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RESONAHCE VIBRATIONS GF AIRCRAFT PROPELLERS* -

‘!’,

By Fritz Liebersfjf

i, yomarrow

6 (secdnd} T dime.

ki(ém7f) i‘7" A'-mlength coordlnate in dlrectlon of pro-
peller radlus.;:- :

1 (em), _.blade length. .

t = x/1, nondimensional .length coordinate in di-
‘réction of propeller radlus.

b (cm), width” of propeller blade.

a (em), | 7. " Tthickness =

€ (cm),*‘.‘” ne “Lradiﬁérof'proﬁeilef hub.

a,

1Eangie;offétta¢klbf”a propeller-blade
element. -~ ' o

A (2) “’.f:f“éngle 6f;t§fsi§ha1kvibration.

OB, ... . angle of bending vibration of rigid
S propeller blade.
ﬁy (x), y'(ty,ﬁ 11ne of torsional or bending vibra~'
‘L tlons. - - ; .
my variable parameter in group of fﬂnc« '

tions for assumed line of bending
vibrations (edquation 18).

x"Resonanz schwingungen von Luftschrauben." Luftfﬁhfﬁfd'#f

| sc}lhn%’ Ma.')’ 16' 1930 PR 137*«152 See also Hcontribu“

tion

to the Theory of ropeller Vibratlons,“ by the same

author,v Zeltschrift fur technische Physik, Vol. X, 19g\,‘f
pp.?$611359m“,(T le Noe 568, N.A.Cuh.; 1930.) .
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LR RIS -

F(x)=F,f (x) (em®), section of propeller blade at point =x.
Fo, (em?), -7 7777 root section of propellir blade.
J(x)=Jdy 1 (x) (cn*), secbional inertia moment against tor-

sion or bending at point x.

Jo (em*), sectional - inertia moment at blade
: roote
K, &, exponents indicating reduction of

cross section and cross-sectional mo-
" ‘ment of preépellér -blade (equation 17).

G (kg cm™ 1), modulus of shear,

B (kg cmfz), modulﬁé Qf Qlééfééity.

P (ke cﬁ"%-sg), denéity'éf ﬁgﬁééial.

P (kg cm™* &), " density ‘of air.

Jm (kg cm s2), inertia momeént of propeller-blade el-

ement of unit length about torsional
‘axig of rotation (elastic axis).

3] (kg cm s2), = iﬁerfié“momégtgbﬁ'propeller blade
with reference to fixed axis.

S (kg s2), 107 gtatic ‘roment of Propeller blade with

- reference to fixed axis.

w (s™1), angular velocity of propeller.

n (r.p.m.), “revolution épeédidf propeller.

A (s™Y), cyclic frequency of vidbrations.

ko (s"l), cyclic freqguency of vibrations on
stand.

v :,SO-K/ZW'(min"?), vibrations per minute.
¢ (kg cm), ' elasticity constant (equation 7).

Chpr ‘. : noment coefficient ,of aerodynamié
force with reference to elastic axis,
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Ca 1ife coéfflcient,.3-~i=‘

v (cm s~ %), ‘ fllght speed

”¥ II;' MANNER OF PRESEJTATTOB

Tne fleld opened up by tne 1nvestr atloﬁ of tue vi-
bretlons of aircraft propellers-is so large- that a divi-
sion of the general problem snd great: 51mp11ficatlonﬂ are
absolutely ‘hecessary if- intelligible results are to be
obtained, "It i§ therefore important fto state clearly the
assumptioﬁs-andiliﬁe'ofireaséﬁing employed for simplify-
ing the problem and for its still very ftroublesome solu-
tlon. It 1s usually not very sat:s;actory When tne
nary assumptlons mnd assoc1ated phJSlcal results are in-
terpolated in the caleéulation. Hence the attempt here is
first 'made t0-describe the way the calculation is to fol-
low an8 -thel te carry odt the actual calculation, which
final@y*leadé}to numerieal ‘results, -

¥ 1 ’SURV&Y OF PROBLWM MmTﬁOD OF SOLUTIOU

JD GENWRAL RESULTS

l._P0581b111ty o leferent- inds of PropeTIeeribnations

“Propeller’ v1brat10as have come. to be of practical im-
-portance,  since propeller br¥eaks have frequently oceurred
with the well-known characteristics of fatigue fractures.
Light-metal propellers have suffered various xinds of
'breaks?dne to vibration, so that their increasing use in
aviation'calls for & more thorough investigation.

“Propeller v1brat10ns may be produced in essentially
”dllferent Ways. : :

al Unstable v1brat10ns.~ First (the ‘same a8 for air-
plane” w1ngs) there may be,-at a certain critical speed,
unstable vibrations, Which are inc¢reasced by absorption of
enersy from‘the alr until amplitudes are reached which
“result’ in fractures,  If, however, we coasider the great
tor31onal rigidity of a propeller blade with respect to.
“the aerodynamie forces acting’ utron it, we can estimato
mathematically (Section IV, 1,c), that the critical speed,
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L i3

at which such vibrations can be. produced, is so great that
this kind of vibrations i's very improbadle.
o -

Indenendently of any matliematical confirmation, it is
obvious that the unstable vibrations, which are often fa-
tal for wings, can. hardly. be dangerous for propeller
blades, To a certain dex zree, a propeller blade resembles
a wing consisting entirely of a single spar. The clastic
stabilizing forces must aere. stand in a very different re-
lation to the. aerodJnumlc forces than in the case of an
airplane wing.. . In the 1atter, the elastic forces are main-
ly coocentrate& in the spars, while the wing itself mero-
1y serves to absorb the aerodynamic forces and transmit
them to the spars. |

b) Resonahce vibrations due to disc charge of. vort;gg§.~
Another cause of propeller vibrations may be sought in a
resonance between the natural frequencies of propeller
blateg and the fregquency of tAe,perlodlcml dlsch_rge of
vortices from the boundary layer in what is ordinarily
treated as a stationary condition. .This refers, e.8e.s.to0
the phenomenon which léads to the familiar "singing" of
wires in the wind, It should not be confounded with the
formation of free vortices due to variatiens-in, the thrust
or in the circulation about the blade. These vortlces re-
sult from every propeller vibration, however produced.

The nature of this vortex discharge is so complex,
nowever, and its calculation hitherto so difficult, that
it may be conslidered impossible to explain theoretically
any vibration phenomena produced dby it. It should be not-
ed that the most important parts, the blade tips, revolve,
on rapid propellers, at nearly or gquite the velocity of
gound, It is very problematic as to whether the vortex
discharge contains sufficient energy to produce the vibra-
tions, This .can be determined only by experiment,

c) Resonance vibrations due to unegual impacts of the
proneller blades.- Still another cause of propeller vibra-
tions, and probebly the most important one, is their pro-
ductlion by unequal impact of the blades, due to an uneven
field of flow, such as always ex1sts for a propeller re-
volving near the alrplane.

The drOOeller’blade, e;b.,’sweeps close by a strut or
Wing. In particular a pusher prop erer behind the wing
is 1sturbéd bJ the’ vortex trall from the wing. On oulti-
eapine alrplanes it SOAStlmGS ha@peas that the propeller
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diszs overlap one another., These and similar phenomena
affcet the impact velocity of the air and the angle of atn
tack-of “the propeller blade as it entérs?tn"disturbed ro-
giongdw Conscguontly, the’ provcller stresses:vary durlng '
each: ravolutlon and may produce resonance Vlbratl ns of
the -blades.  Ordinarily these’ vibratlons occh once, though
ometlzns twice, durlng each revolutron.J,jfj g

» LA

2 S S PP P

Slace all albcraft prop911ers Work more or 1ess 1n
zones 0f “disturbed dir flow, ‘and ‘sincde propeller vlbratlons
and breaks have occurred ‘on airplanes waere the arrangenent
of the propellers ns mentioned above was manliestly unfa—;
vorable, resonance vibrations produced’ by external dlsturb~
ances represent ohe of the practically most’ 1mportant .',
classes of all conceivable kinds of propeller’ vibrations.”
It is therefore important for thls class of v1brat10ns to
be 1nvest10accd among the flrst :

A

2a Latural Freoheﬁc1es of: Propellor Bla&es Wlth ReTereuce
L to orSlohal and’ Beqding Vloratlons -

hnowledbe of - fhe natural frequencieé of " the propeller
blades 1% of "fundamental-importance in every case ‘for’ ex-mz
plaining” the- particular: V1crat10n henomenon, vt Wgatever )
1ature 1t may -be, The natu ural’ frequenc1es depen&’on the |
maverial, on its elastitc’ Drooertles and' on tle shape of
the propeller blade.: Théy are- also’ affected by tne ero—}'
dvnanlc and centrifugal forces acting oh the Dropeller and
consequently by the velocity’ and revolutlon speed, By o
"aerodynamic forées! Is meant tie variations in the. pro-
peller thrustand in the torsional moment of the aerodynamic
Lorce, due to the varlatlons in tae angle oI actack causcd
by - tae vlor ations,

Tne ¢alculation 6f the frequencxes in terms of the
above qvart1tles forms the gssentia 1 part of the- present
réport, whicii deals esp901ally ‘with resonance vibratlon_
of alrcraft propellers caused by load varl tlons.

ﬂL_levtatzon t0 ond klnd of vibratlon.J The propcl—p[
lor vibrations. mafy “be Popresented by “both the coordlnntes,f
torsional and. bendlng. On account of the distortion ex—_ f
hivited by the suoarate Cross sectlons of the propeller ,
and ‘the corr*sponQ1ng ‘main cross-sectional axces with re-
spect to one another, torsional and bending vibrations
must olways occur simultaneously. If, therefore, for math-
ematical reasons, the natural fregquencies for torsion and .
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bending arc calculated scparatoly; cach with temporary
disrogard of the othor, valucs arc obtained, onc of which
is somowhat greater than tho smaller and tho other some-
wvhot smaller than the greater of the natural frequencies

of the propollor, i.e., of the freguencies of the natural-
ly occirring combined vibrations of the propeller. (Cf,
Courant-Hilbert, (Methoden d., math., Phys., -Vol. I, Chap.

5, 3,) The difference between the separately calculated
frequencies for torsion and for bending and the freguen-
‘cies of the combined vibrations cannot be very great, be--
cause (as found by calculation and experiment) the torsion-
. al and bending frequencies of propeller blades differ great-
ly from each other, S : :

As regards the frequencies of ‘a nonrevolving propel-
ler blade, they ¢an be calculated more or less accurately,
but can bve most accurately and quickly determined by ex-
periment, The fregquencies of a revolving propeller, ex-
posed to aerodynamic and centrifugal forces are, however,
of most interest here. Hence the question to be answered
is: "How do the aerodynamic and centrifugal forces affect
the torsional and bending frequencies of a given revolv-
ing propeller with given frequencies on the stand?" In
order to determine first only the order of magnitude of
these effects in comparison with the other forces, it is
only necessary to replace the tapering, twisted and spa-
tially bent propeller blade by the simplest possible sub-
stitute, provided it absorbs practically the same aerody-
namic and centrifugal forces as the real propeller,

b) Torsional vibrations in terms of the aerodynamic
and centrifugal forces.- In the sense of this simplifica-
tion and for the preliminary determination of the torsion-
al frequencies of a revolving propeller blade, the latter
is replaced by a blade of uniform section. By solving tae
differential equation for the torsional vibrations with al-
lowance for the asrodynami¢ forces, it is found that,
through the influence of the aerodynamic forces, even with
torsionally weak propellers and very high revolution and
flight speeds, the torsional frequency is reduced by suca
small amounts (1 to 2%), that it can be entirely disre-
garded. This result is surprising, at first, because the
aerodynamic forces represent no damping of the torsional
vibrations, but an increasing moment proportional to the
amplitude., . (See equation (1), Section IV, 1,a.) For tiae
centrifugal‘force, a small component of which falls in tae
direction of the cross sbetion of the blade, it is only
necessary to demonstrate that its participation increases
the torsional frequency,
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U Ifitris now demonstrated by calculatidn® or’ ekperi-
meut that the torsional Irequen01es of resting propellers
are ofv the order. of" magnltude of 10,000 vibrations per ~
minute, it ean be. inferred, on the basis of the eoneclu-
sion that: the aerodynamic forces of a revolving propeller
- are: uq1mportant and that the c@ntrlfugal forces can-‘only
increbse  their tors1onal frequentcy, that resonances be- -
tween® vibriations: occurrlng with the frequency of the sim-~
ple o ‘twofold revolution -speéd of normally 1000 to 2000:
r.p.m. a2nd that the torsional vibrations of the propeller
do not come into consideration, This is the first result
which 31mu1taneously restrlcts tne preblem under dlsous—
31on. : 2 : : o

'c) Rectlllnear bendlng v1brat10ns of a r1g1d;propel—
ler under the action of the’ aerodynamlc and centrifugal
forces.= I1f the. Yending v1brat10ns are treated in the’ same
wanner (by: repla01ng them provisionally by rectilinear vi-
. brations of- the-assumedly rigid propeller blade, flexibly
mounted on the" hub perpendicular to the plane of rotation),
there is again: found'fln very 51mple manner, & negligibly
Csmsll denendence of" the bending frequency on’ the aerody—-
nanic forces, This result is to be expected in bending -
vibrations, because in this case the aerodynamic forces
only s_bnifyfqi‘dmpihg proporticonal to the bending veloc-
ity.s (Cf. equation' (10) in Section IV, 2,a.) It can
tgprefore affect: the- frequency only in the second order.
On the contrary, the centrifugal forces, which exert a.
stronz returan’ moment contribute greatly toward increasing
the bending Ireqaen01es. -Moreover, since the true bend-:
ing Irequen01es ‘of "actual” propellers at rest are 1000 to
2000 per minutej the- possibility of resonance between
bendlqﬂ'v1brat10ns and. disturbances with the ‘periocdi of the
siiple or twofold revolution speed is directly indicated.

: 1415 is +ne second 1mportant result From this. p01nt
on, no theory of propeTler v1brat10ns can be satisfied
with. e«tlmwtes of the nltherto Customary nature. The gist
of our task is. rather the most accurate possible calcula—
tion of the bendlqb frequen01es of propeller blades in -
terms of the revolution speed, in which the effect of the
aerodyﬂamlc forces can be dlsregarded

, d) Restrrctlon of- the bendlng frequencv of elastic

properlgrs Dr. an woper and a lower 11m1t -~ Zven the re- -
stricted tasi neebs many dlrflcultleS'\ The unknown bend-
ing-vibration line varies, like the frequen01es, W;ﬁh.the
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angular velocity of the propeller., The solution of the
general integro-differential equation is practically im-
possible. Another possibility of determining the vibra-
tion-elastic line is offered by the Rayleigh principle of
the minimum natural. freguency of a vibration-elastic sys—
tem which, for the case under consideration, may be brief-
ly expressed as follows:* Of all possible bending lines
compatible with the marginal and continuity conditions

of the @loolem, the true bending line 1s the one which
yields the minimum frequency. :

From the mathematical viewpoint, the Rayleigh princi-
ple presents a variation problem. If it is solved by the
methods of variation calculation (in the present case’
practically by the so-called direct methods of variation
calculation), the Rayleigh theory determines the elastic
deformations during the vibration, and consequentlv the
vending frequencies of the revolving propeller, with per-
fect accuracy. (See Courant-Hilbert, Heth. d, math. Phys.,
Vol. I, Chap. 2, par. 2.) Tiae above-mentioned methods,
‘however, .are generally troublesome and, for convergence
reasons, do not always yield satisfactory results. (Cour-
ant-Hilbert, Vol. I, Chap. 4, par. 1,4 and 2,4.)

In any case, however, the following statement, based
on te Rayleigh principle, is correct: If, instead of the
actual deformations at the various angular velocities,
otiher bending lines, which satisfy the marginal and conti-
nuity conditions, but which are otherwise arditrary, are
adopted as the basis for the calculation of the bending
frequencies of the propeller blade, the calculated fre-
guencies will surely be too great. The hypothetically
calculated bending frequencies represent the upper limit
for the .still unknown true bending frequencies, The dif-

*Rayleigh's theory ("Theory of Sound," Vol, I, par. 88 and
89) scys nothing about the marginal and continuity condi-—
tions of the hypothetical deformations adopted for compar-
ison, It says only that, when the comparison functioans
differ from the true "anatural! deformations by small vari-
ations; the corresponding frequencies differ by small quan-
tities of the second.order, from which it may be furtier
deduced that the frequency of the vibrations corresponding
to any hypothetical form of vibratioan lies between the min-
imum and. maximum values of the natural freguencies of the
system, The above restricted conception mlght be better
for practical application.
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ference will .be less:in. propcrtion to.the suitability of
the. hypothetlcal bendlng 11nes, deee, acégording to the ex~
celLence of-the choice. 6f .the determlnang factors‘; These
are the dlstributlon of the él”Ltlc and inertia forces de~
pendent on the.shape’ (taper) of the" oropeiler and”the cen-
trifugal’ forces, Llikewise dependOnt on thc shape and aloo
on the rovolution speed of the bropcllor. : -
.e) The upper limit.~ This was determlned as follows-
An infinite number of bendlng lines was -assumed’;” Whlch
in the first placsd, are continuousiy deformable into one
another, secondly, satisfy the continulty and marglnal
“condltlons of .the problem and, lastly, were so selected
that “they represent approximatlcns of the bendlng frequen—
cies of uniform and tapered blades, moreover, the ?rOnp
contglns curves, which may be considéred’as derived From'
the. %bove~ment10ned curves by continuous: deformaﬁion due -
to tié increasing effect of the centrifugal foreces with:
increasing revolution spccd . In the simplest case, one
uses a group of cubvés, selected accordiang to these view-
points, in the form. of a function, ¥y = y(£,m), having
only omne’ arbltrarlly variabloe paramctcr. In this functlon
v 1s the amplitude of the doflcctlon, ' the coordinate.
in tho longitudinal" dlroctlon ‘of the propcllcr bladc,'und
m | the’ variablo paramotcr. (Tac actu 2ily choson group -0f~
31mplo 1nf1n1tely numerous bending lines 48 roproscnted
in Section IV, 2,c¢ bJ eouatlon (18) and F ieurc 4 )

If the frequency N ig now calculated cy medns of the
_enervy theorem on the basis of the bending line .y = .y(&,-
m), at first left undetermined by the arbitrary pafameter
m, A then appears as a function of 'm. Furthermore,~tac
expres31on for A also contains the constructlonal charac™
teristics of the given propeller," namely, the thickne'ss of
the material Pp» the modulus of elautlclty B,  %the .-
Tength 1, the course of the cross section F({) $hrough-
out the length, and the angular velocity " w., ~The frequen-
cy may therefore be expressed by the formula - vy

}\‘ = >\' (m9 pm: E\, I’: F: J’ Q)>‘

For the given ‘constructional characterlstlcs, Pny By 0T,
F, J and the given angular velocity “w, A" - is a fuaction
'of tqe par%meter'”m, alone,' ‘and thére- remalns ‘only the -
dolutidon of the most elementary problen, to ‘determine that
value of m for which A becomes a minimum, This quite
deflplte vulue m o= mt cnnracterlzes, however (a rain Wltn
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respect to the Rayleigh theory), within the curve y, ({,m),
the bending, line which. mqst closely spproaches the true.
line, Likew1se,z X(m’) xmln is the. valpe of the fre-
quency, which, with the. adoptlon of the vibration-elastic
lines . y(f{,m) . for agreement with the Rayleigh minimum
principle; . most closely approaches the true frequency., It
is surely too great, however.

£) The 10Wer'iimit - This'1s obtained by means of the
following generally appllcable ‘theorem set forth in Sec-—
tion IV, 2,F (q. )

The sguare of the frequency of an elastic system, sub-
Jected to several forces, is always greater than the sunm
of the frequency squares, which the system-would have if,
at the given time, only.one of the forces were acting on
the system, This theorem can be - expressed by the Yormula:

l}\2>ZX'2 (1= ,4;2’.0 -0)

The propeller blade is aoted on: 31mu1taneously by thre
elastic and.centrifugal forces. The theorem. then main-
tains that, if the.centrifugal force ig at first entirely
disregarded and only the elastic forces are considered,
the propeller has a definite bending frequency A4, This%
ig the same, however, as the freguency of the nonrevolving
propeller., If, on .the other hand, the elasticé forces are
disregarded, and only the centrifugal forces are regarded
as acting, the propeller has another freguency kw. The
latter, however, is the fregquency of the propeller revolv-
ing at infinite speed, or, as it may alsoc be expressed,
of a perfectly flexible rope having the same mass and re-—
volving about an axis like a sling. Its . vibration frequen-
cy, as may be easily calculated (Section IV, 2,a), is now
exactly the same as the angular velocity w of the sling.
Hence, the above-~mentioned theorem yields the extremely
simple formula

AR > ?\0'2 + w*,

valid for propellers of any shape, indicating that the
square of the frequency of the revolving propeller is
groater than the sum of the sguare of the frequency of the
propeller at rest and the square of the angular velocity.

It shouid be remembered that the relations are really
not quite so simple, since the propeller blade is mounted
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on 4 Wub which muét be regarded as rigid. See further de-
tails in Sectiom IV, 2,8 regarding a necessary.correction
of the above formula, which takes into account the effect
of the hub, In any case, we have no¥W Lound a lower limit
for the bending frequency of the propeller (approximate
_1im1t since’ the value NGB @?a can never be- actually

‘"It can be: demonstrated that the aDove inequality is
not only a lower limit, but also an approximat;on for the
beodlng Irequency of tne propeller.

i ) Differénce between the upper and 1ower 11m1ts.~ On
‘:he bagis of the last remark and.the fact-that even the
S upper 11m1t o’ account of the. physically based . assump-
tions for the bending lines, can show no great deviation
from the true value of the bending frequencies, it must{ be
concluded that the difference between the upper and the
lower 1imit i small enough to satisfy: the practical re~
qulrenents for sccuracy. In fact, the: actual calculation
(Section” IV) by the here~descr1be& method shows that the
difference between the upper.and lower limits is about 5
per cent in the most unfavorable case, and normally much
less. TFor very small and very great centrifugal forces
the error tends toward zero. (8ee Figure 8 in Section IV,

’e) ' -

After the amgunt of the greatest error had been deter-
‘mined, “the problem of. calculatlng the bending. frequenc1es
—of & prooeller 1n terms of the revolutlon speed was prac-
‘tically’ solved :

The practlcal numerical applications of the above=
mentioned principles with respect to propellers endangered
by resonance vidbrations are: introduced near the end of the
report. (Sections V and VI.) The calculations will first
be actually made, as already explained in a general way,

IV, HATHEMATICAL APPLICATION OF THE PRIHCIPLES
EXPLAIN?D IN SECTION III
. Correspondlnﬁ to the statements in Section ITI, the
effect of tie. aerodynamlc and centrifugal forces on the

_»;requenCWes of g nropeller will first be calculabeds - Si-
multaneously the questlon W111 be answered as bo whether
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the torﬂlonal and bending frequencies can approximate the
revolutvon speed.

1. Torsional Vibrations

"a) Preliminary assumptions and theorems.- Siance no
theory of the torsional vibrations of aircraft propellers
is involved, but only the solution of the above-mentioned
ﬁvoblems, the calculat1ons maJ be based on the simplest
assumptions, -

. For the simple determination of the torsiomal fre-
queﬂc1es, the actual propeller blade, which is tapered aand
warped from ‘root to tip, is replaced by a blade of uniform
soctlon and torsional inertia moment.  For tapered blades
the freouenc1es Wlll have still higher values than those
1ere calculated

i horeover, the small components of the centrifugal
Iorce, ‘which lie in the direction-of ‘the blade section,
are antlrely disregarded., -The torsional freguencies could

nlv be further increased by its consideration. These as-
oumptwons valldate the foliow1ng equatlon

9° Acc_'-G"a“?'Aa

PracS N e e end | i i e s
-

matr:, 3 x

wdere. Aa is tna torsional sngle,‘ x," the length coordi-
nate 1in the direction. of fthe propeller radius; Jy, the
inertia wmoment of a wing element of unit length about the
axis of revolutiony J, the cross—sectional moment against
torsion; G, the modulus of shear; and t, the time.

‘To this equation there is added still another term
. which accounts for the aerodynamic forces.

=2 2 . p s]
Tm O B8% o LAY E e k7 4+ 42y b3 2.%m pe (1)

3 t® ax® 2 S o

The fecond torm represents the additional moment about the
axis of revolution, which is eéXerted by the aerodynamic
forces, Wnen the angle of attack o of the wing element
is changed by the torsional vibrations. ¢y 18 the non-
dimensional’ Tiomen® ‘coefficient of the aerodynamic force
'w1tn‘reqpect to the axis of revolution. P is.the air-
density; W/ W TXT FT¥2, the resultant velocity, with the
component W x equallng the tangential velocity and v
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the parallel flow in the propeller disk, approxlmatlng the
flight speed. The width of the blade is represented by b,

Equation (1) assumes the vibration to be "slow,"
Both the torsional velocity (8Aa/O0t) and the involved
variation in the effective angle of attack of a blade ele~
ment were disregarded,. as also the effect of the vortices
periodically released from the‘vibrating_blade. That the
resultwng error is unimportant, is demonstrated by a sub-
sequent consideration of the reéduced frequency,* which is
the criterion for the slowness of g blade vibration. The
reduced frequency of .a propeller blade 1s 10 to 100 tlmes
smeller tnan that of 8. normal Wlng. :

b)) Solutlon of the tors1onal equatlon.— The 1owest
natural frequenecy of the vibration represented by equation
(1) is obtained by the formula

Aa (x,8) =y (x) sin N t.
Bqration (1) then becomes

d2
¢ J i F [T N
a x®

1t | N 5
' EIVE I G 2 p2 200\ = g
Gr \“m 5 7 Er RS

and 1 o - a
c
= (v v Wan.\_ ¢,
GJ \2
then equation (2) will read:
Py

T P (6 -0 x) 7 =0 (3)

If the solution of equation (3) is put in the form of an
infinite potential series and their coefficients are de-~
termined by the introduction of the formula into the dif-
ferential equation, a simple calculation yields

o . e T
*Birnbaum, "Das ebene Problem des schlagenden Flugels,t
Zeitscar. f, angew, Hath,., uw. Mech., 1924, Dpe. 277
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This series and likewise the series obtained from it dy
differentiation converge as alternating series with terms
whose absolute values continuously decrease, Hence, egua-
tion (4) represents a solution of eguation (3).

The marginal condition at the point of fixation
(y = 0 for =x = 0) 1isg directly fulfilled, The condition
for the free end (x = 1) requires that the torsional mo-
ment shall there dlsappear

)

d X/

!
o

This condition yields an eéuation for determining the fre-
quency A.

If, instead of x =1, the differentiated equation
(4) is solved by using only the first terms according to
A, by putting A as the sum of the known torsional fre-
guency in the absence of aerodynamic forces and of a cor-
rection factor A, we obtain

- .n. [/ ed _
A 21/ 52 b

If further solved according to A, 1t becomes

2 E, v=2 he _@,..S@..
N o= S S N G ' N © 9.a
Im (i (3 / I
B. vg be ém?n._l
= NE A (Do A - 2 Q.4 (5)

Here Xd» denotes‘the frequency of the propeller at rest.
lloreover, the following formula-+is very accuratc.
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-1.+0,086 ¢, 1* + ,/1-0, 172 G, 1% F0.0148 0 Ty
A = ‘ o 2 2 (52)
i 10,0216 C, 1 L o

“A and the second expr9551on under the rad1ca1 in - equatlon
(5) ‘disappear for the propeller at rest: w= 0, v = O.;
-In thls case equation (5) becomes

Ao A = . [T '
6" 21 Jm (6)

,l Results,— The numerlcal evaluatzon of formulas
(5) and (8) with respect to the resonance vibrations of
the propeller. blades is here the most important. If we
select, as a sample of thin-bladed metal propellers, a '
rectangular.bar of the following dlmen51ons and material
constants ‘

Fe

3 X 10% kg cm® and

‘1 = 150 cm, ¢ =
S b= 20 . Py = 3 X 10°kg on® §%
A= 2 v ' | |

we Will surely obtain unfavorable results, since a real
metal propeller is torsionally about twice as rigid., If
calculated according to formula (6), the stand frequency
of the chosea example is A, = 660 s™1,

If we also adppf the foliowing characteristic’numbers
for the operating conditions of the propeller,

Y :GOOO cm S;‘l’A P ="1,25 X 10—9 kg Cm.‘.é SB- ;

’

3 ¢
a

and .
B = 0,4° (circular measure)

and calculate with these numbers the torsional frequencies
according to squations (5) and (5a) for all possible angu-
lar velocities w of the propeller, we obtain the values
plotted in Flgure 1.

It is known that in the practical range of angular
velocities of O £ W £ 200, the aerodynamic forces have
almost no effect on the torsiomal frequencies of the pro-
peller,
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Remembering that the adopted form of calculation rep-
resents, through its assumptlons in that . respect, an un-—,
derestimate of the térsional frequen01es (see glso Sectiovon
ITI{ 2,a) and that the chosen example was especially unfa-
vorcble, we obtain the further result that the natural
torsional frequencies of propellers differ so: greatly frOm
thie _recuency of the impulses. corresponding to the revo—:.
lution "speed, that resonance in the form of torsional viw-

rations does not enter into the question,

Figure 1 represents a second result. The torsional

vib ratlons become unstable when the expression under the

ratical in equation (5) alsanpears. This.happens for our
exanple, when ® & 1300 s~ '. Obviously equation (5). be-
comes meaningless for ® > 200 s™', since the peripheral -
velocities.of the propeller are so great in this region
that the serocdynamic assumptions of the calculation lose
their velidity. Figure 1 shows, however, that torsional
vibrations, such as can be calculated for wings on the
basis of the simple assumptions (static instability) here
made, do not enter into the problem for propellsr dlades,
so long as their peripheral velocities remain below .the
velocity of sound.* It is true that the criftical angular
velocity for torsional vibrations may be considerably re-
duced by combination with bending vibrations, though it is
imnrobable that it would drop into the.region of ® <« 200
s~1, It is found* that the critical velocity is most re-~
duced, when the torsional and bending vibrations most
nearly agree. For propellers, however, the ratio of bend-
ing to torsional frequency differs much from unity.

Somewhat different is the possibility of vibrations
being occasioned by the special aerodynamic relations in
the vicinity of the velocity of sound. Here, however, no
mathematical determination is yet possible,

In limiting the present report to resonance vibrations
produced by external disturbances, the torsional wvibrations
on the basis of the above~mentioned results can be disre-
garded in the further investigation,.

*3lenk and Liebers, "Gekoppelte Torsions-, Biegungs- und
Querrudeyschwingungen von freitragenden und halbfreitrag-
enden Flugeln," ILuftfahrtforschungen, Vol. IV (1929),
89. ‘
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G5 i Dae Bendang Vlbratlone‘

a) Estlmatlon of effect of aerodynamlc and centrlfu—
gal forces on bending vibrations.- We:will again attempt
to simplify the general problem by estimating, from an
idealized example, the magnitude of the aerodynamic and
;centrlfugal forces ln comparlson«w1tn the elestlc forces.~

T2

For this purpqse the flexible bropeller blade is re~
placed by a rigid blade flexibly attached to the hudb by a
spring, so that it can vibrate perpendicularly to the plane
of revolution, (Fig..2,) . If this blade is bent through
the small angle AB; - the reacting elastic moment will be

LN o

‘Phe centrlfugal force,’actlng on ‘a blade element of length
dx and cross section’ TF(X) ~“at 'the distance  x from ‘the
center of revolutlon, exerts on the lever arm x sin A B
a moments o ' ‘ '

d Mz = - Dm F(x) 4 x w® (x cos A B+ €) x sin A B

Here € is the radlus of the nonvibrating propeller hub
For the whole blade (on the assvmptlon of a small angle
AB) the reacting centrlfugal force is
: v L
My = = Pq w® A B (f F(x) x2 d x +e S F(x) x 4 x)
)

i

~w3AB(9+€S) (8)

where € denotes the Inertla moment and S the Static mo =
ment of the blade, both with reference to the axis of fix-
ation.

Due to the velocity of the bending motion dAB/dt,

the effective angle of attack of a blade element varies,
such variation being proportional to the distance =x from
the axis of fixation, Consideration of the velocity tri-
angle of the relative motion (fig. 3) yields a variation
of

x “d :
in the'aﬁéle_bf'attadk;f Hehéetfhéré is produced on the
"blade element of length dx and width b(x)  an addi-
tional air damping, exerting a moment.of.. x cos A B on
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Y

the lever arm (fig. 2), which, according to the customary
aerodynamic method of notation, 'is writfen

: p.
a. ML = E%Eﬂ 8 d- 1 (w2 x2 + v2) b(x) dx cos A ﬁ

The aerodynamlc force is ovarestlmated only When tne variag-
ble blade width b(x) -is exchanged with the maximum width
b, If this is integrated after introducing the value
(equation 9) for -.8a0, the eguation for .the whole blade
reads : : . . : . - .

or Besdng b e
ML‘: i) b 2 ,B({'v/wg z° + v® x® ax.

The elementary integral in ML is very difficult to write,
If its value is expressed by a series, we obtain with suf~
ficient accuracy the aerodynamlc moment

P 3 Ca'd Axg ‘ v ﬂ
MLu—--é-,,'b = AT (""4‘“ [1- "i?o')j (10)

After combining all of the forces acting on the vibrating
blade, the descriptive equation of motion reads:

i A é
6 — Mo + My + M
e B Z L

or, with the aid of équations (7), (8), and (10),

. 2
: 0 ..6:._...__{3_:?..?. -+ E. ?....Eé. (W) — ..._\
Ld ot 2. da \lw/ | "a t

+ (w2 (9+‘es)+c]Ag:o" (11)

If the solution of equation (11) is put in the form:
S (N b
A B ;_e( _ )w

the frequency M\ becomes

#
=Y
Q
¥}
.K‘ +
Lo
e
i e (0
1
>J
E‘l(o
—~
jan)
4]
~
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where Ao 1is the frequeney when only the elastlc force
acts, :

My 1is the frequency when only the centrifugal
~force actS.>

,'XLfvls the decrease in the frequency due to the
‘aerodynamlc forces

. If we now ‘choose the following values, corresponding
'to a thln bladed tapering metal propeller at 1500 r.p.m.

1 = 150 cm p, = 5 X 107 kg omw™"
b= mo n. ;o § = 1/12 Py Fo 1% =.55.75 kg cn o2
@="T2 " C8/8=2/1 = 0.0138 o™
€ = 15 . 0/975 hb2v¥ 2.25 x 10% g~=
po=1.25 X 1070 kg om* &7
- . = 6000 cm s”t
‘w =, 150 Qm'sfl
%gpé‘;: 4.5
e obtalr, accordlng to equatloﬁ (12)
AF = 28500 §72; AP = 27000 s7; Af® = 800 s,
and | | % "=”49200 sec?;
or fhe cofr95pond1ng revolutlon speeds .
Vo = 1430 nin 1; Uy =. 1570 min %; vi %‘170 min~?
and . v =" 2120 min™

For the provis 1ona11y assumed ideal propeller blade,
the above numbers give & good idea of the probable order
of magnitude of the bending frequencies of actual aircraft
propellers and of the importance of the individual compo-
nents of the frequency ) and also of v, The aerodynanmic
forces, which are noticeable only as demping forces, are
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negligiblé as regards: the magnitude of the bending fre- -
quencies, In their order of magnitude, the bending fre-
quencies approx1mate the revolution speed thus making
resonance vibrations posgsibdle.: : :

Before proceeding to a more accurate investigation.
of the actual bending frequencies of propellers, we will
mention several special cases of formula (12), which will
subsequently be used,

< 1; Omitting the unimportant term “‘EQ = 04 derived
from the aerodynamic forces, equation (12) be-

comes

M= R RS = S he te? (L e g (13)

In case of the linear reduction of the cross sec-
tion F = F, (1 - %), as aspproximately happens
for nearly all propeller types, equation (13)
reads:

v =/ 502 + w2 (1 +2 %) (132)

For comparison, we give the corresponding formula,

= ) M P (1+ g ~\ (13b)

for a propeller blade of uniform cross section.

it

0), we have

A o=/ ko? + w2 (14)

for any desired cross-—sectional taper.

2, With a vanishingly small hub _ (¢

3 With vanishing elasticity of the.propeller blade

(Mo = 0) or at very great angular velocities

(w =), we have
A=Ay = w /1 + e g (15)
If simultaneously € = O, quatlon (15) becomes

M=o (15)
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The assumption of wvanishing -elasticity. corresponds .
to the case of a propeller blade flexibly . attached to its
hub, or to the case of a rope which vibrates perpendicu-
larly to its plane of revolution:  (which, due to the recti-
‘linear form of vibration, obviously amounts to the same:
'thlng) CEe S T

) Determlnatlon of the bendlng frequencies of elas-
tic propeller blades {(preliminary assumptions).- In order
to obtain reliable numerical data for practical applica--
tion, the bending frequencies (only the order of magnitude
of which has thus far been estimated) must now be calcu~
lated by a more accurate method, which takes into consid-
eration the elastic properties of the blades.

After we decided (as explained in Section III, 2,a)
to reckon with simple bending vibrations, not combined with
torsion, we considered the propeller blade as an.unwarped
bladq, in which the main axes of all the cross sections
are parallel to one another., Heredby the direction of the
" main axis correspondlng to the smallest inertia moment in
‘each cross section can bBe inclizned to the propeller disk,
and the vibrations are not necessarily perpendicular to
the plane of revolution. The position of equilibrium,
about which the blade vibrates, may be a deflection from
the plane of the propeller disk, either produced by the
thrust or included in the original design, provided only
that it remain in the region in which the acting forces
can be treated with sufficient accuracy as linear func-—
tions of the coordinates. Moreover, we have made all
necessary assumptions for tne appllcatlon;of ‘the elementa—
ry elasticity theory.

It only remains to characterize the shape of the pro-
peller blade by de31gnat1ng the course of the cross—sec—
tional area and inertia moment . Both are assumed to vary
" with the propeller radlus accordlng to the simple poten-—
tlal law-

Crcss-section; F=Fq, f(i)'=Fo(l - £) , tE = %
; e [ (17)

A

' ' b
Inertia moment, J=J4 1(&) =J,(1 - £)7j 0 €1

X 1s the distance of a cross section from the center an&
1 is the blade length The exponents Kk and & are sny
‘desired parameters to be adapted to the given propeller
blade, According to the dimensions of ordinary propeller
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Blades, we'éan'nearly always write ® = i. &'usually lies
between 2 and 3.5%.

c) Calculation of the bending fregquencies as a mini-
mum problem.- In explanation of why the general differeantial
equation for the bending vibrations of revolving propeller
blades is not used for solving.the problem, attention is:
called to the difficulties and the inconvenience of .the re-
sults of the mathematically exact treatment of the bending
vibrations of tapering nonrevolving bars**, .so that graphs
or other approximation methods*** must generally be em—
ployed. ) . ,

.Section III,2,d explains the simple method of solu-
tion which can be used, when-the Rayleigh principle of varie-
tion leads from the minimum of the natural frequencies ap-
proximately to an ordlnary minimum problem with only one
variable,

For this purpose, on the basis of a suitable but Ffunda-
mentally arbitrary selection from the numerous forms of vi-
bration y (), we select the following group of simple in-
finitely numerous “bending lines:

(¢,m) . B oy g
_yymaxm m+2 [(1 E) +§m+5) ifll‘ (18)

and adopt only this as the'comparative function for the
Rayleigh minimum'requirement,; Here m 1is a coantinuously
varying parameter, to every valuve of which there corre-~
spounds a different vibration 'line. This group of curves
(eq.18) is plotted 'in Fvgure 4. '

For any value of m, equation 18 may be considered as
an infinite potential series, whose coefficients, from the
outset, are so established as to satisfy the marginal con-
ditions. ‘For whole numbérs m, there is derlved from it an

* ¥, Sepwald "Beltrag ZUT Ermlttluht der Eeauspruchun@en
und der Forminderungen von Luftschrauben." Jahrb. d. W.G.L.
1926, See Figures 4 and 7, in vhich the results of testing
an ordinary metal prdpeller are plotted.

%% Schwerin, Verh, II. Internat. Xongr. f. techn. Mech.,
Zurich, 1926, p. 138,

*¥*¥% ¥, Hort, "Berechnung der ngenténe nicht glelchférml&er,
1nsbesondere verjungter Sthbe," Z.f.techn, Phys. 1925, p.
181. See also Hutte, Vol. I, edition 25, p. 403,



N.A,C.A., Technical Memorandum ¥o. 657 23

Ainfinite potential series W1th m+ 3 terms,r~*

The four marginal condltions, dlsappearance of amp11~
tude (y = 0) and inclination (y!' = 0) at the point of
fixation ({ = 0) and of the bending moment (y" = O)
and shearing force (y'" = 0) "at the free end (£ = 1),
are satisfied by equation (18) for m > 0. All the margin-
al conditions are no longer fulfilled, however, for m < O,
3 case which is here of relatively 11ttle 1mportance. "Ac-
cording to Rayleigh's theory, the curves (18) may even
then be. adopted as hypothetlcal bendlng lines, The re-
Saltln” *requencles can llLerse be too 1arge. ' .

For m = 1, equation (18) passes. into the known
bending line of the blade of uniform cross section fixed
at one end, under the locad »f its own weight, It should

be There noted that, for 'the blade of uniform cross section
in the absence of centrifugal forces, the static bending
line and the true vibration line so nearly 001nc1de, that
the difference in the frequency ‘of the two 1linés i's less
than 1 per cent, The curves m <1 and m > 1 are de-
rived from the line m = L by contlnuous transformation
in tne direction of 'an increase or decrewse in the mean
curvature, - For the line mw = o, eguation (18) becomes a
straight line,

The Rayleigh minimum requirement will now seélect the
strougly bent curves as bending-elastic lines from the
group of -curves placed at its disposal in the case of
small revolution speeds and centrifugal forces.. The flat-
ter bending lines will better satisfy the minimum require-
ment as the revolution speed increases until, at infinite-
ly great revolution speeds where the elastic forces must
be disregarded, the straight line (m = «) best satisfies
the Rayleigh requirement,

d) General solution of the minimum problem.- For the
actval solution of the minimum problem, the group of bend-
ing lines (18) must now be introduced in some expression
for the fregquency A. The energy equation is suitable for
this purpose. If the propeller blade is in the position
of egquilibrium, only kinetic energy is present. In the
position of fthe maximum vibration amplitudes, however, the
kinetic energy disappears and all the energy is stored up
in the form of potential energy. This is the sum of the
‘absorbed energy of transformation and of the work performed
against the centrifugal forces, #Balculated from the posi-
tion of equilibriun to the attainment of the maximum vi-
bration amplitude. According to the energy theorem, both
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energies (the kinetig energy T .and the sum of the -trans-
formation work U1 and the centrlfu el work Uy) must be
equal. : :

For. the Lundamental v1brat10n Y = y(§) sin Nt

kinetic energy in the p031t10n of equlllbrlum is.
Log g' o ! :
T = [ ey PREes o opy zx Fo f f@)y @)ai (19)
0

(4 p = mass,of Dblade element whlcn v1brates w1th tne ve~
locity vp,y through the-zero position.)

~Tire transformation Wwork . Ui'

by dax  ma, !
f HEETFT 2 Zgr 1(5) y"‘?(i) at (20)
(i = E J v =‘beﬁ5ing moment.)

Lastly the centrifugal’ work ‘is the product of the
centrifiugal force and the radial displacement { of its
point of ahpllcatzon durlag o v1bratlon. (Fig. B5.) It is
therefore, - '

L
Ue = f d pox0® {=p, 17 0° f (&) i{; (€y a ¢

o :

The 1*d1al dlsplacement C at ihe distance. xt from the
hlade center, according to a simple geometrlc con51dera~
tion (sese. Stodola D amp £ - und Gasturblnen," par. 195), is

~
|

) /. (dx) @ x =

Il

o .
'"1 f‘Y’ (&) a ¢.

0
The centrifugal force is therefore finally.

R VT 2
Up = mez? W' T /j,f<£> bgp / vPHh atat Gy

3 If ”e put T o= k T -and. solVe.adcording to X?,
twe eﬁer"y equatloa T = U .+ U, then reads :
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e - Uit Us o
Tt -
. (‘)[1 y"® 4 ¢ fF£ ¢ ({'Y'z”d’i a ¢ .

If we here introduce the values £ (f{,k) and 1i(f,9) for
the course of the crass section and inertia moment over
the blade length (equation 17) and the indeterminate ex-
pression y(ﬁ,m) for the vibration elastic line according
50 equation (18), the. ‘determinate integrals will then be
functions of m, K and §, Equatlon (22) then assumes the
LOI‘I"I .

‘5 .- E J L o '."
NE = E;*E“"?r Xy (m;55§)3+'w2 Xp (m,K) - (25)
) . .0 . ) ) N . . ". + ) > oy

e

where the function X, and X3 are identical with the two
guotients of the determinate integrals in eguation (22).

Hence we have an equétion;.which,,for given charac-
teristics of the propeller ~ (1, ¥, J, B, Py, Kk, &)  and
given angular velocity w, ylelds the frequency A in
terms of. the parameter m, The minimum value of the fre-
quency, A = kmln (m)" (which is contained in equation
(BS)Aahd Whlch accordlnn to Rayleigh, "i§ the one most
closely approx1mat1ng the true value) is then expressed by

. O A : . m o a
' 'a”'—;n’ (19F1 J’_E: pm,‘
The value m (derived from equation'245‘$ m (1, 7, J, =,
Pm, K, &, W) intropduced into equations (23) and (22),
yvields the desired frequency.

‘5, &,‘w, m) =0 (24)

The problem is thus practically solved. Before pass-
ing, however, to the actual mathematical determination of
the minima of equations (29 and (23), the latter equation
is transformed as follows, ZFor the case of rest (w= 0),
the second term drops out and we have for the bending fre-
quency on.the stand . =

T I - A
Kamzo = ,ww~v9_ Xl min (@', K,3) (25)
- pm Fo 1 - Lo

{it

2
Mo

By m! 1is expressed the fact that the minimum function
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X, 1is already found. X, yijn 1is a constant for determi-
nate pairs of values x,93.

If the value (25) is introduced into equation (23),
_the latter then becomes - .. -

X m, K
A% = y (m,5,9) Noo + X, (m, k)P (23)
Xl min (m’:Ks‘a‘)
or
ANE - W N°
= Xl (m» K’ 19') + XQ (m! K) "'”"\ (27)
~ "y
0 (¢}
— Xl
whereby the new abbreviation X, = >~ 1is introduced.
‘ 491 min

In the form of equation (27) there are only two important

variables, K/ko and w/ko. Thig greatly simplifies tl:e

calculation, for we now have, through equation (27), egual
K and § values, i1.e., for all propellers of the same ta-
per, regardless of other structural differences, a sinsgle

ratio between the bending frequency and the angular veloc-
ity of the propeller,

e) Bending frequencies of resting and revolving pro-
gellers.~ In order to solve numerically tlhe minimum prob-
lenm, stated_in general form in the last paragraph, the
functions X; and Xz in equatinn (27) must now be written
in explicit form., X, (the seme as X,) and X, are,
according to equation (23), abbreviations for the guo tients
of the determinate integrals in equation (22). These must
therefore be evaluated by substituting for £, 1 and y
their values from equations (17) and (18). If the inte-
grals in equation (22), freed from their coefficients, are

designated by U,, U, and T!', we then have

1 1 2
§o=/iyfat=/ -6 @+ a-o
0 0

2{m+1)

and likewise,

¢

1
ﬁ% = J'f g(f ytdt at =

_ /m + 3%V 1 1 4 _2  _ _2 N.
\m + 2, [(k+ 1) (k T 2) <2m + b K»‘*‘ 3 cm+ 3 )
_ 1
(2m + B5) (2m + kR + 8) (2m + K + 7)

2
(m+ 3) (m+ K + 4) (m + K + 5)

(29)
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o - 1 I ey f-' ‘..: N K > o . ) B
e v ’ +
Ve f f ya d. ; = 1 2_(m 3) m+3 - 1\ +
_ (m + 2) (K +- 1) (K +. 2) \K _+. 3 /
4 ‘11 e 1 S S 2 ; B 3. 1 }
Sk hAcRmt K.t T . om TR 4 \m+ K +5 J
If we derlve from this;“by}difieien,lAﬁi/E' - Xi' -
(m, ®;-9) —and U /T' =Xy (m;7 &), - and introduce the quo-
:tleats into: equatlon (22)5 we . obtain: equatlon {23) s - Lf
we now determine: the minimbm. of: U /T‘ =X, mwin and: ins

troduce this into equation (28), we obtaln equation (27).

The course of the functlons.3Xi ~and X, 1is shown
graphnically in Figure 6, in which X; and Xa are plotted
ageinst the parameter m . and. 1ndeed .for the most im- |

portant cases. of 11near cross~sect10nal taper.of the pro-
heller blades,]( ‘1) Wlth s1multaneous reduction of the
_1“eruva monent between ey < 8 < 3. From Figure 6, it may
ve secn that LXE vith, 1ncrea31ng m tends toward the.
limit 1, corresoondlng ‘to equatlon (18), which cnanges
to a straight line for m=w. (See also fig. 4,) This
:pllllt is the -ninimum.of- XQ_ for all values of Kk, as
may be. VCTlLlGd by calculatlon.‘ ‘The various functlons -Al
for twe correspondlng ¢. values: have their minima in the
Vl?lnluy of mn =0, These mlnlma mre agaln represented
in Figure 7, o :

@) _The frequency of a propéller at rest.- X, pmin ac-
cords with equation (25) of the numerical factor, depend-
~ent on the. taperlng factors K and 5, in tae enpr3331on
. for t"e freqaenCJ A 2 of. ‘the propeller at rest, Figure
i mlready contalns a. numerical table for tae
ondlneqSlonal st.and frequency-

‘)\"2 '; Pm ?9;1.4.:

~°g:-« E Jo

of all propeller blades with linen r.cross—sectlonal taper
and any decrease in the 1nert1a moment between § = O and
'3 = 3, This class comorises practlcally all conventlonal
prope11ers. In 6e31gn4ng a rew Propeller, it would be
well to make nuse of Figure 7., If, however, it coancerns
the stand. frequency-of»a finished propeller, its experi-.

v oL
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mental determination is always-simplest and most reliable,

For verifying the calculation, the stand frequencies
are indicated by crosses in Pigure 7, as obtained from
Hort's formulas for slightly tapered blades. These val-
nes &ll 1ie above tlie ones here determined, Since, how-
ever, thae latter, on account of their derivation, can cer-
tainly not be %too small, they come nearer the true fre-
quencies than the values of Hort,

For the ¢asé of simultaneously linear reduction of
cross section and inertia moment (k = 1, &4 = 1),  we have
for comparison . the exact solution of Ono:* ' '

. . . . .
Pp Fo 1

o = 51.2

Ao

in werfect agreement with the value here obtained (as in-
dicated in Figpure 7 by a small square). ILikewise, for
the case of the blade with uniform cross section (kK = §
= 0), our calculation must be carried to the third deci-~
nal place, in order to show a discrepancy in comparison
with the exact value 12.35938, '

S

Fof.stronger tapers, where the Hort method yields %oo
high frequencies, the more accurate integral-equation
method of Schwerin is.used for comparison. It yields,
€eZa, 1ln the case corresponding to K =1, § = 2, the
value of hog indicated in Figure 7 by a small triangle,
In A, our cgalculation differs from this by only about

2 per cent. o

B) _The freguencies of a propeller in motion.- For the
calculation of the bending frequencies of a revolving pro-
peller, we now have to determine the minima of k/ko by
equation (27) for all pertinent tapers K and 9, It was
not advisable to determine this ia the usual manner by
solving the derivative B(K/ho)/am put equal to zero ac-
cording to. m, on account of the long and troublesome
expressions for Xl and X, for differentiating. (See
formulas 28, 29, and 30.) (This was not done even in the
determination of KO.) It is more practical to dispense
with any closed expression for the frequencies and to de-
teriaine them directly from equation (27), by observing
for what values of the parameter m with given K and 3§

s e i et e e T k. < g o g o e o s vt

*A, Ono, Journ., Soc. ifech., Eng., Tokyo, 1925,
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values, thgvgxpreésion h/%o) ; intreases its minima for
the different ratios (w/Ag)® .+ 'Since Figure 6 places all
thae pertinent values of the functions X, and X, (as

lizewise the function X&, which differs from X only

by the constant factor 1/X1 win) . at our dlsposal the -

essential part of this work is already done, The results
are shown in Figure 8.

Figure 8, moreover, contains a nomogram from which
"the bending frequency at any angular velocity can be read
directly for every .propeller of any strength, dimensions
and taper . ('.e., values of h@) - In this.connection.there
is assumed a knowledge of the frequency on the stand, as
based on equation (25) and Figure 7, or (still better), on
:ncrlmental determination, R

Tae mutual p031t10n of the curves in Figure 8 is in
the right 'sense. For constant -)dg, . the ratio K/,
ieeay. ‘the ‘less the cross sectlon tapers in proportlon to.
the 1nertia moment 4the. greater will be the effect of the
centrifug al forces and Just so much higher will. be the
.frequenc;es. For tne ~various cases of tapering in the re-
gion of K, the 9 values represent tae dlfferences in.
the growth of the frequencies, as shown in Figure 8,
though only to a slight degree. The cases of quadratic
cross~seat10nal tapering (k = 2)  with simultaneous re-
duction. of the. inertia moment .. (0 € & < 3), which were
11kew1se calculated ylelded curves so closely coinciding
with those already plotted that. they had to be left out
of Figure. 8. - Greater - dﬁfferences occur with stronger ta-
pers, ;orlwaldh,_however,monly the region up to the line
A =Ny tw is available, which is valid for a blade of
any eross section with vanishing inertia momeqt (& ) *

We conclude therefore that two propellers, Whlch may
otaerW1se differ in all their dimensions, material con-
stants. and (W1th1n wide limits) even in their tapers, dut
wiaich have the fregueney.- Ay . on the stand, also have
practically 001nc1dent bendlng frequenczes Wﬂlle revolv—
l‘-‘-t_ﬂ Lo . .

This fact justifies the simplification effected by
replacing the curves of Figure 8, which embrace all prac-

* 8 = o indicates the vénishing of the bending stiffness
of the blade. Equation (16) of Section IV, 2,a is there-
fore valid (N = w and A= Ng + 0.  with Ay = 0).
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tically important caéés{vbyTaféingle*durve.h This curve is
closely’approximatedvby the-inberpolation formula
o, LN . : X.(Q—\e - !
A L -
\7\;/

The curve corresponding to equation (31) takes its course
in the region 0 g w/hg £ 3 in the middle of the group of
curves plotted in Figure 8 Hence equation (31) repre-
sents, dAn abbrev1ate¢ﬂform, the net result of this theorem,

Y) Fregquencies of a revolving propeller with respect
to_the effect of the hub.— Up to this point, we have en-
tirely disregarded. the.fact that the conventional propel-
ler blade is attached to an assumedly rigid hub, which is
not affected by the bending v1brat10ns of the blade., As
a result of this arrangement, the blade does not turn
about an axis passing through its root, but about an axis
outside tne actual blade, . This results in augumenting the
centrifugal forces -acting on a bla&e elemezt qu increases
the bemdlng fTequencles. ; '

Tgere would have been no serious dliflculty in m'w}::r.ng

llowance for this propeller effect in our formulas and

alculations, . Still our formulas would have been rendered
more complex by the addition of another parameter, the
ratio of the hub radius to the blade length. Hence 1t was
at first dlsregarded .in order to avoid purely mathematli-
cal difficulties, In consideration of the small hudb radi-
s of a propeller as compared with the blade length, tae
previous results and formulas will be corrected in the
following approximate manner. -

On the basis of the formulas for the guasi-bending
vibrations of a blade inherently rigid but elastically
mounted (Section IV, Z,a), the freguencies of o blade
mounted on a hud of length € are increased as compared
with the frequencies of a blade rotating about its ianer
edge in the -ratio

Ag® w? (1 +'€Y%X
A v/ (32)
No® + w2

(See equations 13 and 14.) If it is now assumed that the
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corresponding frequencies of a blade, which-is elastic
throughout its whole length, increase in the same ratio,
then only the augnentation of the. centrifugal forces due
to. the outward dlsplacement of. the blade is taken 1nto
con31derat10n., No. account is taken of .the change in the-
vibration-elastic line due to .the. same circumstance.
Tnox&h the formsg of vibration prev1ously employed as the
pagis of the celculatlons were. the best -of the available
forms, this. is no lomnger the case under the changed condi-
tions. Accordlng to. tne Raylelgn pr1nc7ple, ‘the frequen-
cies calculated in the previously.described manner for the
hub e’fect can again. be on1J too. 1arge.¢~y"- -

By 1ncrea31ng the bendlng frequenc1es represented oy
'equat*on (31) in vatlo 32, we . finally obtain for the bend-
ing frequencies of a propeller with respect to the effect

of the aub: A

Moy A :
6+7(—-->‘ 1+<-~—}

Tﬂov eny tne value S/G is already 1ntroduded into
equation (33) for all prooellers linearly tapered in tnclr
cross sectlon. ,(Cf equatlon lZa )

7 _&)2 ‘1 _ 1+- (l.+2“\ (}\ \‘2

(83)

As soon as tae frequency AO of the nonrevolv1ng
blade is determined in any way, equatlon (33) generally
yields the bending freguencies in terms of the revolution
soeed Tor any propeller with any ratio of hub radius to
blade. length, The formula ig simple and very accurete, as
we saall see. Equation (33) is plotted in Figure 9 for
different values of the ratio of the hub radius to the
biede length O < ¢f1 < 0.5, PFor ordinary’ propellers

/1 = 0.1 to 0.2. Tnere is a noticeable increaso in the
bending frequencies due to the con31derat10n of the hub,

Wlth equation (33) tne mathematlcal determlnatlon of
:the bending frequencies of revolving propeller blades may
be regarded as settled, as soon.as the magnitude of the
deviations from the true frequencles can be satisfactorily
determined by accurate estimation of the errors, Al pres-
ent we know only that  our formulas yield too great fre-
quencies, Hence there still remains what is perhaps the
most important part of the investigation, namely, the de-
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termination of & limit Wﬁlch JUSt not be exceeded by thae
true frequen01es.h S

t

ciles of ﬂn ela tlc systen.— For- ver]fylng “the- CulCﬂl?thﬂ
made oa the basis:of the. Rayleigh pr1nc1p1e, the folloW1ns
51nple th eoreJ was: flrst developed

We w111 con31der a SJstem capable of vlorctlng, -which
is subjected to séveral directional forces acting either
simultaneously or separately, The potential energy of the
system then equals.the sum of the potential energies of
the =n individual forces. If the potential ensrgies
freod from their:édonstant coefficients are designated by
Uy (L =1, 2, ..;Vn) and the kinetic energy . of the system
By T = AN T', -the .snergy equation then reads ' ‘

A T (y) = e, U (v) + %2 Uz (y). F vuvns o2y Un :f)

TV and Us; = Dbeing lHﬂCthDS of the vlbratlon form y. From
the energy equation follows the frequency
2 .

AT = o, X, (7) + ey X (y) + aovee toeng Xn(y) (34)
in which Ui[T? is shortened to X3, - If y 1s at first
considered as unkaown, it can be determined for the case
of the fundamental vibration according to Rayleigh's the-
ory by the reguirement that the frequency must become a
minimum, - The true frequency is therefore represented by
the variation formula .

[eo Xy * ey X () * euvns + op X (y)] = min (35)

Corresponding to the assumption that all the forces affect
thae considered system independently of one another, all
the X; in equation (34) can sometimes be made equal to
Zero. ‘hen only one of the ‘n forces is regarded as act-~
ive, this yields

2 _ . 2 _ . 2 _ .
M~ = oy X3 nin, A° = cp Xpg ming eeevss M® = cn Xy pins

for the lowest frequencies of the syrstem.s ITf these values
are introduced into equation (35), it becomes

s 8 & a8

S SR %) B - - Moo=
Xl mln X5 ain ) Xn min J
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The minimum of a sum- of‘functions cannot be %maller, how-
ever, tnan the msum pf.. the minima "of the indiwvidual’ sum-'
.mands., Since 1t is obvious’ that the M1nima of the: sum~ff
fmands in, equation (36) have a total value of 1, we have.
the relatinn . a7 :

2 3
A 2&14-M2+,“”—+M2
The equality sign is valid: onky when all the summands in
equation (36) assume their minima for the same valus of
the variable y. This happens only when the vibration
form of the forces acting on the system is not affected,
i.€e, in the case df. a vidbrating system composed of rigid
masses and springs, If this unimportant case ig excluded,
we have, for all actually elastic systems, the inequality
s ' n L :
A2 >3 AP 4 (57)
| 151, RIS f
or, expresseéd in words, if several 1ndependent forces act.
31multaneous1y on any elastic systemn, the SQuare of the
frequency of the fundamental vibration is ‘always greater
than the sum of the lowest fregquencied which the systenm
would have, 'if ©only one of the 'forces were ‘acting on the
syatem,*

g) A lower 11m1t for the bendlng freguencies of revolv—
inz propeller blades. Analy31s of the results.~- If the in-
equality (37) is applied to the: special case of the pro-
peller v1brat10ns, it . then reads. ' . .

z > xo + xw

Wﬁere ho araln denotes the frequency of the propeller
blade with disregard of the centrifugsl force, i.e., the
frequency of the blade at rest . and- Km‘ “the frequency

*Iaequallty (87) in the special form for the pfaseqt DT0D-
lem of propeller vibrations, was originally derived fron
equation (28) .or (27).(see alse Z., f. techan, Phuys., 1929,

Pps 381-369), to which formula.(37) is closely related.
Subsequently it was dlsCOVered that the general applica—
bility of the lower:limit (37) had been preV1ouslv demone—
stroted by Southwell (Lamb and Southwell, Proc. Roy.. Soce,
Vol. 99, London, 1921), = On account of the ut111tj .of the.
apparently little~known theory of Southwell, .even in ot;or~'
cases, it is here given in gemeral “form, whereby, in the
formal demonstration, we have again comblned it withh our
equations (26) and (27).
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with dlsregard of the elastic forces of the blade, In the
latter case the propeller blade behaves like a perfectly
flexible heavy rope. Equations- (15) 'and (15) (Section IV,
2,a) are then valid, so that we obtdin the following low-
er limits, which can be neither exceeded nor gone bvelow

by the bending frequencies: '

For € = 0,

2 = 2 2 .
A )\,o + W (58)

b

or € = 0,

>\>h02+w<l+es\ (89)
6,/

with S/G ='2/L for propellers of conventlonal form with
linear cross-—-sectional taper,

The lower limit (38) is shown in Figure 8, where it
ig the common lower limit for all the curves in the fig-
ure, For proving the relatlons with regard for the pro-
peller effect (equatlon 33), both tlhie cases €/1 = 0,1
and € 1 = 0,5 are again. represented in Pigure 10 with the
corresponding lower limits (39).

_ The greatest possible errors can now be read from
Figures-8 and. 10, For both large and small centrifugal
forces, the percentile error tends toward zero., In the
intermediate region it cannot be greater than 5 per cent
according to Figure 8, In the case €/1 * 0, the maxi-
mum error (as was to be expected) is about 2 per cent great-
.ere As a matter of fact, it is considerably smaller, for
the frequencies computed on the basis of the bending lines
(18) by Rayleigh's method closely approximate the actual,
while the lower limit only receives a nmore formsal impor-
tance, For rough calculations, on the contrary, the sin-
ple ecguations (38) and (39) can be used with good results
for the lower limits, '

In this connection, it is of special importance that
the lower limits (38) and (39) are entirely independent
of any preliminary assumptlons regarding the shape of the
propeller blade, Inequality. (37) is valid for any elastlc
system on the basis of ‘its derivation., Likewise, the spe-
cial lower limits (38) and (39) are valid for every re-
volving elastic system, which behaves like a revolving
rope, when the centrifugal forces are regarded as acting
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alone. ~ The lower limits (38). and (39) can therefore be
used just as well for estimating the Frequencies of bent -
and warped propeller blades, wheredy only the correct val-
ue (as determined experimentally):is to be used for Ag.
On tais basis and the fact that formule (33), due to nege
lect of the torsioh, contains an exagreration of the Dend-
ing freguency, mo refinement of the theory dy taking ac—
count of the exact form of a propeller is necessary from:
the practical standpoint,*

It is possible to go a step further. By the chosen
marginal conditions (Section IV, 2,c), we assumed that the
propeller blade was firmly secured -at its root. This con-
dition is not always perfectly fulfilled. If it is not
fulfilled (8y/8%& %+ O for £ =0), :the freouencies of
the propeller blade diminish, due to the removal of & com~
pulsory conditions -~They cannot go lower, however, than
indicated by the lower limits (38) and. (39), which meni-
festly retain their validity. Hence, even in the case of
the propeller blade which is not rigidly mounted, Tormula
(33) can he successfully used, again wit:z the assnuaption
that the correct e&perlmeatwlly determjned stand frequpnn
cy isn qoed for Age :

Accordinp to:-the results-of the estimation of tle
maximum errors possible.in eguations (32) and (33) (as also
on the basis of the. comparisons made for the calculated:
frequencies of the nonrevolving nropeller), it may be as-
sumed that the praetically requisite accuracy 1s satis-
factorily obtained by the calcuWatlon.

Fote.-~ In the initially cited report in "Z, f. techun,
Pays, 1929," reforence was made to various older formulas
for the bending fregquencies of revolviag blades, %cve it
will onlv be mehtioned that there is also given in nutte
Vol., I, ed. 25, page 407, a formula for "blades on tae
edge of a revolving disk," which, expressed in the here-
used symbols, reads

AR = AP+ 0P (o-.vs + 1.5 2

*The lower limits (38)1and‘(39) are likewise v%lld (e.g.)
for nropellers of the Haw type, which consist of teansile
rods having a metal envelope of the shapo of a propcller
blade. \
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Comparison, Wltn eguation. (30), where the . corresponding val-

ue S/G 1. 5/1 (constant cross sectlon) is to be insert-
ed shows, however, that quttefs formula yields values be-
low the possible 1ower 1limit. For small_.e/Ln.rablos, A

‘may even be smaller than w, according to this formula,
so that, in flle given case, it is"possible to calculate. ;
“from it resonances with the revolution speed Whlch cer-
talnly cannot exist.

.

V. PRACTICAL RESULTS

-

1, General Conclusions

The whole of Section IV may be sumnarized, from the
standp01nt of its practical application by equation (33)
for the calculatlon of the bendlng frequencies of revolv-
ing propeller blades, in case of need with the addition
of ecuation (25) and Figure 7 for the frequency of the
propellcer at rest. ' )

It may be concluded from equation (33) .and likewise
from Pigure 9, that the bending frequencies are always
pre ater than the revolution speeds., Any decided rcesonance

betwecon the natural frequencies of the blade and the dis-
turbances, which follow with the freauency o; the simple
revolution. speed, 1s tnerefore excluded

The exact resonance point is not the only thing of im-
portance, however. It is possible to calculate, with com~
plete damping of the impulses, oanly when the frequency of
the impulses is considerably greator than the natural fre-
quency., The less favorable case (impulse frequencv small—
er. than the natural fregueacy) occurs in the bendlng vi-~
brations of vpropellers, Hence the chief thing to Inow is
how closely the natural frequencies can approach the revo-
lution spceds for pos 51b1e dlmen31ons of tne propeWIer
blades,

As an illustrative example, the bonding frequoncics
arc plotted against the revolution spced im Figure 11 for
a thin metal blade on the basis of Figure 7. ana equation
(33), and indced in the customary units
and n = 2 60 min~!
21

vt= ~A-60 nin™?
217

The dimensions and other blade constants arc given in the
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following table. The curves I to IV therefore correspond
to four »nropeller blades of equal length and root cross
section, but of different tapers. Curve I represents the
blade of uniform cross section, while curves II. to IV rep-
resent blades of rectilinear cross section, but diminish-
ing in inertia moment, sometimes rectilinearly, quadratic-
ally and cubically. -

TABLE:  DIMEUSIOWS OF LETAL BLADES

| E P 1 o Fo |« | o
Curve (kg cmn—2) |(kg cm-4 s2) | {cm) | (cm4) | (cn2) 3
I | ol o

II | 7.8 x 10°] 3 x 107°© 150 | 13 40 101

111 1 2

IV 1|3

In order to determine the danger limits for a given
vpropeller blade, one must first know the vibration strength
of the ‘hlade, expressed by the greatest permissible ampli-
tude, and, secondly, the magnitude of the disturbing force,
both of which can be determined.* It is then possidle to -
conclude, on the basis of the known resonance curves, that,
for a certain ratio of the disturbance frequency to the
natural frequency, the amplitudes excced the value indicat-
ed by the vibration strength. If it is assunmed that tais
linit would be reached for n/v = 0,8 then, in Figure 11,
the intersection points of the line v = 1,256 n with the
different frequency curves indicate the revolution spceds
at which -the given propeller blade begins to produce dan-
gerous vibrations. , The prismatic blade would already be
endengered at n = 700 r,p.n2., but the tapered blades only
above 1500 r.po.m.

*The disturbance experienced by a propeller near a wing
(variation-in the air velocity and in the angle of attack
of the propeller blade) can be approximately calculated on =
the basis of simple formulas of the wing theory. Tor the
velocity field behind » wing we already have data obtained
Tor another purpose on an airplane in flight. See, for ex-
ample, ii. Sciarenk, "Ueber Profilwiderstandmessung im Fluge
nach den Impulsverfahren." Iuftfahrtforschung, sy 18,
1928, »pp. 1-32, For translation, see T,i, Hos. 557 and
558: "easurement of Profile Drag on an Airplane in Flight
by tone llomentum Method," Parts I and II, N.A.,C.A,, 1930,
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‘In Figure 11, umoreover,’ the - intersectlon points of
curves I to IV with the lines v 2n should be espe~
cially noted. It 1s Jbvious that all the blades may fall
‘into pronounced resonance vibrations, even at relatively -
low revolution spceds, as soon. as there is a.possibility -
of disturbances with a frequency of twice.the revolution *
speed, This case is of special practical importance, as-is
obvious from the general representation of the disturbance
due to any kind of dlsturbance field.,

oo

171{A sin I W t + Bl cos i w t& (40)
Resonance tnenga1ways.ogcurs,.when
MN=3 0 (1= 1e2 eee,oe ) (41)

i,04, wien the natural frequency of the propeller equalg
an integral multiple of the angular velocity or of the
revolution speed, The cases AN = iw - for 1.2 3 for all
p*actic al propellers (fig, 11, and especially curve I, of
fig, 13) lie at revolut10n~speeds so far below the normal
that they can, for this reason, rebregent no - dan@er. It
follows ‘that the amplitudes A; and By of the disturb-
ance are functlons of the flow velocity toward tae pro-
peller, whlcn,dlmlg;Sﬂ approximately as the square,ofvtna
dininishing velocity. Hence, for this reason also, the
resonance cases at low revolution speeds (A= 1 w for
1arge i) are of pno importance. Iiloreover, since the case
A = is excluded (as we have seen), there remains oaly
the Mroaounced resonaice case A = W, Wﬁlca can serious-
1y endanger the propeller. This“;g tae case which occurs
at the maximum revolution speed and consequently exhibits
the maximum vibration amplitudes, and which, at the same
time, mogt cleossly apnroacues tne cruising speed of nor-
mal propellers.

igure 9 may be taken as the second general example.
hig indicates numerically the imvortance of a firm hubdb,
not only for increasiig the stand freguemcy, but also Jfor
increasing the freguencies of the revolving propeller,
The well-kncvn Recd propeller is an un$avorable example
in this respect

e
e

FOr‘illustration; see "also Flgure 12, If one takes
blade I and inserts it unchanged in a hub (case IV), the
stand frequeacy .and thae f£light frequency are both in--
creagsed, If. care is taken to-restore the stand frequency
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"to that of the original "¥ldde, perhaps .by making it thinner
(case IiI), the freguencie¢s.off ‘the revolving:blade III. -
still exceed the correopondlng values of the or1g1na1
blade "These cases cam: ne supplemented by - few prac~
tiecal examples.< : S Cad R e :

984

o

_2 Practlcal Examples

\ Some tine ago the Reed proﬁellers were- chiefly used
oithree~engine German ceommércial " dirplanes:.: Propellersr
jof this-ty ype bcve, in numerdus 1nstances, suffered ruptur
“'Wﬂile runn g L R

H -

For such a Reed proneller of S m - (9 84 ft ) dlameter,
tlie cross section and inertia moment of.wh;cnwat every -
voint of the bplade was known, the stand frequency accord-
ing to 'Figure 7 and the beénding:ifrequenciés. actording to
enua ulon (33) were calculated” 1n terms of tqe revolutloa
speed - and plotted in “ifure 13 »

. From fhe'cbvrse"oi'thé'frequenby’c irve it is obvious
that, in the region of hormal revolution speeds,; the nat-
urai'xreﬂuenc1es of the propeller de fot:-fall in the vicin-
'itJ of the revolution speed, They do, hoWever, assume

Nlues equ%l vO twice ‘tThe: revolutlon speeld, this decided:
resonance occurring -just ‘in the region of:the cruising
r'volutlon sneeds of lUUO to 1203 r.p m.

CIF we COD31der tle fle1d of. flow of.a tnree«englne
alrblane (fig,14), it is obvious that the propellors must
pass through ‘two’ dlstavbance regions during 'each revolution.
For the side nropellers~ botii: dlstlrbances oceur in pass-—
ing the wing at a distance df about 1/3 of the wing chord,
On the inside they simultaneously cut the slipstream of .
the mildle propeller, which:'is spread rearward by the fu-
selage. The ‘middle propeller revolves at about . twice the
distance of the side ﬁropellers from the wing, It . is only
"glightly affccted dy the wing and by the side propellers
back of it. As a matter of fact, centrally located pro-
pellers are less disturbed, though not altogether free
from disturbance, R '

On the wgole, ‘there is found in this example a. con-
firmation of the here-developed thedry of the resonance
v1orat10ns of pronellers, Illoreover, Figure 13 shoWs that,
in a case lile the one uentioned, it would-be better, un-
der some conditions; fto use & more:flexidble propeller hav-
ing such naturnl frequencies that, under the ordinary op-

i
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.erating conditions, the .vibrations exceed the ngtural freo-
quenc1es. The vibrations will then be well damped

In addltion to . the above—ment*oned eynlanatory test
for the occurrence of resonance vibrations in the practi-
cal case described, there is also the folldwing circunm-
stance. On various available propellers it was observed
that, when one blade was set in vidration in any way, the
other undisturbed blade also began to vibrate. Apparent-
ly there is no hub rigid enough to prevent the transmis-
sion-of vibrations from one blade to .the other. This Lwct
which also explains the occurrence of resonance vibration
when the natural frequency of the propeller blades is tWice
the revolution speed, was apparently operatlve in the adove
practical example,

Likewise, in the well-known case of the Koolhoven
airplane, on which the propeller during every revolution
had to pass once through a cutaway in the upper half of
the fuselage, the alternate disturbance of the separate
blades produced a resonance case with a frequency of twice
the revolution speed., It cannot be assumed, however, that
the different propellers used on this airplane were so
flexible that their natural frequencies were in the vicin-
ity of the revolution speed, . There is no other_explana
tion; however, for the propeller injuries on this airplane,

As the last example, we will comsider the case of a
propeller model consisting of two very thin flat boards
(1 = 91 cm, - F = constant = 10 X 1 cu?, ¢€/1 = .0,235).
Its previously calculated bending frequéencies are likewise
plotted as curve II in PFigure 13. In the stand test, no-
. ticeable bending vibrations were produced at about 420
TePDeily, Which can also be explained by the doudbling of
‘the vibrations per revolution through transmission from
one blade to the other, if the velocity field in front of
the test stand is not already so constituted that the cor-
responding disturbance function in formila (40) also con~
tains the second harmonic term (i = 2),

In any case the observed vibration phenomena in all
the examples considered are traceable to a bending-reso-~
nance case A =.2wW, in which the bending freguency of the
propeller blade equals twice the rovolution speed,

Hote.- Attention is here called.to the following
point, which might lead to errors. If the investigation



E.A.b;A. Teéhnicél Meméfandum'ﬁo;"655 41

of a propeller break resulting frow fatigue does not indi-
cate simple bending stress, it cannot be concluded fronm
this fact alone that there could have been no "bending
resonance in the above-mentioned sense, but that, on the
contrary, an essentially different kind of vibrations,
namely "torsional vibrations" must hnve been produced by
$0:i4e UNINOWR CAUusSe.

As already explalned (Sectlon I1I, 2,a), an alrcraft
proveller, owing to its bent and warped shape, can Jevel-
op neither simple bending vibrations nor simple torsional
vibrations (bending and torsion not being the normal coor-
dinates of an aircraft-propeller blade), What are here
called, accordin to custom, "bending" and "torsionall
-frequencies, might be more correctly designated respect-
ively as the smaller and the greater of the two natural
frequencies. of a propeller blade, Tne justification for
the division into the two kinds, bending and torsional,
was derived from the fundsmental assumption that, under
ideal conditions, the calculable simple torsional fregquenw—
¢cies differ but little from the greater, and the simple
bending fregquencies differ but little from the smaller of
the natural. fundamentwl frequencles of the propeller, In
actual natural vibrations the propeller blade sometlmes
develops bending and torsional vibrations with the same
small freguencies and at other times with the same large
frequencies, In the former case the bending amplitudes
are large, while in the latter case the torsional ampli-
tudes are large.

Ia any case, noticeable torsional stresses can occur
at the usual bdreaking point of a propeller blade near the
hub, even when the ouwler portion of the blade is subject-
.ed chiefly to bending stresses. If the more probable
cause, according %o the here-developed calculation, namely,
the bending resocnance, i1s eliminated, then the fatigue
streosses in the form of torsion also disappear,.

VI. SUMIARY

On the pasis of the caonsideration of various possible
xinds of propeller vibrations, the resonance vibrations
caused by unsqual impacts of the propoller bdlades appear
to be the most important. Their theoretical investigation
is made by soparate analysis of torﬁlonal and bending vi-
brations. This method is justified by the very great dif-
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ference in the two natural frequencies of aircraft propel-
ler blades. A mathematical estimation of the torsional
frequencies shows:

1. That they are not noticeably affected by the in-
fluencs of the aerodynamic. forces acting on
the proneller'

2e That their order of magnltude is so far above
the revolution soeed of the prope11er, that
any danger from resonance in the form of tor-
sional vibrations seems to be sexcluded,*

For the bending vibrations, of a propeller blade, it
appears, on the contrary, that the frequencies, under the
action of the centrifugal force, are of the order of mag-
nitude of the revolution speed, . The bending fregquencics
aro calculated in terms of the revolution speed of the
propeller, on tho basis of the Rayleigh principle, from .
the mininum natural freqvency of -an elastic system. Ac-
cording to Raylecigh's theory, the valucs thus obtained
reprosent an upper limit for the bending frequencies, On
the ow31s of a generally valid tneerem (Seetion IV, 2,f)
coupcerning the frequenciles of.an elastlc system simulta-
neousl;. cxposcd to several forces (in the present case to
oWa"tic and centrifugal forces), a lower limit for the
bending freguoencics can also be established., Tho upper
anu_lonr limits approach cach othcr so closely in the
ecalculation, that the calculated bending frequencies ade-
guately fulfill the accuracy reguliremeants, he calcula-
tion yiclds the following practical results:

1. The aerodynamic forcoes arc of much loss impor-
tance for tae bending vibrations of aircraflt
propellers than for the torsional vibrations.

2¢ Two aircraft propellers, whici may differ in 2ll
their dimonsions, material constants and (with-
in wido limits) also in thoir taper, which,
nowevoer, must have the same ratio of the hubd
radius to the blade leagth €/1 and tho same
natural stand frequency A,, have practically

*To decision can be madce on the basis of this analysis,
re“ardlﬂ.b torsional vibrations due to other outside dis-
turbancés than those connected with an irregular field of
flow. . .
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~the same bendlng frequencies, even when re-
volv1ng.

- 3, Hence it is possible, for all propellers of waat-
S ever dimensions, with any ratio of hub radius
to blade length, to adopt a single formula for
calculating the bending frequencles in terms
of the revolution speed. w. (See also figs.,

8 and 9.)
IR < .03.\2
. 7\6\) 1+<1+3 )
—— 1+ 9
’)\‘0 A w\
? R (XE/ 1i+ (7:Q

The stand freguency A, 1i1s best obtained expe-
rimentally. However, A, can also be read
from Figure 7 for the practically important
cases of linear-cross-sectional tapering of the
propeller blade with various reductions in the
cross—-sectional inertia moment,

4y The lower limit of the bending frequencies is rep-
' - resented by the formula

) e s
M2 " (1 e )

wherse S8 is the statical moment and § the in-
ertia moment of the propeller blade with refer-
ence to the axis of fixation. For the casge of
linear cross-sectional taper, as approximated
‘by nearly all aircraft propellers, the 1limit of
"the bending frequencies may be more simply ex-
pressed by the formula

a . €
A2 > A2+ P (1 + 2 T>’

"Fer € = 0 (vanishingly small hub) the lower
limit becomes simply

)\2 >)\°2 -+ wz.
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5, The indicated lower limits hold good for every
propeller blade of any shape, - Hence they are
also valid for the bending frequencies of bent
and warped propeller blades. Horeover, they
are independent of the manner of mounting on
the hub, Hence they -are also valid for blades
whose mounting cannot be termed perfectly rig-

~id  (8y/8E * 0 for & =0), -

6, The presence of a large hub in the ratio to the
" blade length faverably affects the increase
in the bendlng frequencies of the revolv1ng i
blade., : .

7. The bending frequencles are always higher than
the revolution speed of the propeller. Pro-

. nounced resonance vibrations due to external

disturbances of the frequency of the simple
revelution gpeed are therefore excluded,

8. On the other “hand, pronounced resonance cases
are po sible when the bénding freguency of a
propeller is a low multiple of the revolution
speed, This case is of practical importance,
since many propellers are so mounted.with ref-
erence to other airplane parts (e.g., the
wings), that more disturbances than one (gen-
erally two).are produced during each revolu-
tion., Resonances of twice the revolution speed
can also te prcduced by transmission of the vi-
brations from one blade to the other.

The calculated data are illustrated bty practical ex-
amples. Thereby the cbserved vibration phenemenon in the
given examples is exPlalned by a bending resonance, for -
which the bending freguency of the propeller is equal %o
twice the revolution speed.

Translation by Dwight 1i. Hiner,
National Advisory Committee
for Aeronautics,
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Figs. 1;2;3;4:

Fig. 2 Diagram
for il-

lustrating equa~

tions 7 to 10.
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Fig. 1 Example of torsional frequencies plotted
against the angular velocity,
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Pig. & Velocity components
of vibrating propel-
ler blade.

Vibration~clastic lines ac-
cording to equation 18,
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FPig. 5 Radical displacement { of a
blade element during a vibra-
tion.
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Fig. 6 Curves for functions X; (m, &, &) and X5 (m, k)
in equations 23 to 26.
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Fig. 7 Bending frequencies of nonrevolving propeller
blades with linear cross-sectional taper (kK = 1)
and various reductions of the inertia moment.
(Variable §).
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Figs. 12,13,14
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Fig. 12 Comparison of similar propellers with reference
to their bending frequencies on stand and in flight.
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/S Fig. 13 Curve I. Bending fre-
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Fig. 14 Arrangement of propellers on a taree-engine airplane



