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SUMMARY 

Two symmetrical airfoils, an NACA 633_018 and an NACA 631-012, 

were investigated for the purpose of determining their stalling 

and boundary-layer characteristics with a view toward the evential 

application of this in±ormation to the problem of boundary-layer 

control. Force measurements, pressure distributions, tuft studies, 

and boundary-layer-profile measurements were made at a value of 

5,800,000 Reynolds number. It was found that the 18-percent-thick 

airfoil stalled progressively from the trailing edge because of 

separation of the turbulent boundary layer. In contrast, the 

12-percent-thick airfoil stalled abruptly from a, separation of - 

flow near the leading edge before the turbulent boundary layer 
- -. -----	 - 
became subject to separation. From this it was concluded that if 
- -	 -,- --------

high values of lift are to be obtained with thin, high-critical-speed 

sections by means of boundary-layer control, the work must be directed 

toward delaying the separation of flow near the leading edge. It 

was found that the presence of a nose flap on the 12.Lpercent_thick 

section caused the airfoil to stall in a manner similar to that of 

41, ONO
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the 18—percent—thick section. 

INTRODUCTION 

The idea of artificially controlling the boundary layer of an 

airfoil by means of suction or pressure slots for the purpose of 

increasing the maximum lift or reducing the profile drag is not new. 

Considerable research in this field has been done both in this 

country and abroad, but to date little, if any, practical use has 

been made of the method., partly because of uncertainty as to its 

efficacy, and partly because the additional complications of design 

outweighed the advantages. Consequently, boundary—layer control 

has remained in the laboratory, the subject of sporadic experiments, 

and usually of such small scale as to render the results unconvincing. 

Recent developments of airplane design, however, have produced 

renewed interest in the subject and have resulted in a re—examination 

of existing data. One contributing factor to the renewed interest 

is the trend toward thin airfoil sections in the design of high—speed. 

airplanes. Suitable high—speed airfoil sections, unfortunately, are 

characterized by low maximuth lift coefficients even when equipped with 

the most effective of flaps. This deficiency results in undesirably 

high airplane landing speeds. Since but little improvement is to be 

expected from further flap research, the quest for a more effective 

high—lift device must turn in other directions. A second factor 

favorable to boundary—layer control is the increasing use of the 

gas turbine or jet engine as aircraft power plants. The large 

volume of induced air and the high—capacity compressor required by
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these engines suggest at once a source of suction without additional 

equipment, and with a minimum of complication to the aircraft 

structure. 

The combination of these two factors would seem to point 

toward artificial boundary—layer control as a means of obtaining 

satisfactory landing speeds with modern high—speed aircraft. With 

this in mind, the current experiments were undertaken, not as a 

direct assault on the problem of boundary—layer control, but rather 

to furnish preliminary information toward that end. Accordingly, 

extensive data were obtained on the stalling and boundary—layer 

characteristics of two low—drag airfoil sections at subcritical 

speeds for a moderately large value of Reynolds number. 

Given in the appendix is a brief discussion of the validity 

of the boundary—layer--shape parameter as a universal parameter 

describing the shape of all turbulent velocity profiles. 

This investigation was conducted in the Ames 7— by 10—foot 

wind tunnel No. 1.

SYMBOLS 

b	 wing span, 6.802 feet 

c	 wing chord, 5.000 feet 

c1	 section lift coefficient (corrected for jet—boundary 

effect by the method of reference 1) (L/q0S) 

cQ8	 section displacement flow coefficient ((U/U 0) (*/c)1 

H	 boundary—layer—shape parameter (*/e) 

L	 lift, pounds
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local static pressure 

free—stream static pressure 

1L.7 
pressure coefficient

CIO 

free—stream dynamic pressure (oUo?) 

wing area 314.010 square feet 

local velocity inside boundary layer 

local velocity outside boundary layer 

free—stream velocity 

distance measured along airfoil chord. line from leading edge 

distance above airfoil surface measured perpendicular to 

tangent to surface 

section angle of attack (corrected for jet—boundary effect 

by the method of reference 1), degrees 

total boundary—layer thickness 

plain— or split—flap deflection, degrees 

nose—flap deflection, degrees 

boundary—layer—displacement thickness 

f
-  tj 
 

)dy 
-

boundary—layer--momentum thickness 

I 
f6u(u 

U-I 

free—stream mass density 

ANN*
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MODELS AND TESTS 

Two models, designed to' the ordinates of the NACA 633-018 and 

631-012 airfoils (table I), were constructed of laminated mahogany 

for these tests. Both models were of 5-foot chord and spanned the 

7-foot dimension of the wind-tunnel jet. Each model was provided 

with 27. percent chord, plain and split flaps hinged about the 

chord line and lower surface, respectively. Ii addition, a 

10-percent-chord nose flap was investigated on the NACA 6i-012 

section. Sketches of these three flaps are shown in figures 1 and 2. 

Photographs of the models installed in the wind tunnel are shown in 

figure 3. 

Force measurements were obtained by means of the usual wind, 

tunnel balance system. The pressure-distribution measurements 

were obtained by means of flush-type orifices located along the 

midepan of the model and connected to multiple-tube manometers. 

No orifices were provided in the split flaps. All pressures were 

reëorded. photographically. 

Tuft studios were made by observing the stall patterns as 

indicated by small threads glued to the surface of the models. 

Boundary-layer-velocity profiles were obtained by surveying 

the boundary layer with rakes attached to the surface of the 

airfoil. Several sizes of rakes were used depending on the thick-

ness of the boundary layer. Surveys were made from 90 percent 

chord to as far forward along the chord as it was practical to 

go with the smallest rake. M9________ rakes were made of
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0.015—inch—outs ide-- diameter steel hypodermic tubing flattened to 

0.007 inch at the ends. 

All tests were made at a dynamic pressure of 40 pounds per 

square foot which, for the 5—foot—chord models, corresponds to a 

Reynolds number of about 5,8003000. 

RESULTS A1D DISCUSSION 

Lift Characteristics 

The lift characteristics of the two airfoils, plotted as the 

variation of section lift coefficient with angle of attack, are 

presented in the figures listed in the following table: 

Fig. Airfoil
Trailing—edge flap Nose—flap 

deflection Deflection 
no. -section Type (deg) (deg) 

(a) 633_018 plain 0 to 10 - - - 

do. split 0 to li-C - - - 

5(a) 63i7012 plain 0 to 40 - - 

5(b) do. split 0 to 1-0 - - - 

5(c) do. plain 0 0, 75, 90, 

105, 120 

5(d) do. plain 11-0.0 do.

The maximum section lift coefficients measured and the 

increments of lift due to flap deflection are summarized, as 

follows:	 - 



NACA RM No. A6L13
	

@Now

	
7 

Airfoil
Trailingefla Nose—flap 

deflection
for 

C,max ' & 
C,
max AC Deflection 

section Type (deg) (deg)
(deg)  

kmax 

633_018 Plain 0 - - - 14.7 1.38 - - - 

do. Plain 4o - - - 10.7 2.18 0.80 

do. Split 40 - - - 13.9 2.69 1.31 

63_012 Plain 0 - - - 13.7 1.38 - - - 

do. Plain 40 - - - 8.1 2.06 0.68 

do. Split 40 - - - 8.6 2.13 0.75 

CIO. Plain 0 105 18.9 1.77 0.39 

do. Plain 40 105 lli-.O 2.42 036a 

1. 04P

a Due to nose flap only. 
b Due to both flaps. 

The greater effectiveness of the plain and split flaps with the 

thicker airfoil is apparent. No attempt was made to find the 

maximum section lift coefficients attainable by deflecting the plain 

and split flaps to their optimum deflection angles; Instead, the 

maximum flap deflection was arbitrarily limited to 400. It is 

possible that greater maximum lift coefficients could have been 

obtained by other flap configurations, but an intensive study of 

flap effectiveness was not the purpose of this investigation. 

Pressure Distribution 

Pressure—distribution data were obtained throughout the 

low 
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angle—of—attack range for all the flap configurations tested. The 

bulk of these data precludes presentation In this report. However, 

some characteristic preásure distributions for 00 geometric angle of 

attack and the angle of attack corresponding to the maximum lift 

coefficient are presented in the following figures: 

Fig. Airfoil

Trailing—edge flap Nose—flap 
deflection Deflection 

no. section Type (dog) (deg) 

6(a) 633-018 plain 0 - - - 

6(b) do. plain 140 - - - 

6(c) do. split 40 - - - 

7(a) 63i_012 plain 0 - - - 

7(b) do. plain 140 - - - 

7(c) do. split 140 - - - 

7(d) do. plain 0 105 

7(e) do. plain 40 105

No pressure measurements were made over the spilt flaps nor over 

the lower surface of the nose flap. The pressures over the upper 

sin-face of the nose flap are plotted along the axis ahead of the 

normal leading edge of the airfoil and are continuous with the 

upper surface pressures over the body of the airfoil. In no case 

was the minimum pressure measured over the nose flap less than the 

minimum pressure measured over the body of the airfoil. 
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Tuft Studies 

The stalling characteristics of the two models as indicated 

by the action of small tufts glued to the upper surface of the 

models were observed. The results of these observations in the 

form of graphs showing the chordwise progression of the stalled 

area with increasing angle of attack are presented in the follow-

ing figures: 

Fig. 
no.

Trailing—edge flap	 - 
Airfoil	 Deflection 
section	 Type	 (deg)

Nose—flap 
deflection 

(deg) 

B(a) 633-_018 plain 0 - - - 

8(b) do.	 I plain 40 - - - 

8(c) do. split 40 - - - 

9(a) 63_012 plain 0 - - - 

9(b) do. plain 11.0 - - - 

9(c) do. split 11.0 - - - 

9(d) do. plain 0 105 

9(e) do. I	 plain 40 105

It will be noted that the NACA 633-018 airfoil stalled first at 

the trailing edge, the stalled area progressing foiward. with 

Increasing angle of attack. The effect of this type of stall is 

shown by the droop of the lift curves presented in figure Ii. In 

contrast, the NACA 631-012 airfoil stalled abruptly. All the tufts 

reversed direction instantaneously with but little warning in the form 
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o;: rough flow over the trailing portion of the airfoil. The stall 

was so violent that for reasons of safety no attenips were made to 

obtain data for angles of attack greater than those of maximum lift. 

The plain flaps of both airfoils were completely stalled, when 

deflected 400 at all positive angles of attack. 

The effect of the nose flap on the NACA 6-012 airfoil was 

to lessen the suddenness of the stall. The airfoil with the nose 

flap deflected stalled from the trailing edge forward, but not so 

gradually as the thicker airfoil. The violence of the stall was 

reduced sufficiently to allow data to be obtained for angles of 

attack greater than those of maximum. lift. 

Boundary—Layer Characteristics 

A complete presentation of data for all the boundary—layer-

velocity profiles measured during the course of this investigation 

-	 is impractical because of its bulk; hence only a few representative 

profiles are presented in figures 10 and. 11. However, the derived 

boundary—layer parameters, momentum thickness 0 and shape 

parameter H are presented in their entirety for all configura-

tions of the. two airfoils investigated. These data, plotted as 

the variations of 0 . and	 H along the chord for various 

constant geometric angles of attack from 00 to the stall, are shown 

in the following listed figures:
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Fig. Airfoil
Trailing-edge flap Nose-flap 

deflection Deflection 
no. section Type (deg) (deg) 

12(a) 633-018 plain 0 - - - 

12(b) do. plain 40 - - - 

12(c) do. split 4o - - - 

13(a) 6317012 plain 0 - - - 

13(b) do. plain 140 - - - 

13(c) do. split 40 - - 

13(d) do. plain 0 105 

13(e) do. plain 4o 105

Although manyref lies of the laminar type were measured, the 

parameters 0 and H were computed only for fully developed 

turbulent boundary layers. The integrations necessary to obtain 0 

and H were performed by mechanical methods. The discontinuities 

in the curves just behind the 0.7-chord station are believed to be 

the result of leakage of air through the flap nose gap. 

von Doenhoff and Tetervin (reference 2) have shown that 

separation of the turbulent boundary layer has occurred when the 

shape parameter attains a value of 2.6. The National Bureau of 

Standards (reference 3) found this value to be 2.7. Inspection of 

the curves showing the variation of H along the chord of the 

NACA 63 3-018 airfoil (figs. 12(a), 12(b), and 12(c) indicates that 

large values of the shape parameter are attained over the after 

portion of the airfoil at high angles of attack. It is evident 
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that the stall of the airfoil originated from a turbulent separation 

which started at the trailing edge and moved steadily forward with 

Increasing angle of attack. This type of stall pattern is charac-

teristic of the thicker airfoils and has been frequently observed 

in the past. The chordwise locations of the turbulent separation 

points determined by extrapolating the shape-parameter data to a 

value of 2.6 agree well with the results of the tuft studies and 

pressure-distribution measurements. This gives further basis for 

acceptance of 2.6 as the critical value of the shape parameter 

Indicative of separation of the turbulent boundary layer. 

In contrast to the behavior of the 18-percent-thick section, 

the NACA 631-012 airfoil without nose flap stalled abruptly over the 

entire surface with only a slight warning indicated by rough flow 

over the after portion of the airfoil. Inspection of the shape-

parameter data (figs. 13(a)' , 13(b), and 13(c)) shows that in no 

case, even with the curves extrapolated to the trailing edge, does 

the shape parameter approach the critical value of 2.6. Thus it Is 

apparent that this moderately thin airfoil did not stall because of 

separation of the turbulent boundary layer, and it is surmised that 

the complete breakdown of flow resulted from the failure of a 

separated laminar boundary layer near the leading edge to reattach 

Itself to the surface farther downstream. 

It was thought that a short region of laminar separated flow 

might exist for angles of attack below that for the complete flaw 

breakdown. Accordingly, attempts were made to measure the boundary 

layer along the upper surface forward to the leading edge, but
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because of the thinness of the boundary layer and the physical 

limitations of the survey rake, it was impossible to obtain velocity 

profiles in the immediate vicinity of the leading edge. However., 

surveys made with a single total—head tube on the surface and a 

static tube slightly above the surface gave continuous readings up 

to zero percent chord, yielding no indication of the presence of a 

separated laminar boundary layer for angles of attack less than 

that corresponding to the stall. 

Although no region of laminar separation was found in the 

immediate vicinity of the leading edge at angles of attack just 

below the stall, it is believed that the abrupt stall exhibited by 

moderately thin airfoils is due to the effect of small:nose radii 

in promoting separation of the laminar boundary layers. For the 

present investigation it is th3tight that a laminar—type separation 

occurred on the lover surface of the nose radius, the position of the 

most rapid flow accelerations about the airfoil. Substantiation 

for this belief is given by the nose—flap data (figs. 13(d) and 

13(e)). The presence of the nose flap so altered the boundary-

layer—flow characteristics that turbulent separation occurred at 

the trailing edge prior to the complete stalling of the airfoil. 

The forward progress of the stalled area was more rapid than for 

the 18—percent—thick airfoil, but nevertheless the abruptness and 

violence of the stall were greatly reduced as compared to that of 

the 12—percent--thick airfoil without nose flap. 

Two important considerations for the practical applications 

of artificial control of the boundary layer of an airfoil are the 

sow
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chordwise locations of the slots and the blower capacity required. 

Previous investigations have shown that for the attainment of a 

given lift coefficient, suction control is more economical of 

power than the use of pressure slots or jets. (See references 4 

and 5.) Consequently, only the use of suction slots will be 

considered in this discussion. 

The results of references 6 and 7 have shown that suction 

slots operate near their maximum effectiveness when the quantity 

of air removed from the boundary layer is equal to that which 

would, flow with a velocity equal to the local velocity outside of 

the boundary layer through an area of unit width and a height 

equal to-the displacement thickness of the boundary layer. A. 

section flow coefficient c 	 =	 , which expresses 
U0 C 

this desired. quantity of flow and. Is referred to in this report 

as the displacement—flow coefficient, was computed for both 

the airfoils investigated.. Curves of the computed values of 

along the chords are presented in the following figures:
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Fig. Airfoil

I Trailing-:edge flap Nose—flap 
deflection Deflection 

no. section Type (deg) (deg) 

114(a) 633-018 plain 0 - - - 

114(b) do. plain 140 - - - 

114(c) do.. split 140 - - - 

15(c) 631_012 plain 0 - - - 

15(b) do. plain 140 - - - 

15(c) do. split 110 - - - 

15(d) do. plain 0 105 

15(e) do. plain 140 105

Insofar as the volume flow is concerned, the advantage of 

placing the suction slots well forward along the chord is 

apparent. What is not evident from these figures is the suction 

power required. At high angles of attack a forward location of 

the slot would require the blower to pump from a region of low 

pressure, thus requiring a greater expenditure of power per unit 

volume of air removed from the boundary layer. However, if the 

source of suction is assumed to be the compressor of a gas 

turbine or jet engine used normally to furnish the propulsive 

power of the aircraft, the relatively small amount of suction 

power required for boundary—layer control during the landing 

approach would not seem to be significant. 

The effect of deflecting the plain or split flap on either 
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airfoil is to reduce markedly the thickness of the boundary layer 

for a given lift coefficient, thus reducing the suction volume 

required.. This can be explained by the fact that the airfoils 

with flaps deflected possess an effectively less adverse pressure 

gradient opposing the boundary—layer flow because 'of larger 

negative pressures over the after .portion of the airfoil body and 

flap.

When the application of artificial boundary—layer control to 

these two airfoils is considered., it would seem futile to locate 

suction siots along the afterbody of the NACA 631-012 airfoil if 

the stall results from laminar separation near the leading edge 

as is svrntised from the evidence of this investigation. In 

contrast, consideration of the stalling characteristics of the 

NACA 63 3-018 airfoil section, which experience& turbulent 

separation from the trailing edge forward to about 60 percent 

chord at maximum lift, would indicate that suction slots located 

near the midchord should serve to delay turbulent separation to 

higher values of lift than is possible with the plain wing. 

It should be mentioned that there is experimental evidence 

indicating that the 18—percent—thick airfoil stalls In a manner 

similar to the 12—percent section when the maximum lift Is 

increased by the boundary—layer suction. Quinn (references 6 

and 7) maintained flow about two 18—percent—thick airfoils by 

boundary—layer control beyond that obtainable with the plain 

sections until separation, believed laminar,, occurred at the lead-

ing edges. It appears, then, that any airfoil of reasonable
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thickness is subject to laminar separation at the leading edge; 

control of the turbulent boundary layer serves only to prolong 

steady flow about an airfoil until the critical conditions which 

cause laminar separation are reached at the leading edge. 

The conditions lea&tng to and causing separation and transi-

tion from a laminar-type flow to a turbulent flow have been the 

subject of considerable investigation, but theory and experiment 

are not sufficiently advanced, for a complete understanding of the 

failure of a separated laminar boundary layer to reattach itself 

either as a laminar or turbulent boundary layer. The suddenness 

and violence of a stall originating from laminar separation 

precludes the practical application of an airfoil subject to its 

occurrence. Hence, if the full advantages of boundary-layer 

control are to be realized in the future, it would seem that a 

more thorough understanding of the 1amina'-separation phenomena 

is needed.. This fact is emphasized by the present trend toward 

the use of thin, high-critical--speed airfoils which are more 

susceptible to laminar separation than are thicker sections. 

However, any attempt to obtain increased maximum lift from 

thin airfoils should be directed towards the prevention of laminar 

separation in the vicinity of the leading edge. Two possible 

methods are suggested: 

1. To decrease the effective angle of attack at the leading 

edge by means of a nose flap similar to the one used in this 

investigation or by use of a hinged nose section (drop-nose flap). 

2. The use of a boundary-layer suction slot at or near the 

mom
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point of separation. 

Both methods would, of necessity, add to the structural 

complexity and weight of the wing and introduce the danger of 

spoiling the laminar—flow properties of the airfoil at its high-

speed. attitudes. The last method seems to offer the least 

complications to the wing structure, provided, of course, a 

source of suction is already available and the only additional 

design feature required is the necessary ducting to put it into 

use. The effectiveness of suction slots for controlling laminar 

separation near the leading edge, however, still lacks experimental 

confirmation, and further research is necessary before practical 

applications can be made. 

CONCLUDING BEIvIARKS 

The investigation of the stalling and boundary—layer 

characteristics of the two airfoil sections reported herein 

disclosed two different types of stalls: (1) a steady and 

progressive stall starting with the separation of the turbulent 

boundary layer at the trailing edge, and (2) an abrupt and 

complete separation of flow originating at the leading edge. 

1t has been demonstrated. In the past that separation of the 

turbulent layer can be delayed by means of suction s]ots to 

higher values of lift than are attainable with the plain airfoil. 

However, the results of two recent investigations showed that this 

type of control served only to delay turbulent separation until 

critical conditions are reached which precipitate laminar 

41^
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separation of flow in the vicinity of the leading edge. For 

practical applications of boundary—layer control, obtaining maxi-mum 

increases in lift would seem, therefore, to depend on delaying not 

only the turbulent separation, as has been done in the past, but 

also the leading—edge separation. Furthermore, if both types of 

flow separation are to be delayed, the sequence of applying boundary—

layer control would be reversed for thick and thin airfoils. 

Although the leading—edge type of flow failure was satisfactorily 

delayed in the current investigation by the installation of a nose 

flap, it should be noted that there is no experimental evidence 

indicating that boundary—layer control by suction will successfully 

forestall this type of flow separation. Further research on this 

problem Is indicate& before the full benefits of boundary—layer 

control can be realized. 
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APPENDIX

COMPARISON OF SHAPE PARAMETERS 

Although the primary purpose of this investigation was to 

obtain information which would be of value in boundary—layer--control 

problems, the data are equally applicable to the study of the 

mechanics of turbulent separation. The incidental relevance of 

this second problem did not warrant a detailed analysis, but some 

information is given herein which is believed to be of sufficient 

interest to merit inclusion in this report. 

A recent publication dealing with turbulent separation is the 

work of von Doenhoff and Tetervin (reference 2), in which is derived 

an èmpirical method of predicting the occurrence of turbulent 

separation on airfoils and bodies of revolution. A fundamental. 

assumption upon which their work is based is that the shape para-

meter H defines the shape of all turbulent—boundary--layer velocity 

profiles, justification being given from numerous boundary—layer 

data by the fact that all points of u/U plotted against H for a 

constant value of y/e fall on a single curve. 

A similar analysis given in reference 3, and although these 

data are consistent within themselves, systematic differences were 

found with the data of reference 2. The conclusion is drawn that H 

is not a universal parameter defining the shape of turbulent boundary 

layers for all flow conditions, but that the Reynolds number and 

condition of the model surface are modifying factors. Figure 16 

presents the data of this investigation in a similar manner, and
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substantiates the validity of H as a shape parameter insofar as 

these data are concerned. The curves of u/U plotted against H 

agree well with those of reference 3 except at the inner and outer 

extremities of the boundary layer. These differences may be ascribed, 

in part, to difference in the technique of obtaining the boundary--

layer profiles. The exact shape of the boundary-layer profile near 

the surface, and the value of 5 J. the total boundary-layer thick-

ness, are particularly difficult to determine. 

It is interesting to note that if the parameter H is accepted 

as defining all turbulent-boundary-layer velocity profiles, then 

the values of the quantities 5*/b and e/8 are fixed for any 

given value of H. Figure 17 presents these relationships as 

found for the present investigation in comparison with those of 

references 2 and 3. The exact shape of these curves depends consider-

ably on the manner of fairing the boundary-layer data, and final 

judgment on the validity of H as a universal parameter defining 

the shape of all turbulent boundary layers should be reserved 

pending the accumulation of more boundary-layer data or the develop-

ment of more precise moans of measuring velocity profiles. 

A
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TABLE I.- ORDINATES FOR NACA 633-018 AND 631-012
AIRFOIL SECTIONS 

I	 631-018 631-012 
Ordinate Ordinate Station 

percentchord percent chord percentchord - 

0 0 0 
.5 1.404 .985 
.75 1.713 1.194 

1.25 2.717 1.519 
2.5 3.104 2.102 
5 4.362 2.925 
7.5 5.308 3.542 

10 6.068 4.039 
15 7.225 4.799 
20 8.048 5.342 
25 8.600 5.712 
30 8.913 5.930 
35 9.000 6.000 
40 8.845 5.920 

8.482 5.704 
50 7.942 5.370 
55 7.256 4.935 
60 6.455 4.420 
65 5.567 3.840 
70 4.622 3.210 
75 3.650 2.556 
80 2.691 1.902 
85 1.787 1.274 
90 .985 .707 
95 .348 .250 

100 0 0 

Leading-edge radius percent chord:	 2.120 for the 
633_018 airfoil section; 1.087 for the 631-012 
airfoil section.
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FIGURE LDS 

Figure 1.— Sketches of the plain and split flaps used on the 
NACA 633-018 and NACA 631-.012 airfoil sections. 

Figure 2.— Sketch of the nose flap used on the NACA 61-012 
airfoil section. 

Figure 3.— Photographs of the two NACA 63—series airfoils mounted 
in the wind. tunnel. (a) NACA 633_o18 airfoil with plain flap 
deflected 400 . (b) NACA 631-012 airfoil with split flap 
deflected. 400. 

Figure 1 Variation of the section lift coefficient with section 
angle of attack for the NACA 633-018 airfoil. (a) Plain flap 
deflected. 

Figure L-- Concluded. (b) Split flap deflected.. 

Figure 5.— Variation of the section lift coefficient with section 
angle of attack for the NACA 631_012 airfoil. (a) Plain flap 
deflected. 

Figure 5.— Continued.. (b) Split flap deflected. 

Figure 5.— Continued.. (c) Nose flap deflected.. 

Figure 5.— Concluded. (d) Nose flap deflected; plain flap 
deflected 100. 

Figure 6.— Pressure distribution over the NACA 6-018 airfoil. 
(a) Plain flap undeflected. 

Figure 6.— Continued.. (b) Plain flap deflected. 1100. 

Figure 6.— Concluded. (c) Split flap deflected 400. 

Figure 7.— Pressure distribution over the NACA 63-012 airfoil. 
(a) Plain flap undeflected. 

Figure 7.— Continued. (b) Plain flap deflected 11.00. 

Figure 7.— Continued. (c) Split flap deflected. 11.00. 

Figure 7.— Continued. (d.) Nose flap deflected 1050.

Figure 7.— Concluded.. (e) Nose flap deflected 1050; plain flap 
deflected. 400. 
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Figure 8.— Stalling characteristics of the NACA 63 3-018 airfoil 

as indicated by tuft studies. 

Figure 9.— Stalling characteristics of the NACA 631012 airfoil 
as indicated by tuft studies. (a) Plain airfoil. (b) Plain 
flap I O°. (c) Split flap 400 

Figure 9.— Concluded. (d) Nose flap 105 0 , plain flap 00. 
(e) Nose flap 1050, plain flap 14.00. 

Figure 10.— Boundary—layer velocity profiles for the NACA 633-018 
airfoil. (a) Plain flap, 	 = 00 , 90 percent chord.. 

Figure 10.— Continued. (b) Plain flap, b f = 14.00 , 70 percent chord. 

Figure 10.— Concluded. (c) Split flap, b f = 400 , 50 percent chord. 

Figure 11.— Boundary—layer velocity profiles for the NACA 61-012 
airfoil. (a) Plain flap, 5f = 00 , 4 percent chord.. 

Figure 11.— Continued. (b) Plain flap, 5 f
= 400 , 47 percent chord.. 

Figure 11.— Continued.. (c) Split flap, E = 40 0, 90 percent chord.. 

Figure 11.— Continued. (d) Nose flap 3ftf	 1050, plain flap,
af = 00 , 60 percent chord. 

Figure 11.— Concluded. (e) Nose flap, bf 	 1050, plain flap
400, 60 percent chord. 

Figure 12.— Variation of the boundary—layer momentum thickness 
and shape parameter along the surface of the NACA 633 —018 airfoil. 
(a) Plain flap, bf. = 00. 

Figure 12.— Continued. (b) Plain flap, 5 f = 14-0°. 

Figure 12.— Concluded. (c) Split flap, 5 	
14.00. 

Figure 13.— Variation of the boundary—layer momentum thickness and 
shape parameter along the surface of the NACA 63-012 airfoil. 
(a) Plain flap, b . = 00. 

Figure 13.— Continued. (b) Plain flap, 5. = 14.00. 

Figure 13.— Continued.. (c) Split flap, Bf = 1-00 . 

Figure 13.— Continued. (d.) Plain flap, 5f = 0°.	 Nose flap, 
105°. 

Figure 13.— Concluded. (e) Plain flap, 5 = 400 .	 Nose flap, 
= 105°.
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Figure 14.— Variation of the displacement flow coefficient along 
the surface of the NACA 633-018 airfoil. (a) Plain flap 
undeflected. 

Figure 14. Continued. (b) Plain flap deflected 1100. 

Figure iii..— Concluded. (c) Split flap deflected li.o°. 

Figure 15.— Variation of the displacement flow coefficient along 
the surface of the NACA 63 3 --012 airfoil. (a) Plain flap 
undeflected. 

Figure 15.— Continued. (b) Plain flap deflected lt.O°. 

Figure 15.— Continued. (c) Split flap deflected 400. 

Figure 15.— Continued. (a) Nose flap deflected 1050 . 

Figure 15.— Concluded. (e) Nose flap deflected 1050, plain flap 
deflected 1100.

Figure 16.— Vatiation of u/U with shape parameter for various 
values of y/O. 

Figure 17.— Comparison of the variations of Y,/b and 0/6 with 
shape parameter.

I 
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