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NACA TM 1319
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1319

TORSION AND BENDING OF PRISMATIC RODS OF
HOLLIOW RECTANGULAR SECTION*
By B. L. Abramyan

In the present paper a solution is given for the problem of the
torsion and bending of prismatic rods of hollow rectangular sections.

As in the former paper (reference 1), the method given by
N. Kh. Arutyunyan (reference 2) of introducing auxiliary functions was
employed in the solution of this problem. This method permitted reduc-
ing the solution of the partial differential equations of the problem
to the solution of linear differential equations of the second order
with constant coefficients and reducing the determination of the con-
stants of integration to the solution of an infinite completely regular
system of linear equations.

The obtained formulas determine the stiffness in torsion and bend-
ing as a function of the geometric parameters of the section.

At the same time, there are indicated the limits of épplicability
of the semiempirical formula of Bredt (reference 3) for the determina-
tion of the stiffness in torsion of hollow thin-walled rods.

1. TORSION OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

1. Statement of the problem. - The determination of the stress
function U(x,y) for the torsion of a rod of a doubly connected cross
section reduces, as is known, to the integration of Poisson's equation

_ U | d%w

vey = &0, 9%
dx2  QJya

2 (1.1)

when the function U(x,y) becomes zero at the outer contour and assumes
a constant value Uy on the inner contour (fig. 1). From the symmetry

it is sufficient to find the function U(x,y) only for the part of the
section ODEFBC. In order that the solution extend to the entire region
of the cross section, it is necessary that on the lines DE and BC the
normal derivatives of the function U(x,y) be equal to zero.

*"Kruchenie i izgib prismaticheskikh sterzhnei S polym pryamougol'nym
secheniem." Prikladnaya Matematika i Mekhanika, vol. 14, no. 3, 1950,
pp. 265-276.
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It is assumed that in the region OABC the function U(x,y)
assumes the value Ul(x,y) and in the region ODEG the value Uz(x,y).
It is ideal to obtain the function Ui(X,y) in the form
Ui(xJY) = qi(xJY) + éi(x:Y) (i =1,2) _ (1.2)

where the functions &;(x,y) (i = 1,2) exists only in the region OAFG,
¥,(x,y) exists in the region OABC, and ¥, exists in the region ODEG.

For the auxiliary functions Y¥;(x,y) and %;(x,y), the following
equations are obtained: 3 ’ '

viy, = -2 v, =0  (i=1,2) (1.3)

The following conditions must be satisfied:

b4
¥,(x,0) = (gl)m =¥1(0,y) + #(0,y) =0  ¥y(x,d) = Uy (1.4)
I} 4 h .
¥5(0,y) = (572)3,=b = ¥5(x,0) + ®5(x,0) =0 ¥5(4n,y) = Uy (1.5)

The boundary conditioné'for the determination of the functions
¥, (x,y) and ¥,(x,y) are nonhomogeneous; however, following

G. A. Grinberg (reference 4), set

; .k : ; . knx
yl(X;Y) = fk(x) 81n-a§2 YZ(X)Y) = VK(Y) Sln'ag_

k=1 k=1
' ' (1.6)

For &,(x,y) and ®,(x,y) the following conditions are then
obtained:
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. bo 2 B
®,(x,41) = 5(0,5) = o iy =0
5

.k
¢5(dp,y) = E fr(dp) sin afz-on

k=1

(1.8)

It is ideal to obtain the functions ¢,(x,y) and &,(x,y) in the
form :

L d . o0

' . kny . knx
& (x,y) = g Py (x) sin 3~ &5 (x,y) = E Wk(Y)‘Sln'ag—

k=1 . k=1
(1.9)

. Equations (1.3) to (1.9) completely determine the function U(x,y)
in the region ODEFBC. ‘ ’

2. Solution of the equations of the problem. - Making use of equa-
tions (1.3) to (1.9), the following equations are obtained:

n Kx \k 2Up - T

fi(x) = g sh 3= +.By ch3— = (-1)7 — + [} - (-;):] (o)
(2.1)

v () = My sh.—gy f N, ch ggy '( 1)k [} - (.1)] HE

' 2U
_ knx knx x =0 knx
op(x) = Dk sh az— + C ch EI_ + (-1} — (1 - ch ———)_+

= v, (d7) a
(-1)k £ P~§ z,fpshﬁz-kanﬂg
o (pa;/d5)? + k% | %2 dp . da

p=1 '
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2U,
- Ky ky o, o(c1)e 9 (1 - on EW
W (y) = Ly sh g, TTkehgt+ (-1)* = (1 - en ) *

ok 2 £5(dz) dz kry _ . pry
(-1) > 5lq. Pshg™ - ksin =
" (pdo/d7)% + k 1 2 1

p=1

(2.4)
Then fp(dé) and vp(dl) have the valies
: 2
Pﬂdz Pdez ZUO 4dl [~ n
f.(dp) = A, sh + B, ch —— - (-1)P — + - {1 - (-1)P
piel = fp ST P ()3 L -
(2.5)
14 2
pﬂdl pﬂdl 2UO 4(12 - n
_ - (-1)P =2 - (-1)P
vp(dl) = M, sh ” + Ny ch % (-1) 5w o) hl ( 1)_

3. Determination of the. constants of integration. - For the func-
tions fy(x), vi(y), 03 (%), and w (y), the boundary conditions from

equations (1.4), (1.5), (1.7), and (1.8) have the form

fie'(a) = £(0) + 01 (0) = 0 @y(dp) =0x'(dp) = 0 |
(k=1,2, . . .)

0]

]
li
1l
I

vk'(b) vk(O) + WkFO) 0 wk(dl) wk‘(dl)

(3.1)

With the aid of these conditions the equations for the determina-.
tion of the constants of integration are obtained from equations (2.1)
to (2.4). '

With the elimination of Ay, Mg, Dy, Cy, Iy, and F, from the

obtained equations, a set of two infinite systems of linear equations
(reference 5) is obtained. The following notations are introduced:

' : k knd
(L) ke (-1) 1
By = Sydydp “—— sh 3 Ny = Bydjdpy <& sh T (3.2)

This set of two infinite systems of equations is then reduced to
the form
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e

Sk = E Rpakp + Bk Rk = E .. Spckp + Tk (k-= l)z) . ‘ ')

p=1 p=1 (3.3)
where
dqd prd pn(b-d)
*"kp:gi ZZlZZZShdlSChganh dl
T 31%p% + dp%k 2 2 2
5 -1 20, L4 1-(()EY ceen 2 2 [, B o kndz)
(3.4)
© dqd prd pr(a-d,)
0@=-2—1-§ zzlzzzshdzschgnach 3 2
T dp%*“ + d;%k 1 1 1
N 2o . 41- _lkEECSChkﬁdl_i( _ 24, thkndl)
(3.5)

Systems (3.3) may be written in the form

o0

Z, =ZAVPZP + B, (§=1,z, o e ) (3.6)

p=1

where it is necessary to set

Zan-1 =8¢ Zan =Ry  Agpon =0 Appoop1 = Ckp
(3.7)

Bon-1=PBx  Ban =7, Agpi,2m1 =0 Azn-1,2m = BKp
A few cases will be considered.

1. The infinite system (3.6) is completely regular for b2d; and
a>d] since from equations (3.4), (3.5), and (3.7)



6 4 NACA TM 1319

A = c < _15' 32_ 1
p=1 p=1 p=1

(3.8)
k Y1 1
Ao = Ay § — =
é 2n-1,p E kp = nd, (pd1/d,)2 + K2
= . p= 1 p=l
2 3 Knd, ) 2
where the inequalities were used
' pmdy prb pn(b-dq) prndy ( pndl) 1
sh sch ch = sh exp | - < = (3.9)
3, & a5 a5 , 2
prd ' pr(a-ds) prd prdo Y
sh dzschg"ach . 2 zsh,dzexp - 'dzs% (3.10)
1 1 1 1 1
cth x - %{ <1 (0 x< ) (3.11)

Hence, for any v

: : 1 A
< = =
Avp € 3 (3.12)

2. The system (3.6) is regular for the particular cases where
a>dp, b =47 and a =dy, b>dy (where a rectangular hollow section

is present).
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In this case

: 2k 92 1
E A = é Crn < — =— § <1 (3.13)
p=1 p=1 p=1
(-] o0 d -] ;
2k %1 1
Aol = ey < = 7= <1 (3.14)
E en-1,p g kp © x4, 5 (pd1/dz)2 + K2
p=1 p=1 p=1

where the inequalities (3.11) were used

prd prd. pr(b-d ) prds pr{a-d,)
1 sch 1 ch 1 <1 sh z sch 222 ch 2

<1
a5 dz i 4 4 4

sh

(3.15)

According to equations (3.13) and (3.14) for any v

§ Avp <1 (3.16)
p=1 .

3. When a =Db and dp = d] = 4, a hollow square section (fig. 2),

‘a single infinite system of linear equations. which is entirely regular
for a/d 2 W > 1, where p is a finite number, is obtained in place of
the systems (3.3). This results in

Qo

Fy = g Fpbyp + ay (k=1,2, . . .) (3.17)
p=1 ‘
where
_ 2k pra pn(a-d) 1
byp = = sh px sch 3 ch 3 ] (3.18)
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20, k+1
1 0 4 1+ (-1) 2 2 .. k= :
% =k \@)e " ks sh kn 2 (l 'x B ) (3.19)
Z"’ ~2n(u-1) Z"’ -2n(u-1)
2k 1 + e 1 l+e
by.< 22 < (3.20)
kp = 2 p2 + k2 2
P =1 p:"’l
where the inequalities (3.11) were used and
- -2n(pu-1)
eh pr sch B8 op P(a-d) 1+ e (3.21)

d d 2

As'an example, the case where a/d Z U= 3/2 is considered. From
(3.20) is obtained

E bkp <1l -~ 6 = 0.5216
p=1

6 = 0.4784 (3.22)

The free term o of the system (3.17) satisfies the inequality

U,
joxl< 0.20264 Eg - 0.06198

(3.23)
The values of the unknown F, with an excess is denoted by Fk+
and the values with a defect by Fy .

Using the theory of regular and completely regular systems (refer-
ence 5) and applying limiting values yields the following estimates. for
Fo:

k

, Us™ Ut
F{~ = 0.27547 2 _ 0.09629 < F, g 0.27588 2 0.09%41 = Fit
a2 1 a2 1
Uo- v UO+ ’
F,” = 0.18234 —— - 0.11107 < F, < 0.18300 —— - 0.11128 = F.* ‘
2. a2 2 a2 2
(3.24)
Uy~ Unt :
- 0 0 +
Fz~ = 0.14762 —— - 0.09749 < Fz < 0.14845 —— - 0.09775 = F
3 a2 3 a2 3
Uy~ : UO+
™ - + —
0.13440 = " 0.09196 € F,"s Fp < Ff< 0.13739 - 0.09288

(k=4,5, . . .)



NACA TM 1319 ’ 9

where Uy' is the value of Uy with an excess and Uy~ is the value
with a defect.

4. Determination of the constant U,. - For determining Ug, use

is made of the theorem on the circulation of the tangential stress in
torsion (reference 6)

Tds = 2GR, ' (4.1)
Co

where Cy 1is the inner contour FHMLF of the section (fig. 1), o 1is

the area enclosed by this contour, G 1is the shear modulus, T 1is the
angle of torsion per unit length, and T, is the projection of the

tangential stress at any point of the contour Cy on the direction of
the tangent to the contour.

Substituting in (4.1) the value

oU dx oU dy '
T, = (5§ I - o EE) Gt (4.2)

and making a certain tranéformation, relation (4.1) is reduced to the
form

) o
(g) ax + (g‘i%) ay = 2(a-dp) (b-d1)  (4.3)
do dl

Use of the obtained values of f}(x) and vy (y) vyields, from
relations (1.2), (1.6), and (4.3),

dldz »
Uy = 2ab - ady - bd, +
Y dz(a-dz) + dy(b-d,) 1 2
knd kn(b-d4)
X en l sch 2% o A3 (4.4)
da dp
2 — =
El_ i{ ch kﬂdz ) kﬁ(a—dz) ) Bk + Yk
m K2 dq dy d; 172 k
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where Ry and Sy are the constants of integration determined from
the system (3.3); and By and v, have the values (3.4) and (3.5).
If the values of the coefficients Ry and Sy with excess and with

defect are substituted in (4.4) and this equation solved for Uy, the
values of Uy with excess and defect are obtained.

5. Determination of the stress function. - According to (1.2),
(1.6), (1.9),and the obtained values of the functions .fy(x), v (¥),
¢x(x), and w(y), the stress function has the form:

= prd
_ .. Prx 1 pry _
UL (x,y) = % vp(dl) sin & csch 3 sh a + y(ay-y) +

p=1

s Kknd ‘

1k Zk 2 kna kn(a-x) .  kny

did; E ( ;) * sh e sch 7— ch sin == +
k=1 |

2 E} (-l)k sh kﬂ(x‘dz) sin kny vb(dl) p(-l)p :
n dp 4 d,/d5)% + k2
K=1 (pdy/ 2) |
(5.1)
U1(x,y) = Uo L + y(d1-y) + . for dp< x< a
' 1

d d da d

= s knd | )
d1d5 (-l)k-j§ sh 2 sch £& oy kn(a-x) sin XY
1 1 1 1
k=1 .

(5.2)
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N

Us(x,y) = U EXE + x(dp-x) + for dj€ y<b

R knd.
; : k 1 kxb kn(b-y) . knx
dld.2 ( 1 ) sh dz sch dz th d sin d

2 2
k=1 . _ (5.3)

pndy
by P
Un(x,y) = % f (dz) sin = a csch T sh a4 + x(dp-x) +

p=1

an
R knd
dyds (-1)% Tk g ZT gop kb oy, k(boy) oy kmx
k a , a a5
K=1

dp

21, k+1 kn(y-dq) A
0 E (-1) 1/ . knx '
» n ch 3, sin + for 0 y< 4;

( l)k <h kﬂ(y'dl) sin knx = fp(dz)(_l)P P
P dl

dp (pdp/di)? + k2
p=1 ‘
(5.4)
where fj (d5) and vp(dl) hgve the values
@) (-1)p+1 | 2ug 4d12[ : )p+l]
f (ds) = 1+ (-1 -
p\2 D P PZHS .
prds prs pr(a-dy)

d-:ds sh sch ch
splz_ 3 & &

(5.5)
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5 .
v (d,) = + 1+ (-1)P - -
p+l P T p23
prd; pib pr(b-dq)
Rpdydp sh I sch & ch ”

(5.6)

By the substitution of the obtained values of the stress function
U(x,y) in the general formulas, the stress and stiffness in torsion are
obtained.

As an example the torsional stiffness and stress of a rod with a
hollow square section (fig. 2) will be determined.

6. Determination of the torsionél stiffness. - The substitution
in equations (5.1) to (5.8) of b =a and d] =dy, =d and the use

of the formula for the stiffness of a section

- 8@ [(a-a)z U +£d£d U(x,y) d%cdy + zf d.yf u(x,y) d.x:]

(6.1)

yilelds, after integration,

U .
=8Gd_4 a .1 E‘_O .]_' E‘—l + 6.2
(d )d 2 3\a (6.2)

W

4 § 1 kna . kn(a-d)

, 2 [l + sh kn sch ) sh ) -

kna kn(a-d)] p( 1)p+l £ (d) _
p2 + K@ dz

(continued on the following page)
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o _ 2 [ch kn sch XK1a gp kn(a-d) | ¢ kna sh kn(a—d)] +
3 3 3 a 3

k=1,3, . . . .

= 1
: fp(@) g or )
' z T3 (6.
ne .. d i3]

p=13, .

[\V]

where Uy is determined from the equation

Q0

4 E : k kna . kn(a-d) d k
= -3 o7 sh kn sch ) ch e — A
k=1

k=1 (6.3)

ol &
ol
ale

and fp(d) has the value

- pdz ‘ - U _ P+l
fp(d) =Q1)J—_%P sh pn sch pga ch pn(g d) 270 _ a1+ (-1) ]}

T d2 P2n3
(6.4

the unknown constants Fj being determined by inequalities (3.24) and
o, having the value (3.19).

Substitution of the obtained values of the coefficients Fk+ and
Fy™ in (6.2) yields the upper and lower limits of stiffness. The
coefficients with a defect Fy= will correspond with the lower stiff-

ness limit C~ and the coefficients with an excess Fk+ will corre-
spond with the upper stiffness limit Ct.
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TABLE I

a/d | Co* cot Co~ A 5
1.5 8.0 11.052 11.051 | 38.4 | 0.009
2.0 27.0 32.952 32.949 | 22.0 | .008
2.5 64.0 73,780 73.775 | 15.3 | .008
3.0 | 125.0 | 139.518| 139.509 | 11.6 | .007
3.5 | 216.0 | 236.164| 236.150| 9.3 | .007
4.0 | 343,0| 369.716| 369.697| 7.8 | .005
5.0 | 729.0| 771.542| 771.509| 5.8 | .004
10.0 | 6859.0 | 7035.066 | 7034.902 | 2.6 | .002
20.0 [59319.0 | 60034.051 | 60033.323 | 1.2 | .OOL

In table 1 are given the relative values of the stiffness computed
by formula (6.2):

004 = ct/cat ¢y = c/cat
and the maximum relative error ’
5 = (¢t - c*)/c-
in percent for different‘ratios a/d.
For comparison thére are also given in table 1 the values of the

relative stiffness computed by the semi-empirical formula of Bredt
(reference 3). :

Co* = = = (2 z- 1)5 (6.5)

and the different A = (C* - C*)/ct in percent.

From table 1 it is seen that the semi-empirical formula of Bredt
(6.5) gives sufficiently close results only for thin-walled rods for
which a/d 2 5. For thick-walled rods, however, for which a/ d< 5
the Bredt formula is not applicable; for a/d = 4 it gives an error
of 8 percent which rapidly increases.

7. Determination of the stresses. - With the use of expressions
(5.1) to (5.2) for the stress function, the stresses are readily
obtained by the usual formulas of the theory of elasticity.

Leaving out the computations gives the following expressions for
the stresses at the points (a,0) and (a,d) for the rod with & hol-
low square section represented in figure 2:
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X,(a,0) = = + 1+ 1 ('1)ka schl-‘fc’{—-a sh knp Grd  (7.1)
k=1

X (a,d) =) 20 -1 4« F. sch 22 oh knl gra (7.2

2(2,4) ={ —3 i sch =3~ sh kx .2)
E=1

Y,(a,0) = ¥,(a,d) = 0 ' (7.3)

After the substitution of the coefficients Fk+ and Fp", the
upper and lower limits of the stresses X,(a,0) and X,(a,d), where
the upper stress limit XZ+ will correspond with the coefficients with
an excess Fyt (k=1,2, . . .), are determined.

In table 2 are given the computed values of the stresses Xz(a,O)
and Xz(a,d). In the first column of each stress are given the values
with an excess and in the second column, with a defect.

TABLE 2
a Xz(a;d) Xz(a,O) Xz *max
d Gtd Grd Gzd
1.5 0.3149 0.3143 2.0212 2.0212 2.0
2.0 0.7325| 0.7322 2.6326 2.6324 2.25
2.5 1 1.2085 1.2082 3.1798 3.1797 2.6667
3.0 1.7050| 1.7048 3.6974 3.6972 3.125
3.51 2.2068 2.2066 4,2048 4,2046 3.6
- 4,0 2.7092 2.7089 4,7088 4,7085 4,0833
5.0 3.7131 3.7129 5.7131 5.7129 5.0625
10.0 8.7204 | 8,7201 |10.7204 |10.7201 | 10.0278
20.0 | 18.7236 | 18.7234 |20.7236 [20.7234 | 20.0131

In the same table the values of the maximum stresses X,¥,
computed by the formula of Bredt, are given for comparison.

X x = L — Gtd - | (7'.4)»'
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From table 2 it is seen that in the determination of the maximum
stresses, the approximate formula of Bredt may be applied only for very
thin-walled hollow rods.

When a/d = 20, the Bredt formula (7.4) gives an error of
3.5 percent.

With decrease in the ratio a/d +this difference increases; for
a/d = 10 it is equal to 7 percent, for a/d =5 1t is equal to
13 percent, and for a/d =3 it is equal to 18 percent, etec.

II. BENDING OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION

8. Statement of the problem. - The stress function F(x,y) in
bending, as is known, satisfies the equation

2 J%F  dF Pv
V°F = + =
o2 | oyf | I(+

5 (v-v0) - Z—PI £1(y) (8.1)

within the region of the section and the condition

% = Z—PI X% - 2xxg - f(y)] % (8.2)

on the contour of the section where P is thé.bending force applied to
the free end of the rod at the center of gravity of the section, v is
the Poilsson coefficient, xg3, yg are the coordinates of the center of

gravity of the section, I 1s the axial moment of inertia of the sec-
tion about the y axis; the arbitrary function f(y) is to be deter-
mined from the conditions at the contour.

“On account of the symmetry (fig. 3) it is sufficient to find the
function F(x,y) only for the part ODEFBC of the section.

In order to extend the solution over the entire region of the
cross section, it is required, on the basis of the membrane analogy
(reference 7), that the function F(x,y) becomes zero on the vertical
axis of symmetry and the derivative BF/BX becomes zero along the
horizontal axis of symmetry.

By condition (8.2) on the section contour, the function F(x,y)
is determined with an accuracy up to a constant term. For the cross
section which is a doubly connected region, the number of constant
terms is equal to two; and for their determination use is made of the
theorem on the circulation of the tangential stresses in bending
(reference 6).
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It is assumed that in the region OABC the function F(x,y)
assumes the value F;(x,y) and in the region ODEG the value Fp(x,y).

It is ideal to obtain the function F;(x,y) (i = 1,2) in the form
Fi(x;Y) = Yi(x:y) + @i(x)y) (i;=l,2) o (8'3)

where the functions @;(x,y) (i =1,2) exist only in the region OAFG,

the functions Y¥q(x,y) exist in the region OABC, and ¥o(x,y) ' in the
region ODEG.

For the auxiliary functions W'i(x,y)' and &;(x,y) (i = 1,2),
setting f(y) = 0, the following equations are obtained:

v3¥ = K(y-b) V%; =0  (i=1,2) (K - % v ) (8.4)

1 +vV

where the following conditions must be satisfied:

Sy :
¥,(x,0) = (——l)x=a =¥, (0,y) +21(0,y) =0  ¥y(x,d;) =¢C;

ox
(8.5)

¥o(x,b) = ¥5(0,y) = ¥5(x,0) + &5(x,0) = 0

S , , (8.8)
¥a(dpy) = 3 (2a-a,) (b-y)a,
By the method described in the first section set
¥ (x,y) = £,.(x) sin 2y (x,y) = vi(y) sin XX
LETEE o TR S ) e k - dg

k=1 k=1" (8.7)

Then
b .
- = § .k :
1(dz,y) = (§§T)X_d = (x,0) = 0, & (x,d4y) = vic(d;) 51n‘ag§ -0
=d _ \

k=1
od
8,(x,d;) ( 2)

.f o (8.8) -
8§_ y=dl =V®2(O,y) =AO .
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-]

®5(dp,y) = Z fi(dp) sin %lﬂ - EPT (2a-dp) (b-y)d, (8.9)
k=1

It is ideal to obtain the functions &,(x,y) and &,(x,y) in the
form ’

.k knx
¢, (x,y) = % &y (x) sin afz &o(x,y) = E W (y) sin d;
k=1 k=1 (8.10)
Equations (8.4) to (8.10) determine F(x,y) in the region ODEFEC.

The constant Cl is determined with the aid of the theorem on the

circulation of the tangential stresses in bending for the inner contour
of the section:

) (BF1> ax + - J (an) dy = 0 (8.11)
I L =d; ox, x=dp T .

9. Determination of the bending stresses. - The solution of the
equations of this problem is analogous to the solution of the equations -
of the problem of the torsion of a rod.

With the omission of the'computations the values of the obtained
stresses are:

for the region OAFG

-2 - BV (z2a2) B v (o
Xz(x)y)_ZI (28' x)x+6:[l+\) (3y dl) 2Il+v (zy dl)b+

% kB, sch kna kn(a-x) cos ——— +

- knd
14 - . knx 1 kny
e E kvy (d,) 51n'ag— csch.—ﬁg— ch vl

(continued on following page)
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ZCl Z (- l)k

2 k(-1)¥ sh

kn(x-ds)

-k,ry

kn(x-do)
co

s Xy

a5 a
k=1

7 kma. kn a-Xx
Y, (x,y) =5 E kBy sch 3 ( ) sin dl -

k14
dp
p=1

= kn(x-d,)
—2' k(-l)k ch -—d———z—‘ sin
da | 1
p=1

2C1
dy
k=1

for the region GFBC

P c
X, (x,y) = 5 (2a-x)x + =

ZI 'm (Zy dl)b + = E k'Bk. SCh 78

o (d7) cos

(-1)k sh

dy

dy

p=1

[e{e}2) +
. Gy

v (dy) p(-1)P

DX osh prdy sh P .
dp

kny
dy

k=1

kn(x-do)

V. (dl)

do do

p(- 1)P

sin kny

dp

P!

d;

L __v 2_5.2y .
+ 5 Ty (v-91°)

kn(a x)

dy

CcOSs

19

(9.1)
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Y, (x,¥) = dl E kB sch 3 kna o k“(a‘ ) sin k“y (9.2)

for the region AFED

_ z : 2P | p
X, (x,y) = % (2a-x)x - -c;‘—z {ka + ('l)kT = (2a-dp) +
, k=1

dy -
2P _ v )2 (1 + (- l)k+lﬂ csch kb ch k(b ) i knx _

I T+y I, 3,

P B .
Chi (2a—d2)x - 5T l .y (dz-x)x

dsb
Y, (x,y) = - a"_z E {ka + (-1)k _i_ % (2a-d5) +
k=1 .

2 .
2P v k+1 kb kn(b- ) knx
T T (ion )2 (l + (-1) El csch 3, sh e cos T

& (2a-dz) (b-y) - &= T2 (b-y) (dp-2x) (9.3)

In these relations the constants of integration By and D are

determined from the infinite completely regular system of linear
equations.,

Translated by S. Reiss v
National Advisory Committee
for Aeronautics '
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