CALIFORNIA INSTITUTE OF TECHNOLOGY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

copy 1

WARTIME REPORT

ORIGINALLY ISSUED

August 1945 as Memorandum Report E5H16

TESTS OF AN ADJUSTABLE-AREA EXHAUST NOZZLE

FOR JET-PROPULSION ENGINES

By E. C. Wilcox

Aircraft Engine Research Laboratory Cleveland, Ohio

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

MEMORANDUM REPORT

for the

Air Technical Service Command, Army Air Forces.

TESTS OF AN ADJUSTABLE-AREA EXHAUST NOZZLE

FOR JET-PROPULSION ENGINES

By E. C. Wilcox

SUMMARY

Tests were conducted on a 1600-pound-thrust centrifugal-flowtype turbojet engine equipped with an NACA designed adjustable-area exhaust nozzle and with a series of fixed-area nozzles of various throat diameters. The effective area range obtained on the variable-area nozzle corresponded to the area change accompanying a variation in fixed-area-nozzle throat diameter of from 11.1 to 12.6 inches.

A comparison of the performance data of the engine obtained in the two series of tests indicated that the adjustable-area nozzle was as efficient as the fixed-area nozzles tested.

INTRODUCTION

In their present stage of development, it is advantageous to provide existing jet-propulsion engines with a method of augmenting their power output for take-off, climb, and during combat when sudden bursts of power may be necessary. Investigations of methods of providing this momentary power increase indicated the desirability of a variable-area exhaust nozzle. When used in conjunction with an augmentation scheme, an adjustable-area exhaust nozzle should permit the turbine-discharge temperature, which is a measure of the turbinebucket temperature, to be maintained at its normal value. An adjustablearea exhaust nozzle is also valuable for normal operation because the engine may be operated at maximum efficiency or maximum power output, over a wide range of engine inlet temperatures and pressures and airplane speeds, by adjusting the discharge nozzle area. Certain jet engines are equipped with an adjustable-area discharge nozzle of the following type: The inner exhaust cone, behind the turbine, is equipped with a movable conical end section. This end section extends beyond the circular nozzle opening and thus provides an annular discharge area, which may be varied by moving the conical end section along the axis of the engine. The adjustable-area exhaust nozzle described in this paper is intended for use on jet engines not equipped with a means of varying the discharge nozzle area.

This report presents performance data obtained during April 1945 at the NACA Cleveland laboratory on a 1600-pound-thrust centrifugalflow-type turbojet engine equipped with an NACA designed adjustable-area exhaust nozzle. In order to obtain a basis of comparison, performance data were also obtained on the engine equipped with straight-sided fixed-area nozzles of various throat diameters.

DESCRIPTION OF APPARATUS

The adjustable-area exhaust nozzle used for the test reported herein (see fig. 1) consists of a spherical nozzle with a circular discharge area equipped with two adjustable flaps. Both the nozzle and the flaps are so made that their surfaces lie on concentric spheres, thus allowing relative motion between the flaps and the nozzle without changing the radial clearance between them. Inasmuch as relatively large clearances are used between the flaps and the nozzle to prevent sticking at high operating temperatures, thin metal sealing strips (fig. 1) are provided to prevent leakage. The flaps are adjusted by a screw-operated linkage. The linkage was designed only for test purposes and is not intended for use in flight installations. The nozzles used for comparison (fig. 2) were straight-sided fixed-area nozzles with throat diameters varying from 11.5 to 13.5 inches and with equal angles of taper.

The nozzle tests described in this report were conducted with the nozzle mounted on a 1600-pound-thrust centrifugal-flow-type turbojet engine. The installation of the adjustable-area nozzle on the jet engine is shown in figure 3.

TEST PROCEDURE

In order to adjust the nozzle through its entire range, that is, from the full-closed to the full-open position, 24 turns of the adjusting screw were required. Tests were conducted at 0, 6, 12, 18, and 24 turns open. The throat diameters of the fixed-area nozzles used to obtain a basis for comparison were 11.5, 12,0, 12.5, 13.0, and 13.5 inches.

Tests were conducted in the following manner: For a given position of the adjustable nozzle or for a given fixed-area nozzle size, performance data were obtained at various rotor speeds ranging from 12,000 rpm to either 16,500 rpm or to the speed corresponding to the maximum allowable tail-pipe gas temperature. This procedure was repeated for all fixed-area nozzle sizes and for several positions of the adjustable nozzle. All tests were run on the same day in order to maintain relatively constant inlet conditions.

RESULTS AND DISCUSSION

The performance data obtained as observed and as corrected to standard sea-level conditions at engine inlet (519° R and 14.7 lb/sq in. absolute) are presented in table I.

The corrected static thrust, fuel flow, and tail-pipe gas temperature are shown as functions of corrected rotor speed in figures 4, 5, and 6, respectively. Part (a) of each figure presents data for various positions of the adjustable nozzle and part (b), for various throat diameters of the fixed-area nozzles.

The data presented in figures 4 and 5 are cross-plotted in figure 7 to provide curves of static thrust against fuel flow at several constant rotor speeds for both the adjustable-area nozzle and the fixed-area nozzles. Obviously, the higher the thrust produced at a given fuel flow and rotor speed, the more efficient the nozzle. The discharge area of the adjustable nozzle changes from circular in the full-open position to elliptical in the full-closed position. There was a possibility that this elliptical shape might incur more losses than the circular but figure 7 indicates that the adjustable-area nozzle, in all positions, was as efficient as the fixed-area nozzles tested.

Curves of static thrust against tail-pipe gas temperature at several constant rotor speeds are presented in figure 8 (cross plot from figs. 4 and 6) for both the adjustable-area nozzle and the fixed-area nozzles. Because the measurements of tail-pipe temperature were less accurate than the fuel-flow data, any slight discrepancy between the curves of figures 7 and 8 may be attributed to experimental error; both figures 7 and 8, however, indicate that the adjustable-area nozzle was as efficient as the fixed-area nozzles tested.

Figure 9 presents the equivalent throat diameter of a fixedarea nozzle corresponding to a given position of the adjustable-area exhaust nozzle. This curve was obtained from the data of figure 5. The fuel flow for a given rotor speed and fixed-area-nozzle diameter was found from figure 5(b); with the same rotor speed and fuel flow, the adjustable-nozzle position corresponding to the given nozzle diameter was found from the data of figure 5(a). This procedure was repeated until a complete curve was obtained. Although the curve is drawn for a constant rotor speed of 14,000 rpm, the variation with rotor speed is slight. By means of the adjustable-area nozzle tested, an effective-area range could be obtained corresponding to the area change accompanying a variation in fixed-area-nozzle throat diameter from 11.1 to 12.6 inches. Although the area range possible for a nozzle of this type is relatively fixed for a given tail-pipe diameter, the upper and lower area limits may be readily varied by altering the design of the nozzle and flaps. (See fig. 1.)

SUMMARY OF RESULTS

A comparison of the performance of a 1600-pound-thrust centrifugalflow-type turbojet engine when equipped with an NACA designed adjustablearea exhaust nozzle and when equipped with a series of fixed-area nozzles of various throat diameters indicates that the adjustablearea nozzle is as efficient as the fixed-area nozzles tested.

Aircraft Engine Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio, August 16, 1945.

4

.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

, ,

T	- PERFORMANCE OF	1600-POUND-THRUST CENTRIFUGAL-FLOW-TYPE TURBOJET ENGINE EQUIPPED WITH AN	ADJUSTABLE-AREA	EXHAUST	NOZZ
		AND PERFORMANCE WITH FIXED-AREA NOZZLES OF VARIOUS THROAT DIAMETERS			

	Barometric	Exhaus	tnozzle	Engine	- inlet	Facino								1		1				
Reading	pressure	Fixed-area nozzle-throat diameter	Adjustable - nozzle	total	ature	total pressu	re	spe	e d	Stathr	ust	Fu f)	lel low	Indicat tail-pi tempera	ed pe gas ture	A i f i	r ow	Speci fuel consu	ific imption	10
	(1b/sg in. abs.)	(10.)	(turns open)	(°	R)	(1b/sq i	n. abs.)	(r p	m)	()	b)	(16	(hr)	(0	R)	(16/	(202	(16)/(hr)(1b-	-
				Read	Corr.	Read	Corr.	Read	Corr.	Read	Corr.	Read	Corr.	Read	Corr.	Read	Corr.	Read	Corr	
A I A 2 A 3	14.45		0	524 527	519	14.43	14.70	12,006	11,948	725 896	739 913	1105	1120	1572	1557	19.3	19.8	1.524	1.516	I I
A4 A5 A6 A7	14.45		6	523 523 527 526	519	14.43	14.70	14,000 11,950 12,997 13,980	13,840 11,905 12,948 13,874	670 826 1001	683 841 1020	1516 1002 1167 1363	1528 1017 1184 1379	1705 1470 1510 1562	1666 1459 1499 1538	23.4 19.9 22.1 24.2	20.4 22.6 24.8	1.401 1.496 1.413 1.362	1.385 1.489 1.408	0
A8 A9 A10 A11 A12	14.45		12	522 522 523 526 530	519	14.43 14.42 14.42 14.42 14.41	14.70	15,006 11,904 13,003 14,000 15,016	14,905 11,869 12,965 13,947 14,915	1221 618 762 922 1135	1246 630 777 940 1158	1625 943 1100 1270 1500	1647 958 1118 1290 1520	1646 1403 1430 1472 1542	1624 1395 1422 1461 1521	26.5 20.1 23.5 24.8 27.2	27.2 20.6 24.0 25.3 27.9	1.331 1.526 1.444 1.377 1.322	1.322 1.521 1.439 1.372 1.313	
A13 A14 A15 A16 A17	14.45		18	523 525 523 526 528	519	14.40 14.43 14.42 14.42 14.41 14.41	14.70	11,970 13,007 13,968 15,026 15,989	15,843 11,925 12,932 13,915 14,925 15,853	574 707 855 1057 1283	1392 585 721 872 1078 1310	909 1047 1195 1414 1695	1806 922 1061 1214 1433 1716	1648 1358 1380 1412 1480 1578	1614 1348 1364 1401 1460 1551	29.3 20.5 22.8 24.8 27.3 29.5	30.2 20.9 23.3 25.5 28.1 30.4	1.311 1.584 1.481 1.398 1.338 1.321	1.297 1.576 1.472 1.392 1.325 1.310	a surger of
A 1 9 A 2 0 A 2 1 A 2 2 A 2 3 A 2 4	14.45		24	523 523 525 524 529	519	14.40 14.43 14.42 14.42 14.41 14.40	14.70	10,445 11,966 13,219 13,990 15,070 15,991	16,289 11,921 12,970 13,909 14,938 15,839	1404 540 675 819 1014 1243	1433 550 688 835 1034 1269	893 1022 1165 1371 1652	1875 906 1038 1181 1392 1670	1637 1342 1360 1392 1453 1553	1606 1332 1350 1376 1439 1524	30.5 20.5 22.8 25.0 27.3 29.5	31.5 21.0 23.4 25.6 27.9 30.4	1.321 1.654 1.514 1.422 1.352 1.329	1.308 1.647 1.509 1.414 1.346 1.316	Statistics of
81 82 83 84	14.43	11.5		528 528 530	519	14.40	1.4.70	16,469 11,978 12,983 13,976	16,281 11,876 12,873 13,831	1365 657 810 1003	1394 671 827 1025	1821 1011 1172 1379	1838 1023 1186 1395	1615 1490 1535 1600	1579 1465 1509 1567	30.5 19.5 21.5 23.6	31.5 20.1 22.2 24.4	1.333 1.539 1.447 1.375	1.319 1.525 1.434 1.361	
85 86 87 88 89	14.43	12.0		527 526 527 531 532	519	14.40	14.70	14,974 11,972 12,961 13,986 15,006	14,791 11,881 12,874 13,880 14,835	1230 607 742 920 1137	1257 620 758 940 1162	1662 958 1098 1275 1513	1678 971 1114 1293 1529	1705 1425 1455 1500 1575	1663 1403 1436 1477 1539	25.6 19.9 22.0 24.2 26.5	26.5 20.4 22.7 24.9 27.4	1,351 1,578 1,480 1,386 1,331	1,335 1.566 1.470 1.376 1.316	
BI0 BI1 BI2 BI3 BI4 BI5	14.43	12.5		525 524 526 527 530 532	519	14.40 14.40 14.39 14.38 14.38	14.70	11,972 13,005 14,008 15,018 15,989	11,904 12,943 13,914 14,904 15,823	562 681 836 1025 1254	574 695 854 1048 1282	906 1034 1184 1396 1668	920 1051 1202 1411 1687 1854	1360 1380 1415 1480 1575	1344 1367 1396 1458 1542	28.5 20.3 22.5 24.8 27.0 29.1	29.5 20.9 23.1 25.5 27.8 30.1	1.312 1.612 1.518 1.416 1.357 1.330	1.296 1.603 1.512 1.407 1.3%6 1.3%6	
BI6 BI7 BI8 BI9 B20 B21	14.43	13.0		525 524 524 526 528 531	519	14.40 14.39 14.38 14.37 14.37	14.70	11,944 12,974 13,976 15,020 15,995	11,876 12,909 13,909 14,919 15,859	504 621 760 939 1157	515 634 777 960 1184	866 980 1119 1313 1583	879 996 1138 1333 1606	1 3 2 5 1 3 4 0 1 3 6 5 1 4 2 5 1 5 2 0	1310 1327 1352 1406 1494	20.4 22.6 24.8 27.2 29.2	20.9 23.2 25.5 28.0 30.2	1.326 1.718 1.578 1.472 1.398 1.368	1.707 1.571 1.465 1.389 1.356	
822 823 824 825 826 826 827	14.43	13.5		525 524 525 526 529 530	519	14.40 14.39 14.38 14.37 14.37	14.70	11,938 12,977 13,980 15,033 15,999 16,493	10,287 11,870 12,915 13,900 14,932 15,847 16,321	465 576 703 869 1072 1192	475 588 718 888 1097 1219	839 950 1080 1267 1532 1710	852 965 1097 1286 1552 1731	1 3 00 1 3 1 0 1 3 3 5 1 3 9 0 1 4 9 0 1 5 6 0	1285 1298 1320 1372 1462 1528	20.5 22.7 25.0 27.3 29.5 30.5	31.4 21.1 23.3 25.7 28.1 30.4 31.5	1.804 1.6%9 1.536 1.458 1.429 1.435	1.352 1.794 1.641 1.528 1.448 1.448 1.415 1.420	

[As observed and as corrected to standard sea-level conditions (14.70 lb/sq in. abs. and 519° R) at engine inlet]

. .

NACA \leq

.

992.3

.

.

autors harden

Reading	A(in.)	B(in.)
B I - B 4	11.5	12.5
B 5 - B 9	12.0	10.3
B I 0 - B I 5	12.5	8.0
B I 6 - B 2 I	13.0	5.7
B 2 2 - B 2 7	13.5	3.4

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 2. - Details of fixed-area nozzles.

E-265

126-420

·法律法监察的收益。 一个时代要进行的发展的遗传

(a) Adjustable-area exhaust nozzle.

⁽b) Fixed-area nozzles.

Figure 4. - Concluded.

(Anges)

(a) Adjustable-area exhaust nozzle.

Figure 5. - Variation of fuel flow with exhaust-nozzle area and rotor speed.

⁽b) Fixed-area nozzles.

Figure 5. - Concluded.

1

Corrected rotor speed, rpm

(a) Adjustable-area exhaust nozzle.

Figure 6. - Variation of tail-pipe gas temperature with exhaustnozzle area and rotor speed.

E-265

(b) Fixed-area nozzles.

Figure 6. - Concluded.

r.con

NACA MR No. E5H16.

-265

m

.

2.2

Adjustable-nozzle position, turns open

Figure 9. - Variation of equivalent fixed-area-nozzle throat diameter with adjustable-nozzle position. Rotor speed, 14,000 rpm.