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.BEHAVIOR OF VORTEX SYSTEMS*

By A Betz

Progressive application of the Kutta-Joukowsky theo-
rem to the relationship between airfoil 1ift and circula-
~tion affords a number of formulas concerning the conduct

of vortex systems., The application of this line of reason-
ing to several problems of airfoil theory yields an insight
into many hitaerto little observed relations. " -

A The report is confined to plane flow. hence all vor-
. tex filaments are straight and mutually parallel,fperpen—
’dicular to the plane of flow) o :

= onmnu rﬁmoﬁﬁus o

v

) 1, gutta—Joukowskx g - When a body, about which
the line Integral of the flow is other than zero, i.e.,
with a circulation I', is in motion relative to this fiu-

. 14 with speed v, it is impressed by a force perpendicular

to the direction of motion, which per unit length is

< SR SR . 1 A LT e o .. : B e o
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4(Kutta-Joukowsky theorem. fig. 1), 1If there is no motion
in the fluid other than the circulatory flow, then v 1is
- the speed at infinity relative to the fluid, But, if the
" fluid executes still other motions aside from the circula-
‘tion, say, when several vortices, or sources and sinks are
~existent, it is not forthwith clear which is to be consid-
ered as the relative speed., On the other hand, we do know
that v should be the speed of the body relative to that
flow which would prevail in the place of the body in its
"absence, The body is thereby agsumed as infinitely small,
otherwise different speeds could prevail at different
places of the body. (This case can be worked up by inte-

*"Verhalten von Wirbelsystemen." Z.f.a.M.M,, vol, XII, no.
© 3 June 1q32 Pp. 164-174, .
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gration from infinitely small bYodies,) This finer distinc-
tion of the Kutta-Joukowsky theorem is readily understood
when bearing in mind that a free vortex, upon which no
force can act, moves at the same speed as the flow in the
place of the vortex if the latter were nonexistent, Con-
sequently, the Kutta-Joukowsky theorem must afford the
force zero for the motion at this speed, that 1s, the

speed in the Eutta-Joukowsky theorem must be measured rel=
ative to this motion, But this may also be shown direct
by appropriato derivation of the EKutta-Joukowsky theorsm.
The goneral rule for this dorivation consists of computing
those prossures in a coordinato systom, in which the body
rests (steady motion), which as result of superposition

of circulation and translation act upon & control area en-~ .-
veloping the body and the momentums which enter and leave !
through it. Thus when we choose as conirol area a cylin-

der enveloping the body so closely that the speed of trans- -,
lation in the whole region of the control area can be con-

sidered as constant, this selisane translatory speed con-

tiguous to the body becomes the speed v 1in the Kutta=-

Joukowsky theorem, although it is the spesd which would

prevail at this point if the body were nonexistent.

LR

2., The center of gravity of finite vortex zones.~ If
there are a number of vortices in a fluid, each individual
one is within a flow which as field of all other vortices
is determined by their magnitude and arrangement, and each
vortex moves with this flow. Visualizing these vortices
replaced by individual solid bodies with the same clrecu-
lation as the vortices (say, rotating ¢ylinders), the flow \
also is the same. Preventing these bodies from moving with .,
the flow without effecting a change in their circulation, ‘
each cylinder is impressed according to Kutta-Joukowsky by .
a force and we must, in order to hold it, exert an oppo- L
site force upon it. For a body with circulation T'p, ex-
isting at a point with speed vp, this force is_ .. ==

R S

Pp =P vy Pn -- (2)

and is at right angles to v,. The resultant of the forces

exerted on the cylinders must be taken up by the walls af

the boundaries of the fluid, i.e., it must be equal to the

resultant from the pressures of the fluid onto the boundary

wall,® 0 L Lt e e T e I

¥ow, if the fluid is féry‘ﬁﬁéh'axtendéd go that its

*See footnote,page 3. , y
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. assumedly rigid and quiescent boundarles are everywhere
- far removed from the vortices (or bodies with circula-
tion), the resultant of tho prossuros onto tho boundary
. - walls approaches zoro whkon tho vorticos aro rostrained,
' For theo flow velocity v producod by tho vortices dcg-
croascs inversoly proportional to the first powor of tio
A distance, whils tho relovant psossuro difforoncos (Bor-
: noulli's oquation p - Py = = £ v?) drop imvorsoly propor-
tional to theo squaro of tho distance; the surfaco of tho
boundary incroascs linoarly with tho distanco, so that the
force produccd as sum of prossuro difforonce and surface
1s a docroaso invorsoly proportional to tho distanco. .

L .[»'»;:

S

’,  But hﬁeﬁitﬂiéjfdgéq,éh tho 5oundéfj %alls'#dﬁiéﬂdé:
tho resultant forco on our body must disappoar also, or in

other words, . -, ' . 5. acnw o el

B a . ; U TEGT L LA

. O e 4
- W il

CETE TE R Tho oyl me g
2. DPn=PFvyly =0
n % moRTRos

4 -

e P
- S PR (3)
R > oo R - N S KR

; iéﬂihé\fofégé*APnulor the spoeds. v 'Jﬁay‘aﬁsumguiéy
direction, 3§ 1is considered a vector -diditi°nt°?/th3y
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forces or speeds, respactively. Instead of that}ths cor=
ponents in the X aad Y . direction-tay be added Separate-
1y, in whick case - v Cocn \Cimune L o

..
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*By restrfaining the veY¥tices the”flowg§ecqme§'£tegdy (pro- -
vided that thaxv are no singularitios 2Tear than those vor-
~ ticos, ‘and ,%'nat.the boundary walls are’gig;iwgnd quios-
¢ent), ~For which reason thG'R?OSSUTOSiCahfkgiﬂémputedrbyV_
- “'¥hosfmple Bornoulll oquation p + 5 = VA '= conlgtant, For
i ~~’froo vortitds tho type of flow within a stated sipg 1§§§;§ .
77 Yal 1s tho same as for rostrainod vortices, ﬁifffj“ﬁsu- : :
7" ally no loager stoady, for the vortices t?avqi.ftﬁdt'is, <
. ° .- change thoir arrangomont in spaco. Thero?oﬁg V2@ prossires .-
;\i - ghange also, bocause for nonstoady flow tho % ?rbngizqd
by £

-

N wgcrnoulli cquation p + % v2 + P %%-=,6033tg£/f is:fpﬁiica-
’  "ble @ = flow potential, for steady flow 7 5?&?»0)3 PR
> free vortices there is no force as is in the restrained |
vortices, so that tho resultant force on the dbouwndaly walls
must disappear. This is precisely obvtaipod by the}acco}-%
» ‘orating forcos P Q%. Consequently, %to forces oﬂ”th?éf%éf
L 14 boundarics usod hore and in thc,folloq}qgmgrg_ﬁhoSGT’ﬁ )
: : ~ forces which would occur if tho vertices wqroi?bs}gainoé.
0\ l.84, by stcocady flow, L B R

1 . o
=

i

H

IR 3 Lo e Sy iy e 5 s i S i, e A a3 i a5 e s v e 8 o



. .’\;

"

4 N.A.C.A, Techunical Memorandum No, 713
2an=p;§7nyrn=0 ] (3&)
n
and
Y Poow = PE Ve I =0 7 % T3y
n ny r nx n ) ( ) .

with x and y as components slong X and Y of the re-
spective vectors, If we release the bdodies, whereby they
can be replaced again by common vortices, they move at
the speed vy, and our preceding ecuations constitute a
Zeneral prediction as to the displacement of the vortices
within a fluid without extraneous forces, esbecially in a
fluid extended to infinity, To illustrate: +visualize the
vortices replaced by mass points (material systom) whose
mass 1s proportional to the vortex internsities, Admitted- .
ly, we must also include negative masses, in which the -
vortices with one sense of rotation corrospond to positive'
masses and those with opposite sense of rotation corresjyond tae
to negative masses, Then we may speak of a center of grav-
ity of a vortex system, while meaning the center of grav-
1’y of the corresponding mass system. Applying this in-’
1erpretat10n; the vortaz motion can ba sxnressed as follows-

' Theojrem 1,~ The motion of vortices in a fluia upon-
which no Bxtraneous torces can act (fluld extended to in—
finity), §is such tiat their-center of gravity relative to
the rigld|fluid boaindaries or relhm@vo\to the fluid at rest
at infinity remsins unchanged, This thecrem has already
been developed, alihough in a different way.*%y Helmholtz,
in his weli-known work (reference 1). The premfsge is, of
course, the absence of furtaer singular points in %ua\flu-
id other t%an the stipulated vortices. . o ) Ny

x - .{ e Fa &l T

If tae fluid is bounded f& rigid walls and it'is pos-\\\ o
giblexto m, "e some prediction as to the resultant force Mo
on tha -ary walls by restrained vortices (steady flow),
then ;’qua m (2) gives an account of motion of the center /é]
o avity ‘T the vortex, - - : S A S

..o DT /

If tle rosultant force on tne walls 1y P;, th§n7:;7 o 3
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}ith vo = velocity in éenter of gpgvity felative;tp_ﬁhé
igld vvalls, we nave . L
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(5)

hence, - ¥ = -%;
el

which is at right angles to force P. Thus,

Theorem 2,~- When, by restrainod vortices (steady flow),
. the pressures oxortod by the fluid onto the boundary walls
produce & resultant force, then the movsnmcnt of the conter
of gravity of the froe vortices is such as an airfoil whose
circulation equals tho sum of tho circulations of the vor-
tices would need to have in qulescent, infinitelJ extended
fluid to make its lift equal to this resultant rorce.

4 : As a rule the pressures on the boundary walls ard thus
s thelr resultant force are not summarily known, although it
is possible to make at loast certain predictions in many
o _ cases, For example, if the fluid is bounded on one sido
o by a flat wall or enclosed botwoen two parallsl walls, tlho
' roesultant force can only bo nerpendicular to those dboundary
walls, Since theo center of zgravity of tho vortices movoes
porpondicularly to tnis force, s

heorgm 3 reada as follows' If there are vortices be-
tween two flat, parallel walls or on one side of a flat
boundary wall, the distance of the center of gravity of
the vortex from these walls remains unchanged (it movos
parallel to the walls). This result has already boen ob-
tained for a small number of vortices by numarical calcu-
lation of tna vortex path&*

T C 3. Inertia moment of finite vortex zones.~ Again vis-
walize the vortices as being held fast in a fluid and de-
_ compose the speeds on each vortex into a component radial-
¢ ly toward or awdy from the center of gravity and one at
right angles thereto, If r is the distance of a vortex
with circulation ' away from the center of gravity, and
vy the radial (outwardly dirocted) speed component this
vortex is 1mprossed witn a force , o

T=PT v

which is perpendicular to r and therefore forms a moment

T r with respect to the center of gravity, The tangential
component v¢ (perpendicular to r) produces a force along

r which does not 'set up a moment about the cernter of zgrav-
1ty The sum of the forces impressed upon the vortices

can be divided into a resultant passing through the center

-~

" *W, lullaer's report before the meeting of the members of
’ the Ges, f, angew. Math., u, Mech,, at Gottingen, 1929; and
of physicists, at Prague, 1929,
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of gravity (radial force component due to <v¢) and a moment
M=pPXEDT vp r. »

They must be equal and opposite to the forces and moments
acting or the fluid boundaries. Releasing the vortices,
the center of gravity moves conformably to the laws of the
individual force. Moreover, the vortices move also in ra-
dial direction at speed Vre Since

gp = Q& T

ez
we obtain R R R .
Pl ,r -2 R TN {_5?

where M = momentkof eitraneous forces}fh&‘restrained vor-
tices, with respect to the center of gravity. If this is
zero,* wo have - I

T I‘r constant o "“ﬁfii«t‘;;éxt.:— - (7)

I r2 'is a quantity which corresponds fo tha” polar mass
moraont of inertia I m r2 rolative to the conter of grav-
ity. Consoquently, it may be dosignated ‘a8’ inortia moment
of the vortex systom and we obtain a - M

< R S L= R L S

Theorem 4 -~ When, by restrained vortices, the extrs-
neous forces acting on a fluld have no moment with respect
to the center of gravity of the vortex system within this
fluid, tke inertia moment of this system of vortices RN
mains constant Ee rﬁfﬂ f»“f “‘_ i ff‘ ' )

If the moment of the extraneous forces is in’ the same :
sense as the chosen positive vortex rotation, this inertia -
moment increases according %o equetion (6) and vics verse. :

. <5 i

4. Vortex systems whose total circuletion is zergL
The kinetic energy of a potential vortex in infinitely ex-
tended flow in a circular ring between r and dr and
thickness layer Yds e s e hreaei i

bl g PO B

*Whether or not there is an oxtraneous moment in a given
case roquires a nore carsful analysis than the problem of
extrancous forces, since. for exarple, the. forcos decrease J
toward zero with l/r whon tho boundary surfaces aré en-;;
- larged, whereas the moments nay remain finite beceuse of
the added fector' T £ 2 ;

= s?’ gj‘i{vi Figr oz

§ FnREmT ,_ oy g:a;,ufwe éi g,&ﬁc‘s E,}m!
73*;.:;'?:5 g““gﬁ f" te Wiefriavds e
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smar = D% dr
(21‘71')2 m s z2m T
Integration over tne whole fluid (from r=0 to r =x)
vields by apprroximation to r = 0 as well as to r =0,
the ereryy as ®, TFor which reason it is physically im-
posalble to realize such vortices., The difficulty with
r =0 1is obviated because the physical vortices always
have a nucleus of finite diamaetor, in which the speed no
longer rises with 1/r toward «=, but remains finlte,
But by r = o the difficulty remains (apart from the en-
erzy the rotady momentum likowlse = ®), As a result, the
production of vortices in an infinitely extended fluid can
- only be effected by pairs, so that the sum of the clrcu-
lations 1s zero. The velocity fleld of such a doublet
drops at great distancesinversely as the square of the dis-
~tanco so that the fluild encrgy remains finito for any ox-
tonsioa, Eenco,

- Thegorem S.~ The total circulation of all votices in
an infinitely extended fiuid is zero. No vortex system
with finlite totesl circulation can occur unless the fluid
- is finitely limited, And of course, a part of the vortices
"in an infiritely extended fluild can alsoc be at such a re-
mote distanco as to be of no accouat for the flow at that
particular point, There may then bo vortex systems with
ono~-sided total circulation, in which the very vortices
which supplement thoe total circulation to zero are very
‘remote from it, = Since, however, energy and monentum of
two oprosite vortices incresse with the distance, very
great distances are encountercd only in cases of very great
. "energy input. The crse of a2 vortex systom with zero total
. circulation 1s consequently relatively frequent and de-
"serves special consideration, since the,center,of,gravity
of sucir a system lies, as wo know, at infinity, so that
the precoding theoroms ‘aro not summaril; applicablo in
pa.rt. . :
Combining one part of the vortices into one group and
the - otHars into another group, we can analyze each group
by itself, as, for instance, the clockwise rotating vor-
tices in one, and the antlclockwise vortices in another, .
although this is not necessary. The only condition is
that the total circulation of the oze zroup be equal and
opposite to that of the otlhior group and other than zero.

s L T TN aiegn D e A £ S b et + Gt s ey AMEin s 1R 8 W b e gk, £ R S S wma wmmem o A m mie e e v e e b o b T 2T -
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In the absence of forces and mouents on the fluid,*
as, say, by infinitely eoxtended fluid, the forces and o~
mente on the restrained vortices must be zZero or, in other
words, the resultant forco on one group must be equal and
opposite to the force on the other ard be on the sanme 1ine
with it, But these forces need not nacessarily pass
through the center of gravity of each ol tl:e two groups,
Yhen the vortices are roloascd the center of gravity of .
oach of the two groups moves perpendicularly to this one-
sidod forco and at the same speod, This is exprosscd in

Theoren 6, as follows: The motion of the centers of
gravity of two groups of vortices with equal and opposite
total circulation is mutually parallel and has the sameﬁf
speed, hence constant distance.

Knowing at first absolutely nothing about “the direc-
tion of the opposite force, we can mnke no prediction as -
to the diroction of motion, When this owposite force

passes through the centor of gravity of a group, this group‘,

is without extranoous momnents and its inortia nmoment is
then constant (theoorem 4).** As a ruvlo tuis force doss not
exactly go through tho center of gravity of the two groups,
But when they are soparato to a cortain oxtent and closed
in thomselves, tho force almost always passes very closo”

to the centor of gravity, in which coso we can then consid-
er the inertia moments at lcast approximately as constant,

If the force does not pass'thf&ugh th6&E6ﬁf6rp of
gravity of the groups, their inertia moment changes. But

if the force is parallel to the line connecting the two

*In such vortex systems the moments also are fo*tA“lth,u
small when pushing beyond the rigid boundary walls. (Com-
pare footnote** below, .

**It was always assumed that no singularity other than the
vortex system oxisted, 3ut with the two groups and each
considerod by itself, the assumption ceasos to hold, EHow-
ever, the previous considerations can be gencralizod so
that the forces needed to restraln tho vortices of tlie mé-
mentarily disregarded group, become the extraneous forces
on the fluid, It is readily scen that theorem 4 1s egually
applicable in thls sense to a group of vortices 1n tho
presence of further vortices, A - _ o
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contors of praossure (S,, S5, fig. 2), which is manifestod

by their pervendicular motion to the connecting line, the

monent of the force relative to the two centers of gravity
, i1s equal and opposite., The result is that the inecrtia no-
: mont of one group increascés at tho same rato as that of

tho otheor group decrcascs, (Ono incrtia nomont is usual-

ly positive, the other negative; their absolute Values .

thus increase or decrease to the eame extent ) o B

Theorem 7.~ If the motion of the centers of gravity
of two groups of vortlces of equal and opposite total cir-
culation within an infinitely extended quiescent fluid is
perpendicular to the line connecting the gravity centers,”
the algebraic sum of the inertia moments of the groups reo=-
mains unchangod. VR : .

When the force forms an angle with this connecting
line (S, S, fig. 3), that is, when one velocity compon-
ent vy 1s along its connecting line, the inertia moment
of one group increaseos moroc than that of the other de-
croases or vice versa, In any casge, the sum of the inor-
tia moments of the’ two groupe is changed. I¢{ amounts, in’

a% (G mor, FIEAT) =2veaIl o (8)
according to eguation (56) and figure 3, (I r,2T, 1is the
inertia moment of one group, I rz2I';  that of the other,

a 1s the disfance of the two centers of gravity, and X T
the total circulation of one group.)

The sum of the inertia moments increases when the
motion 'of the centers of gravity in direction of the group .
with positive circulation is toward the group with nega- - ’
tive circulation, It decreases for opposlte direction.
Thus 2’ in equation (8) denotes the total circulation of
that group, w»ich moves toward the other.

o

e 37 oy ) S— y N, Yy e e = e M et vl At p o wmemm T o oAmarmereme o P i e s e o —r— oo o e et b = 0 ¥k
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11, APPLICATION

In the practical application of these theorems, it
frequently is not so much a case of sz number of individual
vortices, but rather of continvously distributed vortices,
But that presents no difficulty; it neroly means substi-
tuting J- terms for I terms. It is, howcvor, something
clse when tho vortex systems extend to infinity and st the
same time have iInfinitely large circulation, But-with
some care, they also are amenablo to solution by thess tLo-
orems, ) , L o o ; .

ls Vorticos back of an airplang wing.- According to
airfoll thoory (seo Handd. d. Phys., vol. VII, p. 229 ff),
an aroea of discontinuity is forrmed behind a wing dy optia-
mum 1ift distridbution (minimum by given 1ift), which has
the same speod of downwash at every point., Thus the flow
behind an airfoil may be visualized as if =~ rigid platoe,
the area of discontinuity, were downwordly displiaced at
constant speed and thereby sets the fluid in motion (fig.
4). This, however, is apolicable only in first approxima-
tion when the interference velocities (forcmost of which
is the spced of displacemont w) aro smnall_ compared to the
flight specd. For this motion would only bde possidble for
any length of time if tho area of discontinuity actually
woro rigid, By flowing around the edges, laterally direct-
ed suction forces P ocecur, which only covld be taken up-
by a rigid plate., These forces aro absent when the areca
of discontinuity is other than rigid, as a result of wiich
the suction P effects othor motions; starting at the
edgos, 1t unrolls and gradually forms two distinci yvorti-
cos (fig, 5), = 0 0 p T e ateswmw s YN ool

> x sF

- PR Dermriag s ¢ BR R sums R o Foarv e s P R A N
' S LormTIMIAT S AT BN

With 1 = wing &pan, the circuléiion'pé?gﬁniiéioﬁgth
of dg for such an aroa of discontinuity is distridutod

across the span conformably to the fbllowing éqﬁatioh - {
ar AN x - 5 -
dx 1/ /5 . X\ '
1- (@3 |

with Iy = circulation about the wing in its median"plane,
The downward velocity of the area of discontinuity prior
to development is

w = E%u | (10)

o e, o e o ok RS APt TR T e s —




v’ ,y..m.. ,w..;..,ﬂ* __,,l,&wm-‘,,,_‘ . s EE oy s, g g u‘,:{' e R i syt P o s e g o T Ty e gyt A e ey S

:1933‘ N.A.C.A. Tecﬁnical_Memo;andum Wo. 713 11

The area of discontinuity may be rezarded as a con-
tinuously distributed system o vorticos with zero total
circulation, Tho distribution of the vortices is given
in oquation (9). Combiring tuc two symmotrical halvos

(- — <z=% 0 and O <x,=1 ) 1into ono group each, the

warA® T

diSu1n60 of tno eontor of gravity of the two groups must
ronain thc same, according to thoorem 6., The centor of
gravity of a system of vortices conformable to egquation
(9) from 0 to 1/2 1lies, as is readlly computable, at a
distance ST - -

L

= % (11)

~

e

.

from the center, 8o that the distance of the centers of
_gravity of t&e two groups ‘becomes

a-z:o 111 (12)

This, . tLen, is accordiagly also the distance of
the centers of gravity of tho two formative individual vor-
tices (fig. 5). The steady symmetry of tke process in the
Present case is indicative of the consistently parallel
displacement of the centers of gravlty and consequently,
that the individual vortices are also symmetrical to the
original planc of symmetry. :

‘The process of convolution or development with respoct

to timo can also be followed by similar considorations,
although this calls for considorablo mathamatical work,
Up to the present the course of the process has been ex-
plored veory accurately in its first stages, during which
the developed part was stlll small comparcd to tho whole
area of discontinuity (reference 3).

In the present report an attempt is made to gain ap-
proximate information regarding the magnitude of the tip
vortlces and the circulatory distridbution within then,

Thae vortices of tho area of discontinuity are divided at
some point x and those lying to the lefit are grouped in-
to one; those to the right of it (full line in fig. 6) into
another, Thon it is assuned that theo opposite forces on
the two groups ~ the vortices belng restrained - pass
through the center of gravitsy of both groups, which actu-
ally provos fairly correct, hecause of the comparatively
strong concentration of the vortices toward the tips and
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the oensuing distinct soparation of both groups., Now tho
inertia momont of one vortox group must romain approxi-
matoly constant during devolopment, Tho total circulation
of ono group of tho undovelopcd area of discontinuity from
x to 1/2 is

/2
I‘x=lf' %dx:r‘“/l-(?f)z o as)

For the ensuing calculation the angle ¢ is used'inrplace
of the variable x, which is bound up with =x through

cosP = %5 and s8in® =,/ 1 = (&.) (14)

Thus the vortex distribution (equation 9) becomes:
oL _p (2) —F

= dp e N3

ox 1 / 1 - (;E)

1 - e

Ty =Ty /1 - (3—) =T, sincp?  (13a)

Thé distance of the center of gravity ofrfhisrgroui

= T% % cot @ : (9a)

is:
1/2 .
= 1 a—- = —l’— 2 ———L—
%= i :{ 25 xdx= 509 2 f cos CPdCP Teine (o + gginz @]
, - ’ . (18)
The inertia moment of the group with respect to
the center of the area of discontinuity (x = 0) i
2 2 @ 2 o
= a—'ﬁ == = l\ 3 = l) - l‘- 2 \
o 85 T (3) 4 comeennh (5) wn o(1m § o)
' oo ' - (16)

The inertia moment of the group with respect to its
center of gravity is: -

A*Tx = Jo - I'gx,® =T {(-—) sinCP (1 - -- sin3 cp) ‘

- GI> s;nvCiJ

sin 2@]f

B AT A TR
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This inertia moment must be preseat again after the convo-
lution.‘_‘

Now the coiled—up Froup is assumed to be circular.
that is, the asymmetry stipulated by the mutual interfer-
ence of the two coiled-up vortices is disrogarded, so that
the circulation may be presented as a pure function of ra-
dius (' = £(r)). The vortex group from x to 1l/2 is
colled up into a spiral which fills the circle with radius
r. Then the circulation ['i, must be equal to the circu-
lation of the original vortox group

I

e .., . Tp.= Dz S (18)

and likéwiséfwfﬁeriﬁe}tia momont of the #ortices coiled up
in this c¢ircle must be equal to the original inertia mo-
ment of the vortex group

e Ty - -
e =/ %E r? dr = Jg. (19)
o Y+ L e _

Pormitting 'r to increase by dr, then decreases =x by
dx and increasos ¢ by 49 +under these promisces, Theo
roesult 1s an increcaso of

aP” dr = Ty a - r P 49
5T r = §$— »Q = To cos - (20)

in cireulation, and of

or ' aJ ) ' '

——— 2

5o T dr = &p ae | (21)
in 1ncrtia nomont,

'Then tho dlfforontiation of (17) yiolds

aJx . OSCP
5 : 138 \§> [coé3Q)+ 4 Py (¢ + % sin 2¢>

S S 2 ‘ .
>sin® (9 + % sin 29) (1 + cosvzqﬁ]

which, written into (21) and with regard to (20) gives
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<?£>2_3052¢ T (@ + % sin 23 \ g%f%'(w + 3 sin2¢> :

1
')2 .
Since sin¢® =,/ 1 =~ (1 / ’ (equation 22) con- (22) .

notes the relationship between r and x, that is, it
g€ives the size of the circle into which a piece of tke
original area of discontinuity has changed. And, knowing
the cireulation I' = I'y sin @, the equation also discloscs
tho distribution of tho circulation in the coiled-up tip-
vortex, Figure 7 shows the rospcctive values of ' and =x
versus T, a%ﬁ also the distribution of the vortex densi-

ar
t When formin the ertinent boundar
VoaEm 20P & the p v .
transitions, equation (22) yields S s moa L e e
(—1-, =1 s1n4¢ | (23)
for very small values of ¢, so that
I_-2 L (2e) '
., % .. .
"2

In other words; a small b;ﬁndary piece of the arocae
of discontinuity coils up into a circle, whose radius is
2/3 of the length of the original piece., .. . -~

For @ = % we have %; = %, which means that the
radius of the tip vortices is Tl Since the center of

4 2°

the tip vortices is ‘E L distant from the plane of syunme-
try, it would indicate that the two tip ‘vortices precise-
ly touch each other, But for such close proximity, our
assumption that the individual tip vortices shall be sym~
metrical circles, coases to hold: the spoed betwecen the .
two vorticos is substantially groater than 1t is outside, '3
with tho result that tho individual strcamlinos are out-
wardly displacod, S0 in reality the vorticos should not
touch each other. Tho ostablishod approximatoe rosult how~
ever, may, beocauso of its simplicity, give a ready picture
of the order of magnitude of the vortices, According to,
figure 7, the relatigonship bvetween  r and x is fairly
linear, Hence r = % g% - x) in the greater part of the

vortex conformable to (24), and it is only in the outer
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_edge of the vortex that tho factor 2/3 caanges to m/4.
T . The curve for the distribution of the vortox donsity shows
e the main part of the vorticcs to Ye vory much concentrated
~around the contor desp’to unoir coubara*ivoly great oxtoent,
T 2, Phenomena behind cas;ades of aivin4]s.- Cuascalss
of airfoils also iform areas of discontinuity aft of the
airfoils (fig. 8), and whose motion relaitive to the vnd lg-
turbed flow would, by optimum 1ift distribution, be as Jor
rigid surfaces, if the edges could absorb the suction.
But in reality thoy develop with rospect to timo. (Soo
Handb d Pnys., vol VTI p. 272 ff ) ° :

L

Lot us analyze the practically alwcys existing case
wherein tho distance a' of the surfaces is small comnared
to thelr span, Assuming the areas of discontinuity to be
actually rigid, the flow arourd the rigld surfaces far bve-
hind the airioils wonld, near the edge, be as shown in fig-
ure 9, when choosing a system of coordinastes within which
these surfaces rost, The motion 1in thls systom of coordi-
nates being steady, Bernoullif?s eguation can be emploryed.
Inasmuck as the irterferenco veloclity bhetwosen the surfaces
‘far removed from the edge is evanescently small relative
to the surfaces, whereas outside in thu undisturbed flow
the rolative volocity 1s equal and opposito to tho veloc-
ity of disblacoment w, Bernoulll's equation yields

w2

p = p = o (25)

positlive pressure betweer the surfaces with respect to the
pressure in the undisturdbed flow or the side of the sur-
faces,* This positive pressure balances the suction at

*Directly behind the cascades the pressures and veloclties
are different. By contraction or expansion of the lateral
edges of the areas of discontinulty (positive or negative
contraction) equilibrium is, however, established with the
pressure of the lateral undisturdved flow, rcsulting in a
correspondingly dirferent spced. (Sec Handd, &, PlLys.,
vol, VII, pe 2592 ff,) Hore and in tho following the con-
ditions subsequent to this balanco are considercd only.
For many purposes i1t should de notod tuat owlng to tho
width changes of the hypothctical rigid area o disconti-
nuity the suction at the odges has a componsnt along tqe
direction of 1’10'«7. . -
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the plate edgeses For an analysis of the horizontal forces
acting upon a fluld strip of the height of the surface
spacing a', reveals on ono side =a forco a' P B2, as ro-

sult of the pressure difference within and without, and on
the other the suction at one plate edge. ¥Wo momentums are
transmitted by tae boundary surfaces, therefore the suction
st be R o
w

P=al pi S (26)

In such & system of surfaces the vortices are very -
much concentrated at the boundaries, at great distance
from the edge, that is, in tkhe sntire middle part of the
surfaces tho rolative volocities are practically zero and
with it, of courso, the veloclty differences on both sides
of the surfaces, l.,e.,, the vortices, As a result, the ef-
fects of the developed and of the undoveloped areas of dis-
continuity aro equal at distances which are great compared
to spacing a', sinco the spatial transformation of the
vortices during devolopuont is subordinato as azainst the
groat distanco, XYevertholess, there is a fundamontal dif-
feronco as far as the flow is concornod betwcon the theo-
rctical procoss with undovoloped rigid surfacos and the ac-
tual process with developed individusl vortices, = fart
which up to now Las never been pointed out, to my knowl-
edge, . S :

The vortex group at one sido is in the velocity field
‘of the vortices of the other. Owing to its romotenoss,
this field doecs not change approciably during the dovelop-
ment, Thus assuming tho vortices as roestrained before and
after developuent, the mutual forco oxorted by tho vortlcos,
romains the some, and with it the velocity in the center of
gravity of the developed and the undeveloped vortices,  3But
when visualizing tho areas of discontinuity as rigid, they
are then no longor oxompt from forces bocause of the suc-
tion P, and in that caso tho volocity is c’rmad'.cr by an
amount ) ' :

Aw ='§f I (e

than with the froo vortices. [ 1is hcroin tho circulation
about tho part of the arca of discontinuvity lying on one
sido of tho plano of symmetry, respoctively, about the
singlo vortex dovelopod thorefrom (for the rost oqual to
the circulation about the tirfoil in its modian part).
Following tho lino intogral in figure 9, it is roadily scen
that :
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T = alw S _ (28)

_Then tne velocity of the free vortices is-

- w‘:= w - Av = % | (30)

As a matter of fact, the process of development is
such that the center of gravity of the vortices clustered
around each edge, lags behind the velocity of the central
main part of the surfaces. WYhersas the latter moves at
velocity w, the center of gravity of the vortlces moves
at a speed w/2 and it naintairs tnis speed in tho final
‘attitude after development.

'However, this speod w/2 can also be deduced direct
from the field of the opposite vortices, At great distance
1t is identical with that of a vertical row of ceoncentric
vortices (fig. 10). But at medium distance the £ eld of .
such’ a vortex row is a "constant speed Fw! = I, A—T down=

ward on one side and uvpward on the othor, Between the two
rows the fiolds of tho two rows add up to speed w, so
that o , :

v = 2wl S (31)

The signs for the fields outside of the rows are
contrary, hence the speed !s zero, Each vortex row itself
‘moves under the effoct of the momentary otner row, that
is, its speed is )

e Wt = % : (32)

Bet there is yet another rosult which is not as read-
ily conceived as the chango in vortox velocity. For tho
rigid surfaces wo had within tho deflectod flow a positive

pressure =P §— which balanced tho suction at the edges.

After development the suction is absent, so that there is
also no more positive pressure within between the vortex
rows, as can be proved from the Bernoulli equation, In
the chosen system of coordinates of figure 10, w 1is the
speed of the inside flow, O tlat of the outside flow, and
w/2 that of the vortices, To insure steady conditions,
we must select a coordinate systeom in which the vortices

PSRRI R Y

L T e et U SO UUE VI s U U PO
P g 0 g e . i e




18 ¥.A.C.A. Technical Memorandum Xo, 713

rest, Then the speed of the inside flow is w/2 and that
of the outside flow = w/2 (fig. 11), Both are of equal
absolute magnitude, hence of equal pressure within and
without the vortex:rows.

Now this change of pressure Jduring development is not
without influence on the flow insile. Aralyzing a cut
through the airfoil cascades (figs, 8 and 12) while apply-
ing Bernoulli's equation to the spoeds in front of and be-
11ind the cascades, revecals by prossu”o talancoe (developod
vorticos, Iig. 12), B

ca = e . (33)

and by p = P %; (undeveloped Vort;gég);lf

c2® +we =¢,2 . N (34)
Therefore the speed is greater after devoloﬁment than bo-
fore (c3 > C3)e : .

This result, while at first sight perhaps somswhat .
peculiar, can also be elucidated in & different fashion,
Looking at the cascedes from the side, once with undevel-
oped vortex surfaces (fig. 8), and then with developed vor-
tices (fig. 12), the diroction of the detached vortices is
manifestly difforent bocauso their own spesd relative to
the undisturbed flow is different (w and w/2), The in-
terference velocity w, which may be considered as vortex
field, is perpendicular to the vortices, and has therefore
a somowhat different position in both cases, For nondoevel=~
opod vortices, the vortices lie in the direction of c,,

w 1is perpendicular to cz (fig. 8), and since cs 1is
composed of undisturbed veloclty c¢; &and interforonce ve-
locity w, we have

022 = Clz - Wan B

In the developed state the vortices move wilth natural
speed w/2, that is, they are between ¢, and cj.

Sinco w and theroforo w/2 in turn are porpendicular to
tho vortices, the velocity vectors c¢;, c3, and w form a
trianglo in which tho vortox line is the modi&n 11no (fig.

).‘ But this implies that 3 = Cav
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Plgure 1.-Kutta-Joukowsky
theoren.

Plgure 2.-Two groups of voriices
whose centers of sravity
move obliquely to their conncecting

line,
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Figure 2.-Two »rouns of vortices
whose centers of sravity
move pernendicular to their con-~

necting line.
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Figure 5.-Development of arca of
discontimiity behind
an airplane wing.
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Figure 7.-Relationship between de-
veloped and non-developed
area of discontimuity.
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- Pigure 6.-Part of arsa of
discontimiity and
circle over vhich it 1s dis-
tributed after development. ¥

Pigure 3.-Flow past cascoldes
of airfoils wisa

hypothetical rigld areas of

discontinmity.
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Flgure 9.-Flow about the theoretical Figure 10.-Velocities rola-
non-develeoped. areas of tive to undis-
discontinuity in cut A-A. tauved flow,
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