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NACA TM 1319

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL MEMORANDUM 1319 

TORSION AND BENDING OF PRISMATIC RODS OF

HOLLOW RECTANGULAR SECTION* 

By B. L. Abrainyan 

In the present paper a solution is given for the problem of the 
torsion and bending of prismatic rods of hollow rectangular section. 

As in the former paper (reference i), the method given by 
N. Kh. Arutyuriyan (reference 2) of introducing auxiliary functions was 
employed in the solution of this problem. This method permitted reduc-
ing the solution of the partial differential equations of the problem 
to the solution of linear differential equations of the second order 
with constant coefficients and reducing the determination of the con-
stants of integration to the solution of an infinite completely regular 
system of linear equations. 

The obtained formulas determine the stiffness in torsion and bend-
ing as a function of the geometric parameters of the section. 

At the same time, there are indicated the limits of applicability 
of the semienipirical formula of Bredt (reference 3) for the determina-
tion of the stiffness in torsion of hollow thin-walled rods. 

1. TORSION OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION 

1. Statement of the problem. - The determination of the stress 
function U(x,y) for the torsion of a rod of a doubly connected cross 
section reduces, as is known, to the integration of Poisson's equation 

(1.1) X2	 y2 

when the function U (X)Y) becomes zero at the outer contour and assumes 
a constant value U0 on the inner contour (fig. 1). From the symmetry 
it is sufficient to find the function U(x,y) only for the part of the 
section ODEFBC. In order that the solution extend to the entire region 
of the cross section, it is necessary that on the lines DE and BC the 
normal derivatives of the function U(x,y) be equal to zero. 

*"Kchenje i izgib prismaticheskjkn sterzhnei s polym pryamougol'nym 
secheniein." Prikladnaya Matematika i Mekhanika, vol. 14, no. 3, 1950, 
pp. 265-276.
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It is assumed that in the region OABC the function U(x,y) 
assumes the value U1 (x, y) and in the region ODEG the value U2 (x, y). 

It is ideal to obtain the function U(x,y) in the form 

U1 (x) y)	 1(x,y) +	 (x,y)	 (i = 1,2)	 (1.2)

where the functions 4 1 (x,y) (i 1,2) exists only in the region OAFG, 

!1 (x,y) - exists in the region OABC, and T 2 exists in the region ODEG. 

For the auxiliary functions	 (x)y) and 1 (x,y), the following 
equations are obtained:	 - 

= -2	 = 0	 (i= 1,2)	 (1.3)

The following conditions must be satisfied: 

1(x,0) =	 =
 1

1 (0,y) + 4 1 (0,y) = 0	 !1(x,d1) = U0 (1.4) 

!2(0,y) =
	 i)-b = 2(') + '

2(x,0) = 0	 2(d2,y) = u0 (1.5) 

The boundary conditions for the determination of the functions 
!1 (x,y) and ! 2 (x,y) are nonhomogeneous; however, following 

G. A. Grinberg (reference 4), set 

cc

	

	 cc 

k3ty
sin - ]_ , y ) = sin—	 !2(x,y)	 Vk(Y) . kitx 

k=1	 k=1
(1.6) 

For 4 1 (x,y) and 2 (x,y) the following conditions are then 

obtained:

= 1(x,O) =
	 /x--d2 =0

(1.7) 

=	 Vk(dl) sin kmrx -U0 

k=1	 -
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2  
= (0,y) = b-)	 0 

CO

kiTy 2 (d2 ,y) =	 () sinU0	

(1.8) 

k=1 

It is ideal to obtain the functions 1 (x,y) and 2 (x,y) in the 
form

1(x,y) 

=

 

k=l	

sin	 2(x,y) 

= 

Go 

Tj	 d2 

 

W() sin

(1.9) 

Equations (1.3 to (1.9) completely determine the function U(x,y) 
in the region ODEFBC. 

2. Solution of the equations of the problem. - Making use of equa-
tions (1.3) to (1.9), the following equations are obtained: 

kicx	 kitx — 
k	

(1)k	 + r1 — 
1)E 4d12 

f (x ) =Ak sh— +. 
d1	 B1chd	 kit	 L (kit)3

(2.1) 

kity - (-1) k 2U0 
+ r - (1)k] 4d22 

	

Vk(y ) =	 sh	 N ch — 
d2	 kit	 L 

-1] 3

(2.2) 

kitx	 ( 1)k	
(1 x kir"

^Dk
 

— ch—I + 

	

=	 sh	 + C
kit	 d11 

(-l)1-	

v(d1)	 11l	 kirtx	 pitxl sh -- k sin—I 
(pd1/d2 ) 2 + k2 [	

d1	 d2J 

P=1
(2.3)
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wk(y) = Lk sh	 + Fk ch kiry + ( 1 )k _2 (i - ch	 + kit	 a2) 

(])k2

r(a2)	
kiry k sin1 

	

it	 (pd2/d1)2 + k2 [2i 
p sh	 -	 dlj 

p= 1
(2.4) 

Then fp(d.2) and v(d1 ) have the values 

	

pird2	 pitd2	
(1)P	 + i	

[ 
2 r (-A f(d2 ) =	 sh	 +	 ch d.1 -	 (pit)3 1 -

(2.5)

	

pird1	 pird1	 2IJ	 4d.22 [

	

1 
v(d1 ) =	 sh	 + N ch	 - (_i)P	 +	 1 

	

a2	 p	 ()3	
- (_i)Pj 

3. Determination of the constants of integration. - For the func-
tions fk(x), vk(y), k(x), and wk(y), the boundary conditions from 
equations (1.4), (1.5), (1.7), and (1.8) have the form 

	

k' (a) = fk( 0 ) + k( 0 )	 0	 k(d2) = k' (a2 ) = 0
(k=1,2, . . .) 

Vk'(b ) = Vk( 0 ) + Wk( 0 ) = 0	 wk(dl) = wk'(dl) = o

(3.1) 

With the aid of these conditions the equations for the determina-
tion of the constants of integration are obtained from equations (2.1) 
to (2.4). 

With the elimination of Ak, Mk, Dk, Ck, L, and Fk from the 
obtained equations, a set of two infinite systems of linear equations 
(reference 5) is obtained. The following notations are introduced: 

( 1 )k	 kmrd2	 (1)k
	 k'—dl Bk = Skdid2	 sh	 Nk = Rkdid2	 sh (3.2 ) k	 d1	 k 

This set of two infinite systems of equations is then reduced to 
the form



NPLCA TM 1319
	

5 

Sk 

=+
 E Rpakp Rk =	 + (k=1,2, .

(3.3) 

where

	

2k	 d1d2	 ptd1	
ch sh	 sch a

kp =.-;;E di2P2 + d22k2	 d2	 d2 

1 r 2U04 1 - 1)k d1	 kicd2	 2 /	 2di	 kicd2\l csch.	 - 
= k2 	 +	 k	 d	 d1	 kt kith

th
 2d  

(3.4) 

	

2k	 d1d2	
sh 

P1Cd 
sch 

pia ch pit(a-d.2) 
— C lçp =

	 d2 2
P2 + d12k2 

'[Uo	

4 1 - (_1 )k d.2	 ktd1	 2 (

	

2d2	 krni1l 
csch	 -- 1 

	

1k = k 2d12 + 3	 k	 d2	 2	 - kd1 
th 

2d2 ) 

(3•.5) 

Systems (3.3) may be' written in the form 

;	

Go 

 
= Z: AvpZ, + Bv 

where it is necessary to set 

Z2 _1 = Sk	 Z11 = Rk 

B2n_1	 k	 B2 = 

A few cases will be considered.

(v=1,2, . . .)	 (3.6) 

= 0	 Al,2m_1 = Ckp

(3.7) 

= 0	 A2n..1,2m = akp 

1. The infinite system (3.6) is completely regular for b.>-d 2 and 
a . di since from equations (3.4), (3.5), and (3.7)
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 . 

CO	 00

1 =A2n-p ckp	
d2 L (pd2/d1 ) 2 + 

	

Tc di
p=1	 p=1	 p=1 

(C

th kitd1 a2
) - 2	 d2	 kicd.1	 2 

OD	 00	 CO 

A21, = k dl
 (pa1/a )2 +

	

p=1	 p=1	 p=1 

(Cth kitd2aj\
= - 	 d1 - kltd2) 

where the inequalities were used 

	

picd1	 p(b-d1)	 pitd1	 ( Pd1) 
sh	 sch—ch sh	 exp - d2	 d.2	 d2	 2

(3.8) 

(3.9) 

picd2	 p(a	 pic(a-d2)	 picd2	 ( pd2)< 1
(3.10) sh	 sch —ch	 sh	 exp -dl	 dl  dl	 d1	 d1	 2 

cth x -	 1.	
(Oxc)	 (3.11) 

Hence, for any v

-	 (3.12) 

2. The system (3.6) is regular for the particular cases where 
a> d2 , b = d1 and a = d2 , b> dl (where a rectangular hollow section 
is present).
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In this case

= 

-1:
2kd2V%	 1c <	

+	
1 (3.13)

	

p=1	 p=1	 p=1 

CO	 00	 CO 

a < - d1El ( 3.14= 
	 (/d)2 + 

	

p=i	 p=1	 p=i 

where the inequalities (3.11) were used 

	

pitcl1	 pitd.1	 pir(b-d1)	 P2	 pita	 pit(a-d.2) 
sh	 sch	 ch	 < 1	 sh	 sch - ch	 <1 

	

di	 di

(3.15) 

According to equations (3.13) and (3.14) for any v 

	

A < 1	 (3.16) 

3. when a = b and d2 = d1 = d, a hollow square section (fig. 2), 
a single infinite system of linear equations which is entirely regular 
for a/d. > 1, where is a finite number, is obtained in place of 
the systems (3.3). This results in 

k =Fb	 + ak	 (k=l,2, . . .)	 (3.17) 

where

pita  = -	 sh pit sch -- ch pit(a-d)	 1	 (3.18) 
+ 1c2
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Fird) 

	 4 1 + (_i)k+1 2 ( 2 
shkt	 (3.19)

OD 

kp	 2	
E 

i + e_2(P)	 1	 i + e_2(1) (3.20) 

p2+k2	 2 

p=1	 p=1 

where the inequalities (3.11) were used and 

pita  sh pi sch -a- ch pt(a-d) < i + e_2(1) 2	 (3.21) 

As an example, the case where a/d 	 = 3/2 is considered. From 
(3.20) is obtained

bkp  

e = 0.4784
	

(3.22)

The free term mk of the system (3.17) satisfies the inequality 

kf	
U0 

0.20264	 - 0.06198	 (3.23) 

The values of the unknown Fk with an excess is denoted by Fk+ 
and the values with a defect by k• 

Using the theory of regular and completely regular systems (refer-
ence 5) and applying limiting values yields the following estimates.for 
Fk.

U0_ U+ 
= 0.27547 -	 .09629 - 0

d2
F1 , 0.27588	 - 

d2
0.09641 = 

U0 
F - = 018234 .2 - - 0.11107 

d2
F.

'.
0.18300 - - 

d2
0.11128 = F 2

(3.24) 
U 

F3	 = 0.14762 —p--- - 0.09749 
d2

F3 . 0.14845 —p— - 
d2

0.09775 = F3 

0.13440 d2 0.09196 Fk 1'k	 0.13739 - 0.09288 
d2

(k=4,5, .	 .	 .)
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where U0 is the value of U0 with an excess and U0 is the value 
with a defect. 

4. Determination of the constant U0 . - For determining U01 use 

is made of the theorem on the circulation of the tangential stress in 
torsion (reference 6)

f

T eds 290	 (4.1) 

Co 

where CO is the inner contour FHMLF of the section (fig. i), 20 is 
the area enclosed by this contour, G is the shear modulus, 'r is the 
angle of torsion per unit length, and T 5 is the projection of the 
tangential stress at any point of the contour Co on the direction of 
the tangent to the contour. 

Substituting in (4.1) the value 

I U ax	 U dy\ 
T5 =
	 - .	

j G't (4.2) 

and making a certain transformation, relation (4.1) is reduced to the 
form

a 
P 

(Ui)y--di	

+ PIu2)	
dy = 2(a-d2 )(b-d1 )	 (4.3) 

	

 J	 x=d2 
d2	 d1 

Use of the obtained values of fk(x) and vk(y) yields, from 
relations (1.2), (1.6), and (4.3), 

d1d2 
U0 d2 (a-d2 ) + d(b-d1)	 2ab - ad1 - bd2 + 

	

d2 2 E Rk	 kitd.1	 kicbkt(b-d1) 
sh	 sch— ch	 +	 (4.4) 

	

it k2	 d2	 d2	 d2 

k=1 

d12 \\ 5k	 kicd2	 kita	 kit(a-d2)	 k + 1k
CO 

sh	 sch—ch	 -d 
L

d1	 d1	 d1	 1d2	 k 

k=l	 k=l
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where Rk and Sk are the constants of integration determined from 
the system (3.3); and OkandTk have the values (3.4) and (3.5). 
If the values of the coefficients Rk and Sk with excess and with 
defect are substituted in (4.4) and this equation solved for U 0, the 
values of IJ with excess and defect are obtained. 

5. Determination of the stress function. - According to (1.2), 
(1. 6), (1.9), and the obtained values of the functions fk( X), vk(y), 

and wk(y), the stress function has the form: 

picd 

	

U1 (x,y) =	 v (dl ) sin - csch	 sh	 + y(d1-y) + 

	

p 1	 d2	 d2	 d2 

p=l	 -

_ 	 kira	 kit(a-x)	 k7cy 

	

d1d2	 (1)k - sh d1 sch	 ch	 sin	 + 

k=l 

	

2U0 E ( ...1 )k+l	 kic(x-d2) 

	

-	 ch	 -sin -kTry 
 +	 for 0 x d.2 it	 k	 d1 

k=1 

	

2 d1	 (1)k sh kit(x-d2) sin kr 	 v(d1) p(1)P 

	

Yc d2	 d1	 T L (pd1/d2 ) 2 + k2 
k=1	 p=1

(5.1) 

U1(x,y) = U0 -L + y(d1-y) +	 for d2 x a 

	

Sk	 12	 kica	 kir(a-x)	 kity 

	

d1d2	 (_1)k -- sh	 sch a- ch	 sin - 

k=1
(5.2)
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U2 (x,y) = U0	 + x(d.2-x) +	 for d1 y, <b 

_ kitb	 ___ kit(b-y)  ____	 ___ 	 kitx dld2
()k - sh a2 sch a- th	 ri 

k=1	 (5.3) 

u2 (x,y) =	 f(d) sin	
pitd2 

csch	 sh	 + x(d2-x) + 

p=1 

a1a2	 (1)k Rk sh	 sch kicb ch kit(b-y)	 ktx +sin T	 a2	 a2	 a2 
k=1

k3t(y-d1)	
for 0,<y.<, d1kirx sin - + (-i)'  

k	 ch	 a2	 a2 
k= 1 

2 a2V' (1)k sh kit(y-d1)	 kitxV f(d2)(-1) psin 
i	 d2	 d2

	 (pd2/d1 ) 2 + k2 
k=1	 p=1

(5.4) 

where f(a2 ) and v(d1 ) have the values 

(_ 1 )P+1 [210 4a12 p-an 
+ 2 3 [1 + (-i) 

P	 pt 	 J 

pird2	 pita _______
a sh	 sch - ch	 3 a1	 1 sPala2 

(5.5)
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- ( l r2u0 4d22 

	

v(d1)	
_i)P+	 _i)P+1 

-	
+p 23 [i + (] -	 - 

pir(b-di)1 
Rpd'd2 sh ____ sch -P "D ch d2	 d2	 d2

(5.6) 

By the substitution of the obtained values of the stress function 
U(x,y) in the general formulas, the stress and stiffness in torsion are 
obtained. 

As an example the torsional stiffness and stress of a rod with a 
hollow square section (fig. 2) will be determined. 

6. Determination of the torsional stiffness. - The substitution 
in equations (5.1) to (5.6) of b = a and d1 = d2 = d and the use 
of the formula for the stiffness of a section 

C 8G [(a_d)2 u0 +ff U(x,y) dxdy + 2f dy. 	 U(x,y) dx] 

yields, after integration, 

C 8Gd4 I ía - 1' a U0 + 1 ía - i) +	 (6.2) 
1

cc 
16 1 r	 1	 k7ca	 1	 kit(a-d)	 k,tal 

sch -a_J+ 
k=1,3, o.

kit 

	

-	 - [i + sh kit sch -a-
a 	 kit(a-d) 

It3	 E	 k2	
sh d 

k=l,3, . .

	

kita	 kit(a-d)] 
cc

 (1)P+l f(d) 

	

a-	
- 

sch_ch	
p2+k2 d2 

p =1 

(continued on the following page)
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4U0

k=l,3, . .

rCh kit sch	 sh kit(a-d) + sch	 sh kit(a-d)l + 
k3 L	 d	 d	 d	 d J 

2	
CO 

 

it2
p=l,3, 

where U0 is determined from the equation

-I 
f(d.) th 1 - 

p 2 J (6.2) 

UO	 - shkit sch = + .	 .	 Th Fk	 kita	 kt(a-d)  

	

a2 d itadk2	 d	 a - d	 -r 
k=l	 k=1 (6.3)

and f (a) has the value 

f(d) = (_i)d2 f	 pica	 it(a-d  Fsh pit sch	 ch P) - 2 O - 4[l + (_l)P+l]1 

	

T( d2	 p23	 J 
(6.4 

the unknown constants Fk being determined by inequalities (3.24) and 
k having the value (3.19). 

Substitution of the obtained values of the coefficients Fk+ and 
in (6.2) yields the upper and lower limits of stiffness. The

	

coefficients with a defect	 will correspond with the lower stiff-
ness limit C and the coefficients with an excess F k+ will corre-
spond with the upper stiffness limit C.



14
	

NACA TM 1319 

TABLE I 

a/d CO* CO- 8 

1.5 8.0 11.052 11.051 38.4 0.009 
2.0 27.0 32,952 32.949 22.0 .008 
2.5 64.0 73.780 73.775 15.3 .008 
3.0 125.0 139.518 139.509 11.6 .007 
3.5 216.0 236.164 236.150 9.3 .007 
4.0 343.0 369.716 369.697 7.8 .005 
5.0 729.0 771.542 771.509 5.8 .004 

10.0 6859.0 7035.066 7034.902 2.6 .002 
20.0 59319.0 60034.051 60033.323 1.2 .001

In table 1 are given the relative values of the stiffness computed 
by formula (6.2):

Co = C+/W4	 CO-= C/Gd4 

and the maximum relative error 

8 = (c - 

in percent for different ' ratios a/d. 

For comparison there are also given in table 1 the values of the 
relative stiffness computed by the semi-empirical formula of Bredt 
(reference 3).

=	 = (2 . - 1) 3	 (6.5) 

and the different L = (c - C*)/c+ in percent. 

From table 1 it is seen that the semi-empirical formula of Bredt 
(6.5) gives sufficiently close results only for thin-walled rods for 
which a/d. 5. For thick-walled rods, however, for which a/d 5 
the Bredt formula is not applicable; for a/d = 4 it gives an error 
of 8 percent which rapidly increases. 

7. Determination of the stresses. - With the use of expressions 
(5.1) to (5.2) for the stress function, the stresses are readily 
obtained by the usual formulas of the theory of elasticity. 

Leaving out the computations gives the following expressions for 
the stresses at the points (a,0) and (a,d) for the rod with a hol-
low square section represented in figure 2: 
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kita

	

[UO
(1)k 

Fk sch	 sh	 d (7.1) Xz(a , 0 ) = 	 + 1 + it
a

k= 1 

Xz(a,d) ={

 

CO

 

LA-a 1 + it

	

	 sch a sh kit} Ord	 (7.2)

k= 1 

Yz(a , O ) = Yz( a, d ) = 0	 (7.3) 

	

After the substitution of the coefficients 	 and Fk, the 
upper and lower limits of the stresses X ( a , 0 ) and X (a , d ), where 
the upper stress limit	 will correspond with the coefficients with 
an excess Fk+ (k=1,2, . . .), are determined. 

In table 2 are given the computed values of the stresses X(a,0) 

and Xz(a,d). In the first column of each stress are given the values 
with an excess and in the second column, with a defect. 

TABLE 2 

a Xz(a,d) 
Gtd

Xz(a,0) 
&rd

XZ*fl,)( 

G'rd 

1.5 0.3149 0.3143 2.0212 2.0212 2.0 
2.0 0.7325 0.7322 2.6325 2.6324 2.25 
2.5 1.2085 1.2082 3.1798 3.1797 2.6667 
3.0 1.7050 1.7048 3.6974 3.6972 3.125 
3.5 2.2068 2.2066 4.2048 4.2046 3.6 
4.0 2.7092 2.7089 4.7088 4.7085 4.0833 
5.0 3.7131 3.7129 5.7131 5.7129 5.0625 

10.0 8.7204 8.7201 10.7204 10.7201 10.0278 
20.0 18.7236 18.7234 20.7236 20.7234 20.0131

In the same table the values of the maximum stresses 

computed by the formula of Bredt, are given for comparison. 

* = (2a/d-1)2 X Zmax	 4(a/d-1) Q'rd	 (7.4) 
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From table 2 it is seen that in the determination of the maximum 
stresses, the approximate formula of Bredt may be applied only for very 
thin-walled hollow rods. 

When a/d = 20, the Bredt formula (7.4) gives an error of 
3.5 percent. 

With decrease in the ratio a/d this difference increases; for 
a/d = 10 it is equal to 7 percent, for a/d = 5 it is equal to 
13 percent, and for a/d = 3 it is equal to 18 percent, etc. 

II. BENDING OF A PRISMATIC ROD OF HOLLOW RECTANGULAR SECTION 

8. Statement of the problem. - The stress function F(x,y) in 
bending, as is known, satisfies the equation 

v2p F2F	 Pv 
+	 = I(l^v) (y-y0) -	 fi(y)	 (a.i) 

within the region of the section and the condition 

F [X2 
= 

p 
. 	 -2xxO - f(y)]	 (8.2) 

on the contour of the section where P is the bending force applied to 
the free end of the rod at the center of gravity of the section, v is 
the Poisson coefficient, x0, y are the coordinates of the center of 

gravity of the section, I is the axial moment of inertia of the sec-
tion about the y axis; the arbitrary function f(y) is to be deter-
mined from the conditions at the contour. 

On account of the symmetry (fig. 3) it is sufficient to find the 
function F(x,y) only for the part ODEFBC of the section. 

In order to extend the solution over the entire region of the 
cross section, it is required, on the basis of the membrane analogy 
(reference 7), that the function F(x,y) becomes zero on the vertical 
axis of symmetry and the derivative F/x becomes zero along the 
horizontal axis of symmetry. 

By condition (8.2) on the section contour, the function F(x,y) 
is determined with an accuracy up to a constant term. For the cross 
section which is a doubly connected region, the number of constant 
terms is equal to two; and for their determination use is made of the 
theorem on the circulation of the tangential stresses in bending 
(reference 6).
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It is assumed that in the region OABC the function F(x,y) 
assumes the value F1(x,y) and in the region ODEG the value F2(x,y). 

It is ideal to obtain the function F 1 (x,y) (i = 1,2) in the form 

F1 (x,y) = 1 (x) y) + 1 (x,y)	 (i=1,2)	 (8.3) 

where the functions 1 (x,y) (i = 1,2) exist only in the region OAFG, 
the functions Y1 (x,y) exist in the region OABC, and i 2 (x,y) in the 
region ODEG. 

For the auxiliary functions T (x,y) and i' 1 (x,y) (i = 112), 
setting f(y) = 0, the following equations are obtained: 

= K(y-b)	 v2 = 0	 (i= 1,2)	 (K =(8.4)
I -:^- -+VV ) 

where the following conditions must be satisfied: 

1(x,O) 
= ()=

1 (0,y) + 1 (O,y) = 0	 v1(x,d) = C1 
x=a x 

(8.5) 

2 (x,b) = l2 (0 ) y) = I'2 (x 1 O) + 2 (x,O) = 0

(8.6) 
2(d2,y)= 

By the method described in the first section set 

1 (x) y) =	 sin 2(x,y) =	 v(y)	 kcx 

k=l	 k=1	 (8.7)

Then 

1(d2)y)
=

 (;Xl-)x--d2 
= 1 (x,O) = 0, 1 (x,	 i d1 ) =	 vk(dl)	

kx 

	

sin 	 - C1 d2 

k=1
(8.8) 

2(x,d1) 
= ()Yd1	

2(°Y) = 0
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kiry 2 (d2 ,y)

	

sin - - - (2a-d2 ) 	 (8.9) 

	

=	
P 

d1	 21	
2

 

k=1 

It is ideal to obtain the functions 1 (x,y) and c1 2 (x,y) in the 
form

OD

kitx k' Wk(y ) sin sin k— 	 2(x,y) =
di 

 

	

( X , Y)	 k(x)

	

- E	 d2, 

	

k=1	 k=1	 (8.10) 

Equations (8.4) to (8.10) determine F(x,y) in the region ODEFBC. 

The constant C 1 is determined with the aid of the theorem on the 

circulation of the tangential stresses in bending for the inner contour 
of the section:

	

a (3F, 	 ( ^F 
^2 

	

-	 dx+ 

	

Jd2	 dl 

	

y--dl f 	 x=d2 dy 
= 0	 (8.11) 

9. Determination of the bending stresses. - The solution of the 
equations of this problem is analogous to the solution of the equations 
of the problem of the torsion of a rod. 

With the omission of the computations the values of the obtained 
stresses are: 

	

for the region OAFG 	 - 

	

X (x, y) =	 (2a-x)x +	
1	

(3y2-d12) - P	 V	 (2y-d1)b + 
1 + V 

- kB sch—ch	 cos kita	 kit(a-x)	 kity 
d1 

k=1

	

• kitx	 ____
k"dl

	

- csch	 ch 

	

k(d1) sin d2	 d2	 d2 

k=l

(continued on following page)
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kt(x-d2) cos 
lucych	 —+ d1	 a1 

k=1 

OD	 ao 

	

k(l)k sb	
v(di) p(_i)Pal	 J^j E 

(pd1/d2 ) 2 + k2 
k=1	 p=1 

	

kita	 kic(a-x)	 lucy 

	

sch— sh	 sin— - 
= jE kJ3 

k=1

	

 
pv(d.1 ) cos	

pid1 
csh	 sh PICY- 2 E	

d2	 d2 d2 
P = 1 

	

ch	 sin	

cc 

 + 
k(l)k	

kit(x-d.2)	 lucY E v(d1) (1)P 

"i
	
(pd,1/d2)2 + k2 

p=i	 k=1 

2C1	 (_1)k	 kit(x_d2)	 kiry sh sin -	 (9.1) 

k= 1 

for the region GFBC 

X (x ,y ) = -	 (2a-x)x + 
Cl 

+ P V 
1 +	 (3y2-d12) - 

	

21	
di 

61

cos - 

Go 

(2y-d1)i +	 kB, sch	 ch bT(a-x) 

	

1	 d1 

k=1
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Y(x,y)=  

CD

	

 kB sch !La sh kt(-x) sin	 (9.2) 

for the region AYED 

X (x, y )	 .	 (2a-x)x - !- 

Go 

 E [kDk + (.1)k	 (2a-d2) + 21	 d 
2	 it 

k=1 

2P v
1 

d2 	 kitb	 kit(b-y)	 kitx csch - ch	 sin - - T 1 + V (kt) 2 	 + -	 d2	 a2	 a2 

-	 (2a d.)x	 (d2-x)x 

	

2 )	 1+v 

	

v' [kDk + (1)k 	 I (2a-d) +
k=1

csch - sh  
2P	 v	

( 
1 )k+1	 kicb	 kt(b-y) 

	

T 1 + ()2 (i + -	 a2	 a2 

P_____ 
(2a-d2 ) (b-y) -	 V	

(b-y) (d2-2x)	 (9.3) 21

In these relations the constants of integration Bk and Dk are 

determined from the infinite completely regular system of linear 
equations. 

Translated. by S. Reiss 
National Advisory Committee 
for Aeronautics
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Figure 3. 
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