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AERONAUTICS

RESONANCE SOUND ABSORBER WITH YIELDING WALL*

By S. N. Rzhevkin

At the present time$ considerable literature exits on resonance
sound absorbers (references 1 to 8). In a particular case, a
resonsnce sound absorber represents a system of resonators formed
by one or several rigid perforated sheets (fig. 1) placed behind one
another at certain distances L1 and L2 fmm the imovable well Aj

the sound-absorbingproperties are conditionedby the suitable choice
of porous materiel (fabric or net) placed in the openings al snd
U2. For a normal incidence of sound, in the case where the openings
of the resonators are arr=ged over a straight network, the presence
of partitions between the sheets of the resonators is imnaterisl in
computing the reflection end absorption of sound (evident from con-
siderations of symmetry). For oblique incidence, the behavior of the
system is essentially different for the cases with and without screens.
The systems of resonators for absorbing sound and that possess parti-
tions (compartments)are termed “resonance sound absorbers” whereas
systems without partitions are termed “lamellsr resonance sound
absorbers”. The computation of both systems in the sforementioned
papers and in a nuriberof unpublished papers has been carried out
to a point of practical application and the properties of systems of
resonance sound absorbers have been so thoroughly stutied theoreticaJ2y
and experimentally that they can be fuJly recommended for application
and for replacing the ususl porous sound absorbers that have a number
of defects.

Tn the theoretical computation, the front sheet of the resonsnce
system as we12 as the intermediate sheets are assumed to be immovable.
For the practical realization of the lamellar resonance system, the
sheets may be attached without sufficient rigidity or} in general$
may be constructed in the.form of freely hanging perforated screens
that may then csrry out oscillations by the action of sound waves.
In the case of systems with compartments, the importxmce of
sympathetic vibrations of the resonator front wall and the per-
forated sheets should be considered. Such phenomenon may produce

*“Rezonansnyi Zvukopoglotitel’.s Podatlivoi Stenkoi.” Zhurnal
Teckbnicheskoi Fiziki (U.S.S.R.). Vol. XVI, no. 4, 1946, pp. 381-394.

.
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a marked effect when very light sheets sre used. The theory and its
experimental verification for layers of fabric was given by Wintergerst
(references 1 end 15); Msl.iuzhinets(reference 9) made use of analogous
considerations in obtaining more accurate computations of the sound
absorption of a freely suspended perforated sheet. The present work
is an attempt to carry out a more detailed investigation of the problem
with the object of studying the effect of sympathetic vibration of the
resonator front wall on sound absorption. The investigation is
restricted to the case of
incidence of sound.

1. IMPEDANCE

a single-sheet resonance system for normsl

OF RESONATOR WITH YIELDING WAIL

The computation of the sound absorption of a resonance system
with the resonator openings arranged over a rectangular network may
be replaced by the computation for a single resonator placed at the
end of a pipe with rigid we31s hating a cross-sectional area Z equal
to the srea of the well associated with one resonator. A plane sinu-
soidal sound wave of circular frequency u with amplitude of the
sound pressure PO faJls on the resonator (fig. 2). The sound wave
is assumed to act on.the air layer at the opening a of the resonator
with the force ~oe

J$t and on the front well with the force

(~ - a)poejmt. The front wdll of the resonator is representedby

a plate fixed at the edges and fixed to the partitions that separate
the cells from each other (fig. 3(a)). Under the action of sound
waves, the plate will bend and undergo vibrations~ the amplitude
of the vibrations depends on the frequency u end on the following
parameters: mass mz, friction, and elasticity of the plate. The

plate may be replacedby a certain equivalent piston with area YZ
(fig. 3(b)) and mass ~m2 (where P and Y me numbers less than –
one) so that the amplitude of vibration of the piston is equal to
the smplitude at the center of the plate and the corresponding
frequencies sre the same. A similer problem was solved for the
circular plate (reference 10). For the frequency below resonance,
T=l/3~d ~= 1/5 are obtained. For a rectangular plate, the
problem has not been solved but j3 and y do not differ too
greatly from their values for the round plate so that the same
values may be assumed for initiel computations.

In those cases where the series of neighboring resonators =e
not separated from each other by walls but are placed in a general
compartment at the edges of which the front wall (or sheet) is
fixed to a supporting frame, it may be assumed that in the region 2
of one resonator (one opening)~ the well moves as a piston~ that
P =T = 1 may also be assmed.
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The velocity of
resonator is denoted

,atthe.center of the

3

the -airlayer, the “plug”, in the opening of the
by ~1 (the volume velocity by *l)J the velocity

plate by ~2 (the volume velocityby fi2)jthe
volume of the resonator by v x~L, where L is the depth of the reso-
nator the mass of the air plug In the throat of the resonator by ml’j
and the associated mass during tL? vibrations of the air plug relative
to the well by ml”. The totel mass of the vibrating air at the throat
is given as ml = ml’ + ml”. The friction during the vibrations of the

air plug at the resonator opening is designated rl. The mass of the

plate constituting the wall of the resonator is denoted by m2 and the

mass of the equivalent piston is consequently rm2. The elasticity

and friction of the equivalent piston =e designated e2 and r2.

In setting up expressions for the kinetic energy connected with
the associated mass and for the dissipating function, it was assumed
that these magnitudes depend on the relative velocity of the well and
of the air plug. In computing the potential energy of the volume of
the resonators, the fact that this computation depends on the volume
displacement x . (y2- cr)t2 + cdl and will be equal to 1/2 EX2

where E = pc2/v must be considered. For the kinetic energy T,
the dissipating function F, and the @tentiel energy V of the
entire system$ the following expressions are obtained:

(la)

(lb)

(lC)

The equations of motion by the Lagrange method are obtained from
equations (1) and have the form

(2)

a
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For the forqes acting on the wsJl pistons the vslue of.the magni-
tude (yz- u)pOeJ@t and not the entire pressure (X- u)poeJut must

likewise be assumed because the work done by the pressure force over
the entire surface of the plate must be replaced by the work of a
certain equivalent force applied at the center} as shown by Schuster
(reference I-1).

By
setting

for the

i~~

where

s?lviqg the-problem for t-hesteady state of vibrations and by
El = ~~oeJ@t and ~2 = ~20ejut, the following expressions

amplitudes of the velocities may be obtained from equation (2):

UZ2 + W2’
v Po

‘1Z2 + ‘1’Z2

-Uzl’+ yzzl

~20= zlz2 + Z1’Z2’P0 (3)

[

E02

1 [

e2 + (yx-o)YXE
Z1 = rl + j (ml’+ml’’)u- ~ Z2 =r2+jm2m-

UJ

[ 1

hE

[ 1Jlzs!sE‘1‘.j~’~-yy ‘2’ = ‘1 + ‘l’’OJ+ ~ J

(4)

The acoustic impedance of the entire system will be equsl to th~
ratio of the amplitude of the pressure PO to the volume velocity ~
or

After transformation of preceding equation

(6)

where
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a= r 1rlr2 + e2(~iq”) + E ~“y222 + ~$(yz-u)2 + m2a22

E rlr22 + epl +

b = mltml” + m2m1’

d= rl(~” +m2) +

L -1

E(m1y%2 + m2a2)

+ m~l” s mlmz c = Eu2e2

r2(y”

e
= ‘le2 + E(rly2X2+r2a2)

+ q) =rlm2 + ‘2%

f = rlT2z2 + r2a2

F4 I?2 2 +m I
1 (Y13a)2 2 21Sm1y222

2
=mlrz +m2cr + m2u

h 22=eu

In these expressions, simplificationswere made in the second
parts of the equations on the assumption that oC<Z, as is ususlly
satisfied in practicsl cases. Thus, (yZ-IS)2~y2~2. In the case of
very thin sheets where ~ ‘<< ~“$ the same result is obtained for

any ratio of

‘e ~o~m~n~lo~de~~t~~’ ~“<< m ~Y always &

2
assumed. . . =m’+m”1 1 representso
the entire mass that moves with velocity ~1 and is the equivalent

mass in the throat of the resonator. Satisfying the condition u<<Z
is also required in order that the associated mass may be computed by
the Rayleigh formula ~“ = Pa2/K, where K is the conductivity equaJ-

to the diameter of the opening D. If Z/U <10, a correction on the
closeness of the openings must be introduced in computing K and
therefore K >D. The theory of the problem and the value of the
correction are given by Fok in reference 12.

By dividing the numerator and denominator of equation (6)

by U%2~2 and by making the aforementioned approximations in
equations (7)J the following value for Z is obtained:

1

~R2+~E2+(M1+M2) E-~M2u2 I RlE2+(q+R2-y +d(RlM2+R#Jm- U I
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where

rl
‘1 /1=3’’ 2=5’ “2=~’E2=~’ E=<

=— (9)

These magnitudes are the parameters of the system expressed in
the acoustic system of units.

The

where

Y=

expression (8) may also be written in the form

z =R+jY

‘1’2(R1+’2) + (R1~2+’#l)2CD2 - 2R,M2E2 + w
,,.2

A.

[
(R1+R2)2+ (MI+M2) a-x 1E2 2

(lo)

(11)

1!R12M2+R22M1)-MI(M1+2M2) E2 - (Ml+M2)g O+ MlM2(Ml+M2)@ +

[ 12(Rl+R2)2 + (Ml+M2) ~-~

2(M1+M2)EE2 + M1E22 - (’1+R2)2 E - ‘12E2 EE22
.—

u ~3

[ 1E2 2
(R1+R2)2+ (M1+M2) a-m

(12)

It is not difficult to shop that the impedance of this acoustic
system in the approximation corresponding to equations (7) has its
electrical analogy in the system shown in frame 4.

If the frequency of the resonator ~ and of the resonator
front wall u2 are introduced

1
The proof is given in the work of V. A. Tokar.
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,, ‘,=~ ‘Z=f=
the expressions for R and Y assume the form

(13)

R,
2

% ()
2 1+— +l#u2

‘1
[l_g+q2 ‘

2. RESONANCE FREQUENCIES OF SYSTEM

In order to find the resonance frequencies of the system, the con-
dition Y = O must be satisfied and results, as is easily seen from
equation (12), in the solution of a cubic equation in 02. The roots
of the equation for the resonance frequencies can be found by assuming
the absence of dissipative terms, that is, for ‘1 = R2 = O. The

equation for determining the resonance frequencies can then be obtained
from equation (15) in the form
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This equation breaks down into two others. If in expression (8) for the
impedance (Ml + ~)u - E2/m is set equal to O that corresponds to

1 - ~2/u2 +M1/~ = O gives a root of equation (16) equal to

FE2
u’ =

Ml + M2 (17)

then, according to equation (8), the impedance will have a maximum but
not a minim value; that is, for the frequency m’ there is no
resonance but “antiresonance” (resonance of the currents in the circuit
of fig. 4). In this case, the two masses ‘1 and ~ in the circuit

(fig..4) are connected in series, which means that the velocities i~
and 52 are of opposite sign.

The equation for finding the resonance frequencies is thus obtained
by equating to zero only the second part of equation (16).

By solving this equation, the following expression is obtained
(by setting v = MJM2 )

(18)

U# + (J22~2 + pulz

v

ml2 + 022 + Wulz
res = + - 012 ~ 2 (19)—

2 2

It is assumed that the magnitude

1
= M2 E2

-L

(20)

which is termed the coupling coefficient of the two systems, is small
relative to unity. Thus
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and for the resonance frequencies

,“ol% ’02 ‘% (21)
- , , .-

The resonance frequencies will be approximately equal to the
frequencies ~ and ~ for the condition k2<<l. This condition

will hold either for ~>>~ (rigid wsil with high natural frequency)

or forthe condition M2>>M1. The latter condition is generally

realized in practical resonance systemswith the exception of the cases
where-light sheets with very small perforation coefficients are used.
For Uol and U02, the following approximate expressions may be

obtained from equation (19):
\

[i

2~21_ 1
~ol 9

(

2
~+l%.l.—

P2 ml

2d 2
’02 =m

2

1

(22)

For the values of v usually encountered (P~l), these expres-
sions are suitable for u2>>~. In this case, small correction terms

in the brackets are included and consequently Uol< U.)land C.Do2>m2.

If ~ = ~, equations (22) are not suitable. In the case 02<01,

equations (22) is applicable for w<<l and gives

(3012=U)I2(1 + l.1)

#
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Thus, for ~<ul there is obtained Uol >% and UJo2>~.

The shift of the resonance frequencies relative to the frequencies ml
and ~ is shown schematically in figure 5.

In the case m2>>~~ the antireso~nce ~’ will lie between 001
and mo2 and

‘2
2=(m’)2 =&Ml+%=

E2 Ml

’02 M2(Ml + ~) =%221:P

that is, 002>0’. Conversely

—

Thus

(23)

In those cases where the partial frequencies ml and W2 sre near

each other and vs<l, all three roots of equation (16) lie near each
other. Hence, in the region”near the root, the second term in the
numerator Y in equation (15) will be small in comparison with the
first term containing the large factor ~12. As a result, neglecting

the dissipative term in the resonance equation (Y = O) is no longer
permissible. The function Y in this region is determined by the
dissipative,term and equating this term to zero will give to a first
approximation the equation for determining the resonance frequency

from which

(24)

(25)
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Thus, instead of two resonance and one antiresonancefrequencies,
only one resonance frequency is obtained. The character of the function
Y in these two cases is shown

The probable
is considered.

3.

magnitude of

in figure 6.

SOME SPECIAL CASES

the impedance for various special cases

(a) Resonator with rigid front wall.
therefore E2~@. Thus, from equation

In this case, e2~~ and
(8),

The acoustic impedance of a simple resonator with friction

RI = rJo2 in the opening is obtained.

(b) Front wall with no opening. In this case, u = O and

‘1 ‘ ml/02 = W. By retaining only terms containing ‘1 in the
numerator and denominator of equation (8) and dividing by Ml

( )E+E2
Z=R2+jM2m-—

u

The impedance in the given case is determined by the

(27)

mass of the
diaphragm and the sw-of the elasticities of the diaphragm E2 and the

air cushion E. This case corresponds to the membrane absorber investi-
gated by Meyer (reference 13).

(c) Resonator front wall with only inertia resistance but no
elasticity and friction. This case is equivalent to setting U2 = O

and R2 = O. In this case, which is practically realized in the form
of a perforated sheet screen that is freely suspended at a certain
distance from the wall and that vibrates without deforming

E2=0 R2=0 r.1

For the impedance, the following expressionis obtained:

,,
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(DO

The minus sign under
imaginary values for ‘o
frequency. As an initial

a5M2(15-+M2)

(29)

the root is not applicable because it gives
and thus the system has only one resonance
approximation, ‘1 is set equal to O and

r

E~. =
Ml M2 (30)

Ml + M2

In the given case, U. is determined by the elasticity of the air
cushion E and the mass

Ml M2 1= (31)M’=M1+M2 ~+A

Ml M2

Thus representing a case of the “parallel connection” of the masses Ml
and M2. This system is termed an “acoustic mushroom” (Tonpilz) and

has a resonance frequency higher than the frequency of the resonator
with rigid wall. Such a system may be represented by the scheme of
figure 7. The impedance of the system in the region of high frequencies
will be

(32)

for high frequencies,
with the reactive and

If the perforated sheet is suspended in a free space far from the
wall, E~O;
in comparison

the active resistance will be small

Ml M2

M.+l& m
(33)

This expression was obtained in a somewhat different manner by
Maliuzhinets (reference 9) and was used by him to compute the sound
conductivity of perforated screens.
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(d) Layer of porous material. If the dimensions of the openings of
the perforations are asstied to be near in value to the pitch of the
perforations,-then,as follows from the,Fok equation (reference 12), the
associated m&s will
assumes the form

be very Smallj thus, Ml<< M2 and equation (28)

2 U2
‘2

()

R12

2 +M202
+j.M2u-~2

+M2U2
‘1 2 ‘1 2

(34)

This relation is applicable to the case
openings (porosity) that is freely suspended
the wall, for example a layer of fabric or a
layers. Wintergerst (reference 15) gave the
sound by an infinite layer of a dense porous

of a material with minute
at a certain distance from
number of superposed meshed
theory of the absorption of
material with account taken

of the sympathetic vibration of the rigid frame of the material. The
structure of equation (34), in which in this case E must be set equal
to O, has much in common with the equations of the Wintergerst theory.

As generalizations of cases (a) and (b), the behavior of a
resonance system with a yielding wall is considered for frequencies
considerably lower and higher than the natural frequency of the reson-
ator wall. In choosing these cases, the magnitude Ml in real systems

(as will be evident from additional examples} is assumed to be gener-
ally much less than ~ and in rare cases is of the same order as

(w~l); the value of R2,
h

however, is less than that of ‘1“ From

equation (14), the following relation is obtained for the case u <<U2
when considering the fact that the first term in the numerator and
denominator will be much less than the second:

=’ Rl

(35)

Thus

-.
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Thus R and Y remain,
hold for the resonance system

as in case (a), near those values that
with an immovable wall.

For frequericiesconsiderably higher than the resonance frequency of
the wall u >>u2, which is a generalization of case (c)) the follo~ng

relation is obtained

R2 2
l+EWZ Rl

RI ~ Rl =
~ >>02

(37)

(1 + 11)2 (1 + V)2

Thus

M2U (l+v)-
M1+~ m

(38)

active resistance
For systems in

For high frequencies, the system thus has a less
small mass than in the case of an immovable wall.and

which w = M1/M2<< 1, the effect of the sympathetic vibrations of the

wsll, even in the case 0>>02, is not of great importance.

4. VOLUME VELOCITY THROUGH WALL AND RESONATOR THROAT

In order to describe the nature of the phenomenon of the reflection
of sound from a resonance syste~ with a yielding ws.11,the relation
between the volume velocities ‘lo and ’20

through the area of the wall

2 -0 and the resonator throat u must be considered. From equa-
tions (3) and (4),the following relations are obtained by neglecting the
small terms, as was done in deriving expressions (7):

( E2
. R2+j M2u-~

g )
‘lo z’ P.

. _R1+jM1u
’20 = PO

z’

(39)

(40)
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where z’ is equal to the numerator of Z. inxequation (8). Fo~ low
frequencies (u<<#=), the velocity XIO= (-jE2/u)/(-EE2/m) =,., .

h@ and the volume displacement Xlo ~ ~lO/jm = PO/Ej which is

the statistical volume displacement of the air in the opening under
tineaction of the pressure Po“ The magnitude “’20 will in the given

case be very small in comparison with Xlo and the entire process is

restricted to the motion of the air in the’opening at the immovable
wall.

jM2u
ilo ~ ‘o

2 Po
- M1M2U

=-

and

. jM1u. Po . Po
’20 = Xlo + X20 =

- M1M2U2 = ~“ M1M2

J=

Thus for high frequencies, both the air in the opening and the wall
take part in the motion. The ratio of the velocities is determined by
the ratio of their acoustical masses. The motions of Ml and M2

occur in the same direction and are in phase.

For frequencies u<~=, the numerator of ilo contains a.
negative reactive resistance and in X20 a POSitiVe resistance. If

R1 and R2 are small, the air in the opening and the wall move almost

in opposite phases, that is, toward each other. If the condition

is satisfied, the following equation is obtained:

. . . “R1+R2
XO=%O +X20= z’

that is, X. will be a minimum and, in the case where RI + R2 iS

small, i. ~ O is obtained; the impedance z = Po/xo will be large

and the system will almost not absorb the sound. This condition will
occur for a frequency of ‘antiresonance

.-,.. ... ,, ,.. .. .
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i

E2!_m-—
M1+M2

For this frequency, the following relations are

(17)

obtained (for small R1
and R2):

. M1+M2 poXlo=-jm —_
Ml E2

M1+M2Po
x20~+ju——

Ml E2

The volume velocity of the air in the throat will be equal and opposite
in sign to the volume velocity of the resonator Wallj that is, all the
air compressed by the wall into the concavity is again forced out
through the opening and the total volume velocity is near zero.

The behavior of the system for a frequency equal to the natural
frequency of the resonator wall must be considered. From equations (3)
and (4), as in equations (39) and (40)

(41)

‘or o= ~ = w> ‘he difference ‘n ‘e’oCities ~1 - ~2
will be determined only by the magnitude of the friction R2. If the
wall of the resonator is slightly damped (R2 ~0)

(42)

Although the friction Rl in the throat is considerable, it will
not lead to a dissipation of energy becapse the first term of the
dissipative function (lb) depending on ~1 - ~2 is near zero. For

this case, R= O is obtained from equation (14). The coefficient of
sound absorption, as given in reference 6, will be equal to

4R ~
a.

2

()

R+~ +y2
z

(43)
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where p is the density of the air and c is the
For m=% and R2 ~ O, u will be equal to zero.

17

velocity of sound.
“The range of fre-

quencies ?.nwhich CL is close to zero will be very narrow~=as will be.
subsequently shown for a particular example. If R2 is small but not
zero, the following relation is obtained from equation (14) for u = ~:

Rl R2 = R2
R=

Rl + R2 R2
l+q

(44)

If R2<<R1~ then R ~R2. The values of R2 encountered under

actual conditions are already sufficient so that R becomes of the
same order as pc~ or even greater than pc~. Accordingly, for
u.)=~, a dip is no longer obtained in the curve u but on the contrary
a peak may appear.

5. EXAMPLES OF APPLICATION OF THE THEORY

I. As an example of the application of the obtained relations, a
wide-range resonance sound absorber is considered for which the normal
incidence of sound u >0.6 is in the range of 100 to 400 cycles per
second; maximum u = 0.65 for 214 cycles per second (fig. 8). Ehch an
absorber consists of a sheet of thin iron {20 = 0.05 cm) placed at

33 centimeters from the wall with openings of diameter d = 0.4 centi-
meter at distances of 2.6 centimeters from each other. The zone of the
openings is glued to a wide meshed cotton cloth with friction coeffic-
ient r = 3 mechanical ohms per square centimeter. A more detailed
computation of the sound absorber for a diffusive sound field (refer-
ence 14) shows that a 20.5 in the range from 100 to 1500 cycles,
reaching a maximum at about 300 cycles (Max ~ 0.7).

The computation of the characteristicfor normal incidence with
an immovable wall (solid thin curve of fig. 8) was determined from
equation (44) in which the elastic reactive resistance of the air
layer with a depth of 33 centimeters was computed by assuming a con-
centrated elasticity. This computation is practically unsatisfactory
for frequencies above 400 cycles (a drop to zero is obtained at 500
cycles in the u curve) and is comparable to only similar computations
in which the sympathetic vibration of the wall is taken into account
and the elasticity E is considered as concentrated.

For the sound absorber considered and
ting 13=T=l)

Ml = 3.5 “ 10-3 A
mech.ohm

‘1 = 24
Cti CM4

from equations (9) (by

4 dynes
E=0.63”10—

CM3

set-

sec

‘R
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b$=5.8.10-2
u

~ q’ : .l.34”~03
Ml

f1=214 - = — =0.06
w M2

The value of the elasticity E2 is unknown but depends on the condi-

tions of the attachment of the iron sheet. For example, the frequency

of the antiresonance m’ = u#~, approximately equal to the reso-

nance frequency of the wall, is assumed to coincide with the frequency
of the resonator al. In order to obtain such a frequency, the iron
sheet must be attached to a frame with square cells (for example,
14X14 cm2). Under the condition u’ = ml, the distortions introduced

by the sympathetic vibrations of the wall will lie in the region of
greatest absorption of the resonance system.

The value of ~2 is also unknown but probably depends on the

nature of the attachment of the iron sheet to the frame and may vary
within wide limits. On the basis of test data, it is found that the
decrement of the damping of the free vibrations of the iron membranes
has the order of magnitude of 0.1. Thus, in the given case,
R2 ~0.1 RI.

In order to describe the changes in the sound absorption for
various degrees of damping of the resonator wall, the computation was
carried out for the following values (fig. 8): (1) R2 = O (dotted
curve), (2) R2 = 0.1 Rl (solid curve), and (3) R2 = Rl (dot-dashed

curve).

The case for which a drop in u down to zero is obtained can
hardly be realized in systems of practical application. Even a very
small damping of the iron sheet results in a leveling of the dip in
the curve a. For very strong dsmping, a peak in the curve occurs
instead of a dip. It can be noted that u changes principally
because of the effect of R2 on the active resistance; the reactive
resistance Y changes very little. In real systems, the damping of
the individual cells of the sheet that form the attachment to the
supporting frames will be very different, diverging from the mean in
either direction. On the average, for a large area of the absorber,
a may be assumed to vary approximately as for the case of an
immovable resonator wall.

II. As a second example, a sound absorber with a narrow absorp-
tion range a,20.7 is considered in the r,egionof low frequencies from
50 to 70 cycles per second. By the method of computation given in ref-
erence 6, the front wall of the resonators must be placed at a distance
of 21 centimeters from the wall to obtain s-~cha sound absorber. If
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the wall is made of veneer (ZO =

must be placed at distances of 35
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0.6 cm), the openings (d = 3 cm)

centimeters from each other and a
-? niaterialmust be.introduced with a,friction coefficient of about

0.5 mechanical ohm per square centimeter (gauze on metal mesh of simi-
lar thickness). In thegiven case, the frame cells to which the front
wall is attached should be in the form of a square network with a
length of 35 centimeters. The corresponding frequency of the square
veneer plates of such dimensions is equal to f2 = 206 cycles per sec-

ond (~ = 1.29 X 103). The parameters of the system ”tillhave the
values

Ml = 0.4 - 10-3 Rl = 7.1 “ 10-2 E = 0.57 “ ~02

E2
M2 = 0.62 “ 10-3 E2 = 1.02 ’103 ~ = ‘~ = ().65

M2
—=18
E

where 13= 1/5 and y=l/3.

On the basis of the estimate of the decrement of the damping, it
must be assumed

given case will

that R2<R1. The coefficient of coupling in the

be small

k=
1

~ 0.05
E2/E + MJMl

and on the basis of equations (22), the lower resonance frequency of
the system

’01 under the effect of the sympathetic vibrations of the
wall may be assumed to change only slightly

fol = fl(l - 0.027)—

that is, the resonance frequency is lowered by only 1.6 cycles per sec-
ond. By solving equation (35), the magnitude R in the region near
fl is found to increase by 11 percent in comparison with RI. The

lowering in ~ax from the value 0.87 (for the case of an immovable

wall) to 0.83 results. Thus, the resonance of the wall changes a in
the working range only slightly.

III. As a last example, a resonance sound absorber “without porous
material” is considered. For a sound absorber of a relatively low
effectiveness (u= 0.3- 0.4), sufficient friction in the openings
may be assured without the introduction of special porous material by
the internal friction of the air flowing through the small opening
alone. Thus, for a sound absorber with u >0.3 in the range from
100 to 200 cycles per second, a thin sheet of tin plate may be taken
(20= 0.03 cm) with openings (d= 0.07 cm) placed 3.2 centimeters apart
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at a distance of 4.85 centimeters from the wall attached to a correspond-
ing cell frame that can be chosen arbitrarily. A cell measuring
6.4 centimeters long has twice the pitch as compared with the network of
the perforated sheet. The resonance frequency of the wall will then be
of the order of 500 cycles per second. The computation by the preced-
ing method gives a the values shown in figure 9 (thin line); the
computation for the immovable wall is shown by the thick line. In the
given case, the absorption coefficient in the working range (100 to
200 cycles~sec) is markedly lowered because of the large value
p . 1.52, notwithstanding the fact that 02>>01. The dotted curve
in the figure gives the result of the computation of u in the case
of a nonfixed (freely hanging) sheet. The maximum a is raised to
the value 0.98 and shifts upward to 220 cycles; at the lower frequen-
cies in the region less than 100 cycles, a reduces to small values
and thus it is evident that for the production of low-frequency sound
absorbers of this type, the front wall should be sufficiently rigidly
fixed.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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