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FLOW AROUND WINGS ACCOMPANIED BY SEPARATION OF VORTICES*

By G. Schmisden
 SUMVARY

The flow around wings computed by the usual method
leads in the case-of a finite trailing edge to a stagna-
tion point in the trailing edge due to the Kutta-Joukowsky
condition of flow governing this regiocon. 4s a result, the
theoretical pressure distribution differs substantlally
from the exyperimental values in the vicinity of the trail-
ing edge.

Tle present report describes an alternative method
of calculation in which the rear stagnation point no
longer appears. The stream leaves the trailing edge tan-
gentially on the pressure side and a similar tangential
separation occurs on the suction Sldu of the nrofile at a
roint slightly in front of the trailing edge.

The result is a closer agreement in rressure distri-
bution with reality.

INTRODUCTION

The flow around a given airfoil computed by the usual
method differs in various aspects from real flow, even if
the errors resulting from the substitution of ideal for
real flow, i.e,, the omission of -the friction effects, are
disregarded. The principal departure from the real flow
occurs by the pressure distribution in rroximity of the
trailing edge because of the Kutta-Joukowsky condition of
flow governing this region; by finite trailing edge this
condition locates a stagnation p01nt in t?e trailing edge
and the streamline enveloping the p*oflle ‘leaves the pro-
file in directidon of the bisectrix of the trailing edge
(f1 1). PRut the real flow does not show this behavior,

*N¥ver Tragflﬁgelstrgmungen mit Wirbelablgsung." Imft-~
fahrtforschung, vol. 17, no. 2, Feb. 1940, pp. 37-46.
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The flow leaves the trailiang edge tangentially on the
pressure side and a similar tangential separation occurs
on the svction side in the neighborhood of the trailing
edge by foruation of a vortex zone behind. the wving. In
order %0 coanstvrue an idecl flow that fits this actual
flow patiern bDetter than the Hutta-Joukowsky flow, the
vortex zone is idealized by two vortex sheets of equal
and opposite circulation, one leaving the trailing edge
tangensially on the pressure side, the other leaving the
trailing edge tangentially on the suction side (fig. 27,
Sufficiently downstream from the nrofils the vndisturbved
parallel flow must re-establish itself; heance it follows
that the twvo vortex lavers must approach one another and
possess ecwal and opposite circulation, becanse then only
is the undisturbed parallel flow avle to re-establish
itself at infinity behind the profile. In the immediate
vicinity of each of the vortex sheets the flow is parallel
te a sudden increase in velocity proportional to the vor-
tex strength on passing tkhrousgh tlie sheet. The flow ve-
locity therefore must everrywhere on the two vortex sheets
have an ecval and constani value, that is, be equal to

“the flowv velocity because undisturbed wmarallel flow ex-

ists 2% iafizity. TFiaally, since no fluid perticie can
peretrate from without in %the zone between the two sheets,
it follous from the continuity that the fluid between
these sheets must be at rest, i.e., must form a dead-air
region vierein the static pressure of infinite distance
prevails, Jith this we havse fomnd the conditions which
the loolked~for flow must satisfy: On the two vortex
sheets which at the same time form the boundaries of the
dead-air region (free streamlines) a siream velocity con-
stant and equal to the flow velocity must prevail. The
course of thae free streamlines is, moreover, to be so de-
termined that, aside from +this velociiy condition, the
width of the dead air diminishes to zero with increasiag
distance f the profile.

~0w 1% is shown that out of the 1ultitude of possible
flows for a given profile at a given angle of attack,
only one flow characterized by a definite Dreak-away poiant
in the suction side leads %to the condition of constant
speed along the trailing streamlines together with a dead-
air region which disappears at infinity. Trhe calculation
is carried out first explicitly for the simnle case of a
flat plate and then extended to a form of modified Joukowsky
profiles which are amenable to simpler treatment.
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RO 2. ﬂ*ow a*ound a Flat ‘PL ate

The flow approaches tke nlate of length 1 at an
angle of attack o with velocity ve = 1 from the left
(f1 . 3). The lower free streamline leaves the trailing
edge at E, whereas the upper leaves at the temporarily
unknown or arbitrarily assumed point- C on the suction
side. The first is consistently coanvex to the flow, its
direction approaching the direction of flow asymptotical-
ly; the other is, first, concave, it reaches an inflection
point at W, and it beomes convex like the first. The
stagnation point is at A the flow around léading edge. B
is with infinitely great veloecity

Fith

v(x,y) (1)

(=N

w(z) = o {=x,y ) +

as the complex potential of this flow, and

dw 10 (1a)
— =v_ - 1v_ =g e” {la
dz X J

comnliex velocity,the boundary condisions to be satis-
ied are as follows:

H; Y]
0

1) ¥ = const., for the complex potential past the
niate and on the free sireamlines, the constant
being posted at zerc;

oY . . . '
2) For the complex velocity the direction along the
parts of the plate in the stream is given,
i.e.,
6 = -a on AE and B
6 =m - a on AB
whereas g = Ve = 1 on the free streamiine.

Jith the function

t =10 %2 = an L hoi . L 0 (2)
dw a Ce . _

the region of the z-plane filled by flowing fluid is traas-—

I
C .
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formed to the region of the {-plane shown in figure 4.
The zero point of this plare is D since

3(;):4—@ in A

and R(¢) = ~= in B

the pieces of the plate furnish the horizontal boundaries
of a parallel strip at distance = - o or -a *to the
real axis, and the free streamlines, because of R({) = 0,

the twice to be counted piece of the imaginary axis CiIDE.
All streamlines in the {-plane as reflections of the
streamlines of the z-plane vegin and ead in point D. It
is readily seen that the tangential direction in the in-
flection point of the upper free streanline must always

< (m = a), and that in addition with increasing approach
on this boundary the tip W of the breakwater in the ¢-
plane consistently approaches the upper strip wall, so
that the door between the two halves becomes steadily nar-
rowver, fherefore, thes volume which the image flow sends
through this door must also drop continuously, In the z-
plane this indicates an unresiricted approach of W to-
ward C and also of C to B; in the limiting case all
three points meet in 3, the transformation degenerates:
the {-piane yields a half-strip, the z-nlane the common
Helmholtz flow with separation of two consistently convex
free streamlines on the plate ends (fiz. 5).

On the contrary, by decreasing the tangential slope
in the inflection point we obtain a second essentisl lim-
iting case of 6 _ = 0. Here the %ip of the breakwater
coincides with the image of the ianfinitr, the inflection
roint in the z-plane has shifted %o infinity; hence the
upper iree streamline is everywhere concave. Together
with the lower, consistently convex streamline a dead-
air region is formed, the width of which diminishes to zero
(fig. 6.

Shortening the length of the breakwater still more
leaves & dead-air region which closes at finity. These
cases can be realized only when the flow velocity and the
velocity on the free streamlines are no longer equal bui
in a certain ratio to one another. In the subsequent
shortening of the breakwater it therefore must be shifted
parallel to itself as a whole out of 3he imaginary axis,
whereby the shortening of the breakwater is accompanied
by a continvously smaller dead-air region. The breakwater
itself shifts toward the right where, in the extreme case
of vanishing length, it terminates in point
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. ¢ = 1ln sec o - 1w

The dead-air region has then become zero; hence it leaves
in %the z-plane the well-known Kutta-Joukowsky flow around
a flat »nlate with c1rcu;at10n (flg. 7). '

The flows in question therefore afford a steady
transition from the vansteady Helmholtz flow to the steady
circulation flow.* Every one of these flows is definitely
defined by the break-away point on the suction side, where,
of course, the brealk=-away point of the flow which presents
the transition from infinite 0o finite dead—-air region is
not, a priori, available. The force acting on the plate
also varies continnously with the Ddreax—away point: On
the Helmholtz flow it is at right angle to the plate; on
flows with infinite dead-air region it graduwally turns in
the vertical, and for flows with finite dead-air region
inclusive of the two limitiang cases it is always pure
iift. Cf ga“*'cuL .r interest,. of coursze, i3 théeé flow with
dead-air region the width of which diminishes 1o zero,
since it is the first of the system for which, sufficiently

e plate, undistrrbed parallel flow is re-estab-
lished. Besicdes, it zatisfies the other reqguirements

*¥Aside from this system of possivle discoantinvous flows
there is still another system of zuch flows which, in
wholly eimilar manner, leads from the Helmholitz to the cir-
culation-free stable plate flow ‘pure deflection flow).
This class of unstable flows, esnecially for the circular
contour, nave been discussed in an earlier report entitled
"Critical Solutions of the Theory of Unstable Flows," Ing,
Arch., vol. 3, 1932. Since there is, besides the deflec-
tion flow and the pure circulation flow with smooth efflux
in the trailing edge, the - infinite - system of circulation
flow with flow around the trailing edge which, of itself,
represents a steady transition from pure deflection flow %o
pure circulation flow, it may be assumed that for each of
these circulation flows there are also a anumber of unsteady
flows which lead from the Eelmholtz to this circulation
flow. The proof, which would have to be carried out as

i? the two cases treated here, .is omitted, but the conclu—-
glon 1s given as follows:

For every contour there is a twofold infinite systenm
of unsteady Fflows, for which *he position of the brezk-
away points of the two free streamlines on the contour
plays the part of a parameter. The posisions, of the break-—
away points are forwardly linited by the break—away points
of the usual Helmholtz flow with eveérywhere convex free
streamlines, in case this flowv exists by the given contoura.
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formulated in the introduction, namely, separation of a
vortex layer on the trailing edge tangentially on the
“pressure side and break-away of another vortex layer of
equeal anc opposite circulation on the suction side in
the vicinity of the trailing edge. This flow is there-
fore dealt with in particular.

In order to formulate the resuits obtained in the
{-plane analrytically and, above all, quaantitatively, the
region of the {-plane is so transformed on the unpper half
of the unit circle of the T-plane (fig. 8) that the hori-
zontal boundaries of th=s strip, that is, the images of
the parts of the plate in the stream fall on the semi-
circle, and the image of the free streamlines on the piece
of the real axis between -1 and +1. Furtiermore, the
transfornation is so regulated that the zero point of the
{-plane, i.e., the image of the infinity of the z-plane
for dead-air region extending %o infinity - falls in the
zero point of the T-plane. Point # 1is to fall with re-

spect to -1, - between -1 and O0; points A and B,
to e1%S ana eido, Carried out, this transformation
gives
1+ 26°T + 7% 4+ i tan &(1 - T2)
4 dz —-iq a
8°? Z ez e -
dw 2 2 ’ 25 ’
1 - 2657 + 7° = 1 tan %\l - 7%
2
0 < K7 < 1 (5)

This equation satisfies all conditions, to wit:

1) For real T the numerator is conjugate complex

to the denominator, hence dz _ 1;
aw
2) For T = 0, +%hat is, at infinity of plane z:
. 1 + i tan &
dz -
v - 2 =1
w
1l - 1 tan z
2
3) Tor 7T = ei?:
2 a
3 K + cos § + sin $ tan -
dz -3
2z _ o-io 2
dw
2

K + cos & - sin 4 tan %
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. . . g z . s s .
the direction of E— is either =o or T - &;
: o : dw - o ‘
4) &2 gisappears once on the upper half of the unit
dw ‘ , _ : o
circle, -and also becomes onece infinite. Tor
) o and--&s.
E »
v -
2 -
Eg K, + cos &, + sin ¥ tan & =0
i - ° ¢ 2
é N
i 2 ' . 2
f K. + cos dg + sin 9 tan =0
2
whence
& ' ol
. (08 4 4
tan —& = L {s1n C+/1 - k" cos® E }
2 2 2
(1 - ¥ Jcos %
6‘»‘ % 2 O
tan —2 = 1 : {~ sin 2 ﬁ//l - K cos — }
2 2 o 2 2 .
/ \ .
{1 - K ,cos —
2

e root carries the + sign. The other two roots
are on the lower half of the unit circle. It
is readily proved that

1}0—88=Cﬁ

5) Inflection points occur on the free streamline

. d dz .
when — ——-\ dissppears. DBetween -1 and
4T \Ndw /

+1 this derivation disappears only once for

T 0= ——Lw(l - &1 - K*)
o 2
K
with the special values T, = -1 for K2 = 1
. | gna T =0 for kK® = 0
6) Lastly,
iz _ -ia
dw
for T =41 and K=® % 1
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Hence, the free streamlines leave the plate
tangentially, and equation (3) meets all of
the required conditions.

To complete the determination of the flow, the com-—
Plex potvtential as a function of T 1is necessary. This
is most readily achieved ty the method of singularities,
Since the inrfinite distance of the z-plane is a boundary
point in the T-plane the doubdlet creating the parallel
flow of the z-plane becores in the T-plane a guadruplet
in the origia whose axes directions agree with the coor-
dinate direetions, and the vortex at iafinity of the z~
Plane ~ the counter voriex of the plate circulation -
becomes a doublet with horizontal axis which may be vis-
ualized as Dbeing the result of convergence of two vortices
of opposite ecual circulation with fixed vortex moment
(circulation X vortex distance). These singularities
themselves give the real axis as streamline, and to make
the unit circle streamline also, it is reflected on this
circle, wvhence, after adding a nonessential constant for

we
2 T )

The constant defines the scale of the z-plane; A
is so defined that it nakes the stagnation point of the
upper half of the unit circle in eSS coincide.

Computing Y gt
ar
dv 1 - 177
L= - 0 (1 + T2 - 2A7T)
ar T -
so that
2
1+ 7
A = S=COS’83
27T
S
finally gives
dvr (1 - 7)1 + 72 = 27 cos 35)
— = - C (5)
aT 3
T

Jith equations (3) &and (5), tue protlem is largely
solved because
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dz dz 4w

o ——

dTr dw 4T

a ‘ » .
hence 22 iitself is known and, after int egra+1on, the
T . . .

racsformal function‘_z(T) as well, After‘this the
strean pattern in"the z-plane can be readily: plotted by
trangferring the easily constructed streamline system
of the T-plane.

Although this 1nteﬂr tion is’ elementary, the calcu-
lation is carvied out for two specific cases only, so as
to avoid tedious »paper worl.

1. The case K =1 gives the Eelaholtz flow (fig.
5). It yields
= - M = s 19‘ = -
To 1 190 35 s ™ a
and
dz —2iq T + el & | 1
F T
W T4+ e~iw
. J (8)
; 1 - 7T
du _ _g (1 + ™ + 27T cos a)
arT T3
For the direction of the velocity in the starting
points of the free streamlines, 1t gives
T = +1. gz = g~ 1%
dw
T= -1 4z - o-ia . pi(n-a)
dw

When the direction of the tangent of the upper free
streamline’at the break-away point is ©w - «, -'as now,
instead of =~a, as before, it is due to the fact that
now K® = 1 is to be posted in equation (3) first and
then T = =1 plotted. In this case equation (3) simpli-
fies to eoﬂatlon (6) because the SLngu‘ rltleq at &o

and =~ ¥, coincide in b, =, and the CO?respondlng

linear factors in ecuation (3 ) are shorteﬂeM‘accordlngly.
Secause of ‘

1 +7T°% + 27Tcos a = (T + e (1 + ¢~ %)
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we have

O
N

o ' ' 2
-2iq (1 - 7®)(7+ eia')
= - G e -
T T3

l

o]

and, with the coordinate origin in the trailing edge:

: . : io N
z = =0 g—1& {COS o - X (Tge—lOL + S >»
2 -2
- 1N- 21 s Tl
+ 4 2 (T + 2 ) 2 i sin a ln- | (7)
The leungth of the plate 1 and the distance of the
stagnation point from the trailing edge 15 for T = -1
and for T = eillm - a¥ ig: '
1 =2 C(4 + 7w sin a);

lg = 2C {sin o sin 20 + 2(1 + cos a) + (7 - a)sin }

or
li _ 8in a sin 2a + 2(1 + cos a) + {m - a)sin o
1 4 + 17 sin o
1+ 2
s lreos @y 2L (8)
2 \ 2 / _

Since the stagnation point of the pure circulation

L+ 08 & pogp the trailing edge,
2

the stagnation point of the Helmholtz flow is slightly
shifted forward. The force on the plate, which here is
naturally at right angle to the plate, is, according to
equation (34):

flow is at distance 1

I 1 v% sin o :
S LB (9)

4 + 1w sin o

or slightly less than one~fourth of the 1lift of the pure
circulation flow. '

2. The case of k=0 (fig. 6)
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Here To.= 03 tan % = - cop»%; tan~GS.= cot %‘
or S = i + & . o . . “9’q - T o= &
6 R T Vs 5

The 51nbular1t1es are Smeetrlcal with the imaginary
axis. 3e51des, we have?

2 ig
8z _ g=zia I_*'8 7
- = . H
dur TR 4 eTic
(10)
dw 1 ~ T° .
—-_—r-=-u——————-—-—-l+'r—2'r 51n7q‘->’
d T3 2 ~
becouse
A= cos & = gin &
S 2

The inflection point of the upper free streamline
20v situvated at infinity, results in a continuously con-
cave u»nper free streamline which tnrestrictedly approaches
the uo_hlatentlv convex lower free stresmline. For great
distances the two dead-air boundaries act as y ~~- 1ln x,
that is, their distance from axis x becomes logarithmical-
ly iafinite.

ile conpute 2z(7). Because

we nnves

niQ

n
i
Q
o
i
&)
=
Q
=
i
-1
4
f
o
®
Q
N
-2
+
He
@
[N
A

The division in partial fractures sivess
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dz . ix : ia 1
e - . =10,
—-—--ela‘ = ..C{ T T € ie 2 sin g,_(g___ - e

aT - T 2 T2
2 i sin a e*® 4 sin® « (11)
T -iZ

and, after integration:

io = in® 3 2
z e = 044 sin"o IalT-+ i e

. ia i
+Bisinaelc"ln’r+;-<e +’rzeld‘>
2 T2
io -1
—-2sin-°—°<e + Te “\;*+D (12)
2 T /

The plate length is obtained by insertion of the

ig
limits of T =1 %0 T = 31 e ® at
. o .
1 = 20-@ - 2 sin — cos — + gin =
2 2 2
+ I Z L sin 2 o - sin® o 1n {2(} - 3in % '}} (13)

For the distance d of the break—-away point of the
upper iree siresamline from the trailing edge, it is:

d =2 C-{E sin 2 & - 4 sin £ cos «
2 2 N
1 4+ sin %
+ sin® o lo—————— (14)

. Q
l - sin —
o~

and for the distance of the stagnation point from the
leading edge:

1 = IS = 2 C{a sin oo cos a + 4 sin4% - 2 sin®a 1ln COS%}'(15)
Lastly, equation (12) discloses that, for amall real

T, i.e., on the free boundaries far downstream from the
plates
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ol
b
1

-e

y~ 2-C-sin a la |7 . .

or

y~ - C gsin o 1n =x (15)

wherewith the previous assumption of asymptotic course of
the free sitreamlines is proved. The two free streamlines
approach one another unrestrictedly, according to equa-~
tion (12).

Zvaluation of equation (34) gives the force on the

plate at
P, = 0; P, = 2 C v si (17)
5 = i Py = TP Ve Sin o

The 1ift is therefore a pure 1ift, as it should be. For
the practical range of small angles of attaclk the use of
series expansions with respect to the angle of attack is
recommended in place of formulas (13), (14), (158), and
(17). e have:

(r - 2) + a® <% - 1n 2> + .. }

J

aad hence for small a«

5 C ]
T =a(m=-2)1=3m=-2),
1 L ~ 3
1 - 'LS - a
= ° ’l - ~{7 =~ 2)]
1 L 2
and finally
™ o v2 sin o
1 i .
A = : i . = Azf.(OO)

4

1+ &(w - 2) aa<2 - in 2 )

with AZ =m p 1 vi sin o (18)

The 1ift is, in consegueance, smaller than that of
the circulation flow AZ because f{a) < 1. For small
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o the lift as a function of o 18 no longer a straight
line, but a ‘parabola which is: tangent-to the Lift line
of a Xutta-Joukowsky flow in the origin. 4 compilation

' A q 1
of numerical values for o %, l&, and of -8z for
Z

stagnation point distance of the circulation flow, like-
wise counted from the trailing edge, is given in table I
for a number of angles of atiack.

TABLS I

o | a/ag | a1 tg/t | lgg/t

5°|0.9708 | 0.0580 | 0.5973 | 0.9973

6°| .9480 | .1127 | .9897 | .9891

90| .9165 | .1643 | .9775 | .9755
120! .8912 . 2130 .9612 .9568 .
9o°| L4915 { .8663 | .16879 | .0000

For the adjoining series of the flows with finite
wake, the singularities in tke zero point of plane T

must De divided: the guadruplet becomes a pair of doub-
lets, one of which lies within the upper half of the

unit circle, the other, reflected, in the lower half.

In accord with it the.doublet splits into two vortices
reflective to the real axis of equal and opposite circu—
lation. The location of the siagularities and the
orientation. of the doublet axis are to be so determined
that the contour consisting of plate and dead-air region
closes in the z-plane. The velocity on the free stream-
lines follows from the position of the braak-away point
of the upwer free streamline, which i1s assumedly prede-
termined in the admissible region of the suction side.

- The resultant complex potential is much more complicated
than for the flows studied so far, since the images of
the singularities with respect to unit circle are them—
selves now located at infinity. So, since they do not
contribute anything new, these flows are no longer dis-
cussad.
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1,

" Figure 9 illustrates the pressure distribution on
“theflat platerat- o= 12° . with.the..width. of. dead-aix
region diminishing to zero, and for comparison, in broken
lines, the corresponding pressure distribution for pure
circulation flow; figure 10 shows the curve of the free
streamlianes for the same angle a. ’

3., General Profile Flows

In this chapter our theorem is extended so as to
afford, Tor any profile form, a corresponding flow as
computed previously for the flat plate. Lo general proofs
of existence are adduced; the fundamental facts of a
practical calculation method are simply developed, since
for phrysical reasons it seems certain that,the series of
deal~air flows which affords the transition from Helmholtz
to pure circulation flow equally exists on every profile,
as on the flat plate.

Asicde from that, the derivation of the formulas is
limited to the case of dead-air region the width of which
diminishes to zero, for which the complex velocity of the
corresponding plate flow reads, accordiagz to ecuation (10):

. 1 : . Q
- . 2 T . 1"5
L7 T+ 1 e - 1 .
{= 1a — = 1n + 1n e -2 1o (19)
dw e e
-1 . -1
T-1ie = T+ 1 e =2

Mhe first term contains the conjugate singularities
of the stagnation point in conjugate points of the unit
circle, the second term the gingularities of the sharp

-leacding edge. The latter singularity must not occur for
profiles of finite thickness with continuous camber._ Its
elimination is achieved by shifting points 3 and B
(figse 8 and 11) outward from the unit circle, .but natu-
rally so as to become conjugate again after the shifting.
In other words, we replace, say 1 el /2 in (19) by
r elf yith r. > 1. 3By adoing this, the second term in
(19) becomes regular in and on the wunit circle, so that
it can be expanded in powers of T, the radius of con-
vergence of which equals r > 1, The coefficients of
this series are purely imaginary; hence the series may be
written

8nreal
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Here the imaginary and now unessential constant =2 ia
may be assumed included in the absclute term of this series.

+

Thué, it is plain that by formula

i
ed
iz,
T 4+ 1 e”"? e n )
= ln i n ap T a 20
¢ - * % 4n Areal (
T -1 e =&

curved contours are equally included., Horeover, bearing
in mind that the constants do not necessarily have to
agree with those obtzined by the develowmment of the log-
arithm for satisfving the requirements %o be made on (20)
suggests that (20) itself is alresady ths most general
fornula for arbitrary profiles. Taig is true, in fact,
as will ve demonstrated with several additional conditions
for the constant aj.
To begin with, it is clear thaat ¢ is purely imag-
inary for -1 £ 7 £ +1, i.e., on the free streamlines;
thus 1t gives the constant velocity ecual to 1. But this
is not enough to create a dead-air region of width con-
verging to zero. The upmner free streanline must also be
continuously ccncave and the lower, either continuously

.convex -~ as on the flat plate - or first concave then

coatinuously convex, as on profiles with finite trailing
edge. The necessary occurrence of such cases at small
angles of attack is readily seen from figure 2. Lastly,
at infinity the curvature of both free streamlines of the
same order must disappear as in tae correspoading case of
the flat »nlate, in ordzr to avoid intersectiong of the
free streamlines. The correspondiag conditions for the
constant ap are developed by computing the curvature of
the free streamlinss as function of 7. Since the veloc-
ity on the free streamlines ecquals 1 and the stream func-
tion is constant, it is '

€1 — = 8 + C w=7=T+ 0+ 1V,

3
os
In addition, ¢ = i6 . and, siance the curvature of a
curve 1is given by '
e = 48
as

it follows that:
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‘4g a7 dw a9, aw

adT dw 4ds aT arT

. .

For the flat plate, equations (10) and {(12) give

a .,
2 C 1 sin a«

k = (21)
2 .
. 2 .
(l.~72)<1+T2-2"r 51n%><1+'r +2Ts1n-—2—>
whereas our formula (20) for any contour yields
c T3
r =
2 . Q
(1 - 7 )(} + T2 = 2 Tsin —.\
2 /
2 cos & = -1 -
.{ 2 - 2L n ap ™ } 22)
o 1 )
1+ 72 — 27 sin 5

T2e known characteristics of the free streamlines of
the »late flow are read directly from equation (21): for
positive T - lower free sitreamline - %k 1is positive,
i.e., the free streamline is convex. The curvature becoies
infinite at the break-away point and disapwnears at infinity
of the z-plane (7T = 0) of the fourth order in T. For
negative T - the upper free streamline = %k 1is positives
hence the free streamline concave. For the rest the same
holds trve as for 7t > 0. PFProm this action of the plate
‘flow there follows immediately a condition for a for
the general profile forms: to insure a cualitatively ecual
f%ow curve at infinity ason the flat plate, the braces
{f in (22) must disappear for T'= 0, i.e.:

@, = 2 cos % ) B (23)

This condition must be absolutely satisfied if neither a
dead-oir region of infinite width nor a physically impos-
sible overlap of free streemlines is %o occur. This con=-
dition is termed, for short, the closing condition.

It is further recuired that the an Dbe so constituted
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.that the brace does not disappear at all between =1 and O
and only once at the most between 0 and +1, This signi-
fies- ‘ : :

2 cos & -
2 n-1
-1l<«<T< 0 < %n noay T

COS ==

A
48

n (jl)n_ln an

1 + gin

wla

This condition is, because of the magnitude of a,
practically always satisfied. The two possible cases for
the lover free sireamline depend upon the action of the
braces for T = 1. IFf

cos 2
2

thea the lowver free strezamline is coansistently convex.

If the less-than sign (<) applies, the free streamline is
first concave, then convex. With the ecual sign (=), the
consistently convex free streamline with finite curvature
starts at the break-awey point. Here it is presumed that
the braces for 0 < T < 1 disappear once at the most, as,
of course, will be the case with logical profile forms.
However, it 1§ stressed that all cases where a, fails

to satisfy these conditions, either yvield a dead-air region
of infinite width or elge result in overlapping in the
plane of flow.,

Like the curvature of the free streamlines as a func-
tion of &, +the contour curvatuyre itself can be renre-
sented as a function of (T = et?V). Taking (1) and (2)
into account, it follows that ‘

w - 46 _ 46 &d 49

v o et T e e ameie

dS  dd dop as 4P aw

(24)
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Likewise the direction of the velocity. € and hence
the tangentigl direction-of the éontour as imaginary part
of ¢ are known in relation to #H. So, in order to com-
pute the corresponding flow for a known profile with given
orientation of flow direction, we first establish the con-
tour curveture with respect to the tangent slope. Here-
with the left side of (23) in relaticn to 6 is known
and with it also in relaijion to .9 and a, when 0 is
computed on the basis.of (20). The right-hand side of
(23) is also ziven with respect to & and the a,'s whence
at least the ap's can be computed from this equation. 4p-
proximately this is always possible, when stipulating the
compliance of this eguation only for a number of discreet,
suitably chosen values of &, It affords a profile that
is in agreement with the given one on a corresponding num-
ber of woints in the curvature and the related tangential
slope, that is, a2 precisely as close approximation as rep-
resented by the substitution of a curve by a basket curve,
that is, a seruence of pieces of successively following
curvature circles. In practice this calculation is likely
to be extremely cumbersome even by small deansity of the
partial points, especially since the whole determination
of the constants would have to be repeated by a change in
angle of attack, becauszs this angle enters over the tan-
gential slope of the suction side on the trailing edge in
the determination of the coastants,

The next chapter deals with a special class of pro-
files produced by a mechanism similar to that of the
Joukowsky profiles and therefore amenable to simpler treat-
ment.

4, Adjacent Profiles

They represent a special class of thin profiles which
lend thenselves to simpler-itreatment. Reverting to the

arguments which afforded (20) we shift‘poin§7 B and B
slightly ou%tside of the circle in the ire*P/® and

-ig/= . , . - s
-ire '/ coowig r > 1, This rounds off the sharp leading

edze and - depending upon the amount -of displacement =
affords a more or less thick profile whose mean line is
the corresponding flat plate. However, the thus obtained
forunla produces as yet no practical profiles because of
the concurrently to be satisfied closing condition. So

ES

we extend it by locating further singularities in the T-—

. L K s i - -1
plane in point 1Rel'Y and -iRe Y, wheredby
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lim RB—7> o

r—> 1 .
so that in thae extreme case the flat plate flow occurs
again. Accordingzly, we put - (equation (19)):

iz 18 1Y

dz ~i(a+B+2Y)T + ie ¥ T - ire T - iRe -
—— = = ¢ 5 (20)
dw -1 & —3= vy

= 1
T-1e ® 1 4+ ire =2 T 4+ iRe

Ti.is formula gives &2 =1 for T = C and %% = 1

on the free streamlines. The closing condition (23) here
redds

a cos g cos ¥
cos 5 = o (286)
After putting
RS 3 _
ire = ie ° 4 pel6 (27)

file is termed "thin" when the vprofile parameters p

£
. 1 .
and E are go small that its squares and products are

Then ecuation (£53) can be written as

% i
dz e—i(a+B) T4 §a'e T -ie 2
Cwr ~12 -1
T~ ie T 4+ ie

T sin & + cos(8 -

1%y ¢ I
<T -Aie-zy <T + ie. = > )

accoraing to eqguations (26) and (28), oaly the value of

T~
[AY)
~—

[AV]

fde

=Y

Q

e}

4]

4

(28)

cos Y . L . - ; :
— is of importance on these profiles, so that without

-~
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reSurlc ion of generallz tlon we can put Y =0 or ¥ =

Posing B = o + Da and denoting the derivation of 3
with respect to T for the flat-plate by subscript o
gives, from equation (11) and (QB)

. . =2 xed
?Z = g—iba dzo _ ¢ e—l(@+ﬁ) 1l -7 -}<T¢+;ie15{>2
ar aT : T3

.r ;& T 8in & + cos (6 - %>) o

J 2iTcosY T~ ie = 5 (29)

A .= e lp o =o

‘\ 3 —:'Lg'— . ( i =

T+ ie 2 T + 1e ~=
The first term agaln gives the flat plate but with

aax angle of attack raised by A a; the second ard third
give the departure of the profile contour from the straight
line and are to be considered as small of the first order.

it (T) can then be computed by decomposition
of the partial fraction a2nd elementary integration. But
ed pressions are so complicated that they are
not reproduced here. Our chief interesi is centered on
the location of the Preak—-away point on the suction side
in reiation to the trailing edge. Posiing '

C-i
ZzeAC(‘ZO'*'AZ

.while the coordinate orlgla is placed. in the trailing edge,

the conplex vector becomes the break-away point on the
suction side . o

el(ﬁfﬁ) + A%A
wit
5 cos ¥ N
Az e:LE = AN/ + cos § - & 1Az 4+ sin 8 Az (30
A B P A < B/ Py Pz )

where d 1is taken from (14),. dith scale factor equal to
one : - S . . -
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bzg = -6 20 15 50
3 3
Azp = 2 - 2 ia{4 - w)
21
Az = 8 i + ¥
Pz

. . . 2
is valid up to terms in (a®).

or the ternm Aer:LB merely measures the displace-

ment of the break-away poiat from its place on the flat
plate wvith angle « = this plate, however, haviag as
profile mean line the angle B ~ in its place on the
thin profile, the real part of this expression of the dis—
placement in plate direction (positive values indicate
displacement toward trailing edge) and the imaginary part
the displacement at right angle to the »plate. (Positive
velues signify displacement upward, )

Thus for small o & zp is essentially real, where-
1
as A zg and A g are esentially imzginarye. The loca-

Pz
tion of the singular points is then so chosen that the
displacement of the breake-away point in plate direction
becomes either negative or, when positive, beconmes as spall
as possible in order to zive the piece of the suction side
in the Gead-air region ~ ia itself arbitrarily niotted -~

an aerodynamically beneficial curve.

At the same time the displacement at right angle to
the plate must Decome positive or the profile itself over—
laps. The break~away point must therefore be located in
the sihaded 3zone of figure 12.

Fecr limiting the permicssibdle zone for the profile
coastants k&, p, and &, which, moreover, must satisfy
the closing conditions, several specific cases are analyzed.

1. B = a gives

+
§ =L 5 cx’; r=14+p

and with the closing condition

—LE  cos = = 208 Y; Y =0 i~ p cos %
1+ 0 R R

AV}



hence, accordl é to (70)
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8 i S A o 16 - 3 m
A J-B__:____ COS—-+2. COS == e ;
Aze z P 5 t. 2 % p cos 3 5

The displacement in plate dlrectlon, while positive,
is very som all; displacement at right angle %to plate be-
comes nogitive; hence it affords a permissible case,

2. 8 =1 gives

o
T cos E = cos —; ¥ =0
2 2

1 r® - 1
- = cos —
R T
The dis vlacemert in plate direction bDecomes negative,
hut os t at rizht angle %o the plate is likewise nega-
tive, profile overlaps, sc this case is ruled out.
S % = 0. The closing condition now reads cos % =
™ ~
cos =
and yields as location of the singularity the circle
T
- - : . . 1 o
about the wnoint (O, —*————a> with rading ——m— (Tig
2 cos T S &
‘ .‘?. dcosz
- . . . ' - a .
12). Since, in any case, -2 > cos 3 for r =1 an
r

follows that the closing condition calls for
e vertically shaded zone. And, since there

. CTT .\ : - .
8§ must be less than 5, all three of the terms in equa-

tion (30) give for this zone positive valuos, so that the
breck—-cwvay poiat shifts upward and toward the trailiag
edge.

4. Lastly, we determine the curve in the T-plane
separating the region of the profiles with self-overlap
from the remaining zoné. . On this curve

-
[s}]

|

8 p sin & = (32)

(&)
=8
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is at the same time applicable, according %o (30) and (31),
and the closing condition (26) into which o and & are
inserted for r and B coanformadbly to (273. Posting

% = v, we obtain with allowvance for (32) the eguation of

the boundary curve

cos LV + p sia &

2 cosV ~ 3 p sin 6 = 2
1+ 02+ 2 p sin (8 -v)

or ia rectangular coordinates

£ = pcos 65 n=p sin &

»
H
(<
®
L]
£

simple transformation -

~ I3
L5

cos Ut} -

(33)

ke
i
o3l oo

L

3(¢ - sin v)® + 3(n + cos vV)° + 2

For aegative { increasing in amount (for positive
£, +he curve is inside of the unit circle) M increases
monotounic and approaches asymptotically the straight line

-2
n = — ¢co0s V
3

But for small £

2 sin 2 VU g

1+ 4 sir® v

rst a»proximation.

[N
[a]

by
j=2

Fijure 13 illustrates the approximate course of this
boundery curve. .
Sumned un, the result is the following: If the

singularity corresponding to the sharp leadinz edge is
situated in the reglion below the boundary curve, the re-—
sults are profiles with self-overlap. 3etween the
straight § = o and the boundary curve, there are given
profiles with a shifted break-away point in the favorable
sense, uegative in pnlate direction, positive at right
angle to it. To the right of this straight line the posi-
tive diswlacenent at right angle to the plate keeps on
increasing but, as ithe diswnlacement in plate direction
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- mWhhbeﬂomes D051t1ve also,'tbe curve of the suction-side

' piece in” the dead-air region” bYecomes un*avorable.? Bene~
ficial profile shapes are therefore to be expected only.
when the singuvlarity is located in the wedge between the
limitiang curve and the straight line $ = a. *

An exanple of the profile forms obteined in this
zone is shown in figure 14. The parameiters for this pro-
file are:

@ =99; B = 18%9; r = 1.1; = = 0.0S903;° Y = 0O

The profile coordinates are obtained by numerical inte-—
gration from ecuation {25). The dotted piece on the suc-
tion sice is in the dead-air region and, being by itself
coupletely arbitrary, was so plotted as to give +
tion sicde an azerodynamically Leneficial snape. Th
tion of flow is at an angle of 13°Z0!' to the horicz

AFPEIDIX

- .

5. FTorce Calculation

According to Bernoulli's equation,

> - po = p*=2 (1 - o)

where P, 1s the static pressure at infinity; p* disep-
rears in the dead~ainr region. The component of the re-
suljanrt force on the profile is read as

x)
P - -] . i - JA —my H o { -
?4 yo cos(az)qs{' Py = ‘?* cos{ny)ds

~J

or, becanse of

é¢s cos(mny)

]
1

dys ds cos(ny) = dx

. » -
- I, for instaace, r = 1 ard B = 0, the break-away
cos o
point on the zuction side is already to the right from the
trailing edgze.
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Py - iPy = -

it follows th

)

[N
k<

or, because of

A
4

)
e

nally
Ags the wniece

contributes n
T =

Then, ac

hence on the

= Wa¥
foll BN

aw

dz

If both
the

valid on

HACA
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*(3y +idx) = -i %\7[:(1 - g®)(ax - idy)

i

4 = aw e.e
* dz
at
_ : N2 216
F = -1 £ (1 - (QE{) e >1z
2 \ \dgz
216
dz = dz e
e
- dw .
P = ’7 /(-—— ‘ dz - dz \
\\ dz /
cf +the suction side in the dead-air region
othing to the integral,we can write
T
" . iz
& ——dZ at+ i £ —arT
2 arT
Yo
cordlng to (20)
s Q
L il
dz 1 4 je 3 il anT®
dw . -i,g:
T- 1ie 2
. id
unit circle with T= e
;&
e_iG i 2 5 ind
- = 4 —
- — g-izane
eid 4 1617
s -ig |
i . .
e - ie ~1Zanelno
= @ ©
is o oio
e + ie =

expressions are
nnit circle,

compared, it is seen that,
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" 1 _—
S Naw / az /) %
Expressed in words: 42 formed for =z is congjugate
W
complex %o <X formed for ' E.
dz - .o
S . dw 1
Purthermore, since =— ig real for real T,
W dw \ 5y
(& L (gu) (am), = (am)
a7’ g ST g
s§o0 thot we may write:
™ T ™
s = 74 W ]
4 dz dw dw Aw A
_— T = B aaand ——'F = — a7 §
. aT . d ./ Mdz o arT g
o o dw o z
m 5 fo)
e 2
[i A dz - dw.\ dz
= f(‘“’) - 7 =~ ('T— j oz 4T
VAT T 1 . Cdg . AT
/s = -
which finally gives
A o 2
g , 7 A N\ =2 - . ; 'd—‘f\
P = i (-H-) 4z 47 =z —1-E ( ) dz (34)
2\/ A, T 2 \dg / :
. iy
=i
where the last in%egral in the positive sence of rotation
is to e exztended over the unit cirecle of plane 7.
The integrand for the flat nlate.is
e
-iz - .
- . < ~ 1%y ¢ 2
dy dw _ 0 erial = is (1™ + e YL ~77)
dz d4dv 1 & T3
T~ ie =2
&
The separation of the polar at ie 2 corresponding
. to tue leading edge by a cut inward of small radius lecves
the sole singularity located at T = 0 with the residuum
LY - -
res(0) = ~2iC sin o
whence, according to (34):
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P = mpres(0) = -2im p C sin «

-]

ne result is therefore a pure 1ift of nmagnitude

.

A= 2mp C sina
In conclusion, we compute the suction force on the
leadia, edze by evaluating the integral (34) over the
snoll radius about the point ier */2, The result is:

S=-2mwmpC sin® o e *%

As & check, we show that the 1lift diminished by the
suction force is at right angle to the plate
4 -8 =2mp C sin al(i + sin o e™1%)

or, Dbecautse of

For geueral profile forms, we find
P=-38piC(sin a - apz) (385)
with alliowance for (20) =nd (23), so that here also, as
it should be, a pure 1lift results.

Translatioa by J. Vanier,
Jdational Advisory Committee
for Aeronautics.
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¥IGURE LEGEIDS

Figure 1.~ Flow past & profile.conformable to the Xutta-
Joukowsky condition of flow: the flow leaves
in the direction of the angle bisectrix of
the trailing edge; at other than zero edge
angle, a stagnation point is located in the
trailing edge. :

.

Figure 2.~ Flow around the profile of figure 1 with vore-
tex separation; the flow leaves the trailiang
edge tangentially on the pressure side at a
sveed equal to the velocity of flow; a sim-
ilar tangenitial separation occurs on the
suction side near the $reiling edge. 3Between
the two limiting streamlines formed by vor-
tex sheets of equal and opposite. circulation
is a dead-air reglon.

Figure .- Dead-~air flow around a flat plaie in the ygen-
eral case of & dead-alr region, tae width
of which bzcomes infinite.

Figure 4.- Uraasformation of the plane of the stream on
he plane of the logarithm ol the complex
velocity. The border correspondiang to the
niate is the heavy solid line, that of the
correspondiily free strearlines 3 the thin
line.

Figure 5.- The common Eelmholtz flow around a flat nlate;
the force is at right anangle.

Figure 6.~ Dead-air flow around the flat plate with dead-
air width converging to zero; the force is
at right angle to the direction of the
stream. :

Figure 7.~ Pure circulatioa flow around the flat plate
with smooth efflux from the trailing edge,
the force is at right angle %o the streanr.

=i
[ N
e
a
=
o
[o¢]
[ ]

I

Transformation of tae plane of the stream on
a cemicircle; the edge representing the flat
Dlate is shown as heavy line, that of the
free streamlines as a thin line.
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Figure 9.,- Pressure distribution of the flat plate at

Figure

Figure

Figure

Figure

Figure

Figure

1C.-

ll-"'

15.~-

o = 12°, with separation (solid curve) and

in pure circulation flow (dotted curve).

For profiles with trailing edge other than
zero the departure of both curves in vicinity
of the trailing edge is much greater, since
then the pressure differeace in the traile-
ing edge becomes equal to the dynamic pres-
sure.

Course of the free streamlines for the flat
rTlate at o = 12°. The Dbreal-away on the
upper free streamline occurs at 0.213 plate
chord distance from the trailing edge. (The
y-scale is three times greater than the x=-
scale for better represeantation,)

Profiles of finite thickness obtained by shift-
ing of tae singulaerity related %So the sharp
leading edge of the flat nlate in the outer
space of the unit circle of the T-plane.

Permissible zone for location of break-away
roint of upper free streamline on transi-
tion from the flat plate to an adjacent
nrofile. :

Permissible zone for the singularity in the
T-plane related to the sharp leading edge
of the flat plate. The zero circle in the
shaded zone correspoands to the profile
plotsted in figure 14. )

Skape of profile with parameters given in
coantext,; the dotted piece of the .suction
side is in the dead-air region.

Calculation of force acting on the profile.
The vertor of the normals points toward the
inside of the circle.
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Figure 2.
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Figs.9,10,11,12,13,14,15.
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Figure 13.
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Figure 15.
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