ings.

University of California,
Berkeley, Calif., May 1944.
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APPEITDIX A

..- .—---

TEE SCHMI~T (G3APEICAL) ~THOD or SOLUTION or THE

00NDUOTIOll EQUATION ~OR THAITSIEMT UNIDIRECTIONAL H2A.T R’LOW

Heat conduction problems that are very diffloult to eolve
analytically may he solved graphtcall.y by the Schmidt method.
The differential ea-uation for unidlreotional heat flow In a
eolid iEI

where t Is the temperature at an~ point, Q the time, x
the distance from one face, and a the Invariable thermal
diffusivity of the slab. The graphical integration of the
shove partial differential equati~n 1s accomplished by &eplac-
Ing the differential quantities by small finfte differences.
(See references 5, 6, and 7.) Let AO represent a small but
finite increment of time e, and let Ax represent a small
but f~nlte ~norement of distance x. The distance increment
wIII be denot~d by the subscrlpte (n-l), n, (n+l), and so
forth, and tho time increments will be denoted by the sub-
scripts (m-l), m, (m+l), and so forth. Thus tn, m ~ilI. re-
fer to the temForature of the slab at the distance n~ x from
the surface at the end of mA8 tiine units. Thus the differ-
ential quantities are represented in finite d!.fference form
as followe:

‘n,tm+l) - ‘n,m
%= AG

The temperature gradient after mA9 time units between the
~th and (n+l)th increment is,

1%’! = ‘(n+l),m - tn,m

k—w+ Ax
,

The temperature
ntr

adient after mAe time units between the
(n-l)th and Increment is,

(JAt ‘nPm - ‘(n-x),m
F.= x

-. -— —..—
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. .

The rate of change of the temperature gradtent at the oenter
of the nth layer is,

Aat t(~+~),~ + t(n-l),m - 2tnam~=
li-xa

When the finite difference quantitlee are substituted into
the oonduotion equation. the following equation results:

‘n,(m+l) - ‘n,m =Qftln+z),m ‘t(m-z),m-2tn,lU

Ag \ -G a )

or

[
2a A 0 t(n+l ~

‘n,(m+z) - ‘n,m = ~ ~ -t

Lk 2
n,m 1

If Ax aad A(3 are 60 chosen that

2aAQ=1-.—
--a -v

‘n, (m+z) =
‘(n+z), m + ‘(n-z)im

.
&

~he above equation etate6 that the temperature Of any distance

increment at any time IS equal to the arithmetic mean of tbe
two distance i~orements on eltker elde at the previous AQ.

The distance increment is chosen on the basis of the in-
itial te~perature distribution. For eudden temperature
ohanges the dietance increments should be chosen emall enough

-. so that the broken lines connecting the pol~ts which repre-
sent the temperatures of the distance increment6 wil> not dif-
fer too greatly from the continuou6 temperature distribution
which would result if distance Increments become infinitely
small . The corresponding time increment that satisfies the
P

equation, 2aA0 ~ is used.
Z==’

I—.—-— - —- —
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If the thermal system aontains an a5r-slab interface
resistance, a heat rate balanoe aoroes the boundary must be
made so that the temperature at the surfece of the slab can
be determined. ....... . ...
-- ..! “.-.-

.- . . . .

or

Thus the slope of the temperature rlistribution at the bound-
ary is equal to the difference in temperature between the
filab curface and the air temperature divided by the ratio

k/f. The ratio k/f may vary depending upon the variation
of f.

The sudden oooling ofl an infinite slab with an air.slab
interface resistance will be used to illustrate the Schmidt
oonatruction. The temperature of the air Ta, the thermal

conductivity of the slab k, the thermal diffusivity of the
Blab a, and the unit thermal conductance due to convection
and radiation f are conetant value~. The initial tempera-
ture of the slab ie t~. In figure 12 the slab 1s divided

Into Clstmce Increments Ax. If the direotrix R, located
at ordinate ‘a and at a distance of k/f from the eurfaoe

of the slab, and the point O (initial temperature ti at

the eurfaco at @ = O) are oonnected by a line RO, the
temperature gradient at the surface of the slab is equal to
the slope of the line RO. The Intersection of lino HO

‘~ from the eurfabe looatee awith a plane at a distance

point which may be coneldered as being on the temperature
curve. The following step consists of connecting pointB a
and 2 from whtoh 11 Ie obtained. Next , R1 i is drawn,
and 2: is located by concocting points 1 and 3. Thus
the temperature distribution after one A9, 01, 11, 21, 31,
41, and so forth, has been obtalnod. This procedure 1s -

3 continued for eaoh new Ae.
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APPEH31X B

THE SOLUTION OF YHE,TR-AUS~ENT.BE~VIOR OF A EEA!I!METER
w.--”- ,-.. ...----

MOUETBD UPOM THI! CABIlt,OF AM AIRPLANE IN I’LIGHT .
..~
L
r

The oabin air is maintained at a oonstant temperature
71, and the heat meter, cabin wall, and outside air are ini-
tially at this temperature-. It is postulated that the temper-
ature of the outside atr drops linearly with time. By treat-
ing the wall and meter as lumped oapacltore and lumping the
thermnl resistance as deqcrtbed on page 11, it Is possible to
calculate the temperatures of the heat meter and wall. as
functions of time. IIJ ie altao poeeible to aalaulate the heat
flow from the oabtn into the mater, from the meter to the wall,
and from tha wall to the ontstde air. Por thl~ caee the heat
flow indlcatad by the mater Is approximately equal to tha
arithmetical avoraee of tho heat flow ao calculated into and

q +q
out of tha motoz’, or qm=12a.

The solution using lumped parameters is as follows;

A heat balance on the motar yields:

~ dtm tm - tw= —+
m d9 Es

where

While a heat balance on the wall ylelda:

w

tw - Ta
—— = q~

R7

Adding equations (31) and (B2), gives:

‘G - ‘m dtm dtw tw - Ta
= c=.— +cw— +

Itz ap de R7

(Bl)

(32)

(33) .

.
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From equation (Bl) is obtained:

. . . . . . . . .. —____

22

(B4)

D3fferentiatl, ng (B4) with respect to e, gives:

dtw aatm ‘Rl + R6 dtm
—f=R8cm —+
de de= ( )‘~ -i-i (B5)

Substituting (B4) aad(B6) into (B3) g3ves upon rearrange-
ment :

d%m
cm Cw —- +

[(
cm

a6a -) + Cw (’:::9] %’

(Be)

This Is the differential equation for the heat meter
temperature as a funoiiion of time. To eim>lify this equation,
let

(339)

Then (B6) is rewritten as follows: .’

.h+b=+otm =(Rl+R6+R7),c-a (Blo)
d6a de RI R~ R, Re R,
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And let

. . . . . . .-. .,-- -. f-b ..+ ba - 4EL0“n-~=“_——

2a

/
/.’

The Holution of the reduced eqnation ie

tm +
n~

e
e

(Bll)

(B12)

where Al and Ill are integration constants dependent upon
the initial conditions.

The partloular Bolution is

~R1e + b ~ RI(R1 Re R7)tm = T= - ——— . (B13)
Iii”+Ra + R, (Rl + R6 + R,)a

and the oomplete solution Is

n3 e n4 6
tm=A1e +Ble + T= - _~ RI @

E1+R~+Ey

+ b a RI(RI Re R,)

(Rl + R6 + R7)*
(B14)

The initial conditions for determining Al and B~

are that when 6 = O; tm = Tz; *=00 From equation
(B13) de

A3+B3=
bmRl(Rl RaR7)

(Hl+R6+~7)
a

And from the derivative of equation (B14):

(B15)

—. _ —- _ -- —- —--
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a R*
(B16)n3Al+n*Bl=

R1+R6+R7
%. ...........----..

Solving equations (B15) and (316) for Al and BI gives:

Ax x

And

a RI
[ -1

~ + b n4(Rl Ra Rv)”

(~. - n4)(Rl + Re + E,) (R1 + Es + R,)a -

a R,

[

~+bna RI ~~ R

(nq - n8)(R1 + R6 + R,) (RI + R= + R,)a‘1
on substitution into equation (311) the equation for

the temperature variation with time of the heat meter Is ob-
tained:

tm=To-—
~Rle + ~&Rl(Rl R~ ~)

R1+q+R7 (Rl + R* + R,)a

na e
a ?A ~__—+

(n= - [
1+

%)(R1 +R~ +R7)

n4 (3
ctRle

+— r1+
(n4 - n~)(~l + ‘6 + ‘,) L

R1+R6+%J

b n~ RI R~ R, 1 (B17)
RI + R* + R7-

To obtain the equat~on for the temperature variation of
the wall of the airplane a similar method is employed. !!!be
differential equation is nearly the same as before and Is

where a, b, and c are the same as in eauatiop (B6).

.—
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The solution of the equntlon is then

-.. tw = Aaen3e+Baen4*+T
(Rl + Re) m 9

0-
H~+R~+R7

Tho inttial oonditlons are, when @ = O; tw = To;

so that from equatisn (BIG)

find

R +R
n3 Aa + n4 13a = (---’ ‘)”

R1+K6+S7

(321)

This gives tha equatioz for tw

(3, + R6)u. e Cn (z RI Ee
tw = T= - -——-— . --—--—-

F-1 + Ee + 37 iil + R6 + 117

a~:

b CG(RI + Re)(E1 R= R7)
+ .—

(RI + Ra + E,)a

n3 0
a (Rl + Ed) e b n4 RI R6 R?

+— ——–--—-—— ‘1 + -
(n= - n~)(~z + Ra + R7) 1 R1+R6+R7

6
a (Rz + R3) ena

[

b n,~1216R7
+ —. — ~.+’ .—

(n, - nl)(Rl + R6 + R7) lil+116+R7

..

.— -- .. . —
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Thus far the equations for tm, the heat meter tcr.pei’-

:~tJ?re, and t~ ths cabin wall temperature ha~e bsen oi)ts~:-~~.-
‘Io cfilculate the--he-at‘flow’ae”read by the heat meter it ?.o
noceenar~ to obtain q~ and qa, or the heat flow into mi!

out of the meter. From equations (Bl) an~ <32):

Tc - tm
qz =

ILz

ai:d

tm - tw
q==

He

I’rom eqnations (Bl) and (317)

(31)

baRl IicR7
na e

ab ae
ql =

Rl+Ee+R7-(Ra+Re +R.)a (n~ - n4)(R1 + se + R7 )

[

b n4 RI R* Rv

1-

ae n4 t!

[

b n#l 36 R7
1+ 1+

“El + Rc + R, (nA 1}{R1+RU+R7- n3,, ) R~+R~+E7

(E23)

L -—
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mcA

q~ =
-.

.’

L El+ Re+R7 Rl +

which reduces to:

ag bmRl Ft~R7
qa=”

Rl+Ra+R7-(Rl+R~+R7 )*

(B24)

.R, + Re + R7

—. —-— —— . —-—— .
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qm =
ae

Rl+R~+R7

..-.

bmRIRe~

(Rz +R~ +E, )
R

-.-.—— ----

28

6
a en3

a ~n4 e

[

bn RI Ra R7 am RI n
1+ T

(n, .- n3)(R1 + R6 + R7) Rl+RG+R7 -2 ‘1

(B26)

L .— — —--- -
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. APPENDIX O

-.. .. . . A distributed reeiatance and capacitance in a thermal
system Zan e~ized EO that the dtatrlbuted reaiatanoe
may be oombined into one or more r“eeietors, and the distrib-
uted capacftanuo may be combined into one or more capacitor.
This teohnique of oombining the distributed resita$ance and
capacltanoe will yield a system containing lumped circuit
parameters.

-L -1.-

T T

Distributed resistance
and capacitance

Lumped reeistancea
capacitances

(c)

For instance, diagrams b and c are examnles of elements whioh
have been obtaine~ by lumping the dletr~bute~ resistance and
oapaoitance of element a. The degree to which diagram a
would be simplified (b or c) woultt depsnd upon the elements
of the complete eystem and upon the accuracy desired.

I .—
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TAMS II

Roeulta& hd.ytical Solution

(Eq.6,Fig.1)

\
‘rim Emt Mtor

mhuwm
T9BQoIlllJtam

\

o 78
0.~6 9Ss6
0.60 106.7
0.76 111.8
loo 116.1
1.60 118.3
8*W 119.4
m 119.9

- III

~sulta of Grq&ioal SolmidbSolution

(Tig. 8)

o
●t
.10
.28

::
.91

1.a7
1.60
1.94
2.17
m

R9st Mtsr
TalmplBlpura

n
66s6
94
1oo.4
108.4
114.2
117
l17a6
116
118.2
119.s

31
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Time
Min.

AnalyticalTime-HeatFlow Historyof a Heat Meter
Plncedupon=o~r?ace, SeeFig.3

0
0.01
0.02
0.03
0.05
0.07
0.10
0.15
0.20
0.25
0.30
0.50
0.70
1.CO
1.50

(Equation7, Pagell)

w
x.

o
1.50
2.50
3.16
3.84
4.08
4.08
3.80
3.48
3.12
2.92
2.15
1.68
1.32
1.09

+
Btufirft2

o
124
207
262
318
338
358
315
288
258
242
178
139
109
90

TABLEV

Graphica~Results by the Schmidt Method
of the Heat Flow-Time Historv of

a Heat Meter SuddenlyPlacedupon a Hot Surfaae

(seeFigs. 2 and 3)

Time t~ t>. ~~ kqAMin. OF OF Btu ft2

o 78.0 78,0 0.0 0
.0072 78.4 76.0 0.4 39.0
.0144 79.5 78.0 1.5 146.0
,0216 80.8 78.4 2.4 234.0
.0288 81.9 79.0 2.9 283.0
.0360 82.8 79.6 3.2 312.0
.0432 83.7 80.2 3.5 342.0
.0720 86.6 82.9 3.7 , 36,1.0
.1008 89.0 85.6 3:4 332.0
.1296 91.1 87.9 3.2 312.0
.1584 93.2 90.1 3.1 302.0
.1876 95.0 92.1 2.9 283.0
.2164 96.7 94.0 2.7 264.0
.2452 98.4 95.8 2.6 254.0
.2740 99.9 97.4 2.5 244.0
.3028 101.1 98.8 2.3 224.0
.3316 102.5 100.3 2.2 214.0
.447 106.6 104.8 1.8 176.0
.562 110.0 108.4 1.6 156.0
.677 112.3 111.0 1.3 127.0
.792 114.0 112.9 1.1 1o7.o
,907 115.2 114.1 1.1 107.0

1.022 116.1 115.1 1.0 97.6
1.366 117.8 116.9 0.9 87.8
cxl 120.75 119.9 0.85 82.8

32
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Propcmtiesof the Atmosphere

33

Elov.

I
Time of Flight

ft. minutms
,.
t

o
3oC0
5000

10,OOO
12,000
15,000
20,000
22,000
25,Ci)0
30.000
35,000
40,0CQ

o
1.OO
1.67
3.33
4.m
5.00
6.66
7.33
8.33
10.00
11.67
13.32

m
o

I
o

I
60

3000
I

1
I

48.5

6000 2 37.6

12000 4 16

240eo I8 I
-27.0

mooo I 10
I
-46,0

Air Air lknsity,~ Air P SS.
Temp. lb/ft3 Ylb/in abs.
W

60 0.0765 14.7
48.3 0.0700 13.17
41.2 0.0659 12.23
25.3 0.0565 10.11
16.2 0.0530 9.35
5.61 0.0461 8.29

-12.3 0.0408 6.75
-19.5 0.0281 6.20
-30.2 0.0343 5.45
-46.0 0.0286 4,36
-65.0 0.0237 3.46
-67.0 0.0234 2.72

TAELEVII

The evaluationof f- as a funotionof altitudoand t~mo“

T h TOA, 0.60

‘% (3
~ifai

ft/Mo lb/ft3 m
, 1

620 146
I
.0765 4.82

S06.4 I 146 I .0702 I 4.60

497.6

476

146 .0641 .4.19

146 .0632 3.60

454.6
I

146
I

.0436
I

3.06

433
I

146
I
,0360

I
2.66

412 146
I

.0264
I

2.16

I 1

6.U 20.0 0.0041

6.~
I

18.66
I

0.00443

6.46
I

17.6
I

0.00471

6.36
I

14.6
I

0.00666

6.30 12.25 O.ooe?s

6.W 10.Z 0.U0616

6.10 6.40 0.00971

f. - 0.64 TOO~

()

%~ 0.80

fr on outoido io no@ooto~oo~od tofC
equation(O)

Lo.26

TABIE VIII

PROPERTIES OF THE SYSTEM FOR CME 11

element thickness 1’
Btik~r ftz ~ ft Ib/ft3 Bt:~F lb

heat motor 0.0824 0.004 (1.43)(62.4)=89.3 0.36

nlr gap 0.016 0.000 533 $Cp ~ o

aluminum
cabinwall 116 0.00267 165 0.21
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hialyt~calRtwlts cf the Homt Flaw-Time
History of a Hat Motar Wount*dup.m tho Insida of tho Cmbin Wall of an Airplarwin Flight

(Equation34,Figxe S)

. -.

a.

e
hours

o

.m5

.01

.01s

.02

.03

.04

.03

.075

.10

.126

.16

e
minutaa

o

0.s

0.6

0.9.

1.2

1.8

2.4

S.O

4.5

6.0

7.6

9.0

o

5.56

1s.3

20.6

26.2

S6.1

44.0

51.0

66.6

61.0

95.0

109.0

e
lotus

).155

.157

.160

.162

.165

.170

.175

.165

.195

.205

.23S

e
nlnutas

9.s

9.42

9.6

9.72

9.9

10.2

10.5

11.1

11.7

12.3

14.1

15.3

Tho Heat Flow-TiIMHistory of a Hat Notor

Mounted upon the Insido of tha Cabin WallM an AirplaneinFlight

by tha Sohmidt Method

e t2 tl t.2- tl

hlw ‘F ‘F
%

0? Btu/hr ft2

D 60.0 60.0 0 0

.00303 60.0 59.86 0.15 9.2

.00605 59.2 59.0 0.20 12.3

.00909 68,30 58.0 0.30 18.4

.01212 57.0 66.6 0.40 24.6

.01516 55.8 55.25 0.55 33.7

.303 40.3 47.6 0.70 42.9

.0485 38.45 37.6 0.85 52.1

.0606 31.85 30.9 0.95 56.3

.0909 15.2 14.0 1.20 73.5

.1212 -0.8 -2.2 1.40 65.6

.1545 -17.6 -19.25 1.65 101.2

.1575 -19.0 -20.7 1.70 104.0

.161 -20.1 -21.7 1.60 98.0

.1635 -21.0 -22.55 1.56 95.0

.1665 -21.75 -23.25 1.50 91.9

.170 -22.36 -23.60 1.46 68.9

.173 -22.80 -24.2 1.45 86.9

00 -25.20 -26.55 1.36 8s.0

111.7

111.1

108.3-

106.3

103.5

Q9.5

96.6

92.4

90.1

66.6

87.45

67.09
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Ro~ults by thm Sclxnidtkthod of lkat Tranafw out of tk @mpo@ite (?abinMll

Into tho out-id.Air S* kmwr@d by ths Mat Motir

,. AS a Function of Titi

e

I
P

Min. 6tu/hr rt2

o 0
.065
. 1s0

S.86
5.77

.195 7.70

.456

.716
9.62

.s76
14.42

1.235
17.30
21.1

1.496
1.76s

22.1
2S.65

2.275
2.795

29.S

S.315
32.2
35.1

4.365
5.395

39.4
43.25

6.435
7.476

48.1

8.515
53.4

9.295
55.8

9.665
68.2

9.815
62.9
50.5

10.075
10.335

47.6
46.7

11.895 40.4
00 I 36.1

TABLE XII

Rawlts by tha Schmidt kthod of Heat Transfer into t)iaCanpoaitoCabin Mll

From tha Cmbin ● Manured by the Heat Netir

As a Function of Tima

e
Min. ?

Btu~r ft2

o 0
.065 0
.130 0
.195 0
.455 0
.715 0
.975 0

1.235 0.46
1.495 0.46
1.755 1.44
2.275 1.92
2.795
3.315

2.8135
3.85

4.355 7.69
5.395 11.05
6.435 14.90
7.475
8.515

18.25

9.295
23.10

9.665
25.97

9.015
26.45
27.40

10.075 28.35
10.335 29.sO
10.595 30.3
10.I956 31.3
11.115
11.375

31.7
32.2

11.635 8s.2
11.895 33.2
CD 35.s
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The sudden cooling of an infinite slab with an air-slab inter-
face resistance.


