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" :rz--"'- ::.- Progressive application of the Eutta-Joukowsky thee-

• _.... rem to the relationship between airfoil llft and circula-

-._.._--- tion affords a number of formulas concerning the conduct

" _... of vortex systems The application of this line of reason-

. ._-_"//:_'_ ing to several problems of airfoil theory yields an insight
" { :_ .... into many hitherto little observed relations.

g:,,- ....... ._The report is confined to "plane flow, hence all vor-

•k-.-":,'_ te x filaments are straight and mutually parallel ,(perpen-

..;,?._:- dicular to the plane of flow)• _ :_ .
- ._<:,c _'_":'-'_ ,_-_-_" i_ ,, . _- *= & 7' _- .-" .:_ _:.;_--__ .,... ._'_,,.. ,_, .• . _ -.:

a--: :.z-: . " '

_._:.:._./::.--_:_.'--- .-:<,1. Kutta-Jouko.w. skg__theor__m.- When a body, about which
-° the line integral of the flow is other than zero,-i.e.,

: - '- " .with a circulation P. is in motion relative to this flu-

_ ,..... id with speed v, it is impressed by a force perpendicular

_ to the direction of motion, which per unit length is
• 7_'_

j- _

>| i-_.. -- . ...... " .

• _: , -:(Eutta-Joukowsky theorem, fig. I). If there is no motion

......... : in the fluid other than the circulatory flow, then v is
' ........- ' the speed at infinity relative to the fluid But, if the

_.:"_._ _ fluid executes •still other motions aside from the circula- "
" '_-e_--__ :_ion, say, when several vortices, or sources and sinks are

.,._ _. _- existent, it is not forthwith clear which is to be consid-
;_:__._..... ered as the relative speed. On the other hand, we do know

-".._-/>-: that v should be the speed of the body relative to that

-.:-,,::-. flow which would prevail in the place of the body in its
- absence. The body is thereby aRsumed as infinitely small,

otherwise different speeds could prevail at different

_._. _laces _of the body. (This case can be worked up by into- ,

""_:_ '_ *"gerhalten yon Wirbelsystemen.":. --_{'_: Z.f.a.M.M., vol. XlI. no.

..... - 3, June I_32, pp. 164-174.
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gration from infinitely small bodies.) This finer distinc-

tion of the Kutta-Joukowsky theorem is readily understood
when bearing in mind that a free vortex, upon which no

force can act, moves at the same speed as the flow in the

place of the vortex if the latter were nonexistent. Con-

sequently, the Kutta-Joukowsky theorem must affor_ the

force zero for the motion at this speed, that is, the
speed in the Kutta-Joukowsky theorem must be measured rel-

ative to this motion, But this may also be shown direct

by appropriate derivation of the Xutta-Joukowsky theorem.

The general rule for this derivation _consists of computing
those pressures in a coordinate system, in which the body

rests (steady motion), which as result of superposition

of circulation and translation act upon a control area en-

veloping the body and the momentums which enter and leave

through it. Thus when we choose as control area a cylin-
der enveloping the body so closely that the speed of trans-

lation in the whole region of the control area can be con-

sidered as constant, this self stone translatory speed con-

tiguous to the body becomes the speed v in the Kutta-

Joukowsky theorem, although it is the speed which would

prevail at this point if the body were nonexistent.

2. _The center of _ravity of finite vort.Qx zones.- If

there are a number of vortices in a fluid. •each individual

one is within a flow which as field of all other vortices

is determined by their magnitude and arrangement, and each
vortex moves with this flow. Visualizing these vortices

replaced by individual solid bodies with the same circu-

lation as the vortices (say, rotating cylinders), the flow

also is the same. Preventing these bodies from moving _with

the flow without effecting a change in their circulation,

each cylinder is impressed according to Kutta-Joukowsky by

a force and we must, in order to hold it, _exert an oppo -_

site force upon it. For a body with circulation rn, ex-

isting at a point with speed vn, this force is

and is at right angles to v n. The resultant of the forces

exerted on the cylinders must be taken up by the walls a_

the boundaries of the fluid, i.e., it must be equal to the

resultant from the pressures of the fluid out 0 the boundary

wall.* -_.... _ . =..... :.- . _- ............. ." ...... : . • .- _ _

Now, if the fluid is very much extended so that its

• See footnote,page 3.
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assumedly rigid and qule'scent boundaries are everywhere

far removed from the vertices (or bodies with clrcula-

flea), the resultant of the prossuro.q onto the boundary

walls approaches zero when the vortices arc restrained.
Yet the flow velocity v produced by the vortices do-

creases inversely proportional to the first power of the

distance, while the relevant p_essure differences (3cr-
noullils equation P -po _ = - -- vm) drop inversely proper-
tional .... " ......... 2to the square of the distance,-t-he : - +• - . " surface of the
boundary incroasee+!inoarly with the dist_uce, so that the

..... force produced as s+um of pressure dlfforence and surfaco

is a decrease inversely proportional to the distance.
-_ a , . + _ = • .... . .+

- + _" : :):- '| _J ,: _,-' • : _ _+ ! _.. ' - .'+ " _ ' • . ..... _- . -

-+." .. But w+hen this force +on the boundary we.lie vanisheS,-
the resultant force on our body must disappear also or in
oth eraor W 8• +:+++-,., _. :+ .... ._,+ _ , _ . .

• + _+. . . . +, -. .. +. , . < .... ":._-++ _ + _ . . . +_.-

++.+,++;+++++:+ i+ z .... C+)!+- p_,,l,,l _ "'+'+' +,+ ++++ i+_ P Z Vn =+"O- - +`'•_ '+_..... _" "
n n - + --,'" . _ :-+' .... • "

+.. - - .+++& ,+ ;j _ +- : + . .+ ++ + . . , .
+. . + +) .. ++ • _ +- .+ • ++ _, • _ . + ., +++ P, + ._-,+ +e the forc+e Pn so+the

direction, 7 is considered a veCtori_i _a-+d_+ion_of/_hm_+.

forces or speeds, respectlvely . +In+_.+"_£..++hat[%he co+-+ +-..... -...

ponen+s in the Z a._d Y .'.g_'reo.tion_+_ay be.a_dod+_eparato_ +"
ly, in w Ioh ease + / . +(:+ ,.

• _ -. _ _+ " .... + +++u, _?. _ -_.-++_..... _ . --+ _ ++ .+
_+:.++_.o - . •_+_+-+- ._ p -_ _ - - , -- _ +.,...._..

• _y reel+dining t_+ v_tices the+ flow_ecome+ _teady (mro--
vi&e_ tha%:t)+_+m_ are no singularities ",_r _+_s_u those vet-

< _icos, aud/_at the boundary walls are)_rig_+___n_ "uios-

. _ent). _,Ybr which reason the prossuros ca_._h_ _6mputed by

+ ' i"+_h_s_mple _ornonlli oquation+p + _ = Va+ += +constan_, -Per i
_++. - . - +,__+_+ : ., .'_ .. + • _ +_ _ .- ._ ;+.:+.. + - . ,+" ,.++, ,+ . ,

I +_'-"+froovortt+oe the type of flew within a st+ted time in__n#.
S .+ ViOl +ie.tl+_o same as for restrained vortices, _.+-'+_.Y_:_-_.+; -+

"_"_+" .-.,/" : ++al+ly nolo_gor +s+toady,-+-for the Vortices _rav¢_'+j :t_at_/_ "`" . ;.-
_,.- " - chmugo their arrangement in ++spaCe. Therefor6 ' _^ -_-. - _-.-- +
• " , .... . _.-u la1-O_e\t_ _s ,,_.

,._,'_,_ phange., also, because for nn°nst oadym_ flow.... tho_ pr'_"+++.I;I.z+_-#, "

hi " _ornoulli equation p + _ v_ + P _ = coastal / is +___+i___ '
, -' a l_ ,

ble (_ = flow potential, for steady flow _= 0)) ,Wi_ +
t. + " , _ C-;. +'-_ "- ,+"

_- free vortices there is no force as is in t_e restralned

vortices, so that the resultant force on the bOUrL&a_y walls

must disappear• This is precisely obtained by the accol-

•.orating forces 0 _+. Consequently, t_e forces e_ tho i_I'_-"

',_,. _d boundaries used hero and in the ,folle_ing a+rt_ _ _ _ O _1 1 " +
forces which would occur if tno vortices _61Jo_o rainod.

i.e., by steady flow. _- '

/'!
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Z Pnx = p Z Vny Fn = 0 (3a)
n n

and

Z Pny = p E Vnx Pn = 0 ...... (3b)
n _

with x and y as components along X and T of the re-

spective vectors. If we release the bodies, whereby they
can be replaced again by common vortlaes, they move at

the speed Vn, and our preceding equations constitute a
general prediction as to the displacement of the vortices

within a fluid without extraneous forces. ° especially in a --
fluid ext'ended to infinity. To illustrate: visualize the

vortices replaced by mass points (material system) whose

mass is proportional to the vortex intensities. Admitte_l- ".

ly, we must also include negative masses, in which the_ :

vortices with one sense of rotation Correspond to positive

masses and those with opposite sense of rotation correspond "--

to negative masses. Then we may speak of a center of grav-

ity of a vortex system, while meaning the center of grav-
,4_y',_ofthe corresponding mass system. Applying this in-

_erp_-etation'_ the Vortex motion can be expressed as foll0ws:

_.- The _tion of vortices in a flui_ upon -_

which no _xtraneoua :'orce= cs_u act (fluid extended to in-
finity), _s such _at their _.snter of gravity relative to

the rigldlfluid ba_ndarles or re_a_i_ekto th@ fluid at rest
at infinity remp_n:_ unchanged. This theo_A-am has already

been developed, al_hough in a different way_,'u.b_ Helmholtz,

in his web,Z-known work (reference I). " The prestos is, of

course, the absence of further, singular points in _flu-

id other t_sm the stipulated vorticps. _ _ _

......,If the/ fiuid-is bounded rigid walls and it is pos-_\_ pr-_

_',ble'_to m_ :e some prediction as to the resultant force _ _-

.: on _ th_ ,o¢_ _.ary walls by restrained vortices (stea_y fl'ow), _
the_ _)qu_ ',n (_) gives an accoun_ of moti_on of th_ center

_ o_ _..'avlty, ,,f the vortex. ....... '_

If tl_ resultant" force on the walls i-s P, then = I _,

_tth v o = velocity in Center of g_av_t_r relative to the
•'_igld ,,'alls, we have ' _ .... " ...... " .-"

.........p Vo Z i. = p Z v - . , _ -..
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P °hence, vo - (5)
la Li j,' n

which is at right angles to force P. Thus,

Theorem 2.- When, by restrained vortices (steady flow_,

the pressures exerted by the fluid onto the boundary walls

produce a resultant force, then the movement of the center

of gravity of the free vortices is such ss an airfoil whose

circulation equals the sum of the circulations of the vor-

tices would need to have in qulescent, infinitely extended

fluid to make its llft equa ! to this resultant force.

As a rule the pressures on the boundary walls and thus

their resultant force are not sum_uarily known, although it

is possible to make at least certain predictions in many

cases, for example, if the fluid is bounded on one side

by a flat wall or enclosed between two parallel walls, the

resultant force can only be perpendicular to _hoso bou_dary

walls. Since the center of gravity of the vortices moves

perpendicularly to this force,

Theorem _ rea_s as follows: If there are vortices be-

tween two flat, parallel walls or on one side of a flat

boundary wall, the distance of the center of g_ravity of

the vortex from these walls remains unchanged (it moves

parallel to the walls). This result has already been ob-

tained for a small number of vort_ices by numerical calcu-

lation of the vortex paths_ • " "

__.A___er tia m omen t 0 f _fl ni te vortex zones. - Agal n v i s-

ualize the vortices as being held fast in a fluid and de-

compose the speeds on each vortex into a component radial-

ly toward or aw_y from the center of gravity and one at
right angles thereto, _ Xf r is the distance of a vortex

with circulation r away from the center of gravitl-, and

v r the radial (outwardly directed) speed component, this
vortex is impr_essed with a force

- - L r . --, " - " ,1"

-- , . . T = p _ Vr : .-

which is perpendicular to r and therefore forms a moment

T r with respect to the center of gravity. The tangential

component v t (perpendicular to r) produces a force along

r which does not set up a moment about the center of grav-

ity. The sum of the forces impressed upon the vortices
can be divided into a resul_a_ut passing through the center

*W. Kuller_s report before the meeting of the members of

the Ges. f. angew. Hath. u. Mech., at G_ttingen, 19_9; and

of physicists, at Prague, 1929.
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of gravity (radial force component due to v t) and a moment

M = P_ _ Vr r.

They must be equal and opposite to the forces and moments

acting on the fluid boundaries, Releasing the vortices,
the center of gravity moves conformably to the laws of the

individual force. Moreover, the vortices move also in ra-

dial direction at speed vr. Since

8t

@

we obtain

where _ = moment of extraneou_s forces,_hy_restrainod vor-

tices, with respect to the center of gravity, If this is
zero,* we have ..........

Z i_ rm is a quantitx which cerr;sSon_si_o _he_olar mass
mordent of inertia _. m r _' relative to the center of grav-
ity. Consequently, it may be designated as Inortla moment

of the vortex system and we obtain -_ .... - ;_: "/ --_ ......

T_heorem 4.- When, by restrained vortlces_ _he extra-

neous forces acting on a fluid have no moment with respect

to the center of gravlty of the vortex system within this
fluid, the inertia moment of this system of Vertlcee _ re-

If the moment of th_ extraneous f6rces is in the same

sense as the chosen positive vortex rot atio_ _._thls inertia

moment increases according to equation (6) and vice versa.

Vortex s_stems whose total circulation is zeroy-

The kinetic energy_o'f a potential vortex in infinitely ex-

tended flow in a circular ring between r and dr and

thickness layer 1 is

•Whether or not there is an oxtraneotls moment in a given.•

case requires• a more careful analysis th_n the probl0m o_
extraneous forco_, since, for exazple, _the forces decrease

toward zero with I/r when th_ boundary surfaces are e_-_

larged, whereas the moments may remainflni_e_because of _

the added factor r as lever arm,_ _..... _r._-_, _._-'_;._;_._,_;_;_ _, ...

:..-. . -

f .... ,. _-...--
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Integration over the whole fluid (from r = 0 to r =_)

yields by approximation to r = 0 as well as to r = co,

the energy as _. For which reason it is physically im-

po_ible to realize such vortices. The difficulty with

r = 0 i_ obviated because the physical vortices always

have a nucleus of finite di_netcr, in which the speed no
longer rises with I/r toward _, but remains finite.

But by r - _ the difficulty remains (apart from the en-

ergy the rotary mor_entum likewise = _). As a result, the

production of vortices in an infinitely extended fluid can

only be effected by pairs, so that the sum of the circu-

lations is zero. The velocity field of such a doublet

drops at great distanceainversely as the square of the dis-
tance so that the fluid energy remains finite for any ex-

tension. Hence.

_h@orem 5.- The total circulation of all votices in

an infinitely extended fl_id is zero. _o vortex system
with finite tot_l circulation can occur _nless the fluid

is finitely limited. A_d of course, a part of the vortices

in an infinitely extended fluid can also be at such a re-
mote distance as to bc of no account for the flow at that

particular point. There may then be vortex systems with

ono-sldo_i total clrculation_ in which the very vortices

which supplement the total circulation to zero _re very
remote from it. _ Since, however, energy and monentum of

two opy_osite vortices increase with the distance, very

great distances'are encountered only in cases of very great

energy input. The c_se of s. vortex system with zero total
circulation is consequently relatively frequent and de-

serves special consideration, since the center of gravity

of such a system lies, as we know, at infinity, _so that
the preceding theorems are not summarily applicable in

part •

_omblnlng one part of the vortices into one group and

the others into another group, we can analyze each group

by itself, as, for instauce, the clockwise rotating vor-

tices in one, and the anticlockwise vortices in another,
although this is not necessary. The only condition is

that the tots l circulation of the one _roup be equal and

opposite to that of the other group s__i o_her than zero.
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m

In the absence of forces :_ud mouents on the fluid,*

as, say, by infinitely extended fluid, the forces and _o-
ments on the restrained vortices must be zero or, in other

words, the resultant force on one _roup must be equal and

opposite to the force on the other and be on the sa_ue line

with it. But these forces need not necessarily pass

through the center of gravity of each of the two groups,

When the vortices are released the center of gravity of -
each of the two groups moves perpendicularly to this one-

sided force and at the same speed. This is expressed in

Theorem 6, as follows: The motion of the centers of

gravity of two groups of vortices with equal and opposite

total circulation i8 mutually parallel and has the same

speed, hence constant distance. ....

Knowing at first absolutely nothing about _ the direc-

tion of the opposite force, we can make no prediction as

to the direction of motion. When this opposite force

passes through the center of gravity of a group, this group
is without extraneous moments and its inerti_ moment is

then constant (theorem 4).** As a rule this force does not

exactly go through the center of gravity of the two groups.
But when they are separate to a certain extent dud closed

in themselves, the force _Imost always passes very close ....
to the center of gravity, in which case we can then consid-

er the inertia moments at least approximately as constant.

If the force does not pass through lthe_contors of _

gravity of the groups, their inertia moment changes. But

if the forceis parallel to the line connecting the two

*In such vortex systems the moments also are fca-th-r_th

small when pushing beyon_ the rigid boundary walls. (Com-
pare footnote** below. .... _ _ --
**It was always assumed that no singularity Other than the

vortex system existed. But with the two groups and each

considered by itself, the assumption ceases to hold. How-
ever, the previous considerations can be generalized so
that the forces needed to restrain the vortices of the mO-

mentarily disregarded group, become the extraneous forces

on the fluid. It is readily seen that theorem 4 is equally

applicable in this sense to a group of vortices in the
_. '3

presence of further vortices. _;.._ __.- , _.... _ __:;_..

_ _ ; - -_ _- __ - ._,-_-_--_

I

f/

.j

• . . . ,-
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F

centers of pressure (Sl, S2, fig. 2), which iz manifested

by their perpendicular motion to the connecting line, the

moment of the force relative to the two centers of gravity

is equal and opposite. The result is that the inertia mo-

ment of o_e group •increases at the same rate as that of

the other group decreases. (One inortia moment is usual-

ly positive, the other negative; their absolute values

thus increase or decrease to the same extent.)

T_hg_q/rmg_.- If the motion of the centers of gravity

of two groups of vertices of equal and opposite total cir-

culstion within an infinitely extended quiescent fluid is

perpendicular to the line connecting the gravity centers,

the algebraic sum of the inertia moments of the groups re-

mains unchanged. ._... _-,_ - , ......

When the force forms an angle with this connecting

llne (Sx S_, fig. S), that is, when one velocity compon-
ent Vx is along its connecting line, the inertia moment

of one group increases more than that of the other do-

creases or vice versa. In any case _, the sum of the iner-

tia moments of the two groups Is ch_uged. It amounts, in
fact, to - " .... :: ...... ' _ '_ "" _ :_ '- " "

according to equation"(6) and figure s. (_. rx _ r_ is the

inertia moment of one group, _ r_ that of the other,
a is the distance of the two centers of gravity, and Z

the total circulation of one group.)

- The sum Of the inertia moments increases when the

motion of the centers of gravity in direction of the group

with positive circulation is toward the group with nega-
tive circulation. It decreases for opposite direction.

Thus ZD in equation (8) denotes the total circulation of

that group, which moves toward the other,

i.

/
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ll. APPLICATION

In the practical application of these theorems, it

frequently is not so much a case of a number of indlvidual

vortices, but rather of continuously distributed Vortices,

But that presents no difficulty; it merely means substi-

tuting _- terms for _ terms. It is, however, something
else when the vortex sysOems extend to infinity and at the

same time have infinitely large circulation. Butwith

some care, they also are amenable to solution by these the-

orems. . . .

l__Vorti_cos back of.an airpl_E_in_;-.Acc_ordin_ to ".
airfoil theory (see Handb. d. phys., vol. VII, p. 2Z9 ff).
an area of discontinuity is ferried behind _ wing by opti_

mum lift distribution (minimum by given lift), which has "'

the same speed of downwash at every point. Thus the flow
behind an airfoil may be visualized _s if r,.rigid plato,

the area of discontinuity, were downwardly displaced at

constant speed and thereby sets the flui_ in moti6nl (fig.

4). This, however, is applicable only in first _pproxima-
tion when the interference velocities (foremost of which

is the speed of displacement w) are small compared to the

flight spool. For this motion would only be possible for

any length of time if the area of discontinuity actually
were rigid. By flowing around the edges, laterally direct-

ed suction forces P occILr, which only could be taken up

by a rigid plate. These forces are absent when the area
of discontinuity Is other than rigid, as a result of which
the suction P effects other motions; starting at the

edges, it unrolls and gradually forms two dlstinc_ _erti-

ig, 5) ......................._ _-_-_- - ''(f .... _ , , _•..... ._ ...........COS , ...._ _,_._ ___._, _ _ ....,_,__ :/- _

With 7, = wing span, the clrculation per Uni_ length

dP for such an area of discontinuity is distributed
of Z_' ....... "...... __ _ "

across the span conformably to the following equation (_

dr= -_o [_'_ x .
--" \1 iJ'_ ---_'_ ( 9 )'

/ T] '

with r o = circulation about the wing in _ts media_plane.

The downwar_ velocity of the area of discontinuity prior

to development is

w = (io)

I
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The area of alscontinuity may be regarde,i as a con-

tinuously distributed system o_ vortices with zero total
circul_tion. The distributiozs of the vortices is given

in equation (9). Combining the two symmetrical halves

< x < 0 an_ 0 -_x-_ ) into One _roup each, the
('2-
dist,_nco of the center of gravity of the two groups must

remain the ss_,,e, according te theorem 6. The center of

gravity of a system of vortices conformable to equation

(9) from 0 to _/3 lies, as is readily computable, at a
_ist_nce "

- xo = (!l)
"-4_

from the center, so that the distance of the centers of

gravity of the two groups becomes

a = xo =

.:. _ _ .

This,, then,_i s accordingly also the distance of

the centers of gravity of the two formative individual vor-

tices (fig. 5). The steady symmetry of the process in the

present c_se is indicative of the consistently parallel

displacement o_ the centers of gravity an_ consequently,
that the individual vortices are also symmetrical to the

original piano of sy_no_ry.

• The process of convolution or &evelopmont with respect
to time can _Iso be followed by similar considerations,

although this calls for considor-_blo mathematical work.

Up to the presen_ the course of the process has been ex-

plored very accurately in its first stages, durlng which

the develope_ part was still small compared to the whole

area of discontinuity (reference S).

I_ the present report a_ attempt is made to gain ap-

proximate information regarding the magnitude of the tip
vortices and the circulatory distribt_.tion within them.

The vortices of the area of discontinuity are divided at

_omo point x and those lyln_ to the left are grouped in-
to one; those to the right of it (full line in fig. 6) into
another. Thou it is as_u,._ed that the o_npo_Ite forces on

the two gro_ps - the vortice,_ being restrained - p_s

through the ce_ter of _::y_vib;7 of bo_h gro'cps, _hlch actu-

ally proves f_irly co_,rect, because of the comparatively

strong concentration o_ the vortices toward the tips an&
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the ensuing distinct separation of both groups. Now the

inertia moment of one vortex group must remain approxi-

mately constant _uring _evolopmont, The total circulation

of one group of the undovolopoi area of &iscontlnuity from

x to _/2 is

Fx = =_ _x = Po (la)
x

For the ensuing calculation the angle _ is use& in place

of the variable x, which is bound up with x through

¥ Y C¥):cosq_ = anl sin qO = I -

Thus the vortex distribution (equation 9) becomes:

(i4)

8x I .... .

A {_)" ........:rx = Po - = Po sin_,- • (l_a)

The distance of the center of gravity of this group
is:

1t _ xd.x= _ t f_cosa_d _ = _ [_ + ½sing _3xI= _x _x sin_ _ o 4 sin_

" ' ...... (is)
The inertia moment of the group with respect to _

the center of the area of discontinuity (x = O) is:

Jo= z/ 8 x kg) o
(la)

The inertia moment of the group with respect to its

center of gravity is:

_x=_o-_xx,:: _o_(-_):._°_(_- _._::...._)
1 =-=-'.... ' (17)- _ [_+ ½ sin 2_]= -iCe ,,-

J

.,

t

v-.._.':," __',.."_. . -" ,: _ . L "--": '- ......

- " " ' ;"i':" .... -;::-,
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This inertia moment must be present again after the convo-

luti on..

- ile ....Now the_e d-up group is assumed to be circular;

that is, the asymmetry stipulated by the mutual interfer-

ence of the two coiled-up vortices is disregarded, so that

the Circulation may be presented as a pure function of ra-

dius (P = f(r)). The vortex group from x to _/2 is

coiled up into a spiral which fills the circle with radius

r. Then the circulation Pr must be equal to the circu-
lation of the original vortex group

_.......':_ _ _:,-, l"r_=- l'x • (IS)

and likewise, the inertia moment of the vortices coiled up

in this circle must be equal to the original inertia mo-

ment of the vortex group
_" r .... -"

.... r

Jr = / _ rm dr = Jx. (19)
o or ................._...........

Permitting r to increase by

dx and increases @ by d_
result is an increase of

dr. then decreases x by

under these premises. The

8P r 8P x
dr = ---- d_ = F o

5 r 8_

in circulation, and of

8r = 8@

cos _ d_ (2o)

(21)

in inertia moment.

" Then the differentiation of (17) yields

- _ (_ + ½ sin 2_) (l + cos 2_)]
2 sin @

which, written into (21) and with regard to (20) gives
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_/.r "cos_ + _sin_ - sin_

Since sin q0 = I- , (equation 22) con-

notes the relationship between r amd x,. that*is, it

glvss the size of the circle into which a piece of the
original area of discontinuity has changed. And. knowing

the circulation _ = r o sin _, the equation also discloses

the distribution of the circulation in the coiled-up tip..

vortex. Figure 7 shows the rospcctivo values of r and x

versus r, arid also the distribution of the vortex densi-dP
-------. When forming the pertinent boundary

ty _(ra_) 20 Pc .... . -_ _ " _.... .....- _ _ -
transitions, equation (22) yields- _, :. _: : o _' :_ _'. ....

for very small values of _, so that

(23)

( )= g :' ;,_,_ . ........ 24

1 s
2

_=

In other words; a small boundary piece of the area

o_ discontinuity coils up into a circle, whose radius is

2/3 of the length of the original Piece. = :,7:-,--:_

For _ = r_ we have _ = _4' which means that the2
radius of the tip vortices is _ Since the center of

4

the tip vortices is _ I distant from the plane of sy,_me-

try, it would indicate that the_two tip vortices precise-

ly touch each other. But for such close proximity, our
aBsumption that .the individual tip vortices shall be sym-
metrical circles, ceases to hold: the speed between the

two vortices is substantially greater than it is 'outside,

with the result that the individual streamlines are out-

wardly displaced. So in reality the vortices should not
touch each other. The established approximate result how-

ever, may, beceuse of its simplicity, give a ready picture

of the order of magnitude of the vortices. According tO,

figure V, the relationship between _ r and 'x is fairly

linear, Henc_ r = _ _- x) in the greater part of the

vortex conformable to (24), and it is only in the outer
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edge of the vortex that the factor 2/S changes to _/4.

The curve for the distribution e_ the rotter, density shows

the main part of the vortlccs to be very nuch concentrated

around the center despite their co,_paratively gre_t extent.

2_= Phenomena behin_ cascades of airfoils.- C_sca_es

of airfoils also form areas of discontinuity aft of the

airfoils (fig. 8), and whose motion relative _o the um_ l_-

turbed flow would, by optimum lift distribution, be as for

rigid surfaces, if the edges could absorb the suction.

But in reality they develop with respect to time. (See

Handb. d. Phys., vol. VII, p. 272 ff.) .....

' Lot us analyze the practically alw=ys existing ca_c
wherein the distance a _ of the surfaces is small com°o_re!

to _'._ span. As_umlng the areas of discontinuity to be

actually rigid, the flow around the rigid surfaces far be-

hind the airfoils would, near the edge, be as shown in fig-

ure 9, when choosing c_ system of coordinates within which

these surfaces rest. The motion in this system of coordi-

nates being steady, Bernoulli|s cq_lation c,an be employodo

Inasmuch as the interference velocity between the surf_.ces

far removed from the edge is evanescently small relative

to the surfaces, whereas outside in th_ undisturbed flow

the relative velocity is equal and opposite to the veloc-

ity of displacement w, Bernoulli_s equation yields

p = P ... (25)

positive pressure between the sur£aces with respect to the

pressure in the undisturbed flow on the side of the sur-

faces.* This positive pressure balances the suction at

*Directly behind the cascades the pressures and velocities

are different. By contraction or expansion of the lateral

edges of the areas of !iscontlnuity (positive or negative
contraction) equilibrium is, however, established with the

pressure of the lateral Undisturbcd flow, resulting in a

correspondingly different speed. (See Handb. d. Phys.,
vol. VII, p. 259 ff.) Here and in the following the con-

ditions subsequent to this b_lanco are considered only.

_or many purposes it should bc noted that owing to the
width changes of the hypothetical rigid area of disconti-

nuity the suction at the e_ge9 has a component along the
direction of flow.
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the plate edges, For an analysis of the horizontal forces

acting upon a fluid strip of the height of the surface

spacing a t. reveals on one side a force al p _2 as re-

sult of the pressure difference within and without, and on

the other the suction at one plate edge. No momentums are
transmitted by the boundary surfaces, therefore the suction
must be

P = a' p (26)

P

In such a system of s_Arfaces the vortices are very

much concentrated at the boundaries, at great distance

from the edge, that is, in the entire middle part of the

surfaces the relative velocities are practically zero and

with it, of course, the velocity differences on both sides

of the surfaces, i.e., the vortices. As a result, the ef-

fects of the developed and of the undeveloped areas of dis-

continuity are equal at distances which are great compared
to spacing a I, since the spatial transformation of the

vortices during development is subordinate as against the

groat distance. Nevertheless, there is a fundamental dif-
ference as far as the flow is concerned between the thee- "

retical process with undeveloped rigid surfaces and the ac-

tual process with developed individual vortices, a f s_t
which up to now has never been pointed out, to my k_g@l-

edge. _ . _ .

The vortex group at one side is in the velocity field

of the vortices of the other. Owing to its remoteness.

this field does not change appreciably during the develop-

mont, Thus assuming the vortices as restrained before and

after development, the mutual force exerted by the vortices.

remains the same, and with it the velocity in the center of

gravity of the developed and the undeveloped vortices, But

when visualizing the areas of discontinuity as rigid, they
are then no longer exempt from forces because of the suc-

tion P, and in that case the velocity" is greater by an
amount ........ _ ................... _ .......

Aw = _ ' " (27)

than with the free vortices, r- is heroin the circulation

about the part of the area of discontinuity lying on one

side of the plane of symmetry, respectively, about the

single vortex developed therefrom (for the rest equal to

the circulation about the airfoil in its median part).

Following the line integral in figure 9, it is readily seen
that

_ • , .

L
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.. r = a' w (28)

hence, with due regard to (26):

Aw = w_ (29)
2

_hen the velocity of the free vortices is:

. w' = w -Aw = _ (30)

As a matter of fact, the process of _evelopment is
such that the center of gravity of the vortices clustered

around each edge, lags behlndthe velocity of the central

main part of the surfaces. _hereas the latter moves at

velocity w, the center of gravity of the vortices moves
at a speed w/2 and it maintains this speed in the final

attitude after development.

_ ' However, this speed w/2 can also be deduced direct

_rom the field of the opposite vortices. At great distance
it is identical with that of a vertical row of concentric

vortices _(fig. I0). But at medium distance the Cisld of

such a vortex row is a constant speed _w ! - • "-'-_-- down-

..... _ _ 2a_
ward on one side and upward on the other. Between the two

rows the fields of the two rows add up to speed w, so
that

. _. = _ w, (Sl)

The signs for the fields outside of the rows are

contrary, hence the speed Is zero. Each vortex row itself

moves under the effect of the momentary other row, that

is, its speed is

_-. : _ ,._, w' = _ (_)

_..t there is _ret another rosult which is not as read-

ily conceived as the change in vortex velocity. For the

rigid surfaces we had within the deflected flow a positive

pressure q P which balanced the suction at the edges.

After development the suction is absent, so that there is

also no more positive pressure _ithin between the vortex

ro_s, as can be proved from the Bernoulli equation. In

the chosen system of coordinates of figure I0, w is the

speed of the inside flow, 0 that of the outside flow| and

w/2 that of the vortices. To insure steady conditions,

we must select a coordinate system in which the vortices
t
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rest. Then the speed of the inside flow is w/3 and that

of the outsidc flow - w/3 (fig. ii)+ Both are of equal

absolute magnitude, hence of equal pressure within s_nd
without the vortex_rows.

i_ow this change of pressure during development is not

without influence on the flo_ insigne. Aualyzing a cut

through the airfoil cascades (figs. 8 and i_) while apply-

ing Bernoulli's equation to the speeds in front of and be-

hind the cascades, reveals by pressure balance (developed

vortices, fig. 12), _

c3 - cz ......
W _

amd by p = P _- (u_developed _ortices) _

c2 + = + . (34)

Therefore the speed is greater after development than be-

fore (c3 > c_). - . ............

This result, while at first sight perhaps somewhat _+ ,+
peculiar, can also be elucidated in a different fashion.

Looking at the cascades from the tide, once with undevel-

oped vortex surfaces (fig. 8), and then with developed vor-

tices (fig. 13), the _iroction of the detached vortices is

manifestly difforcnt because their own speed relative to

the _!ndisturbed flow is different (w o_ud w/2). _ne in-

terference velocity w, which may be considered as vortex

field, is perpendicular to the vortices, and has therefore

a somewhat different position in both cases. For nondevcl-

opod vortices, the vortices lie in the direction of c2,

w is perpendicular to c_ (fig. 8), and since c_ is

composed of undisturbed velocity cx _ud interference ve-

locity w, we have

.... /

C_ _ _= CX _ -- W _.+ . .+_ - ..

In the developed state the vortices move with natural

speed w/2, that is, they are between cz and cs.

$i_.co w and therefore w/2 in turn are porpon&icular to

the vortices, the velocity vectors cx, c3, and w form a
triangle in which the vortex line is the median line (fig.

12). _ut this implies that c3 = cI. .... .....

+

Translation by J.Vanior, +'- +..... --+ ++++-+ +++
1+ationalAdvisory Dommitteo + + +°+ +++.::+ + : +_- +: "+ _+.-_++-:_+_-
for Aeronautics.

. -..... _+-, .... _ ....... +._ +_+++:, .... ._+i+. _++ ........

,_.+ , ..._,.- ,:+_ ....+-- , •: • :.+-j_:?_+++ -........-- • -.+...... -._: ++ _,.f+ .e ,+:. , • , • •+_++ " • _ •

.... ,. +- _+:,+_+__-+ + •
+ _. ++_:.+..+: _ . - . + .

+ _++: +_-+ +
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