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7 -1. GEOMETRICAL AND GASDYNAMICAL PARAMETERS OF THE 

LATI'ICES; FUNDAMENTALS OF FLOW 

THROUGH LATTICES 

The transformation of energy in a stage of a turbomachine is a re­
sult of the interaction of the gas flow with the stationary and rotat­
ing blades, which form the guide and impeller blade systems. 

The lattices of a turbine in the general case represent systems of 
blades of the same shape uniformly arranged on a certain surface of rev­
olution. A particular case of a three-dimensional lattice is an annular 
lattice with radial blades arranged between coaxial cylindrical surfaces 
of revolution. 

In flowing through the lattice, the velocity and direction of the 
gas flow are changed, and a reaction force is thereby produced on the 
lattice. On the rotating lattices of a turbine this force performs 
work; the rotating lattices of compressors , on the contrary, increase 
the energy of the gas flowing through them . In stationary lattices an 
energy interchange with the surrounding medium does not occur; in this 
case the lattices bring about the required transformations of kinetic 
energy (velocity) and the deflection of the flow. 

Depending on the flow conditions and the corresponding geometrical 
parameters of the blade profile, three fundamental types of lattices are 
distinguished: 

(a) Converging flow type : the nozzle or guide (stationary) vanes 
and the reaction (rotating ) latti ces of turbines 

*"Technical Gasdynamics . " (Tekhnickeskaia gazodinamika) ch. 7, 
1953, pp. 312-420. 
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(b ) Action or impulse (rotating) lattices of turbines 

(c ) Diffuser: guide (stationary) and working (rotating) lattices 
of compressors . 

Depending on the general direction of motion of the gas with re­
spect to the axis of rotation} the lattices are divided into axial and 
radial types . In certain machine designs the gas flow moves at an 
angle to the axis of rotation (diagonal lattices) . 

The most important geometrical parameters of an annular (cylindri ­
cal) lattice are the mean diameter d} the length (height of the blade 
2 ) the width of the lattice B} the pitch of the blades on the mean di ­
ameter t, the chord b, and other blade profile parameters ( fig . 7- 1 ). 

There exist several methods of specifying the shape of a blade pro­
file . The universal method of coordinates (fig . 7- 2 (a)) has great ad ­
vantages. The methods shown in figures 7- 2(b) and (c ) are based on the 
idea of the mean line of a profile; the mean line may represent the geo ­
metric loci of the centers of inscribed circles or the centers of the 
chords connecting the points of tangency . The mean line is defined by 
coordinates} and the thickness distribution about the mean line is then 
independently given. For specifying the profiles of turbine lattices } 
cons i sting most frequently of thick} sharply curved profiles with small 
pitch} the methods shown in figure 7-2(b ) and (c) are inconvenient . The 
determination of the fundamental dimensions, the construction of the pro ­
file, or its checking require complicated graphical work . The most wide ­
spread method of constructing the profile from a small number of adjoin­
ing arcs of circles and segments of straight lines (fig . 7- 2(d ) ) is ar ­
bitrary and tedious . 

If the ratio of the mean diameter of the lattice d to the height 
of the blade 2 is large} the lattice may} for the purpose of simplify­
ing the problem} be consider ed as a straight row lattice . The shape of 
the space between the blades along the height may then be considered as 
constant . I n the simplest case} assuming that the diameter of the lat ­
tice and the number of the blades increase without limit} we obtain a 
plane infinite lattice (fig. 7-1(c)). 

The passage from the cylindrical to the plane lattice is effected 
in the following manner: We pass two coaxial cylindrical sections of 
the annular lattice through the middle diameter d and through the di ­
ameter d + 6d . Assuming 6d to be small} we develop the resulting 
annular lattice of very small height on a plane . I ncreasing the number 
of blades to infinity} we obtain the plane infinite lattice shown in 
figure 7- 1 (C). 
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The assumption of plane cross sections, that is, used as the basis 
of the investigations and computations of modern turbomachines, was 
fruitfully applied by N. E. Joukowsky in 1890. The value of this as­
sumption has been confirmed by numerous experiments. 

The geometrical characteristics of lattices are usually given in 
nondimensional form . For example, the relative pitch of the profile is 
determined by the formulas 

t 
t = b or 

The relative height (or length) of the blade, 

- 7. 
7.b = b 

In certain cases in investigating the three-dimensional flow in a lat­
tice, it is more convenient to define the relative height as 

- 7. 7. =­a a2 

where a2 is the width of the minimum cross section of the passage 

(fig. 7-1). 

A rectilinear lattice is referred to as a system of coordinates x, 
y, z where the direction x is termed the axis of the lattice (fig. 
7-1(b)). All profiles must coincide in the translational displacement 
along the axis of the lattice. The pitch t of the lattice is equal to 
the distance between any two corresponding points . 

For a given profile shape, the shape of the interblade passage of 
the lattice depends, in addition to the pitch, on the angle ~y, which 
is defined as the angle between the axis of the lattice and the chord 
of the profile (fig. 7-1(c)). In the practical construction of turbine 
lattices, the position of a profile in the lattice is often specified by 
the geometrical angle of the exit edge ~2n (the angle between the tan-

gent to the mean line at the trailing edge and the axis of the lattice). 
In certain cases, for a straight-backed profile, the angle ~2n is 

measured from the direction of the suction surface at the trailing edge. 

In the design of the blade lattices it is necessary, besides satis­
fying a number of structural requirements, to ensure that the given 
transformation of energy obtains with minimum losses. A detailed study 
of the flow process over the blades of the lattice is thus required. 
One of the important problems is that of establishing the effect of the 
shape of the blades and of other geometric parameters of the lattice on 
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the mechanical efficiency over a wide range of Mach and Reynolds numbers 
and inlet flow angles. 

The flow process of a gas through the lattices of a turbomachine is 
a very complicated hydromechanical process. The theoretical solution of 
the corresponding problem of the unsteady three-dimensional motion of a 
viscous compressible fluid presents great difficulties . A good approach 
to the solution of this problem) as in general to the solution of most 
technical problems) consists of the investigation of simplified models 
which retain most of the essential characteristics of the actual process. 
Succeeding analyses then develop the effect of secondary factors . 

At the present time the most highly developed theory is that of the 
steady two-dimensional flow through the lattice of an ideal incompr essi ­
ble fluid. Such a flow may be considered as the limiting case of the 
actual flow in a lattice at small flow velocities (small Mach numbers) 
M < 0.3 - 0.5) and with small effect of the viscosity (large Reynolds 

numbers) Re > 104 
- 105 ). 

Within the frame of such a simplified scheme it is possible to es ­
tablish the fundamental characteristics of a potential flow in a lattice. 
However) the solutions obtainable with these limitations require an es ­
sential correction. The effects of the viscosity and of the compressi­
bility must be evaluated by theoretical and experimental methoqs. The 
results of other tests permit evaluating certain features of the three­
dimensional flow in lattices and obtaining the characteristics of the 
lattices required for the thermodynamic computation of the stages of the 
turbomachine. 

Let us consider several features of a plane potential flow of an 
ideal incompressible fluid for the case of the flow over the olades of 
a reaction turbine (fig. 7-3). On account of the repeated character of 
the flow} it is sufficient to study the flow in a single interblade pas­
sage or the flow about a single blade . In figure 7-3(a ) the continuous 
curves represent the streamlines I = constant; the dotted curves repre­
sent the equipotential lin~s ~ = constant) normal to the streamlines. 
A sufficiently dense network of these lines gives a good characteriza­
tion of the flow. The velocity c at any point of the flow is equal to 

(7-1) 

where Sand n are the curvilinear distances along the streamlines 
and equipotential lines) respectively. 

j 
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The differentials may be approximately replaced by finite incre­
ments, and we thus obtain 

c '" 

5 

If 6~ = 6Y = constant at each point, then DB ~ 6n. In this case, the 
individual elements of the orthogonal network of lines, ¢ = constant 
and Y = constant, become squares in the limit (as DB ~ 0 and 6n ~ 0). 
The flow network of an ideal incompressible fluid therefore is termed a 
square network. 

At subsonic velocities, the losses in available energy are produced 
by the effect of viscosity, by periodic fluctuations of the flow, and by 
the high degree of turbulence of the flow. When the velocities are near­
ly sonic or when they are supersonic, the losses are caused by the irre­
versible process of the discontinuous energy transformation. The magni­
tude of the losses determines, to a large extent, the mechanical effi­
ciency of the turbomachine. 

The hodograph plane (fig. 7-3(b)) provides another important method 
of representing the flow. At each point along a streamline or equipo­
tential lines (fig. 7-3(a)) the velocity has a definite magnitude and 
direction. When these velocity vectors associated with a given stream­
line or equipotential line are drawn from a common origin and their ter­
mini are connected (fig. 7-3(b)), the corresponding streamline or equi­
potential line is established in the hodograph plane. The streamlines 
and potential lines thus drawn also form a square network. This network 
may now be conceived to represent a flow in the usual sense. The stream­
lines that originally represented the blades are the boundaries for the 
new flow. The new flow itself is produced by a so-called vortex-source 
and a vortex-sink. The vortex sOurce is located at the end of the ve­
locity vector cl (the velocity at an infinite distance ahead of the 

lattice). The vortex-sink is at the end of the vector c2 (the velocity 

at an infinite distance behind the lattice). The origin 0 and the 
termini of cl and c2 form the velocity triangle of the lattice. 

From the equality of the flow rate ahead of and behind the lattice, 

it follows that the projections of the velocities cl and c2 on the 

normal to the axis of the lattice are equal or that the straight line 
passing through the ends of the vectors cl and c2 in the plane of 

the hodograph is parallel to the axis of the lattice. Considering the 
velocity hodograph of the lattice, we may arrive at the conclusion that, 
at points on the suction surface of the blade where the tangent to the 
blade surface is parallel to the upstream and downstream flow directions, 
the corresponding velocities should be greater than cl and c2' 
respectively. 
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Of great interest is the distribution of the velocity or pressure 
on the surface of the blade . Figure 7- 3 (c ) shows the approximate dis­
tribution of the relative velocities c = c / c2 and relative pressures 

p = (p - P2 )/~ pc~ = 1 - c2 
as a fuuction of the distance S along 

the profile . I f the magnitude cl and the direction ~l of the veloc ­

ity at infinity ahead of the profile are known and a l so the position of 
the point of convergence of the f l ow O2 (at the trailing edge ) ) the 

flow through a given lattice i s deter mined . In the case of an 
compres s ibl e fluid ) a change in the magnitude of the velocity 

i deal in­
cl does 

not a l ter the shape of the streamlines or equipotential lines . 
does it alter the rel ative velocity C or the relative pressure 

Neither 
p . 

At finite distances f r om the lattice) the field of velocities and 
pressures is not unifor m. The streamlines (for ~l I 900 ) are wave 

shaped ) and their shape is generally different from that at infinity; 
moreover ) i t periodically varies along the cascade axis . I n correspond­
ence with the conditions of continuity and in the absence of vort i city) 
the mean velocity along any line ab (fig. 7- 3(a)) between t wo poi nts 
separated by an integral number of periods t of the lattice is equal 
to the vel ocity at infinity . One of the str eamlines approaching the 
leadi ng edge of the profile actual ly br anches at the leading edge . At 
t he branching point 01 (al so call ed the entry point ) the velocity be -

comeE equal to zero and the pressure is at a maximum . Star ting f r om the 
branch point) at which S = 0 (fig . 7- 3 (c )) ) the velocity along the pro ­
file sharply increases . Depending on the shape of the leading edge and 
a l so on the direction of the inlet velocity ( inlet angle ~l )) t he ve ­
loc i ty near the branch point may have one or two maxima . At the convex 
side of the pr ofile the velocity is on the average greater ) and the pr es ­
sure less) than on its concave side . The general character of the veloc ­
ity distribut ion over the profile may be evaluated by considering the 
width of the interblade passage and the curvature of the profile contour . 
In par ticul ar) a narrowing of the pas s age) characteristic of a turbine 
lattice of the reaction type) l eads to an acceleration of the f l ow j in 
an impulse tur bine having approximately constant passage width and curva­
ture ) the velocity and pressure change only slightly in the direction of 
flow (fig . 7- 4 ) j in a compr es sor l~ttice) the interblane passage widens 
and the vel ocity correspondingl y decreases ( fig. 7- 4A ). 

An increase in the curvature of the convex parts of the blade leads 
to an increase in vel ocity) and vice versa . For a discontinuous change 
in cur vature at the points of junction of arcs of circles) for example ) 
the theoretical curves of the velocity and pressure distr ibutions have 
an infinite s l ope . At projecting angl es of the pr ofile) the velocity 
theoretical ly increases to infinity) while at internal angles it drops 
to zero . 
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In view of the fact that these characteristics in the distribution 
of the velocity can not exist in an actual flow, the blade contours of 
modern lattices are designed with a smoothly changing curvature. 

Near both the leading edge and a trailing edge of finite thickness,l 
the velocity may have one or two maxima; at the actual leading and trail­
ing edges, the velocity must drop to zero . The actual trailing edge is 
the point of the tail where the curvature is greatest. At a large dis­
tance behind the lattice, the direction of flow is determined by the 
angle ~2' 

Figure 7-5 shows the approximate effect of the inlet angle ~l' the 
pitch t, and the blade setting angle ~y on the distribution of the 

relative velocity over a blade of the reaction-type turbine lattice. A 
change in the angle ~l (fig. 7- 5(a)) causes the branch point 01 to be 

displaced along the profile . The design entry angle to the lattice may 
be considered as the angle for which the point 01 coincides with the 

point of maximum curvature at the leading edge of the profile. In this 
case maximums of the velocity at the leading edge are either absent or 
are least sharply expressed. With a decrease in the entry angle, the 
branch point is shifted toward the concave part of the profile, and the 
velocity in the flow around the leading edge sharply increases. The 
vector to the exit velocity c2 turns in the same direction as the vec­
tor of the inlet velocity; for example, on decreasing the angle ~l 

from its design value, the exit angle ~2 increases. It should be re­
marked that the effect of inlet flow angle on outlet flow angle is very 
small in conventional turbine lattices. When the pitch t is increased 
by a translational shift of the profile (fig. 7-5(b)) while keeping the 
inlet flow angle ~l constant, the branch point 01 is slightly dis-

placed toward the concave part of the profile; correspondingly, the 
velocity distribution at the leading edge changes somewhat. On the con­
vex side of the blade the velocity increases, while on the concave side 
it decreases. The exit angle ~2 increases. A change in the setting 

angle of the profiles (obtained by rotating them while maintaining the 
same pitch a.nd inlet flow angle) changes the exit angle ~2' The change 

in ~2 is practically the same as the change in setting angle (fig. 
7-5(c)). On rotating the profiles in the direction of decrease of the 
exit angle ~2' the corresponding velocities on the profile decrease; 

the branch point 01 is displaced toward the concave part of the pro­

file, in connection with which the velocity distribution at the leading 
edge changes in a way similar to that for a decrease of the inlet angle 

~l' 

lThe case of an infinitely thin edge is not considered because it 
has no practical significance. 
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When the static pressure on a profile increases in the direction of 
flow (such as in diffuser elements) the flow of a real viscous fluid may 
separate from the blade. Experience shows that the static pressure is 
constant over parts of the profile behind the point of separation. The 
features of a flow with separation can be approximately taken into ac­
count in a so - called stream model of the flow of an ideal fluid. A zone 
of constant pressure is assumed to exist in this flow. At the boundary 
between this zone and the main flow, the velocity is constant, at the 
value which corresponds to the static pressur e in the zones. In the 
plane of the hodograph, arcs of circles correspond to the boundaries of 
the separated zones . The radius of an arc is equal to the velocity at 
the boundary of the zone . Flow separation always occurs at the trailing 
edge of a blade. The separated flow region theoretically extends an in­
finite distance downstream of the lattice. For the same inlet and exit 
flow angles ~he velocity behind the lattice is greater with separation 
than it would be with no separation. At the boundaries of the separated 
flow region, discontinuous change in velocity would theoretically occur. 
In the actual flow of a viscous fluid, infinitely large forces would 
then be introduced which would prevent such a discontinuity from exist­
ing . In a real flow, therefore, the boundaries between the separated 
region and the main flow break up into individual vortices which are 
carried downstream by the flow. The presence of frictional forces also 
causes low pressure regions to· exist in the separated region immediately 
behind the edges. Beyond this region the flow is rapidly equalized; 
this phenomenon leads to an increase in the pressure, decrease in the 
exit angle, and losses of kinetic energy similar to the losses in sudden 
expansion. The parameters of the equalizing flow are obtained by the 
simultaneous application of the equations of continuity, momentum, and 
energy (see sec. 7-7) . 

7-2. THEORETICAL METHODS OF INVESTIGATION OF PLANE 

POTENTIAL FLOW OF INCOMPRESSIBLE 

FLUID THROUGH A LATTICE 

There are two problems in the theory of lattices that have the 
greatest significance . One of these, termed the direct problem, con­
sists in determining the velocities of the potential flow field through 
a given lattice for a given velocity at infinity ahead of the lattice, 
and a given position of the rear stagnation point O2 on the profile. 

Of greatest interest is the velocity at infinity behind the lattice. 
The determination of these quantities may be considered as the fundamen­
tal object of the solution of the direct problem. The inverse problem 
is that of theoretically constructing the lattice when the flow about it 
is either known or easily determined for a given velocity triangle. Of 

I 

J 
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practical importance is the problem of constructing su~h a lattice with 
a velocity distribution over the surface of a profile which is rational 
and which assumes small kinetic-energy losses in the actual flow. 

It was remarked previously that for the flow of an incompressible 
fluid the shape of the streamlines) the shape of the equipotential 
lines) and the magnitude of the relative velocities do not depend on 
the absolute magnitude of the flow velocity. Moreover) for the same 
boundaries) the different potential flows of an incompressible fluid 
may be summed. For example) any flow of an ideal incompressible fluid 
through a lattice may be considered as the sum of two or several flows 
through the same lattice. In figure 7-6 the flow through the lattice 
is represented as the sum of two flows: a noncirculatory (irrotational) 
(fig. 7-6(b)) and a circulatory axial (fig . 7-6(c)). In the irrotational 
flow there is no circulation of velocity about the profile) or) in other 
words, the lattice does not change the direction of the flow; moreover, 
this direction is chosen such that the point of convergence of the flow 
is on the trailing edge . In a rotational-axial flow the direction of 
the velocity at infinity is parallel to the axis of the lattice; the 
magnitude of the circulation or the ratio 6c2/~1 = m is chosen such 

that the velocity at the trailing edge is equal to zero. Any flow 
through a lattice (with the point of flow convergence on the trailing 
edge) may be obtained by summation of the irrotational and rotational­
axial flows. In particular) the velocities at infinity ahead of and 
behind the lattice will be equal to the vector sum. The velocities on 
the surface of the profile itself will be equal to the algebraic sum of 
the corresponding velocities in the irrotational and rotational-axial 
flows. If it is taken into account that the magnitudes of the relative 
velocities do not depend on their absolute values in each of these flows) 
it is possible to find in a simple manner two important properties of 
the flow of an incompressible fluid through a lattice. 

First) there exists a linear relation between the cotangents of the 
inlet and outlet flow angles of any given lattice. From the velocity 
triangle (fig. 7-6 (a))) notice that 

cot 130 - cot 132 

cot 130 - cot 131 
= constant (7-2) 

where cot 131 corresponds to the angle 131 assumed in figure 7-6(a). 
For a given lattice) the magnitude of the coefficient m can be com­
puted theoretically. For a lattic e of flat plates in particular) the 
coefficient m is related to the relative pitch t/b and the setting 
angle 130 by the equation 

rtb 1 - m 1 
1; = 2 cos l30arc tan 1 + m cot 130 + sin 1301n m (7-3) 
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As may be seen from the graph of figure 7-7, the coefficient m 
dec~eases with a decrease in pitch, so that the exit angle ~2 ap­
proaches the setting angle ~o of the flat plates. 

To any lattice of airfoils there corresponds a unique eqQivalent 
flat plate lattice which has a coefficient m of the same magnitude, 
and the same direction of the irrotational flow. The equivalent flat­
plate lattice for any inlet angle ~l has the same exit angle ~2 as 
the given lattice of airfoils. In present-day turbine lattices the 

ratio b/t2 of an equivalent plate lattice is not less than 1.3; the 
angle ~o is between 15° and 40°, and the angle ~l is between 90° 

and 20°. The magnitude of the coefficient m is not greater than 
0.015; the angle of the velocity behind the lattice therefore differs 
from the angle ~o for the equivalent flat plates by no more than 1°. 

For present-day compressor lattices this deviation may be as high as 3°. 

Second, the magnitude of the relative velocity on the profile of 
any lattice depends linearly on the cotangent of the exit angle. In 
fact3 

cbu 
Utilizing the obvious correlations (fig . 7-6(a.)), cbu = Co 

we' obtain 

and 

(7-4) 

As was said, in present-day turbine lattices, ~2 "" ~o = constant, the 

direction of the velocity behind the lattice differs little from the di­
rection of the irrotational flow for a wide range of inlet angles. Hence, 

2NACA note : This ratio is written as t/b in ori ginal text. 

3NACA note: cbu is the 
is the circulatory flow, fig. 

irrotational flow , fig. 
7-6(c) . 

[,",C1 _ (cot ~o - cot 
and 

csc ~2 c2 

7-6(b), and 

~l)J 

(7-4a) 

Cu 
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At any point of the profile where Cu ~ 0 (fig. 7-6(c)) the rela­

tive velocity c does not depend on the inlet angle. If the distri­
bution of the relative velocities c is known for two values of the 
inlet angle ~l' then the distribution c can be computed for angle 

~l with the aid of equation (7-4a). 

11 

Of practical significance in the theory of the two-dimensional mo­
tions of an incompressible fluid is the mathematical theory of the func­
tions of a complex variable . Without entering the mathematical side of 
this problem) the discussion of which is given in any modern course of 
hydrodynamics, we shall nevertheless make use of the important concept 
of conformal transformation or mapping. 

Conformal transformation may be defined as the continuous geometri­
cal transformation (extension and compression or conversely) of a part 
of the plane (region) in which at each point of the region the extension 
or compression occurs uniformly in all directions about this point. In 
such a transformation the magnitudes of the angle between the tangents 
to any two curves passing through each point of the region are preserved 
as is also the shape of infinitely small figures, as is indicated by the 
term conformal transformation. Exceptions may be represented only by 
individual (singular) points of the region . 

Every orthogonal square network in any conformal transformation may 
go over into a second orthogonal square network. This property explains 
the significance of conformal transformation in the investigation of the 
flow of an ideal incompressible fluid. Any conformal mapping of a region 
of flow translates an orthogonal square network of curves P = constant 
and y = constant of this flow into a new orthogonal square network, 
which may be taken as a network of a second flow in the conformally 
transformed region with equal values of the velocity potential and stream 
function at the corresponding points. The velocities of flow change in­
versely proportional to the extension at each point of the region. 

In this way, the problem of determining the flow of an ideal fluid 
reduces to the mathematical problem of conformally transforming the 
given region into a simpler one in which the flow of an ideal fluid is 
initially known or else can be easily computed . After finding the con­
formal transformation of the points of the required region, the velocity 
is computed by differentiation (c = dP/dS) . Several examples of the con­
formal transformation of lattices are shown in figure 7-8. 

The above defined equivalent lattice of plates is obtained by means 
of such a conformal transformation in which the flow region outside the 
airfoil lattice is transformed into the flow region outside the plate 
lattice. The infinity of the plane of the lattice of airfoils goes over 
without extension or rotation into the infinity of the plane of the plate 



12 NACA TM 1393 

lattice. The pitch of the lattice is maintained, and the rear stagna­
tion point of the flow at the outlet edge of the airfoil goes over into 
the given edge of the plates. It should be remarked that the conformal 
transformation is completely determined by the above condition. The 
noncirculatory flow through the airfoil lattice (fig. 7-S(a)) corre­
sponds to the noncirculatory flow through the lattice of plates (fig . 
7-S(b)). The singular points, at which the conformality of the trans­
formation does not hold, are the edges of the equivalent plates . Con­
sidering the corresponding noncirculatory flows about the equivalent 
lattices of plates and airfoils, we note that the length of the equiva­
lent plates, for equal pitch of the lattices, should be greater than the 
half perimeter of the profile. This property permits the parameters of 
the equivalent plate lattice to be approximately evaluated . 

A clear picture of conformal transformation may be obtained in the 
following manner: The flow region of the lattice is assumed to be a 
plane in which an ideally elastic film is stretched without friction 
over the contours of the profiles and on which is drawn the network of 
lines ~ = constant and f = constant of any flow through the lattice. 
This film may then be stretched over the contours of any lattice which 
can be a conformal transformation of the given one. In the transition 
all the points of the film are displaced in a definite manner, both 
along the contours and in the flow region. The correspondence of points 
in a conformal transformation is thus achieved. The network of lines 
~ = constant and Y = constant of the flow through one lattice goes 
over into the network of the same lines of the equivalent flow of the 
other lattice. 

Of great significance is the conformal transformation of a lattice 
of airfoil profiles into a lattice of circles (fig . 7-S(c)). In con­
trast to the equivalent network of plates, characterized by two param­
eters (t/b and ~O), the equivalent network of circles is determined 
by only one parameter, the relative diameter (density of the lattice) 
2r/t = 2r. As a result, lattices of profiles corresponding to different 
equivalent lattices of plates can have one and the same equivalent lat­
tice of circles. The point 02 in the circle lattice is not uniquely 
determined by the relative diameter, however. 

An example of the conformal transformation of the region of flow in 
one period of a profile lattice into a bounded region is shown in figure 
7-S(d). Infinity ahead of the lattice corresponds to the center of the 
circle (~l); the infinity behind the lattice corresponds to a certain 

point on the horizontal radius (~2); the flow lines in a period to a 

segment between the points m l and ~2. As in the case of the equiva­

lent lattice of circles, the region of transformation is characterized 
by only a single parameter, the ratio of the distance between the points 
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~l and ~2 to the radius of the circle. For modern turbine lattices 

this ratio is generally greater than 0.99. The points corresponding to 
the uniformly arranged points of the profile contour are very irregularly 
arranged over the circumference of the circle; the greater part of the 
circle corresponds to practically only the leading edge of the profile, 
while the remaining part of the profile contour becomes a small arc near 
the point ~2' In a conformal transformation of the type considered (in 

which an infinite distance from the origin in one flow field is only a 
finite distance from the origin in the other) the displacement of a pitch 
ahead of or behind the lattice corresponds, respectively, to a passage 
around the point ~l or ~2. The flow about the lattice is transformed 
into a flow of a special form produced by a vortex source at the point 
~l and a vortex sink at the point ~2' In the regions of the conformal 

transformation considered, the lattices are relatively simply determined 
by the potential flow of an incompressible fluid. 

The problem of the flow about a lattice of plates was first solved 
by S. A. Chaplygin (in 1912) and then by the more simple method of 
N. E. Joukowsky. Their work laid the foundation for the theoretical in­
vestigations of the flow about hydrodynamic lattices. Approximate meth­
ods of determining the flows about lattices of circles were worked out 
by N. E. Kochin and E. L. Blokh. An exact solution was given by G. S. 
Samoilovich. B. L. Ginzburg constructed tables of values of the velocity 
potential and the velocities on a circle as functions of the central 
angle e for transverse, longitudinal, and purely circulatory flows 
about lattices of circles with values of the spacing 2r = 0.20 - 0.90 
(for circles in contact 2r = 1.0). By summing the flows considered, 
any flow through a circle lattice can be obtained (fig. 7-9). The values 
of the velocity potentials and the magnitudes of the velocities on a cir­
cle are obtained by summation from tabulated values multiplied by certain 
constants, the magnitudes of which are found from the given direction of 
the velocity at infinity ahead of the lattice and the condition of zero 
velocity at the branch points of the flow given on the circle. By making 
use of the solution for the lattices of circles, the solution of the di­
rect problem, that is, the determination of the velocity on the surface 
of the blade in the given lattice for given inlet angle, reduces to the 
problem of obtaining an equivalent lattice of circles and then obtaining 
a conformal correspondence of the points of the blade contour in the lat­
tice with the points of the circle in the equivalent circle lattice. 
The analogous problem of the mapping of the outside region of a single 
blade on a circle has been well studied and at the present time presents 
no essential difficulties . For a lattice of blades the problem is more 
complicated. An approximate solution of this problem has been given by 
N. E. Kochin starting from the known conformal correspondence of a single 
profile and a circle. The method of Kochin, however, is suitable in 
practice only for lattices of small s~acing. 
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The exact solution obtained by G. S. Samoilovich may broadly be de­
scribed as follows . First) by one of the known methods) a conformal 
transformation is obtained which maps the exterior of a single circle 
into the exterior of a single profile (fig . 7-10(a)). Then) from the 
condition of conformal correspondence of the exterior of the lattice of 
profiles and the exterior of the lattice of circles) the spacing of the 
equivalent lattice of circles 2r (fig . 7-l0(b)) is obtained . The spac ­
ing 2r depends on the pitch of the profile lattice and the angle at 
which they are set . In the example considered) 2r = 0.85. When the 
blades are more closely spaced by decreasing the pitch or rotating them) 
the spacing density of the equivalent lattice of circles increases . The 
flow is then related to the flow about a unit circle. For determining 
the velocity distribution on a profile there is computed the displacement 
function 68 equal to the difference in the central angles of points on 
a unit circle and on a circle in the equivalent circle lattice corre­
sponding to the same point of the profile. The displacement function 
68 determines the correspondence of points of the profile in the pro ­
file and circle lattices. By making use of previously computed values 
of the velocity potential or the velocity on the circle) the velocity 
distribution on a profile of the lattice is determined for any given in­
l et angle ~l . 

In figure 7-11 a comparison is shown of the experimental and theo­
retical distribution of the nondimensional pressure p over the profile 
of a lattice for the example considered with ~l = 900

• The experimental 

values p were obtained by measuring the pressure in the middle section 
of the experimental blades at small air velocities. The scatter of the 
test points for different M2 numbers is found to be within the limits 

of accuracy of the measurements . There should be noted the characteris ­
tic divergence between the experimental and theoretical values of p on 
the back of the blade) produced by separation of the flow. 

The velocity- at each point of the blade in a lattice differs from 
the velocity at the same pOint of an isolated blade (for equal magnitude 
8.nd direction of the velocity of the approaching flow and the same rear 
stagnation point O2); first) because of the difference in the distribu-

tion of the velocity potential on a circle in a lattice of circles and 
an isolated circle ; and second) because of the displacement of the cor­
responding point on a circle in the circle lattice . 

The use of the method of conformal transformation permits determin­
ing the velocity distribution on a profile of a lattic e for any inlet 
angle ~l whenever one flow about it is known . Suppose) for example ) 

there is known the distribution of the velocity potential ¢ on a pro ­
file of the lattice with pitch t = 1 for irrotational flow with inlet 
angle ~l = 900 and velocity at ipfinity cl = c2 = 1 (fig . 7-12(a)) . 

- I 
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This is sufficient for obtaining the equivalent lattice of circles and 
the correspondence of the points of the profile in the lattice with the 
circle in the circle lattice. Using the tables of distribution of the 
velocity potential on a circle for the corresponding flow about the lat­
tice of circles makes it possible to construct the difference in poten­
tial M12 at the forward and rear stagnation pOints as a function of 

the lattice spacing with t = 1 and cl = c2 = 1 (fig. 7-12(b)). The 

value of ~~12 in the circle lattice coincides with the same potential 

difference in the profile lattice for the single value of the spacing 
2r/t characterizing the equivalent lattice of circles (fig. 7-12(c)). 
The conformal co~respondence of the points of the profile and the circle 
is found by equating the known velocity potentials ~ on the profile in 
the lattice with those on a circle in the equivalent circle lattice (fig. 
7-13). For determining the velocity distribution on the profile for any 
inlet angle ~l' it is necessary to determine, by employing tables of 

flow about circle lattices, the distribution of the velocity potential 
~ or velocity ck on a circle in the circle lattice. The proper inlet 

flow angle ~l must be used, and the rear stagnation point of the cir­

cle must correspond to the trailing edge of the profile (fig. 7-12). 
From the known correspondence of the points of the profile and circle 
in the lattices it is possible to construct the velocity potential as a 
function of the length of arc of the profile, the differentiation of 
which will give the required velocity distribution over the profile of 
the lattice (c = d~/dS) . With the described method of determining the 
velocity, the number of operations of differentiation is equal to the 
number of inlet angles for which the velocity distribution is determined. 
Repeated differentiation may be avoided if use is made of the formula 

de de 
dS ::: ck dS 

The velocity ck on a circle of the lattice of circles is determined 
for any inlet angle with the aid of tables, and the derivative de/dS 
is obtained only once from the graph shown in figure 7-13. 

If the distribution of the velocity 
is known, then to determine the conformal 
first to find the velocity potential 

S 
~ =fo cdS 

c on a profile of the lattice 
correspondence it is necessary 

where it is assumed that S = 0 (or ~ = 0) at the branch pOint. 

Practically, for lattices with the spacings that are actually em­
ployed in turbines, the above problem is solved considerably simplified 
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by the method of conformal mapping of the lattice, not on a lattice of 
circles but on the interior of a circle (fig . 7-8(d)) . In this case, 
it may be approximately assumed that the sink (~2) is situated on the 

circle, and the velocity at each point of the profile computed for any 
inlet angle ~l by the formula 

c' = c 

in which the angle in the circle 8 is determined graphically from the 
equation 

1 (8 ~2) ~=; clt sin ~l 2 cot ~l - ln sin 

The primes denote the magnitudes determined for a new inlet angle (~l). 
, 

At the branching point the velocity potential ~'= 0 and 8 = 2~1. 

The converse problem of the theory of hydrodynamic lattices, as 
already stated, consists in the theoretical construction of lattices 
satisfying definite conditions . In the construction of theoretical lat ­
tices, there is generally given the velocity potential of the flow, and 
there is then obtained the shape of the profile that corresponds to it. 
The methods of theoretical lattices (like the methods of theoretical 
profiles in airfoil theory) permitted determining, in a sufficiently 
simple manner, the effect of the individual geometrical parameters of 
airfoil lattices of certain special shapes on their hydrodynamic char ­
acteristics . A classical example is the previously mentioned dependence 
between the inlet and outlet angles for a lattice of plates . Moreover, 
the methods of theoretical lattices up to the present time make use of 
certain approximate devices for solving the direct problem . 

After sufficiently effective general methods of solution of the di­
rect problem have been worked out, artificial devices for constructing 
theoretical lattices have to a considerable degree lost their practical 
significance . Of some practical interest, however, are those methods of 
constructing theoretical lattices that assure obtaining hydrodynamically 
a suitable velocity distribution on the profile and correspondingly 
small losses of the actual viscous flow of a compressible fluid about 
the constructed lattice . 

The losses of kinetic energy in the flow of a real fluid (as com­
pared with an ideal fluid) about a lattice may be determined with the 
aid of the boundary- layer theory, if the theoretical distribution of 
the velocity on the profile is known. 
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With account taken of what has been said, of all possible velocity 
distributions, the most suitable hydrodynamically may be considered that 
for which the losses in friction are a minimum and the condition of con­
tinuous flow is satisfied over the entire profile. (See section 7-6.) 

Any continuous velocity distribution having a minimum number of 
diffuser parts and a minimum velocity on the concave side of the profile 
may be considered as practically suitable. 

One of the simplest methods of constructing theoretical lattices 
that permits satisfying a number of conditions with regard to the veloc­
ity distribution is the method of the hodograph. This method was first 
applied to problems of the flow about lattices by N. E. Joukowsky, who 
in 1890 considered a case of the flow about a lattice of plates with the 
stream uniting at their edges. The possibility of applying the hodo­
graph method for constructing lattices with hydrodynamically suitable 
velocity distribution was pOinted out by Weinig. A practical applica­
tion of the hodograph method was obtained by L. A. Simonov, who employed. 
it for constructing theoretical profiles and lattices. 

The construction of lattices by the method of the hodograph is 
based on the fact that the region of flow through a lattice of an ideal 
incompressible flllid is conformally transformed into another region in 
its velocity hodograph (see fig. 7-3). As has already been said, to the 
flow about a lattice in the region of the hodograph there corresponds a 
special flow of an ideal incompressible fluid produced by a vortex 
source at the end of ,the vector cl and a vortex sink at the end of the 

vector c2 (see fig. 7-3). Taking into account that to a displacement 

by a pitch ahead of or behind the lattice there corresponds a passage 
around the vortex source or sink, we can determine the flow rate of the 
source or sink, 

the circulation of the vortex source, 

and the circulation of the vortex sink 

At the branching point 01 and the rear stagnation point O2 , the veloc­

ity is equal to zero. Hence, the corresponding points of the flow in 
the region of the hodograph coincide with the point c = O. For con­
structing the lattice, there are given the vectors cl = Cz and the 
contour of the hodograph enveloping these vectors. 
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Let us consider in greater detail the procedure of constructing the 
stream flow through a lattice (fig. 7-14). It should be remarked that 
the direct problem of determining the flow through a given lattice (with 
no rear stagnation points in the stream) has no effective solution) and 
the method of the hodograph is practically the only one which permits 
constructing such flows. 

The contour of the hodograph of the flow through a lattice with 
convergence point of the stream at the trailing edge (fig. 7-l4(a)) 
passes through the point c = 0 and through the end of the vector c2. 

The arc 8182 corresponds to the boundaries of the flows between one 

infinity and the other in the plane of the lattice . In the case consid­
ered of a turbine lattice for a given hodograph) the absence of diffuser 
parts on the profile may be assured (fig . 7- l4(d)) . 

To construct the lattice) it is necessary to find the flow of an 
ideal incompressible fluid in the plane of the hodograph) because of a 
vortex source at the end of the vector cl with circulation 

and a sink at the end of the vector c2 . The flow rate from the source 
and sink is 

The magnitudes of the velocity and the nondimensional magnitude ~ (see 
fig. 7-14(b)) are connected by the equation of continuity (see sec. 7- 7) 

For constructing the profile) it is sufficient to find only the 
distribution of the velocity potential ~ over the contour of the hodo­
graph by the method) for example) of conformal transformation of the 
hodograph into the interior of a circle (fig . 7-14(b)) for which the 
vortex source goes over into the center of the circle and the sink into 
the point of the circle e = O. The conformal transformation of a given 
hodograph may be determined by some method of numerical mapping or with 
the aid of an electrical analog . 

The velocity potential of the flow on a circle is) in the case con­
sidered) expr essed by the simple formula 

~ = ~ (r ~ - Q In s in ~) 
- I 
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At the branch point 0 of the flow, d~/d8 o or cot 80 /2 r/Q, 
whence 

80 = 2131 

The coincidence of the branch point 0 in the hodograph plane with the 
point c = 0 is equivalent to the conformal correspondence of the point 
c = 0 and the point 8 = 80 , With the contour of the hodograph arbi-

trarily given, the branch point in the hodograph plane will not, in gen­
eral, coincide with the point c = O. The coincidence of these pOints 
is assured, however, by a suitable specification of the shape of the 
hodograph. In the example of figure 7-14, this COincidence was obtained 
by choosing the length of the segment P of the hodograph plane (fig. 
7-14(a)). 

After determining the velocity potential on the hodograph contour, 
the profile is constructed by graphical integration of the expression 

dS = dcf>/c 

The accuracy of the computations and of the construction is checked by 
comparing the given and obtained boundary conditions a. The neighbor­
ing profile of the lattice is at the pitch distance t (fig. 7-14(c)). 

The velocity distribution over the profiles of the constructed lat­
tice for given inlet angle corresponds to the given hodograph. The ve­
locity distribution for any other inlet angle can be found simply. For 
this it is necessary to make use of the known conformal transformation 
of the region of the hodograph on the interior of a circle. Since the 
hodograph is, in turn, a conformal transformation of the flow region 
about the constructed lattice, the conformal correspondence of its exte­
rior and interior on the circle is known. The change in the velOCity 
potential ~,accompanying a change in the direction or magnitude of the 
velocity, is obtained in the circle as the change in the velocity poten­
tial of the flow due to a vortex source and sink with the changed 
strengths 

r' - cIt cos 13
1
', Qi = - 1 

't . A' c l sln t-'l 

With the aid of evident substitutions and transformations we obtain 

d~' 
= c' = dS 

cot 13' 1 
= 

cot 131 

where the primes denote 

dcf>' dcf>' d8 
dcf> 

c ::: -- • 
d8 dl> C = 

cot 
8 

c{sin 13' 2 1 
e c 

- cot 2 clsin f31 

8 r' - Q' cot "2" 

8 
r - Q cot "2 

::: 

sin 

the changed quantities. 

c 

C (*) 
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We emphasize that formula (*), with change in inlet angle ~l, de­
termines the magnitude of the velocity on the boundaries of the con­
structed flow with "solidified" streams passing off to infinity . Al­
though the exit angle ~2 evidently does not change and the velocities 

at the boundaries of the stream zones are no longer relatively constant, 
the previously mentioned change in the exit angle in lattices of vari ­
able spacing and the change of velocity near the trailing edge are neg­
ligibly small . With account taken of these remarks, formula (*) permits 
computing with sufficient accuracy the velocity distribution on the pro­
file of any lattice with change in the inlet angle if the velocity dis ­
tribution for anyone inlet angle is known. The exact solution of this 
problem (by obtaining the equivalent lattice of circles) has been de­
scribed. The application of formula (*), in view of the evident advan­
tage of simplicity of the computations, is justified in practically all 
cases where it is possible to neglect the effect of the inlet angle ~l 

on the exit angle ~2 . For computing the velocity distribution for sev­
eral inlet angles ~l' formula (*) can be applied only once, and then 

the linear dependence of the relative velocity c/c2 on cot ~l must 
be employed . 

7-3 . ELECTRO-HYDRODYNAMIC ANALOGY 

The distribution of the velocity potential in a lattice of airfoils 
for any irrotational flow about it may be experimentally obtained by the 
method of electro-hydrodynamic analogy (abbreviated ERDA). This method 
was first applied to problems of the theory of hydrodynamic lattices by 
L. A. Simonov. Until a general method of solution of the direct problem 
has been worked out, the method of ERDA is practically the only one which 
permits determining the flow about any arbitrary lattice with sufficient 
accuracy. 

The ERDA method is based on the formal analogy between the differ­
ential equations which are satisfied by the velocity potential for the 
flow of an ideal incompressible fluid and by the electric potential for 
the flow of an electric current through a homogeneous conductor or semi­
conductor. By making use of this analogy, the theoretical computation 
of the velocity potential is replaced by the direct measurement of an 
electric potential. 

The simplest and most widespread method of applying the ERDA is the 
following: A flow of an electrical current, analogous to the flow of an 
ideal incompressible fluid, is produced in a layer of water of constant 
thickness (10 to 25mm}. The water is poured into a flat vessel (gener­
ally of rectangular shape) of nonconductive material. The electric cur­
rent passes between the electrodes 1 arranged at opposite edges of the 
vessel (fig. 7-15). A small quantity of salt and carbonic acid which is 

~~-~ ~---



NACA TM 1393 

contained in the water assures sufficient conductivity. For avoiding 
the polarization of the electrodes in the electrolysis of the water, a 
low-frequency, variable current (generally using a circuit voltage of 
110 or 220 volts alternating current) is connected to the electrodes • 

21 

. The blades of the lattice are made of an insulator material, such as 
paraffin or plastiline. Several blades of the lattice are studied; for 
all practical purposes, it is sufficient to study five blades. The 
measurement of the electric potentials in the bath is generally made by 
the compensation method. To the parallel current-conducting electrodes, 
a voltage divider (potentiometer) is connected, the movable contact of 
which is connected, through a zero current indicator (nUll indicator), 
to a feeler or probe situated at the point of measurement of the poten­
tial. The probe is a thin straight needle moving along the water per­
pendicular to its surface. The simplest and sufficiently accurate zero 
indicators of an alternating current are radio earphones or a speaker 
connected through a low-frequency amplifier. For the potentiometer, 
there is shown in figure 7-15 a water rheostat consisting of a long ves­
sel filled with water. Under the conditions of exact design and horizon­
tal position of the vessel, the electrical potentials are distributed 
proportionately to its length and can be measured in fractions of the 
applied voltage. To measure the potential, the moving contact is slid 
along the potentiometer and the reading of its scale taken at the in­
stant the force of the sound in the earphones attains a minimum. The 
advantage of the described compensation method of measurement is the 
absence of the effect of the apparatus on the absolute value of the po­
tential at the point of measurement. 

Instead of an electrolytic bath, it is possible to use electro­
conductive paper. The blade shapes are then cut from the paper. In 
this case a direct-current source and highly sensitive galvanometers 
can be used. 

The electro-hydrodynamic analogy may be conveniently applied to the 
direct problem in theory of hydrodynamic lattices. It may be used to 
establish the conformal transformation of a given lattice to the equiva­
lent lattice of circles. According to the above described method (fig. 
7-12), it is sufficient for this purpose to know the distribution of the 
velocity potential on a profile of the lattice for any convenient flow 
about it, as for example, an irrotational flow with ~l = ~2 = 900

, 

cl = c2 = 1, and t = 1. The magnitude of the measured electric poten­

tials (fig. 7-15) must then be divided by the potential drop (measured 
in the same units) over the distance of one pitch. This measurement 
must be made at a remote distance from the lattice and certainly not 
nearer to it than 2t. 

In obtaining the conformal transformation of a lattice of airfoil 
profiles into its equivalent lattice of circles with the aid of the ERDA, 
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the dir ect measurement of the potential distribution of the flow is con­
ducted for the case of the flow with no circulation about the blades. 
With certain assumptions, the ERDA method can also be applied for di ­
rectly measuring the velocity potential and even the velocity itself in 
any flow of an ideal fluid, including flow with stagnation point at 
trai ling edge. The modeling scheme is indicated in figure 7-16 . The 
exact form of the bounding walls (streamlines intersecting branch 
points) may in principle be obtained by the method of successive approxi ­
mations ; practically, however, with this method there may simultaneously 
be given with sufficient accuracy the magnitude of the inlet angle and 
the shape of the bounding streamlines . For measuring the magnitude of 
the velocity at any point of the flow, a probe 1 is used with two paral­
lel needles placed in a holder at a small distance from each other . One 
then measures the difference in potential between the needles in the di ­
rection of the straight line passing through them . In measuring the 
velocity on the profile, both needles are set on the boundary of the 
model in the direction of flow . For measurements in the flow, the probe 
is rotated . 

In concluding, we may remark that the ERDA method is employed also 
for investigating the flow of an ideal gas with subsonic velocities. 
For this purpose an elec trolytic l ayer of variable thickness or a net ­
wor k model is applied. The electrical model in the plane of the veloc ­
ity hodograph permits obtaining accurate solutions without successive 
appr oximations . 

7- 4 . FORCES ACTING ON AN AIRFOIL IN A LATTICE ; THEOREM 

OF J OUKOWSKY FOR LATTICES 

For determining the forces acting on an airfoil, we isolate a por ­
tion of the flow, as shown in figures 7-17 (a ) and (b ). The external 
boundaries of the isolated region are defined by the segments ab and dc, 
parallel to the axis of the lattice and of length equal to the pitch t . 
The lines ab and dc, strictly speaking, should be at an infinite dis ­
tance from the lattice because the flow parameters along these lines are 
as sumed to be constant . The inner boundary of the region is formed by 
the contour of the profile . 

Since the streamlines ad and bc are eqUidistant throughout their 
length, the resultant of the forces acting on the surfaces defined by 
these lines are equal and opposite . The projections of the force with 
which the flow acts on the profile are denoted by Pu and Pa . The 

magnitude of these forces may be determined from the momentum equation . 
In the direction normal to the axis of the lattice, the change in the 
momentum is equal to 
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where Pa is the component of the force P in the direction normal to 

the axis of the lattice; the mass rate of flow of the gas per second is 
determined from the formula 

Then 

(7-5) 

The projection of the force P on the axis of the lattice may be ex­
pressed by the equation 

(7-6) 

The forces Pu and Pa refer to a profile having a unit span. 

Equations (7-5) and (7-6) may be represented in another form by ex­
pressing the forces Pu and Pa in terms of the circulation rand 

the flow parameters at the inlet and outlet of the flow. 

According to the equation of continuity) 

where p is the mean density of the gas. 

The velocity ca is chosen such that 

It is easily shown that we then have 

2PIP2 

The circulation about the profile is equal to 

(7-7) 

(7-8) 

since the line integral along the equidistant lines ad and bc are equal 
and opposite. 
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(7-6) 
After simple transformations, we obtain from equations ( 7- 5) and 

(7-9) 

p -u - prca (7-10) 

We make use of the equation of energy 

c 2 
k Pl c 2 

P2 1 2 k 
2" + k -= 2" + k - 1 P1 - 1 P2 

Since 

2 2 2 c1 = cal + cu1 

c 2 = c 2 + c2 
2 a2 u2 

(7-11) 

where 

and we obtain from the equation of energy 

Substituting this expression in equation (7-9) and taking into account 
formula (7-8) we obtain 

( 7-12) 

Pu = prca ( 7-13) 

The force Pa given by expression (7-12) is conveniently represented in 
the form of a sum of two forces 
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where 

Pal = pfcu 

and 

(7-14) 

The resultant of the forces Pal and Pu we will denote by Py 
and the over-all resultant force by P (see fig. 7-l7). 

It is evident that 

or 

The force Py is determined by the formula 

Substituting the values Pu and Pal we obtain 

But 

where c is the mean vector velocity 

-+ 
c = 

Hence, the expression for Py in the flow about a lattice has the 

same form as the lift force of an isolated airfoil: 

(7-15) 
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The direction of the force Py is perpendicular to the direction 

of the mean vector velocity c . This follows from the obvious equation 

P 
u 

Pal 

Thus} the Joukowsky force acting on an airfoil in a lattice is 
equal to the product of the mean density of the gas and the velocity 
circulation about the airfoil and the mean vector velocity. The direc­
tion of the force Py is determined by the rotation of the velocity 

vector c by 90
0 in the direction opposite to that of the circulation. 

We recall that the mean density p corresponds to the mean speci ­
fic volume; that is, 

1 - = p 

Thus we have established that, in contrast to the isolated profile, the 
resultant force acting on the profile in a lattice is equal to the sum 
of the Joukowsky force (py ) and the additional force (6Pa ) perpendicular 

to the axis of the lattice: 

It is important to note that the characters of the forces Py and 

6Pa are different. Whereas the force Py depends on the circulation 

of the flow and becomes zero for r = 0, the force 6Pa does not depend 
directly on the circulation .4 

The force acting on the profile was determined for the general mo­
tion of a gas . With the aid of the obtained relations it is not diffi­
cult to investigate the magnitude of the aerodynamic force for certain 
special cases . Thus, for example, in passing from the lattice to the 
isolated profile it is necessary to increase the pitch of the lattice to 
an infinitely large value. At an infinite distance from the profile the 
equations P2 = Pl and P2 = Pl must be valid; hence, 6Pa = 0 and 

Pu = O. In the case of isentropic flow about the isolated profile} the 
the resultant force acting on the profile is therefore equal to the 
Joukowsky force 

p = Py = pfc 

4NACA note: This result is at least partially dependent on the 
selection of the mean velocity and mean density . 

- I 

I 
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where p and c are the density and velocity of the flow, respectively. 
The direction of the force is perpendicular to the direction of the ve­
locity of the approaching flow. 

Passing to the case of the flow of an incompressible fluid about a 
lattice, it must be observed first of all that in equation (7-14) the 
second term on the right side is proportional to the change of the poten­
tial energy of the flow (with account taken of the hydraulic losses); 
that is, 

In this case of an incompressible fluid, PI x P2 = p, and the energy 
equation gives 

where P2t is the theoretical pressure in the absence of losses. Hence, 

The pressure difference P2t = P2 is equal to the pressure loss in the 
lattice 

and 

Thus, in the case of the flow of an incompressible fluid about a lattice, 
the additional force is negative and is determined by the losses of pres­
sure in the lattice (the pressure loss 6pn should not be confused with 
the pressure difference P2 - PI)· 

In the absence of losses, 6pn x 0 and 6Pa = O. In this case the 

resultant force is equal to the Joukowsky force 

P = P = prc y 
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This result for the lattice was obtained by N. E. Joukowsky in 1912.5 

7-5. FUNDAMENTAL CHARACTERISTICS OF LATTICES 

For evaluating a lattice, energy characteristics are generally in­
troduced. This procedure is different from that used for isolated air­
foils. The need of energy considerations is determined by the procedure 
adopted for thermodynamic analyses. The energy characteristics permit 
evaluating the effectiveness of the process of energy transformation in 
the stages of the turbomachines. The component forces acting on an air­
foil in the lattice are expressed in terms of the dynamic pressure of 
the flow at the inlet to the lattice or behind it. In the latter case 
the formulas for determining the peripheral and radial forces are as­
sumed in the form 

C· 
2Pu 

== 2 u 
kP2M2b 

(7-16 ) 

[ Note: C' u is a coefficient.J 

and 

C' 
2Pa 

== a 2 
kP2M2b 

(7-17) 

where P2 and M2 are the static pressure and nondimensional velocity 

behind the lattice. 

Analogously, the other aerodynamic coefficients Cx and Cy may 
be determined. These are employed mainly in the computation of com­
pressor lattices. 

In choosing the fundamental geometrical parameter of the lattice, 
the pitch, it is convenient to employ the concept of peripheral forc e 
determined as the ratio 

5The possibility of generalizing the Joukowsky theorem to the case 
of the flow of a compressible fluid through a lattice was first pointed 
out by B. S. Stechnkin in 1944. The exact solution was obtained by L. I. 
Sedov in 1948. The basis of the approximate theorem of Joukowsky for 
lattices in the flow of a compressible fluid was proposed by L. G •. 
Loitsyanskii in 1949. The generalized theorem of Joukowsky presented in 
this section for a lattice in an adiabatic flow was given by A. N. 
Sherstyuk. 

j 
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where p~ is the peripheral force on unit length of the profile corre­

sponding to the "ideal" rectangular distribution of the tangential pres­
sure (fig. 7-18). Evidently, for an incompressible fluid (with low in­
let velocity) 

The magnitude Pu is determined by formula (7-6); then 

Noting that 
c a 

c2 = --­sin (32 

we obtain finally 
2 sin (32sin ((31 + (32) 

sin 131 
t 
B 

(7-18) 

The most important of the energy characteristics of the lattice is 
the efficiency defined as the ratio of the actual kinetic energy behind 
the lattice to the kinetic energy that should have been available if 
there were no losses, 

or, after simple transformations 

~p = 1 - k : 1 M~t ~~~~) k;l - J (7-19) 

where POI' P02 are the stagnation pressures ahead of and behind the 

lattice and M2t is the Mach number behind the lattice in the case of 

isentropic flow. 

Formula (7-19) is suitable for determining the efficiency of a com­
pressor lattice. 

The coefficient of losses of kinetic energy is defined by the obvi­
ous expression 

~p = 1 - TJp (7-20) 
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The real flow at the inlet and outlet of the lattice is nonuniform; 
the velocities, angles of outflow, and static pressures vary along the 
pitch. The equations of continuity, momentum, and energy must then be 
written in integral form. Thus, the equation of continuity for the sec­
tions ahead of and behind the lattice can be written in the form 

t t 

~ Plclsin ~ldt ~ P2c 2sin ~2dt 

Introducing· a reduced flow rate q, we obtain after elementary 

transformations 6 

For TOl = T02 = TO = constant, averaging of the equation of con­

tinuity gives 

The peripheral force is in this case determined from the equation 
t t 

PU "1: Plci sin ~lcOS ~ldt -J: P2C~ sin ~2cOS ~2dt 

or, again introducing the reduc ed flow rate q, we obtain7 

6 NACA note : 
_IT P TO C 

q = 'V@Pot--,;-=y=gR=T 

7NACA note: A = ~ where 
a* 

is the speed of sound when 

sonic. See eq. (7-25). 

c is 
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Avera ging of the expr es sions under the i ntegral sign gives 

From the equation of ener gy ) the temperature of the flow b ehind the 
lattice is averaged ) and the following expression i s involved: 

(PoqA2sin 0)" = t rt Poq"A2Sin 0dt 
cp Jo 

For determining the nondimensional characteristics of the lattice) 
it is necessar y to formulate the conc ept of a n ideal (theoretical) proc­
ess in the lattice for a nonuniform flow . An ideal process may be con­
sidered an is entropic process for which in the section i nvestigated there 
r emain unchanged) as in a real process) the field of static pressures and 
the directions of the velocities . According to another definition of an 
ideal process) the angles at the inlet and outlet of the lattic e are 
equal to the mean of the angles 01 and 02 determined by the momentum 
equation . 

The average values) by the equation of momentum) of the projections 
of the velocity behind the lattice are equal to 

k g rt 
(c2cOS O2 )cp = (f E*J

O 
P02q2~cos 02sin 02dt 

\Ther e G is the flow rate of the ga.s through one channel of the lattice. 
The mean angle is then 

(7- 21) 



32 NACA TM 1393 

Besides the efficiency in the computations of a stage ) t her e is 
employed a coefficient of discharge equal to the ratio of the actual dis ­
char ge to the dischar ge in the ideal process8 

t 
~ P02 q2s in ~2dt 

P01 (q2Si !1 ~ 2 ) ~p 
( 7- 22 ) 

and a coeffic i ent of momentum (often ter med coeffici ent of velocity ) 

J:t P02q2A2s i n 2S2dt 

Ql
p 

=: POl (q2""2sin S)~p 
( 7- 23 ) 

which is the r atio of the momentums of the f low n the r ea.l and ideal 
-proc esses . 

The effic i ency of the lattice in a nonunj forDl f low is computed by 
the formula 

Tip ::: ( 7- 24 ) 

For an appr oximate detern'ination of TJ ) equation ( 7-19 ) may be 
p 

used) substituting in it the mean dynamic pressure b ehind the lattice . 
In the denominator of equations ( 7- 21 ) to ( 7- 24 ), the functions q2t 

and A2t may be appr oximately determined from the pressure ratio 

P2m/ P01 ) where the mean static pressure behind the lattice is 

1 rt a~ 
P2m ::: t Jr. P 

o 

8The index t denot es that the parameters refer to an ideal pr oc ­
ess in the lattic e . [NACA note : The prime in e qs . ( 7- 22 ) and ( 7- 23 ) 
and the double prime in eq . ( 7- 24 ) are not defined in the text . They 
denote ideal conditions for which the author cl a ims he uses the index t . 
Later in the t ext he does use t in q2t and A2t t o denote ideal 
conditions . ] 
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In working up the results of tests of lattices) the local coeffi­
cients ~i) ~i) and ~i are used which are defined for each streamline 
by the formulas 

~i == 
~ 

T)i == - 2-and 

~t 

7-6. FRICTION LOSSES I N PLANE LATTICE AT SUBSONIC VELOCITIES 

In the flow about a lattice the losses of kinetic energy produced 
by friction in the boundary layer and the formation of eddies in the 
wake behind the trailing edges are termed profile losses. 

The part of the profile losses due to the friction may be evaluated 
if the velocity (or pressure) distribution over the contour of the pro­
file is known. The determination of the structure of the boundary layer 
formed on the profile) the establishing of the points of transition and 
separation of the layer is an important part of the problem of profile 
losses in lattices . The theoretical and experimental investigations of 
the boundary layer in lattices permit determining to a first approxima­
tion the losses in friction for the continuous flow about a profile and 
finding the thickness distribution of the boundar y layer on the profile. 

The scheme of formation of the boundary layer on a profile in a 
plane lattice is shown in figure 7-19(a) . Making use of the graph of 
the velocity distribution of the external flow) we follow the character 
of the change of the layer on the concave and convex surfaces of the 
blade. On the concave surface behind the branch point the thickness of 
the layer at first slightly increases. At the pOints of increasing cur­
vatures where the velocity of the external flow either does not change 
or drops (the diffuser region on the concave surface) the thickness of 
the boundary layer increases . At these pOints of the profile there 
occurs the transition of the laminar into the turbulent layer or even a 
separation of the layer . 

On the converging part of the concave surface where the pressure 
drops sharply) the thickness of the boundary layer decreases and attains 
minimum values at the point of departure from the profile. On the con­
vex surface) in the direction toward the narrow section, the thickness 
of the layer likewise decreases ) and at the pOints of maximum curvature 
of the profile it is a minimum . 

Along the convex surface in the oblique section) there is noted a 
sharp increase in the thicknes s of the layer reaching a maximum value 
at the trailing edge. On this part of the profile (diffuser part of the 
convex surface) the flow as a rule has a positive pressure gradient 
which may lead to separation (fig . 7-19(b ) ) . 



34 NACA TM 1393 

The boundary layer on the profile may be computed if the velocity 
distribution of the external flow is given and the condition of the 
boundary layer (whether it is laminar or turbulent ) is known . The ex­
isting methods of computing the boundary layer do not take into account 
the effect of the turbulence of the external flow and of strong curva­
ture of the profile . In designing a lattice, the factor of practically 
most importance is the determining of the position of the point of tran­
sition from the laminar into the turbulent flow and the conditions of 
continuous flow about the profile . As computations and tests have sho\.ffi, 
the transition point most often coincides with the point of minimum pres ­
sure on the profile or is somewhat shifted in the diffuser region . In 
those cases where the flow is strongly turbul~nt or when local regions 
are formed in which dp/dx > 0, in the converging part of the channel, 
the transition point may be displaced against the flow . 

The computation of the turbulent parts of the boundary layer is 
conducted as a function of the character of the velocity potential dis ­
tribution. In the converging parts or the parts of constant pressure, 
(dp/dx ~ 0) in the case of small velocities (incompressible flow), the 
momentum thickness 5** is computed on the assumption that the velocity 
distribution in the boundary layer is given by an exponential law . 

In the work of N. M. Markov, there is shown the satisfactory agree - . 
ment of the experimental data with the computed results . On figure 7- 20 
is given the velocity distribution in the boundary layer on the convex 
surface of the blade of a turbine lattice near the exit edge . 

The character of the change of the momentum thickness 5** along 
the blade of a turbine lattice may be seen in figure 7- 21(a) and (b), 
where the experimental values of 5** are also indicated . For comput ­
ing the layer, the experimental curves of the v elocity distribution "0 
of the external flow were used. As may be seen from the curves in fig ­
ure 7- 21, the results of the computation satisfactorily a gr ee with the 
test data . 

On the basis of the computational results of the boundary layer on 
the concave and convex surfaces of the blade, the friction loss coef­
ficient in the lattice is computed . 

The fundamental characteristics of the lattice ma~ b e expressed in 
terms of the known parameters of the boundary layer, 52 and 5~, which 
are determined at the exit edge of the blade . Denoting as before (see 
fig . 7- 19(a)) by u2 and P2 the velocity and density at a point in 
the boundary layer at the exit edge, and by u20 the velocity at the 
external boundar y of the boundary layer in the same section (the veloc ­
ity of the potential flow), we set up the equation for the coefficient 
ST of the friction losses . 
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The ' kinetic - energy loss in the boundary layer may be expressed by 
the equation 

5 
= 1 r n p u (u2 

"2 Jo 2 2 20 

We transform this equation into the form 

Po 

PO 

It is not difficult to obtain 

k 

P2 Po ( 1 -
k - 1 2 ) k-l 
k + 1 )..20 

- Po gRTO k - 1 2 Po 1 - k + 1 )..2 

since9 
k 

P2 TO P2 ( 1 
k - 1 2 ) k - l 

- -= 
- k + 1 )..20 

Po T2 Po 1 -
k - 1 )..2 
k + 1 2 

where 

and 

We set 

dy 

(7-25) 

(7-26) 

9NACA note : This presumes that the static pressure in the bound­
ary layer is that of the mainstream and that the recovery factor within 
the boundary layer is unity . 



36 NACA TM 1393 

Then referring to equation (7-25), t he energy loss may be written in the 
form 

Summing the losses on t he convex and concave surface of the blade, we 
obtain 

1 Po ~ *** 3 ) ( *** 3) J 6~ np = 2 gRT °2 u20 + 02 u20 , 0 cn bol 
(7-27) 

The magnitude 0*** has a concrete physical meaning; by analogy with 

the momentum-loss thickness 0**, o~ is equal to the thickness of the 
fluid layer moving with the velocity u20 outside the boundary layer, 

the kinetic energy of which is equal to the kinetic energy of the bound ­
ary layer. 

The coefficient of losses in friction is 

ST = 
6~,np 

( 7- 28) Et 

where Et = GC~O/2g is the kinetic energy of the flow behind the lat-

tice for the isentropic process and G is the actual flow rate of the 
gas through one channel of the lattice, which can be determined by the 
equation 

G 

where P20 is the density at the outer boundary of the layer in the 

section at the exit edge and Gt is the flow rate of the gas through 

one channel of the lattice in isentropic flow . 

The above expression may be given in the form 

G = Gt - [( 5*U20 ) + (5*u20) l RPT
O 

cn bo~ 0 
(7-29) 

t.N 
CD 
(J) 
--J 
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In equation (7-29) 

1 

0* = (1 - )
k-l 

~ A~ . 
k + 1 ·GO (7-30) 

o 

The theoretical flow rate of the gas may be determined by the 
formula 

1 

. ( k - 1 2 )k-l Po 
Sln 132 = 1 - k + 1 A2t RTO Ivzta *t 

(7-31) 

Substituting expression (7-31) in equation (7 - 29), we obtain 

sin 

(7-32) 

By using equation (7-27), the equation for the loss coefficient (7-28) 
now assumes the form 

(7-33) 

Bearing in mind that 
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formula (7-33) can be represented in the form 

1 

k - 1 2 3 . ~ )

k - l 

IIp 1 - k + 1 A2t AZt t s ln i32 

or 

(7-34) 

where 

From a comparison of formulas (7-33) and (7-34), it follows that 
the flow-rate coefficient IIp is equal to 

where 

5* 

5** 

(7-35) 

For an incompressible fluid, there may be obtained from expressions 
( 7-34 ) and (7-35) 

(7-36) 

- - _ .. -~--~~~-
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and 

~::: 1 - (7-37) 

In this case (for the incompressible fluid)) the values of 5~* 
and 5~ are determined by the formula given in table 4-1. 

The magnitudes H*** and H* entering equations (7-35) and (7-36) 
should be determined for the turbulent and laminar boundary layers 
individually. 

It is evident that the values H*** and H* and the magnitudes 

* ** 5 and 5 depend on the velocity distribution in the boundary layer) 
that is) on the flow regime within the layer and on the character of the 
change in velocities of the external potential flow (the pressure 
gradient dp/dx). 

N. M. Markov computed the values H*** and H* for the turbulent 
layer using the assumption of an exponential velocity distribution law 
and for the laminar layer with dp/dx::: O. On figure 7-ZZ(a) and (b) 

are given the values of H*** and H* for the turbulent layer as a 

function of Re** and A20 and for the laminar layer as a function of 

"ZO· 

As an example) we shall determine the theoretical magnitude of the 
profile losses in turbine lattices as a function of the inlet and exit 
angles ~l and ~Z. We assume that the velocity distribution on the 

profile is approximately tha.t shown by the dotted curves in figure 7-Z3 
for all inlet and exit angles. On the convex side of the profile 
ccn/cZ ::: 1.1 and on the concave side cboI/cZ = 0.5 approximately) 

[subscripts cn and boI denote convex and concave sides) respectively]. 
On this assumption) the density of the lattice B/t for each pair of 
values of the angles should have a fully determined value (see sec. 7-5): 
From equation (7-18) 

where the coefficient of the peripheral force is 

Cu 
Pu 

Pcn + PboI ::: - - Z ::: 

pC2 
B -

2 

-------~ . --- -~ -
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Pcn and PboI being the mean pressure coefficients on the convex and 

concave surfaces of the blade . 

For the assumed values of ccn and cboI 

2 
P = 1 _ ( ccn) = _ 0 . 21 

cn c2 
and 0 . 75 

that is, Cu = 0 . 96 . 

Assuming further that 

H~* z H~ z 2 and IJ - 1 p -

we can represent the friction - loss coefficient of the lattice in the 
for m 

( 7- 38) 

On the assumption of the exponential law of velocity distribution in the 
boundary layer (with exponent n = 1/7), the momentum thickness is equal 
to [ Note : this expression is very similar to that of E. Truckenbrodt j 
cf . Schlicting, p . 470. J 

0** = 0 .0973 0 . 37 U S 
ReO. 2 

o 

c 3 . 86 J O.8 
- dx 
c2 

( 7- 39 ) 

I n expr ession ( 7- 39), we assume Re = 105 , and to estimate the arc 
of the profile S on the convex and the concave surfaces we evaluate 
approx imately (fig. 7- 23 (a)): 

1 B 
Scn = ~ol = -3 . Q 

Sln t-'l 

2 B + - --:---
3 sin f32 

( 7- 40 ) 

The graphs in figure 7- 23(b), where the friction loss coefficientlO 

ST is represented as a function of f31 and f3 2 , are constructed with 

10For the case of infinitely thin trailing edges the coefficient ST 
is equal to the profile loss coefficient of the lattice . 
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the aid of formulas (7-38) to ( 7-40). The dotted curves correspond to 
constant values of Bit. Notwithstanding the considerable reservations 
with which the entire computation was made, the results are qualita­
tively well confirmed by experiment . 

The friction losses depend on ~l and ~2' increasing with de­

crease in these with the greatest influence exerted by ~l' For 

~l = ~2 (in lattices of the impulse type) the curves of equal ~T al­

most pass through the normal to the straight line ~l = ~2; that is, in 

this case the losses depend essentially on the magnitude of the angle 
of rotation of the flow equal to 

We may remark that the effect of Reynolds number on the friction 
loss coefficient in the lattice can easily be determined by computation. 

7-7. EDGE LOSSES IN PLANE LATTICE AT SUBSONIC VELOCITIES 

The eddy losses at the trailing edge constitute the second compon­
ent of the profile losses in a plane lattice. The flow leaving the 
trailing edges always separates. As a result of the separation there 
is an interaction between the boundary layers flowing off from the con­
cave and convex surfaces behind the trailing edge; vortices thus arise 
which appear at the initial part of the wake. The photographs of the 
.flow behind the lattice presented in figure 7-24 show the formation of 
the initial part of the wake. 

A large influence on the wake is exerted by the distribution of the 
velocity in the boundary layer at the point where the flows from the 
convex 'and the concave surfaces unite and also by the difference in 
pressure at these points. Along the initial part of the wake, (includ­
ing the region behind the trailing edge where a Karman vortex street is 
formed with the usual chess arrangement of the vortices) the interaction 
between the eddy wake and the nucleus of the flow unifies many properties 
of the flow field behind the lattice. The static pressure of the flow 
increases and the outlet angle decreases. As a result, kinetic-energy 
losses arise, analogous to the losses in sudden expansion. 

The parameters of the equaliz ing flow can be obtained by the simul~ 
taneous solution of the equations of continuity, momentum, and energy. 
The control surfaces shown in figure 7- 25 are selected. These surfaces 
are equally spaced, when measured along t he lattice axis; and they en­
close the fluid involve~ in the study. The above equations can be writ­
ten for the following assumptions: (a) the density of the flow changes 
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little as it moves downstream (from secs. 2-2 to 2' _2' ); (b) the field 
of velocities and pressures are homogeneous between the wakes and com­
pletely across the section 2' - 2' . 

The equation of continuity can then be represented in the form 

or 

(7-41) 

where 

The momentum equation in the direction of the axis of the lattice gives 

or, with account taken of (7-41), we obtain 

( 7-42) 

The momentum equation in the direction perpendicular to the lattice axis 
can be written in the form 

(7-43) 

From equations (7-41) and (7-42) there is easily obtained 

0200 = arc tan [(l - ~)tan 02n] (7-44) 

Equation (7-43) permits finding the increase in pressure behind the 
lattice 
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Taking into account expr ession ( 7- 41), we obtain 

(7-45) 

For determining the theor et ical velocity at infinity behind the 
lattice, we make use of the equation of energy which for the assumption 
made P2 = P2~ = P may be repr esented in the for m 

C c2oo) 
2 2 

P2°o c2 P2 
2 + -- == 2"" +-

P P 
(7-46) 

where 
, 

is the theoretical vel oc ity in the section 2' -2' • c2°o 

From expression ( 7- 46 ) , we obtain 

(7-46a) 

The velocity c2 is expressed in t erms of c2 00 wi t h the aid of equa-

tions (7-41 ) and ( 7- 44 ) , thus 

c 2 
200 

= (1 )2 . 2r3 2 
-2- -.. Sln 2n + cos r32n 
c 2 

and we have 

(
c ~oo) == _1_-_'t"_C_2_-_'t"_) S_l_' n_2_r3_2_n == (jl~p 
c200 1 - 6P200 

C7-47) 

The coefficient of edge losses i s l 1 

2 
= 1 - Q) kP = 

. 2 -
't" Sln r3 2n - Pkp 
--------------~ .. (7-48) 

IlFormulas ( 7- 45 ) t o ( 7-48 ) given her e were obtained by G. Y. 
Stepanovich. 
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The nondimensional pressure behind the edges entering equations ( 7- 45) 
and (7-48) is 

Pkp - P2 

! pc 2 
2 2 

and it must be determined from experimental data . 

With an accuracy up to magnitudes of the second order as compared 
with "t" the coefficient of edge losses is expressed by the formula 

For small velocities, according to test data (see below) 

From the above arguments) it is seen that the edge losses are directly 
proportional to "t". 

According to test data) the equalization of the flow behind the 
lattice occurs very rapidly at first, and the rate of equalization is a 
function of the geometrical parameters of the profile and the lattic e , 
and is quite dependent on the thickness of the edge . The region of in­
tensive mixing ends at a distance y = (1. 3 to 1.7 t) behind the trailing 
edge . This is confirmed by the graphs in figure 7- 26 in which are given 
the results of an investigation of the wake behind a reaction lattice 
according to the data of R . M. Yablonik . Figure 7- 26(a) shows curves of 
local loss coefficients of the wake at different distances behind the 
reaction lattice. On figure 7- 26(b) is shown the variation of the coef ­
ficient of nonuniformity in the flow field behind the lattice . This 
coefficient is defined by the formula 

where 

and c . a ,mln 

ca,max - ca,mi n 
v = 

2ca,m 

maximum and minimum values of component velocity 
ca in the given section 

mean value of velocity ca in the same section 

A detailed investigation of the flow behind t he trailing edge of a 
reaction lattice was conducted by B. M. Yakub . The results of these 
tests reveal certain effects of the shape of the edges on the flow 
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structure in the eddy wake. Measurements of static pressure on both 
sides of the wake show that there is a considerable nonuniformity in the 
pressure field along the boundaries of the wake (fig. 7-27). Moreover, 
the static pressure along the wake boundaries changes periodically. 

As the flow leaves the concave surface of a blade, its pressure 
must drop, while on the concave surface it must increase. Further, be­
hind the principal edge vortex, the static pressure decreases on both 
sides of the wake, it then a.gain increases somewhat, and so on. Finally, 
there is a complete equalization of the field of flow. From figure 7-27 
it is seen also that the amplitude of the fluctuations of the static 
pressure depends on the shape of the edge . By making a two-sided taper 
(sharpening of the edges band c in figure 7-27) it was possible to 
decrease somewhat the nonuniformity of the static -pressure field. 

The tests showed that a sharpened edge of the type b raises the 
efficiency of the lattice, as compared with the normal edges, by 1 per­
cent and that an edge of type c increased the efficiency by 2.5 per­
cent (for a medium velocity of flow) . It should be remarked that, not­
withstanding their high effectiveness, the forming of very sharp edges 
of the type c introduces serious difficulties'because such an edge 
rapidly deteriorates under actual operating conditions. 

7-8. SEVERAL RESULTS OF EXPERIMENTAL INVESTIGATIONS OF PLANE 

LATTICES AT SMALL SUBSONIC VELOCITIES 

Systematic investigations of the effect of the geometric parameters 
of the lattices on the magnitude of the profile losses at small veloc­
ities were conducted in the M. I. Kalinin Laboratory, the I. I. Polzunov 
Institute, the F. E. Dzerzhinskii Institute, and in other scientific re­
search organizations and institutes . 

We shall consider as an example several results of an experimental 
investigation of the effect of the pitch, the blade angle, and the angle 
of incidence of the flow on the velocity distribution over the profile 
of an impulse and reaction type lattice. 

Figure 7-28 shows the velocity distribution over the profile12 of 
a reaction turbine according to the data of N. A. Sknar. With increase 
in pitch, the flow about the back of the profile becomes impaired. Along 
a considerable part of the convex surface, the pressure gradient is posi­
tive (see curve for t = 0.904 on fig. 7- 28). In this diffuping region 
a boundary layer is formed, and its thickness increases and in certain 

12The local velocities are made dimensionless by dividing them by 
the vector mean velocity. 
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cases separates. With increasing pitch the nonuniformity of the flow 
in the passages between the blades increases; the velocities on the con­
vex side increase, while on t he concave side they decrease. At high 
values of the pitch, the flow about a profile in the lattice approximates 
the flow about a single profile (fig. 7-28). 

The effect of the blade setting on the velocity distribution over 
the profile is shown in figure 7- 29 (a). The maximum favorable velocity 
distribution for a given profile is obtained at a setting angle ~y ~ 500 . 

In this case both along t he upper and lower surface the velocities in­
crease more uniformly . 

A change in the inlet angle of the flow (fig . 7-29(b)) greatly 
affects the velocity distribution along the profile. Large inlet angles 
tend to impair the flow along the concave surface, while small angles 
similarly affect the flow along the convex surface. 

The investigation of an impulse lattice conducted by E. A. Gukasova 
shows that, similar to the reaction lattice, a change in pitch. causes a 
considerable change in the velocity distribution along the profile (fig. 
7-30). For all values of the pitch an adverse pressure gradient is 
found immediately behind the leading edge. The diffusing region extends 
over the greater part of the concave surface, and only near the outlet 
part does the flow reaccelerate. On the convex surface of the blade be­
hind the leading edge, the flow accelerates and reaches a maximum veloc­
ity downstream of the part of greatest curvature. We note that, as for 
the impulse lattice, diffuser regions are formed near the trailing edge 
of the upper surface for all regimes. 

With decreasing pitch, the nonuniformity of the velocity field in 
the channel between the blades decreases. A similar trend accompanies 
an increase in the inlet angle of the flow; as ~l increases, the flow 

on the concave surface accelerates while the flow on the convex surface 
slows down. A decrease in the inlet angle is accompanied by the appear­
ance of adverse pressure gradients near the inlet of both the convex and 
concave surfaces. For inlet angles somewhat higher than the profile 
angle ~ln' the most favorable general velocity distribution is found . 

The change of the coefficient of profile losses in impulse and re­
action lattices as a function of the pitch and inlet angle may be seen 
in figure 7- 31. The curves show that for each lattice there exists a 
definite optimum pitch for the minimum profile losses. Thus, for exam­
ple, for the reaction lattice having the profile shown in figure 7-28, 
!he optimum pitch is topt = 0 . 673 . For the impulse lattice, 
t opt = 0 . 50 - 0.60. . 

. I 
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In spite of the favorable velocity distribution, in a closely 
spaced lattice (t < topt) the loss coefficient is relatively high be ­
cause of the greater losses produced by friction. Decreasing the pitch 
also causes an increase in the coefficient of edge losses. 

The curves in figure 7-31 show that for all pitches a decrease in 
the inlet angle (below the optimum) has a sharper effect on the effici­
ency than an increase in the angle. An increase in sp also noted for 

131 > 131n for the impulse lattice of large pitch. It should be empha­

sized that as a rule the values of the opt~ inlet angles exceed the 
geometric angle of the profile . 

From the results of the investigations, it can be concluded that 
the experimental determination of the optimum pitch must be carried out 
over a wide range of inlet angles. 

The tests show that the direction of the equalized flow behind the 
lattice may with sufficient accuracy be determined by formula (7-44). 
The familiar formula given in the literature for determining the effec­
tive (actual) angle of the flow 

gives somewhat lowered 

13 2e with test results 

132e 
a2 

::: arc sin T 

values of 132 . More closely 

are obtained by formula 

132e = arc sin 
a 2 

t - .0.t 

(7-49) 

agreeing values of 

(7-50) 

At small velocities tests confirm that for all practical purposes, 
the outlet flow angles of a reaction lattice depend only slightly on the 
direction of the flow at inlet, that is, on the angle 131 (fig. 7-32). 

The angle 13 2 is, however, influenced to a large extent by the pitch 

and the setting angle of the profile. With an increase in l3y and t, 

the angle 132 increases. 13 

Similar results are obtained also for the impulse lattice. In 
this case, however, the deviation between experimental and computed val­
ues of the outlet angles increa.ses . According to the data of a number 
of tests the outlet flow angle increases somewhat, as the inlet flow 
angle increases. 

13Analysis of formula (7 - 44) leads to the same results. 
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the lattice) the field of the flow angles is 
~2 vary along the pitch (fig. 7-33). The 
are found near the boundaries of the trailing 

eddy wake. With increasing distance from the lattice) the flow equal­
izes and the values of the local angles approach the mean value ~2~. 

The nonuniformity of the field behind the lattice depends on the 
inlet flow angle. With either a decrease or a considerable increase in 
the inlet angle) the nonuniformity of the flow at the outlet increases. 
Particularly unfavorable is a decrease in the inlet angle . 

The results of numerous tests of lattices- at small velocities in a 
uniform weakly turbulent flow permit drawing several general conclusions 
as to the character of the change in profile losses in lattices as a 
function of the parameters defining the flow regime (inlet angle ~l 

and Reynolds number Re) and of the fundamental geometrical parameters 
of the profile and lattice. 

A study of the effect of the angle of inlet flow, angle of the pro ­
file setting, and the pitch for fixed values of Re shows that, in the 
cases where a change in these magnitudes results in the formation of ad ­
verse pressure gradients on the profile) the boundary layer thickens) 
and the transition from a laminar to a turbulent boundary layer moves 
upstream . As a result, the friction losses increase . In certain cases 
the boundary layer may separate in the regions where diffusion occurs) 
a circumstance which leads to a sharp increase in the profile losses. 
A decrease in the inlet flow angle and an increase in the pitch increases 
the likelihood of adverse pressure gradients. In this connection, it 
should be remarked that in impulse lattices the losses as a rule are 
greater than in the reaction type which are characterized by a more fa ­
vorable (converging) pressure distribution over the profile . The above 
considered tests showed that the minimum loss coefficient in an impulse 
lattice constitutes about 7 percent) while in the reaction lattice it 
is about 4 percent . 

Changes in ~l) t, and ~y have an effect on the magnitude of the 
edge losses . 

The effect of the -Reynolds number on the efficiency of the lattice 
has not yet been sufficiently studied . The available data show that a 
change in Re has different effects on the profile losses in the lat­
tice) depending on the inlet angle and the geometrical parameters of the 
lattice. I f separation oc curs on the profile) the profile losses tend 
to decr ease markedly with an increase in Re2. For nonseparating flow 
about the pr ofile, the effect of Re2 for the reaction lattice is small 
(fig. 7- 34 ). 
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7-9. FLOW OF GAS THROUGH LATTICE AT LARGE SUBSONIC VELOCITIES; 

CRITICAL ~ NUMBER FOR LATTICE 

The fundamental characteristics of the potential flow of a compress­
ible fluid in a lattice at subsonic velocities is qualitatively the same 
as that of incompressible flow. The network of streamlines ~ = constant 
and equipotential lines ~ = constant remains orthogonal, but it is no 
longer square. The velocity at any point of the flow is 

del> 
c = dS 

and, as a result, when ~~ = ~~ = constant, then ~/~ = p/AQ ~ 1. In 

the plane of the hodograph, the network of lines ~ = constant and 
W = constant is no longer orthogonal. According to the condition of 
equality of the flow rate ahead of and behind the lattice, we have 

For cl < c2' the projection of the velocity c2 on the normal to the 

axis of the lattice (c2sin ~2) becomes larger than the same projection 

of the velocity cl. The distribution of the relative velocities 

C = C/C2, in contrast to the case of the incompressible fluid, depends 
on the absolute value of the velocity, or more accurately, on the Mach 
number M at any definite point of the flow, for example, on M2 = C2/a2. 

An approximate method of estimating the velocity distribution over 
the profile may be used to establish the characteristic regimes of the 
flow about the lattice at subsonic velocities. The approximate method 
is based on the circumstance that in modern turbine lattices of high 
solidity the flow between the profiles may be considered as a flow in a 
channel.14 

'rhe flow velocity in an interblade passage of constant width and 
curvature (fig. 7-35) can be determined in a particularly simple manner. 
A comparison with more accurate theory shows that for a perfect gas the 
velocity distribution across the channel approximately satisfies the 
equation 

(7-51) 

14The ~ethod considered, proposed by A. Stodola, was developed sub­
sequently by G. Y. Stepanov. 
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and in particular 

The velocity on the convex side of the profile 
mined from the equation of continuity 

Ccn can be deter-

(7-52) l
~o~ 

clPl t sin 131 = cp dR 

Rcn 

In equation (7-52) it is convenient to transform to the nondimensional 
functions q and A 

--l~o~ qlt sin 131 
Rcn 

Using expression (7-51), we obtain finally 

q dR 

Abo~ 

= AcnRcnI I 
Acn 

(7-53 ) 

Computation of the integral I for small subsonic velocities gives (the 
constant of integration is omitted) 

where 

1 
11 = ml ln 'i 

1 

( 
\k-l 

ml = k; 1) 

For a gas with k = 1.4 we obtain 

where 

=.~ 
m2 'V k + 1 

(7-54) 



NACA TM 1393 51 

For k = 4/3 we have 

(7-56) 

If the computed function I is used, the equation of continuity can be 
written in the form15 

(7-57) 

where Icn by equation (7-54) or (7-55) corresponds to hcn and Ibol 

corresponds to ~o~ = Rcn/~o!Acn· 

It is possible to apply the process of successive approximations 
for computing ~n by e quation (7-57), since the expression in paren-· 

theses depends little on A • In the first approximation cn 

(7-58) 

Then, in the following approximation, Icn and Ibo~ are determined from 
A(l) 
cn 

(7-59) 

and so forth. For Acn < 0.5 the first approximation (7-58) is suffi­

cient. The solution of equation (7-57) is conveniently represented in 
the form of the graph shown in figure 7-36, which gives the magnitude 
q = qlt sin ~lj(R ~ - R ) as a function of R jR ~ for various cp -oo~ cn cn -oo~ 
values of Acn. 

A critical value ql* and a corresponding Al* or Ml* denote 

critical flow in the lattice; that is, a condition where Acn = 1. In 

the curved channel for which R jR ~ < 1, the graph in figure 7-36 in­
cn -00" 

dicates that the maximum flow is attained for some AI> Al*. 

15NACA note: Subscript cn refers to convex side, bol to concave 
side. 
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The above described method can also be applied for finding the ve ­
locity within an interblade passage of variable width and curvature. 
For this purpose it is neces s ary in the section of interest to inscribe 
circles as shown in figure 7- 37 and to determine their diameter and also 
the radii of curvature R~n and Rbo? at the pOints of tangency of the 

circles. For computing the velocities Acn and Abo? ' formulas (7-58) 

and (7-59) may be used substituting, for example, 

or 

or Rbo? = Rbo?' Rcn = Rbo? - a . The differences in the values of Acn 

and Abo? obtained in each case characterize the error of the applied 

method . As an example, in figure 7- 37 are compared the results of the 
exact solution ( in the flow of an incompressirle fluid) with the results 
of computations by the described method . The satisfactory agreement of 
the values of the velocities that is observed also in the other exarr:ples 
attests to the feasibility of applying this method for preliminary 

t t
" 16 compu a lons . 

Let us now consider flow of a gas through a reaction lattice when 
the velocities are nearly sonic . For a critical value of M2 = M2* at 

a certain (critical) point of the profile, the critical velocity is 
reached . With further increases in M2 , the pressure distribution ahead 

of this critical point changes little . The pressure distribution behind 
the point of sonic velocity changes considerably . In the so - called dif­
fusing ( i . e ., for subsonic flow) region behind this critical point) 
there is an increase in the supersonic velocity . 

The experimental determination of the critical values M2* shows 

that its magnitude largely depends on the geometric parameters of the 
profile, the lattice, and the direction of the flow at the inlet. I n a 

l 6This method of computing the flow in a chan'1.el ; .. ras based on the 
approximate determination of the length of the potential line and on the 
assumption that the distribution along it of the curvature of the stream­
lines differs little from the case of vortex flm, . With a certain com­
plication of the computations , this rrethod can be rendered more accurate 
by the successive refinements in estimati ne; the distribution of curvature . 

-------
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reaction lattice for an entry angle ~l = ~ln} the values of M2* de­

crease with increase of pitch because the local velocities on the con­
vex surface at the points of maximum curvature increase. In figure 7-38 
are shown the curves of maximum velocities on the back of the profile as 
a function of M2 . From these curves the values of M2* can be deter-

mined. For 1 > M2 > M2* on the convex side of the profile} local re­

gions of supersonic velocities are formed} the boundaries of which are 
the lines of transition eM = 1) and a system of weak shocks. 

Experiment shows that the supersonic zones may arise simultaneously 
in the flow region adjoining the trailing edge and the boundaries of the 
wake. Because of the lowered pressure behind the trailing edge} the ve­
locities of the particles leaving the upper and lower surfaces (outside 
the boundary layer) increase. This acceleration may lead to the forma­
tion of zones of supersonic velocity adjoining the boundaries of the 
wake. In correspondence with experimental data obtained at a small 
pitch} the supersonic zones are formed first at the trailing edges them­
selves and then progress to the more curved part of the convex side of 
the profile in the interblade cha.nnel. For a large pitch} on the con­
trary} supersonic velocities arise first in the channel adjoining the 
convex surface of the blade. This is confirmed by the results of meas­
urements of the pressure behind the trailing edges and of the minimum 
pressure on the convex surface of the profile in lattices of various 
pitches. 

The critical values of the number M2* are shown in figure 7-39 

for ~l· ~ln as a function of the pitch for a reaction lattice. It 

is seen from the graph that for each lattice there exists a pitch t* 
for which the critical velocity is reached simultaneously on the back 
and behind the trailing edge of the profile. 

In an impulse lattice}17 the critical M number is lower than that 
of a reaction lattice} this fact is a result of the greater curvature of 
the impulse profile. Local supersonic regions in the impulse lattice 
may arise} depending on the inlet angle near the leading edge} on the 
convex surface and at the trailing edge . 

The graphs shown in figures 7- 40 and 7- 41 characterize the effect 
of the number M2 (and also Ml ) on the pressure distribution over the 

profile for the two fundamental types of lattice. With an increa.se in 
M2} the absolute values of the pressure coefficients increase. The 
characteristic points of the pressure diagram (points of minimum pres­
sure) are displaced in the direction of the flow. For small angles ~l 

l7For the impulse lattice the critical M number is sometimes re­
ferred to the inlet velocity. 
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and large numbers MI , experiment shows the displacement of the branch 

point 01 along the concave surface of the profile . 

The effect of compressibility shows up more markedly on the convex 
surface , where the pressures change more rapidly; the pressure gradient 
along the convex surface increases . Correspondingly, the flow in the 
diffusing region on the convex surface also changes. Since the minimum 
pressure on the profile decreases, the pressure gradient in the diffus ­
ing region of this surface increases . The pressure changes particularly 
sharply on the convex surface nea.r the narrow section of the channel . 
Similarly, but more sharply, the effect of the compressibility reveals 
itself in the pressure distribution in an impulse lattice . 

A change in the inlet flow angle at large supersonic velocities in 
an impulse lattice sharply affects the pressure distribution, particu­
larlyat the inlet part of the profile (fig . 7- 42) . 

7-10 . PROFILE LOSSES IN LATTICES AT LARGE SUBSONIC VELOCITI ES 

The results of experimental investigation permit estimating the 
change in the profile losses in various lattices at subsonic and near 
sonic velocities . 

For M2 < M2* ' with increasing flow velocity) the effect of the 

compressibility on the losses due to friction depends on the one hand 
on the change in the pressure distribution over the profile . Increas ­
ing the velocity increases the diffusion on the convex surface and, 
hence, increases the losses . On the other hand, increasing the veloc ­
ity changes the velocity distr ibution within the boundary layer itself ; 
and this tends to decrea.se the losses . 

The investigation of the wake at large subsonic velocities shows 
that the pressure behind the trailing edge drops with increasing value 
of ~ ; this behavior is particulary acute when the velocity is approxi ­
mately sonic . In figure 7- 43 is shown the dependence of Pkp on M2 

for a rounded trailing edge . It is seen that with an increase in M2 , 

the value of Pkp decreases and rea.ches a minimum value at 

M2 = 0 . 9 - 1 . 0 . With a further increase in MZ' the pressure behind 

the trailing edge increases . The intensity of the vortice behind the 
trailing edge and the width and depth of the wake are increased (fig . 
7- 44) . At the same time , for M2 < 1) the extent of the smoothed out 

part of the flow behind the lattice increases . 
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For an approximate estimate of Skp at large subsonic velocities, 

formula (7-48) may be employed, substituting the test values of Pkp 

(fig. 7-43). Thus, taking into account the fact that the trailing-edge 
losses increase, with an increase in M2 , the character of the change 

of the coefficient of profile losses as a function of M2 is determined 

by whichever of the above - mentioned factors is the deciding one . In the 
final analysis, this answer depends on the geometric parameters of the 
profile and lattice. 

In reaction lattices the a.pproach to near sonic velocities while 
M2 < M2* does not lead to any considerable increase in the losses if 
the flow in the interblade channel is without separ ation. 

We recall that the resistance coefficient of a single profile 
sharply increases in the zone of near sonic velocities . I n the flow 
about a single profile, the local shock waves have a considerably greater 
intensity, and in many cases the flow separ ates to the impairment of the 
flow. The energy losses in the local shock waves of a lattice are not 
large, and they evidently do not appreciably increase the loss 
coefficient . 

In a reaction lattice, thanks to the converging flow, the local 
shock waves within the channel do not , as a rule lead to separation. In 
those cases where the flow separates at supersonic velocities, however, 
the loss coefficient increases mor e rapidly with increase in M2 . 

Figure 7- 45 gives sp curves for several r eaction lattices consist ­
ing of different profiles and for two impulse lattices . We note that 
since the test lattices had differ ent profiles, the dotted curves in fig ­
ure 7-45 do not characterize the effect of pitch alone . 

The effect of the incompressibility on the profile losses is more 
marked for impulse lattices . The curves in figure 7- 45 clearly confirm 

this conclusion. 18 It should be emphasiz ed that, for large velocities, a 
change in the inlet angle has a particularly marked effect on the loss 
coefficient in the impulse lattice Sp ' I n passing to large inlet angles 

(13'1 :> 131n)' the losses in the impulse lattic e decrease . 

l~he results of the test ,.,rer e obtained on an apparatus with con­
stant back pressure . With i ncrease in the number M2 there is a simul-

taneous increase in Re2 ' As was pointed out in the preceding section, 

the increase in Re2 leads to a lowering of the losses. It may be as ­

sumed that for Re2 = constant the cha.nge of sp as a function of M2 

,lOuld be somewhat sharper . 



56 NACA TM 1393 

Detailed investigations of the flow structure show that an increase 
in M2 leads to an increasing nonuniformity of the field behind the 

lattice (figs . 7- 46 and 7- 47) . 

Analysis of the effect of compressibility on the flow structure in 
lattices permits drawing the conclusion that the optimum pitch of the 
profiles decreases as the velocity increases . With decreasing pitch, 
the nonuniformity of the distribution of the flow between the blades is 
reduced . 

Of practical interest, is the change of the flow direction behind 
the lattice as a function of M2 . Tests show that for M2 ~ M2* the 

compressibility has only a slight effect on the magnitude of the mean 
angle behind the lattice . For the majority of reaction lattices, there 
is first noted a certain decrease and then an increase in ~2 with in-

crease in M2 . For M2 > M2*, the mean angle as a rule increases with 

increase in M2 (fig . 7- 48) . 

7-11 . FLOW OF A GAS THROUGH REACTION LATTICES AT 

SUPERSONI C PRESSURE DROPS 

In conventional guide and reaction-lattices, the flow velocities 
at the inlet are subsonic ; the transition to supersonic velocities occurs 
in the interblade passages . We will first consider the fundamental prop­
erties and structure of the flow in plane reaction lattices for super­
sonic pressure drops when 

The successive change of the supersonic regimes of the flow in a 
lattice is shown schematically in figure 7- 49 . In the narrow zone of 
an interblade passage the critical velocity is estahlished .19 Behind 
the trailing edge the pressure is below critical . I n the flow about the 
point A (fig . 7- 49(a)) the pressure drops and the fan of expansion ABC 
fallon the convex side of the neighboring profile and are then reflec ­
ted from it . The initial and reflected expansion of waves over expand 
the flow ; that is, the static pressure behind the \-lave ABC is less than 

19The transition surface coincides approximately with the narrowest 
section of the passage . Actual ly, as a consequence of the nonuniformity 
of the flow in the converging part and the effect of viscosity, the tran ­
sition surface has a certain curvature and is displaced upstream . 
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the pressure at infinity behind the lattice . The further development 
of the flow depends to a considerable extent on what pressure is estab ­
lished behind the trailing edge or AE . The bounding streamlines of the 
gas leaving the concave and convex surfaces of the profile approach each 
other and are then sharply deflected at a certain distance behind the 
edge. At the boundaries of the initial part of the '-lake) a system of 
weak shocks arises which merge with the oblique shock FC) which is 
formed at the points of discontinuity of the wake . 

The oblique shock interacting with the boundary layer on the convex 
surface of the profile is reflected20 and again impinges on the trailing 
wake. Depending on the mean Mkp number in this section of the wake) 

the reflected shock either intersects the wake (Mkp > 1) or is reflected 

from its boundary (if Mkp < 1) . Thus) the flow moving along the convex 

surface of a profile successively passes through the primary and reflec­
ted expansion waves and the primary and reflected shocks. 

The behavior of the bounding streamli nes in passing off the edge 
depends essentially on the ratio of the pressures at the point D to the 
pressure behind the trailing edge . I f the pressure of the flow at D is 
greater than that behind the edge section ) then there is formed at the 
point D an expansion wave ; and the flow about the edge is improved. The 
streamline leaves the profile not at point D) but at point E (fig . 
7-49(a)). On account of the C1ITVature of the wake EF and the rotating 
of the flow near the point E) there arises behind the expansion fan DLK 
a system of weak shocks merging with the curved shock FH) which arises 
at the point of turning of the boundary of the wake F . The system of 
the two shocks FC and FH forms the trailing shock of the profile . 

If on passing through the system of waves) the pressure of the flow 
near the point D is below the pressure behind the edge) a shock arises 
at the point D. In this case the wake i ncreases . 

On passing through the system of expansion waves and oblique shocks) 
the individual streamlines are multiple and variously deformed . On in­
tersecting the primary rarefaction wave) the streamline a - a deflects) 
turning by a certain angle wi t h respect t o the point A (the angle be ­
tween the tangent to the streamline and the axi.s of the lattice in­
creases). The reflected wave somewhat decreases t he angle of deflection 

. 20The reflection remains normal even at large angles of incidence 
of the primary shock (e2 ~ e* )) since the interaction of the shock with 

the boundary layer on the convex surface occurs in the zone of negative 
pressure gradients (the effect of the reflected rarefaction wave). 
Within a wide range of velOCities) the separ ation of the layer in lat­
tices with relatively small pitch is not observed . 
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of the streamline . On intersecting the primary shock) the streamline is 
sharply deflected in the opposite direction (the angle of the stream­
line with the axis of the lattice decreas es ) . I n passing through the 
reflected shock CF) the angle of the streamline with axis of the lat­
tice again i ncreases . 

With an increase in the pressure drop through the lattice ) the 
flow spectrum behind the minimum area section changes ; the intensity 
and character of arrangement of the rarefaction waves and shocks change . 
The extent (and ther efore the intensity) of the rarefaction wave in­
creases . The angles of the primary) r efl ected) and edge shocks decrease . 
The point where the oblique shock FC falls (point C) is displaced down­
stream (fig . 7- 49 (b)) . I n correspondence with this) the character of 
the deformation of the individual streamlines likewise changes . With 
increase in E2 the mean outflow angle increases . 

The expansion of the flow within the confines of the lattice ends 
for a certain relation of the pressures E2 ~ ES ' For flow conditions 

near this limiting regime) the primary shock is curved and forms a c er ­
tain small angle with the pl ane of the outlet section . The exact de ­
termination of the value ES is therefore difficult . The limiting r e -

gime may be considered that for which the primary shock falls at the 
point D of the edge section (fig . 7- 49 (c)) . 

I f E2 < ES) the expansion of the flow continues beyond the lat ­

tice (fig . 7- 49 (d ) ) . The system of shocks at the trailing edge r emains 
essentially as before ) but the wake behind the edge is considerably 
diminished . The left branch of the tail shock (the shock Fe in fig . 
7- 49 ) fal l s in the subsonic part of the wake of the neighboring profile 
and defor ms its boundary ; the pressure behind the edge increases . The 
intensity of the shock increases at the point D' ) and in certain cases 
separation of the flow occurs on convex surface of the blade (point D') . 

The wake behind the edge is greatly weakened . In such r egimes 
separation is observed mainly in lattices with r elativel y l arge pitch . 
It should be remarked that for E2 « ES the separations vanish as a 

rule . The pr i mary shock fal ls in the supersonic part of the wake (fig . 
7- 49 (e ) ) . The pressure behind the edge drops ) and the separation on 
t he back is eliminated . Thus) a very characteristic property of the 
r egi mes E2 < ES is the interaction of the primary shock with the wake 
at the edge . 

The shock FC passing through the flow field behind the 
tion sharply decreases the angle of defl ection of the flow. 
particularly well marked by the deflection of the wake near 

outlet sec ­
This is 

the edge . 
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The above considered schemes of flow are ill ustrated by photographs 
of the flow spectra behind the throat and at the exit from the reac ­
tion lattice (fig . 7-50). There is here seen the fundamental system of 
wa.ves and shocks, the deformation of the wake behi nd the edge for dif­
ferent r egimes, and also the interaction between the waves and shocks 
with the neighboring profiles and wakes . 

The flow spectra are given for two lattices : t = 0 . 543 (fig. 7- 50) 
and t = 0.86 (fig . 7- 51) . The photographs show that in the lattice of 
small pitch the flow is void of separation for all regimes. In the lat­
tice of large pitch (t = 0 . 86 ) , separation of the f l ow on the back of 
the profile occurs for the regimes E2 = 0 . 288 - 0 . 258 . In figure 7- 51 

(photographs (a) and (b ) ) there is clearl y seen the vortex structure of 
the trailing wake and the considerabl e nonuniformity of the f l ow behind 
the lattice. 

Figure 7-52 gives the pressure distr ibution behind the throat on. 
the convex surface of a pr ofile in a reaction lat tice for various ratios 
£2 = P2/POl · The curves shOl'; the considerable nonuni formity of the pres -

sure on the back of the blade . Behind the thr oat section (i.e., at the 
pOints 2 to 6) the expansion of the flow may be Observed; the pressure at 
these points is lower than the pressure behind the lattice . The expan­
sion ends with a sharp increase in the pressur e at those points on the 
convex surface of the blade where the incident and r eflected shocks in ­
teract with the boundary layer . With an i ncrease in E2' the zones of 

maximum ex~ansion on the convex surface as well as the sharp increase of 
pressure i n the shocks are both displaced along the back toward the trail ­
ing edge. 

In the regimes of limiting expansion (E2 = ES)' the pressure along 

the back of the profile continuously drops . The pressure behind the ex­
pansion waves at all regimes £2 ? ES decr eases as the pitch increases . 

The effect of the pitch on the intensity of the shocks behind the 
throat is seen in figure 7-53 . The character of the curves 6P2/P i,min 
(6P2 is the increase in pressure through the shock wave impinging on 

the convex surface of incidence of the shock wave ) depends on the pitch. 
With an increase in t the maximum intensity of the shocks at first de ­
creases and then increases. At the same time , the maximum 6P2/Pi min 
shifts in the direction of higher values of £2 · ' 

The detailed investigation of the flow in the sections behind the 
lattice shows that the distribution of the angles and the static pres ­
sures is very nonuniform . In figur e 7-54 (a ) is shown the distribution 
of the local angles of deflection a2i - a2n over the pitch of the lat -

tIce for two regimes. The upper curve corresponds to the flow conditions 
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shown ip figure 7-49 (c ) (E2 "" ES). Ahead of the primary shock, the flovT 

deflections are influenced by the expansion wavesj the angles of the 
streamlines slightly decrease. At x = 0 . 4 there is a sharp decrease 
in ~2i due to the primary shock . At x > 0.4 the local angles vary 

less sharply up to x ~ 0 .9. 

From figure 7- 54(b) it is seen that the distribution of the static 
pressures over the pitch is likewise very nonunifornl. The static pres ­
sure varies vith the system of waves and shocks traversing the section 
investigated . 

A large effect on the spectrum of the flow behind the lattice is 
exerted by the setting angle of the profile (i. e . , the angle at the 
exit ). With a cha~ge in the angle ~2n the geometrical parameters of 

the section behind the throat vary . For the same pressure drop in the 
lattice (e2 ) , the arrangement of the fundanlental system of waves and 

shocks in this section of the lattice varies . 

With increase in ~2n the length of the wall of the section BD 

(fig . 7- 49) is shortened (the pitch is unchanged)j the relative effect 
of the primary expansion wave increases; the angle of.deflection in­
creases with increase i n ~2n . 

The equalization of the flow behind the trailing edge for M2 > 1 

occurs at greater distances f.rom the lattice than for M2 < 1 . The vari 

ation of the distribution curves of P02 / POI along the pitch as a func ­

tion of y for M2 = 1 .58 is shown in figure 7- 54 (c). 

We note that the equalization of the flow at supersonic velocities 
is accompanied by a decrease in the static pressure behi nd the trailing 
edges . 

Supersonic r eaction l attices are often used as nozzle lattices (for 
E2 < E*)( fig . 7- 55) . The interblade passages of such a lattice form 

supersonic nozzles . At design conditions supersonic velocities may be 
obtained i n such lattices without any essential deviation angl e of the 
flow . On the other hand, expans ion may arise in the overhang section 
of the lattice at design conditions . The expansion wave is formed as a 
result of the lowering of the pr essure behind the trailing edge . In the 
flow about the trailing edge , as in the subsonic lattice, a second shock 
at the trailing edge arises. Thus, the same general system of shocks 
and expansion waves , although they are weaker , is maintained also for 
the nominal operating regime of the supersonic lattice . 

- i 
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For the off-des i gn regimes (~ 2 < ~2comp)) the fundamental system 

of waves and shocks is organized in a manner similar to that shown for 
lattices with converging channels . If) however) the ratio of the pres­
sures ~2 becomes larger than the computed one) the shocks are moved 

upstream into the interblade channel) the same way as they are in the 
one-dimensional supersonic nozzle . It should be borne in mind that) 
for the same value of ~ 2) the shocks in the channels of the supersonic 

lattice are somewhat weaker than in the Laval nozzl e and are situated 
near the outlet section . 

The flow structure in a supersonic reaction lattice is shown in 
figure 7-56. At increased pressur es behind the lattice) a system of 
two oblique shocks is situated within the channel (fig. 7-56(a)) . With 
an increase in pressure behind the lattice the shocks move toward the 
outlet section (figs. 7- 56 (b )) (c)) and (d)). Near design operation 
(figs. 7-56 (e) and (f)) primary and reflected shocks intersect on the 
convex surface; behind the lattice a trailing-edge shock may be seen.· 

The pressure distribution over the profile (fig. 7-57) agrees with 
the flow picture. At regimes where the relative press ure £2 is greater 

than computed) the pressure ris es through the system of shocks. It is 
characteristic that there is no transverse pressure gradient in the chan­
nel between the blades of a supersonic lattice. 21 The velocity field be­
hind a supersonic lattice possesses very great nonuniformity for ~2 < ~* 

(fig .7-57(b )). 

7-12 . IMPULSE LATTICES IN SUPERSONIC FLOW 

When the velocities are practically sonic a A-shaped shock is formed 
on the convex side of each profile of an impulse lattice. This system 
of shocks of small curvature merges to form the bow wave for the ne~gh­
boring profile (fig. 7-58(a. )). Immediately behind each bow ,,,ave the 
flow is subsonic. This scheme of flow evidently can take place only in 
the caSe in which the flow accel erates behind each bow wave and then 
reaccelerates to the velocity Ml ahead of the following shock. 

There accelera.tion of the flow occurs in the expansion ,,,aves form­
ing in the flow about the leading edges . As the velocity of the oncom­
ing flow increases) the bow becomes curved a.nd moves toward the inlet 
edges of the profiles (fig. 7- 58 (b )). It may be assumed that for veloc ­
ities corresponding to the flow scheme in figure 7- 58 (b) the flow behind 

.21It may be assumed that the tip losses in such lattices are small 
even with small blade heights . 
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the shocks will be turbulent . Because the effect of profiles is commu­
nicated upstream in the subsonic region, a nonuniform velocity distri ­
bution is established behind the leading shock . The velocities vary 
periodically in magnitude and direction along the lattice . 

For a c ertain sufficiently large value of Ml the right branches 

of the shocks merge f orming a continuous wa~T- shaped shock (fig . 7- 58 (c)) . 
The left branches of the bow wave are turned into the concave surface 
of the profile . With further increase in the velocity Ml the angles 

of the branches of the bow waves decr ease; the shocks approach the inlet 
edges of the lattice . In certain cases at the inlet to the interblade 
channels there is formed the system of shocks shown i n figure 7- 58 (d) . 
In the system of intersecting and r eflected shocks the pressure 
increases . 

The envelope of this system of curved shocks lowers the velocity 
of the flow to a subsonic value . Supersonic velocities arise again as 
a r esult of the expansion on the convex surface . The flow about the 
trailing edge here occurs with the formation of the known s ys tem of ex­
pansion waves and shocks . Onl y for very large supersonic velocities at 
the inlet does the flow remain supersonic over the entire extent of the 
interblade channel . 

The above considered schemes of formation of shocks at the inlet 
to an impulse lattice are confirmed by photographs of the flow . I n fi g­
ure 7- 59 there are clearly seen the changes in the shape of the bow 
waves that accompany increases in Ml ' 

The pressure distribution over the profile at supersonic velocities 
(fig . 7- 60(a)) shows that for MI~ 1.5 the velocity over a large part 
of the concave surface is subsonic . For Ml > 1 .12} the velocities are 
supersonic at all points on the convex surfac e . The point of minimum 
pr"es sure on the back in the overhang section is displaced with increas­
ing MI toward the outlet section of the lattice . 

The investigation of the flow behind an impulse lattic e at super ­
sonic velocities shows that the distribution of static pressures, ve ­
locities} and losses over the pitch is very nonuniform. 

A change in the inlet angle of the flow greatly affects the struc ­
ture and intensity of the bow waves, the pressure distribution over the 
profile, and the flow distribution between the wakes behind the lattice . 

The form of the inlet edge of the profile and angle ~ln have an 

effect on the structure and, in particular, the intensity of the bow 
waves . Ahead of an impulse lattic e consisting of profiles of small cur­
vature (large angles of the inlet edge ~ln ) an over-all wave - shaped 

--------~-------
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shock is formed instead of the system of shocks shown in figure 7- 58(b ). 
The shape of this wave ahead of a l attice of plates for various inlet 
angles is seen in f i gure 7- 61 . Sinc e the formation of such a shock 
ahead of the l attice is possible in the case where Mlsin ~l > 1) the 

number Ml corresponding to the type of shock considered increases as 

~l decreases. 

7 -13 . LOSSES IN LATTICES AT NEAR SONIC AND SUPERSONIC VELOCITIES 

The above considered properties of the flow of a gas in plane lat­
tices of different types at large velocities permit an analysis of the 
behavior of the over-all characteristics of lattices accompanying a 

change of velocity of the flow (Ml or M2 ) . 22 Figure 7-62(a) shows 

curves of the loss coefficients for reaction lattices as a function of 
.M2 and the inlet flow angle ~l. Figure 7- 62 (b) gives similar curves 

for impulse lattices . 

The curves show that) depending on the entry angle) the pitch) and 
profile shape) the loss coeffic i ent of reaction lattices may increase 
or decrease in the region of transonic velocities (0. 8 ~ M2 ~ 1.2). A 

marked increase of the loss es in a lattic e occurs at supersonic veloc­
ities (M2 > 1.2). The value of M2 for which this increase is ob-

served decreases as the pitch is increased. 

The loss coefficients of supersonic lattices increase very sharply 
with an increase in M2 and reach a maximum value when the relative 
pres sure in the lattice is nearly critical (M2 "" 1). With a further in­

crease in M2 ) the coefficient Sp decr eases. The loss es in a super­

sonic lattice are a minimum near the computational (desi gn ) value of 
M2 . For M2 > M2comp the loss coefficient increases with the velocity . 

From a comparison of the loss curves in a reaction supersonic lat­
tice (fig. 7- 62 (a)) with those in a one-dimensional supersonic nozzle) 
it can be concluded that the variation of Sp wi th M2 is qualitativel:)' 

the same in both cases. I t follows that the shocks in the interblade 
passages and the separations and vortex formations associated with them 
have the main influence on the effectiveness of such lattices at off ­
design regimes. The lowering of the losses in the lattice for M2~ 1 

is explained by the fact that at such regimes the wave and vortex losses 

I - 22The data presented in the present section refer onl y to lattices 
of definite geometric parameters. 
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decrease and then (for small M2 ) entirely vanish (the interblade pas ­

sage works as a Venturi tube) . As in the case of the single nozzle) the 
losses in a supersonic lattice at the design and off- design regimes vary 

as a function of the passage parameter F
l

/F* . 23 With an increase in 

this parameter) the losses for design operation decrease somewhat and 
increase for M2 < M2comp ' 

Comparison of the losses in different reaction lattices leads to 
the conclusion that in a wide range of velocities) lattices with con­
verging interblade channels possess a higher effectivenes s than super ­
sonic lattices . Evidently supersonic lattices are suitable for applica­
tion in the range of large supersonic velocities) but they are only ef­
fective for the case where such turbine lattices will always operate 
near design conditions . The points of i ntersection of the curves (the 
points A and A t in fig . 7- 62 (a) ) permit establishing ranges .of rational 
application of the two types of lattices compared . 

The losses in an impulse l attice at subsonic velocities increase 
with increase in the velocity more sharply than those in reaction lat ­
tices) and they reach maximum values for Ml Z 0 . 8 to 0 . 9 (fig . 7- 62 (0 ) ). 

A further increase in the velocity leads to a certain lowering of the 
loss coefficient . Thus, in the zone of near sonic veloc ities 
M2 = 0 . 9 to 1 . 3 the coefficient ~p of an impulse lattice decreases and 

becomes a minimum at Ml Z 1 . 2 to 1 .4 . For Ml > 1.4 with increasing ve -

locity , ~p again increases . 24 

The lowering of the loss coefficient in an impulse lattice at small 
supersonic velocities is explained by the improvement of the flow about 
the inlet edges and on the convex surface of the profile . For 
M2 = 0 . 7 to 0 . 9 flow separations are formed near the inlet part and on 

the convex surface of the profile ; the points of minimum press ure and 
separation are displaced downstream when supersonic velocities are 
achieved since the flow in the channel is converging behind the bow waves 
( fig . 7- 60) . Also change in the inlet angle ha.s a particular effect on 
the magnitude of the loss coefficient at supersonic velocities for im­
pulse lattices . For inlet angles less than ~ln (a "blow" on the concave 

23NACA note : Area ratio, see fig . 7- 62(a.) . 

24The data presented refer only to the given lattice . With a change 
in the shape of the profile and the pitch) the character of the depend ­
ence of sp on M may vary . 
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surface of the profile) the loss coefficient increases. The mean angle 
of the flow behind the lattice increases with an increase of velocity 
at supersonic veloci-ties (deflection behind the throat). 

7-14. COMPUTATION OF ANGLE OF DEFLECTION OF FLOW IN OVERHANG 

SECTION OF A REACTION LATTICE AT 

SUPERSONIC PRESSURE DROPS 

There exist several methods of determining the angles of deflection 
of the flow behind the throat of the lattice. The most widespread meth­
ods of computation are based on the one-dimensional equations of flow. 
Assuming that the field of flow in the sections AB (fig. 7- 63) and EF 
(chos en at a large distance behind the lattice) is uniform and neglect­
ing the losses in the lattice up to section AB, the equation of contin­
uity may be written in the form 

or, bearing in mind that for very thin trailing edges 

AB = EF sin ~2n = t sin ~2n 

we obtain 

We divide both sides of this expr ession by p*la*l; then 

Taking into account that ~2°o = ~2n + . 0, where 0 is the angle of 

inclination of the flow in the overhang section , we arrive at the 
equation 

In the above equation q2 and 

of the pressure ratios P2/POl and 

(7-60) 

q are easily expressed in terms 200 

P200/P02 · 
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For a reaction lattice ) vTi th P2oo/P02 < t:*) the flow parameters in 

the section AB will have their critical values when q2 = 1 . For a 

supersonic lattice q2 = F */F 1 < 1. By ignoring the losses} Bais rela­

ted the flow at section AB to that at DR in a form similar to that of 
formula ( 7- 60) 

5 = arc sin ( Sin ~2n) - ~2n 
q2°o 

(7-60a) 

With account taken of the losses} forrrula ( 7- 60a ) can be written as 

5 :=: arc sin (~ POl sin r.l2n\ - r.l2 
Q200 P02 ~ J ~ n 

Replacing and ~p and taking into account the fact 
that 

k 

POl 
(

k - 1 2 ) k - l 
---2--- M2t~p + 1 = 

we obtain after transformations 

1 

5 = arc sin 

k - 1 A2 ( ) 
1 -~ 2t 1 - ~P 

k - 1 2 
1 - k + 1 A2t 

sin 132n - 132n 

(7 - 60b) 

Whence} it follows that with constant value of the theoretical outflow 
velocity A2t } the angle of deflection i ncreases with an increase in the 

losses . According to equation (7- 60a)} the angle of deflection 5 de ­
pends not only on the outflow velocity and the losses but also on the 
angle 132n ' 

Formula ( 7- 60 ) holds only for t: 2 ~ t:S' that is, up to the point 

for which the primary expansion wave impinges on the convex surface of 
the blade . The angle of deflection corresponding to the limiting expan­
sion over the convex surface of the blade is approximately determined by 
the relation 

5S :=: C1n!s - 132n 
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where Oms is the angle of the characteristic cOinciding with the plane 
AD . 

The pressure in the outlet section of the lattice for the regime 
considered may be determined by the formula 

In fact, since 

we have 

2k 

sin t1ms 
1 

M2S 

sin 132n 

q2S 

1 

(~~)ksin 132n ~ + 1 k~l)~ 
= --- f,S 

2 

Solving this equation for f,S' we arrive at formula (7-61). 

(7-61) 

Making use of the known relation between t1m and f, and substitut­

ing in the particular case f, 2 = f,S' we obtain 

6S = arc sin - 132n (7-62) 

2 
k + 1 

For the one-dimensional case of infinitely thin trailing edges and 
straight convex and concave surfaces, the exact solution may be obtained 
by simultaneously solving the equations of continuity, momentum, and 
energy . 

By the equation of energy, 

P2 
2 

P2ao k - 1 c 2 k - 1 c2 
+-----= + -----

P2 k 2 P2 00 k 2 

From the condition of continuity, 

P2 Azao sin(132n + 6) 

P200 Az sin 132n 



68 NACA TM 1393 

Substituting this expression in the equation of energy, ,,'e obtain 

k + 1 
2k 

1 P2~ A200 sin(~2n + 5) 
:=:-----

k P2 A2 sin ~2n 
k - 1 (A2=)2 

+ 2k A 
2 

(7 - 63 ) 

We write the equation of momentum using the component in the direc ­
tion of the trailing edges in the form 

or 

Sinc e 

we obtain 

(7 - 64 ) 

If in the section AS the parameters are critical, then 

~ 1 
+ 1 -­cos 5 

The last expression together with equation (7-63) gives 

2k f: 200 cot (32n tan 5 k + 1 ( 
tan25 + --- -- --

k - 1 f:* f:200 k - 1 k 
k + 1 -

f:* 

whence 

tan 5 
(

k k E2°o cot ) 2 + k + 1 (1 _ €:zoo 2 
- I E* ~2n k - 1 E* 

o 

- _ k_ ~ cot ~2n 
k - 1 E-l'~ 

(7 - 65) 
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Approximately, for 5 ~ 100 , we obtain 

(1 - E 200)2 tan 13 
k + 1 E* 2n 

2k (7-65a) 

The above accurate solution obtained by G. Y. Stepanov permits de­
termining the wave losses in the lattice . The coefficient of wave losses 
is expressed by the formula 

~b = 1 -

or after substituting for ~ 

1 -
k - l 

k + 1 1 _ E2~ cos 25 
k - 1 

For computing the flow behind the throat of the lattic e, the method 
of characteristics may be applied . We consider a lattice of plates of 
small curvature with straight, infinitely thin trailing edges (fig. 
7-64(a)) and set up the boundary conditions at the point where the stream­
lines coming off the two sides of each plate merge . The streamline 1-1 
moving along the convex surfac e of the plate intersects both the primary 
and reflected expansion waves, while the streamline 2- 2 coming off the 
concave surface intersects only the primary waves. In the plane of the 
hodograph the region of the flow in the section AB is expressed by the 
point corresponding to the end of the vector Al = 1 (fig . 7-64(b)). The 

velocity of the streamline 2- 2 after passing through the primary expan­
sion wave is determined by the vector A2' while the velocity of the 

streamline 1-1 after passing through both the primary and reflected waves 
is determined by the vector A3 . The boundary conditions near the point 

A for t'.VO merging streamlines of gas are the conditions that the static 
pressures are equal and the velocity vectors are parallel . These condi ­
tions are satisfied if the oblique shocks Kl and K2 are formed at the 

point A, the direction of these shocks shown in figure 7-64(a). If the 
angle 51 is small, the primary shock Kl may be considered as a char-

acteristic, while for computing the edge shock 

acteristics may be used . We her e neglect the 
It is evident that the direction of the shock 

K2 the method of char­

wave losses in the shocks. 
K2 coincides with the 
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normal to the epicycloid of the second family at the point d located at 
the center of the segment bc . With this simplificat'ion of the problem) 
the wake (which for an infinitely thin edge is considered to be between 
the streamlines 1- 1 and 2- 2) in the immediate neighborhood of the pOint 
A has the direction of the vector A2 (the dot - dash line in fig . 7- 64 (a). 

The velocities and other parameters of the flow for the r emaining stream­
lines are determined after computing the interaction of the primary and 
reflected expanslon waves . 

The entire region of flow behind the throat can be divided into 
three zones (fig . 7- 64(a» : I - the zone of influence of the primary 
expansion wave (for the lattice consider ed , this region transforms into 
a point), I I - the zone of interaction of the primary and r efl ected 
waves, and I II - the zone of influence of the reflected wave (in the 
plane of the hodograph, this zone corresponds to the characteristic of 
the second family bc) . 

The region of intera.ction of the primary and reflected waves of 
rarefaction (zone II) may be computed once for all, using the minimum 
value of the angle f32,min= 70 to 100 • For any other angle f32n> f32,min 

the computation of the flow downstream of the throat is carried out in 
the following manner . We draw the x- axis at the given angle to CB (fig. 
7- 64 (c» and find the mean pressure in the section AB = t 

characterizing the regime of the limiting expansion . For all regimes 
~ > p /p > p /p the zone of interaction II will be bounded by the * 2 01 S 01 
broken chara~teristics, for example, AB ' , AB", AB "' • •• (fig . 7- 64 (c» . 
To each value of the pressure drop in the lattice corresponds a fully 
determined position of the points B ' , B", B"'. . . . Carrying out suc ­
ces s ively the computation of the flow for different positions of the 
characteristics AB ' , AB " , ·etc . , we establish the distribution of the 
pres sures (velocities and local angles) over the pitch AB in the zones 
II and III and obtain the mean pressure behind the lattice 

li t 
P - -t 0 P2l· dx 2,cp -

I n this way the computation of the local parameters of the flow be ­
hind the lattice is conducted for the entire group of possible flow re ­
gimes in the lattice, and the relation is established between the posi ­
tion of the points B ' , B" , etc., and the pressure drop in the lattice. 



NACA TM 1393 71 

The mean angle of deflection of the flow for a given regime may be 
obtained from equation ( 7- 21 ): 

tan((32 + 6 ) = n cp 

2 rt q . A. sin2 ((32 + O. )dx J o 1 1 n 1 

where qi) Ai) and 0i are) respectively) the local reduced flow rate) 

nondimensional velocity) and angle of deflection . 

For a lattice of profiles with finite thickness of the trailing 
edges) the computation of the flow in the overhang section by the method 
of characteristics is considerably more complicated . In this case it is 
necessary to know how the pressure varies behind the trailing edges as a 
function of the geometrical parameter s of the profile and the lattice 
and of the flow regime . Such a relation 

can be established only experimentally . Then) replacing the actual lat ­
tice by a lattice of planes) the trailing edges of which serve as the 
sources of disturbances uniformly distr i buted in the field of sonic (or 
supersonic) flow) the intensity of the expansion waves may be found . 
From the boundary conditions at the edge the system of additional expan­
sion waves and shocks is determined . 

An important advantage of the method of characteristics is the pos ­
sibility of constructing the spectrum of the flow on the convex section 
behind the throat and at different distanceB from the lattice and of de ­
termining the nonuniformity of the field of velocities and pressures in 
different sections. 

A comparison of the most widespread and accurate methods of comput ­
ing the deviation angles with test data (for two reaction lattices) is 
shown in figure 7- 65 . It is seen from the latter that) for lattices of 
small pitch and consisting of profiles with thin trailing edges) formula 
(7-65) and the method of characteristics give results that satisfactorily 
agree with experiment . For srrall val ues of O(E2 ~ 0 . 35 ) the equation of 

continuity (7 - 60(b) ) may likewise be used for approximate computations . 
For lattices of large pitch) only the method of characteristics gives re ­
sults which are in good a.greement with exper iment . 
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7-15 . CHARACTERISTIC FEATURES OF THREE- DIMENSIONAL 

FLOW IN LATTICES 

As was already pointed out ) the ring lattices of turbomachines con­
sist of radially arranged blades of finite height (length) . The shape 
of the interblade passages of the lattice varies in the radial direction . 
In condensation turbines, lattices with variable height blades are used . 
The guide lattices are ahvays shrouded . Rotating lattices are sorr.etimes 
designed without shrouds. 

These construction features of real lattices have an important in­
fluence on the flow . The phenomena observed in three - dimensional lat ­
tices are not taken into account in the analyses of two - dimensional flow . 
On the basis of test data we shall analyze the special features of three­
dimensional flow in a straight row of lattices . 

In these lattices secondary flows are formed near the tips of the 
profile on the convex surface of the blade . The cause of formation of 
secondary flows in the interblade channels of a lattice is the viscosity 
of the gas and the transverse pressure gradient arising from the curva­
ture of the channels . 

Because of the increased pressure on the concave surface of the 
blade) the gas particles flow toward the convex surface of the blade 
(fig . 7-66(a)). For sufficiently high ratios ~/a2 (see fig . 7- 66 (b))) 

the secondary motion of the gas over the concave surface is only achieved 
with difficulty, because the particles must move over a long path over 
which there is friction . Such a flow from the concave surface to the 
convex surface of the neighboring profile is possible only in the bound ­
ary layer along the end walls bounding the channel . The peripheral flow 
of the gas in the boundary layer therefore starts on the concave surface 
at the tips of the profile (near the end walls) and continues over the 
end wal ls toward the convex surface of the blade. As experiment shows, 
there occurs a nonuniform distribution of the pressures over the height 
of the blade ; the pressure is lower on the concave surface near the end 
walls, while at the tips of the convex surface of the blade the ~ressure 
is higher than it is in the middle section. Along the end walls of the 
channel } the pressure drops in the direction from the concave to the con­
vex side of the blade . At the tips and along the convex surface of the 
blade) the boundary layer flmving from the end walls encounters the 
boundary layer moving along paths parallel to the end walls . As a re­
sult, near the tips of the blade and on the convex surface rapid growth 
of the boundary layer occurs ; the thickness of the layer increases 
sharply . In the majority of cases this leads to a local separation of 
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the layer and therefore to the formation of vortices . 25 At the same 
time, because of the motion of the boundary layer from the concave sur ­
face to the convex surface of the blade , compensating flows are formed 
at the blade tips which are directed from the convex surface toward the 
concave surface. These flows, together with the boundary layer separa­
tion on the convex surface, form vortex regions (trailing vortex) near 
the ends (butt faces ) of the channel walls . 

In this way, at the convex surface of the blade near the tips, a 
vortex pair arises consisting of two vortices whose direction of rota­
tion does not cOincide with the direction of the cir culation about the 

profile. 26 The vortices rotate toward one another in correspondence 
with the direction of motion of the gas in the boundary layers at the 
plane walls (figs . 7- 66 (b ) and (c )) and induce a field of velocities 
normal to the streamlines of the primary flow (fig . 7- 66(d)), which leads 
to a certain increase in the outlet angle of the flow from the lattice . 

In the photographs of the wakes of t he flow (fig . 7- 67) there is 
clearly seen the secondary flow of the boundary layer on the end walls . 
Behind the points where the vortices ar ise , the secondary flow of the gas 
continues to be associated with the boundar y layer s on the plane walls 
and the convex surface of the bl ade ; the vortices are enlarged towar d 
the outlet section . On account of the growth of the vortices, their 
axes arrange themselves with a certain inclination to the plane walls . 

At small ratios L/a2' the vortex regions are propagated over the 

entire section of the channel forming a vortex pair characteristic of 
curved channels of square section . The over-all vorticity of the flow 
sharply increases . 

25Depending on the shape of the profile and of t he interblade chan­
nel and also on the flow regime in the latt ice ( inl et angle, M2 and 

Re2 numbers) the separation of the boundar y layer on the convex·surface 

may not occur . Tests show that separation does not occur for large in­
let angles and small flow veloc i ties . 

26In connection with the question as to the mechanism of formation 
of secondary flows in the lattice, it should be r emar ked that attempts 
to make use of the theory and computation pr ocedure of the induced drag 
of a wing of finite span for determining t he tip loss es in lattices did 
not give any essential results . The tip los s es in a lattice and the in­
duced drag of a wing have a different or igi n . I t is sufficient to state 
that the tip phenomena in a lattice ar i s e f r om the viscosity of the 
fluid, whereas the formation of trailing vortices from the tips of a 
wing of finite span are not directly connected with the viscosity; the 
tip vortices of a wing should exist for the flow of an ideal fluid also. 
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The experimental investigations confirm the occurrence of separation 
and vortices in a row of straight blades . The distribution of the dyna­
mic pressure and the static pressure over the height of the blade near 
the convex side in the nucleus of the flow and at the concave side in 
the nar row section of the channel in figure 7- 68(a) shows the character ­
isti c variation of these parameters in vortex regions . In the vortex 
zone POi and Pi decrease ; this decrease does not appear in the nuc -

leus of the flow or at the concave surface . In the outlet section of 
the lattice the picture of the distribution of PO. and p. remains 

l l 

qualitatively the same (fig . 7- 68(b)) . The zones of reduced values of 
POi are displaced from the plane walls . The dips in the curves are 

more marked . 

The separation of the boundary layer on the back of the blade and 
the formation of vortices are a source of considerable loss of energy, 
particulary for relatively small blade heights . The change in the geo ­
metric parameters of the straight lattice and, in particular, of the re ­
lative height and pitch affects the magnitude of the tip losses . 

With decrease in the height La the vortex regions approach each 

other (fig . 7- 69(a ) ) and are slightly shifted toward the side walls. 
The strength of the vortices, within definite limits of the change of 
Za' practically does not change. Only for Za ~ 2 is there a notice -

able increase in the effect of the vortices in the nuclear flow (the val ­
ues of POi decrease ) . For lattices of height Za < 1 . 7, the entire 

flow in the channels is vortical and the pressure of complete stagnation 
in the nucleus is Im,ered. 

From this it follows that the absolute magnitude of the losses in 
vortical regions does not change with decrease in the height of the 
blades up to certain li~its . The relative losses change in inverse pro ­
portion to the height La ' With increase in the pitch of the profiles 

( fig . 7- 69 (b)) the strength of the tip vortices increases, and there 
occurs a certain displacement of the zone of maximum losses away from 
the end walls . 

A large effect on the tip losses is exerted by the curvature of the 
inter blade channels. As the curvature increases the losses increase . 
This trend is particularly intense for lattices of small height . 

The flow regime, that is, the inlet flow angle and th2 Re2 and M2 
nU1J1bers, has an effect on the magnitude of the tip losses . With an in­
crease in the entry angle of the flow (fi g . 7- 70 ) t he strength of the sec ­
ondary flows decreases . We rray note that at large entry angles the trans ­
verse pressure gradient in the interblade channels decreases. At the same 
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t ime tl-Jere is a 10\.ferinf of the i nt ensi ty of the s econdar y f low of the 
boundar~! layer t oward the conv ex surfa ce of the blade, the thicknes s of 
the l ayer on the back decrea s es and the vorticity loss es decrease. An 
i ncr ease i n the velocit)T of the subsonic flow in the lattic es l eads t o 
a decrea se in the tip losses, a fact which is evidently explained by 
the decr eas e i n thickness of the boundary layer. 

The investigation of the three- dimensional flow in lattices of 
straight blad es qualitatively shows the same change of the mean (aver­
aged over the pitch) loss coefficients near the end walls for all lat­
tic es. With an i ncreasing distanc e from the end walls, the loss coef­
ficient sharply decreases at first and at a small distance reaches the 
minimum value beyond which it again increases. In the zone of lowering 
of ~p there is found a decrease in the thickness of the boundary layer 

on the conv ex surfaces and of the depth of the end dips. The character 
of the variation of ~p over the height for short blades for different 

velocities is seen in figure 7- 71. The curves in figure 7-71 show 
clearly the decrease in ~p with an increase in M2 for M2 < 1. 

In correspondence with the above -mentioned effect of the curvature 
of the channels and the inlet angle, a certain relation must exist be­
twe en the profile and tip losses. In lattices with large profile losses 
there are found also increased tip 10sses . 27 From a consideration of 
the scheme of formation of the tip losses in a straight lattice it fol­
lows that the measures taken to decrease the transverse pressure gradi ­
ent in the interblade channel and therefore in lowering the strength of 
the peripheral flows in the boundary layers greatly decrease the tip 
losses. Of great importance is also the character of the velocity dis­
tribution over the height at the entry to the lattice. With a nonuni­
form velocity distribution over the height at the entry the tip losses 
increase. In this connection it should be remarked that the use of 

28 overlap in the real lattices of turbomachi nes leads to a sharp in-
crease in the tip losses . 

In cylindrical lattices, the character of the tip phenomena changes 
somewhat. Because of the change of the pitch of the profile over the 
radius and the occurrence of a radial pressure gradient, the symmetry of 
the vortices arrangement is disturbed . Both vortices are displaced 
along the radius from the casing toward the hub of the annular lattice. 

27It is assumed that all fundamental geometrical parameters of the 
lattices compared remain the same (pitch, setting angle, and height of 
blades) . 

28J3y overlap is mea.nt the difference in heights of two neighboring 
lattices. As a rule the height of the rotating lattice is chosen to be 
greater than the height of the guide lattice. 
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The intensity of the upper vortex thereby increases, ,.,hile that of the 
lower decreases (fig . 7- 72) . The radial pressure gradient in an annular 
lattice is the cause of the additional losses of energy since the pe­
ripheral flows in the boundary la;ver are increased by such gradient . 

In conclusion it should be emphasized that, for lattices with small 
relative height, the value of the optimum pitch must be determined after 
a.ccount has been taken of the tip phenomena. The optimum pitch may de ­
crease in comparison with that of a plane lattice . 

Classification of the Losses in Lattices 

The results of theoretical and experimental investigations consid ­
ered in this chapter of the flow of a gas through turbine lattices per ­
mit classifying the energy los3es in lattices according to the following 
scheme : 

A . Profile losses (in the plane lattice) 

(1) Losses by friction in the boundary layer on the profile 

(2) Vorticity losses by the separation of the flow on the profile 

(3) Vorticity losses behind the trailing edge (edge losses) 

B . Losses in three - dimensional lattices (in addition 

to those of group A) 

(1) Losses produced by friction at the bounding walls of the lat­
tice over the height and due to peripheral (secondary ) flows in 
the boundary layers 

(2) Losses in the thickened layers on the back of the blade and 
vorticity losses due to separation of the layer at the tips and 
the formation of vortices 

c . Have losses ( in addition to those of groups A and B at 

near sonic and supersonic velocities) 

In the general case, for the investigation of l attices of turbine 
stages under actual conditions) there are added the losses arising from 
the unsteadiness of the flow and the heat losses (when cooling is 
employed) . 
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As was stated above) only the friction losse s in the lattice can be 
determined by computation at the present time . The theoretical methods 
of computing a potential flow through a lattice and the semiempirical 
methods of computing the boundary layer permit solving this part of the 
problem with satisfactory accuracy . The total losses in a lattice can 
be determined only experimentally . The physically evident connection 
between the geometrical parameters of the profile and lattice and the 
magnitude of the losses does not at the present time have an exact math­
ematical expression . 

Translated by S. Reiss 
National Advisory Committee 
for Aeronautics 
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(a) Ring (cylindrical) 
lattice. 

(b) Straight lattice. 

(c) Plane lattice. 

Figure 7-1. - Geometrical parameters of lattice. 
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(a) Equipotential lines and streamlines. 

(b) Hodograph of velocity. 
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(c) Distribution of relative velocities and of 
pressure coefficients over the profile. 
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Figure 7-3. - Flow of ideal incompressi ble fluid through 
reaction lattice. 
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(a) Profile of lattice. 

(b) Hodograph. 

(c) Distribution of relative velocities 
over profi le. 

Figure 7-4 (A). - Flow of an idea.l incompressible 
fluid through compressor la.ttice. 
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(a) Profile of impulse blade. 

(b) Hodograph. 
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(c) Distribution of relative velocities 
over profile . 
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Figure 7-4 . - Flow of ideal incompressible fluid through 
impulse lattice. 
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Figure 7-5. - Effect of inlet angle, pitch, 
and setting angle on relative velocity 
distribution over profile of lattice. 
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Sum of flows. 

(b) Noncirculatory flows. 

(c) Circulatory-axial flows. 

Figure 7-6. - Flow of idea~ incompressible fluid through 
lattice of blades. 



, 

NACA TM 1393 

130 .15 ,----,..---n----....--r--r-..,..--r--'---. ..,----.------.---r----, 
m 

.~ ~--~~-~---+4_--~1--~--+----

.13 ~ 

.12 ~--+---lt_+__.lr--+-'t__++-_+__+--~ flo f31 

C. C; .n 0 
LJC1 

:~~-t------'zy 

.07 ~ 

.$ Co Po f3.; 
-~ 

I ', ,... 

~ ~0 ~ 

.OJ 

.~~---+----~----~----+-----~--~~~~~~~----4-----4 

.01 

o 
.6 .7 .8 .9 1.0 1,1 1.2 1.J 1.4 

Figure 7-7 . - Dependence of the coefficient m = 6 c 2/ 6 cl on pitch 
and setting angl e of lattice of plat~s . [~A A note: The abscissa 
should obviously be bn instead of ~'J 

t bn 

85 



86 

(a) 

(b) 

(c) 

( d) 
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Figure 7-8. - Examples of conformal transformation of lattice. 
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I C2:tr 
(a) Transverse flow. 

----- CUong 

• CZlong 

(b) Longitudinal flow. 
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(c) Circulatory flow. 
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(d) Sum of flows. 

Figure 7- 9 . - Flow of conformal transf ormation of lattice 
of circles. 
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Figure 7-10. - Computation of a lattice 
by the method of G. S. Samoilovich. 
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Figure 7- 11. - Comparison of the theoretical and experimental 
pressure distribution over a lattice profile . 
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Figure 7-12. - Determi nation of an equivalent lattice of circles. 
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Figure 7-14. - Construction of f low stream. 
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Figure 7-15. - Scheme of electrical model of 
flow without circulation. Measurement of 
potential. 
1, electrodes; 2, source of alternating 
current; 3, potentiometer (water rheostat); 
4, zero indicator (radio phones); 5, unit 
of potential. 
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Figure 7-16. - Scheme of electrical model of f low 
with circulation. Measurement of velocities. 
1, probe with two needles; 2, amplifier; ~, rectifier; 
4, galvanometer; ----, equipotential lines. 
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(a) Turbine (converging) lattice. 
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~ _ _ ~ __ ~b 

(b) Compressor (diffuser) lattice. 

Figure 7- 17 . - Forces a cting on profile in lattice . 



Figure 7-18. - Determination 
of coefficient of peripheral 
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Figure 7-23. - Computed magnitudes of the friction loss coefficients 
in turbine lattices as a function of ~1 and ~2 • 
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(c) M2 = 0.940 

Figure 7-24. - Spectra of the flow of air through 
a r eaction lattice at supersonic velocities. 
Relative pitch of profiles t = 0.860, inlet 
angle of profile ~2n = 150 52' (visualization 
of trailing wake). 
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Figure 7-27. - Distribution of static pressures in the boundaries of the 
vortex wake behind a lattice for different trailing edges. 
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1, with presence of flow separation; 2, with 
nonseparating flow (computed). 

Figure 7-35. - Determination of the 
velocity in interblade channel of 
constant width and curvature. 
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Figure 7-37. - Comparison of exact and approximate determinations 
of velocity in interblade channel. 

exact solutionj o approximate values. 
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Figure 7-38. - Local maximum 
velocities on convex side of 
profile as function of M2' - I 
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Figure 7- 49. - Scheme of outflmv f rom a reaction lattice 
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Figure 7-50. - Spectra of air flow through reaction lattice at near sonic and 
supersonic velocities. Relative pitch t = 0.543; exit angle of profile 
~2n= 150 52'. 
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Figure 7-50. - Con~luded. Spectra of air flow through reaction lattice at near 
sonic and supersonic velocities. Relative pitch t = 0.543; exit angle of 
profile ~2n = 150 52 1 
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(a) 

(b) 

Figure 7-51. - Spectra of air flow through 
reaction lattice at supersonic velocities. 
Relative pitch of profile t ~ 0.86; exit 
angle of profile ~2n = 150 52' • 
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(c) 

Cd) 

Fi gure 7-51. - Concluded. Spectra of air 
f low through reaction lattice at super­
sonic velocities. Relative pitch of 
profile ~ = 0.86; exit angle of profile 
/3 2n = 150 52 '. 
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Figure 7- 54 . - Distribution of the flow 
parameters over the pitch of a 
reaction lattice at supersonic 
veloc ities. 

Figure 7- 55 . - Scheme of flow spectrum at the exit from a supersonic 
reaction lattice at the computed regime . 
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(b) Ml ;: 0.89. (c) Ml = 0.98. 

(d) Ml ;: 1.02. ( e) Ml ;: 1. 36 . 

Figure 7-59. - Air flow spectra through impulse lattic~ 
at near sonic and supersonic velocities. 
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Figure 7-61. - Spectra of supersonic 
flow about a lattice of plates; 
M2 = 1.42. 
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Fi gure 7- 63 . - Determination of the angl e of deflection of 
the flow behind the throat of a lattice . 
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Figure 7- 64 . - Computation of the angle of deflection behind the 
throat by the method of characteristics. 
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Figure 7-65. - Experimental and computed mean angle of deflection of a 
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Figure 7-67. - Wakes of tip vortices 
in interblade channel. 
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Figure 7- 72 . - Lines' of equal 
coefficients of energy loss 
in the narrow section of a 
channel of a ring lattice. 

~p J ~=q.n: 
/ / II/' i-
f '£Mz=(JJ2?~ 

;4 

12 

- 1/ / I, K 
Mz::o'·D5./~ V ' -.. k /17 jI ['., ........ , 

>-'-V /' ....... I·~' 
'\ 

Nk"O.5 i'-- -r! II 1f~=W5 I"-
~ " 

, 

M <=o.72V ~ 1/ I"-
''\ ["\ 

.1-- ~~ ~"" / VtMz=D.89 Mz::oO.89 ...... 
, 

~ ["\ 
........ N ............. ~! - I' , 

~ ~/ I" 
" .,/ f" 

10 

8 

6 

I;. , 

2 I ["\ , 

I I l"-

I I z~ 
0 .5 .6' J ,8 . .9 ~o 

Figure 7-71. - Distribution of mean loss coefficients 
over height of short blade for various M2 numbers. 
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