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TECHIICAL MEMORANDUM NO. 805

FLAT SEEET LETAL CIRDZRS WITH VERY TIIN LETAL WER*

By Herbert Wagner

PART 1II
Sheet lietal Girders with Spars Resistont to Bending

Oblicue Uprights - Stiffncos

Joting that the stiffness of the glrder increases very rap-
idly as B increases, the result can be summied up os follows:
When the cross stress preponderates in one direction and when
the wech plate is to be given the dimensions comilensurate to its
stresses, it is advisable (regardless of any ensuing structural
difficulties) to set the uprights at about B = 1200, thereby
lowering the weight of the plate wall 15 per cent (in contrast
to B = 90o), and ralsing the stiffness 55 per cent. But,
vhen the cross siresses alternate and are approximately of the
same intensity in both directions; or, if the web plate thick~‘
ness ig detcrmined by other siructural reasons, then B = SOO
should be chosen.

von-parallel So

In this case (Fig. 14) part of the cross stress is carried
5 /P

by the spa-s repardless of 1metfcr the web plate is under ten-

*'Ebene Dl:unwa1ucra~ :r wit sehr dunien Steghlech." ¥From Zelt—
schrift fiw Flu“tOCQ11k und Motor 1u*tuch11;ant, Vol. 30, Wos. 9,
10 and 11, May 14 & 28, aad June 14, 1939. For Part I, sce
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gion Or snenl.

We Yegin our discussion with thevqirpla case of a web plate
subjected to shear, but esswae the cross saction of the spars to
be large with respect to that orf the web and further oresume
that the bending mement ic solely telken vp DYy the spars and that
the cross stress Qg huken up “rom thz veb is eveunly distrib-
uted over 1t.

VYow let us Adetcrmine the wed stress at cut 1, for the sheet
metal girder shown in Fifure 14. ¢ is uo represent the result-
ant cross stress of the individual strenses Qs Qos €5Ce, to
ihe left of 1. We opsly the inside strossss trensmitted 2t 1
ag outside stressss anl bring the left cortion cf the girder in
equilibrium. Vith X, and Xy as the w—components of the spar
stressaes, we have

o ~ (= Xu), for x componenta,
X tan <o F X tan dy + Q3 = G, Tor y components,
Q x = X hy = Uy, for nonments,
which yield
v
Qe = Q - =% (tan & + tan 9;) (19)
or

Q hp,
e = 3= [ny — x (tan 9 + tan o)) = Q == (192)

T e = o X (191)
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If the spars in a girder are not oarallel the cross stress
in the web can become higher, lower, or even inversely directed
to the outside cross stress, according to the spar setting. The
ratio QS/Q béing solely affected by that of the girder heigﬁt
at both points, but not on the angle of setting of both spars
to eacn other, the difference betwecn Qg and @ remains, even
1f the spars are only slightly inclined, when only the height
of the girder decreases, as in the wing spars of an airplane.

Now we calculate the tension stresses in an infinitely thin
web plate (diagonal tension field) with spars not set parallel
Fig. 15). For simplification we assume the spars straight and
34 = 3y = ¥, s0 that the uprights are porpendioﬁlar to the mean
direction of both spars (i.e.; perpendicular to their angular
symnetry); other similar cascs can be treated as in Part I of
this report (¥N.A.C.A. Technical Meriorandum Jo. 604). We consider
only the case that the cross stress within the scope oi our dis-
cussgion of the plate wall is constant. Lastly, we suppose the
dimensions of the girder to be such that the direction of the
tension stresses (wrinkles) is constant within thc entire scope
of examination of the web plate (¢ = constant).

It becomes apparent from equation (19b) that the‘shear
stresses in the web under shear vary in the x-direction even
when the cross stress Q is constant. Consequently, the tension
stresses will be of different marnitude in different parts of the

web plate even by the diagonal tension field. But from the as-
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sunmedly constent direction of tan wriniles »nd from the frecdom

of sources in the field of the prircipzl sires

6]

it

I

es (Sec Part I -
11),

hnical Feoorendun No. 6C4, theorem 2, page

1)

follows that the tension strecses cre consinnt along every stres
trajectory (wrin:le).

The exact treatment of ths »rcblem yields an integral cqua-
tion whicnh we'shall omit here, and simrly sive on approximation
which is dufiioicntly sccurate Tor all practical purcoses. Ve
aseuae that the tension stresses Cq in the middle of the cir-
dér (that is, on axis ) corresoond to the shear strensces, ac-

cording to {(19b), eo %that /Uoms-re Figure 1F oad equation (9)

v bod R AP 1Y Lo T R N A ey e e
(Part I - Technicel lewmoraniwa lo. 504, tatw 25) )

D3 1 Vg 1

C‘rﬂ =

nl&

h.” Bin A 008 G A § 8in o COS &

In confofnify with thig asmugption i tonsion stresses in the
whole field erc now imnown, inasmuch ws tiey arc constunt Along
every stfeﬂs trojectory. 8o, Tor exuswle, toe Tension siress in
the web plote in point O at the upper srar «t nolnt x is just

a8 high as in point P, whica lics on aule X at point

1 i . . ) L ) .
- & hy cot a. The tension siress a% tuls point is (Coumpare
cauxtion (20))
Q hp., 1 11,2
J 5 A S :
WY o F ooy T N S M)
s h,;® oin & cos X R
and with |
B, = hy - 3 2 cot & tun O,
- 2

we obtain
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hy? 1 :
OA =0, ——=. _ 0O - —
J B ne B {1 - cot a tan ¢)2 (20a)

which, eprlied to point U, yields

O-1 = C hy® o 1 (200:)
T M T R TT A cot o tan 5)° 2V

Thus it becomes apparent that the tension stresses are not uni-
formly distributod over the cross-sectional height; it is higher
in the uvgozr than iﬁ‘the lower portion of the cross section.

wow to checlk the Calculafion'we examrine the equilibriﬁm
on an upright. The stress exerted by the uﬁper spar on the up-

):

(03]

right due to the stressecd siin is (Sec Figure 1

'
il

~ V5 =2 (sina - cos o ton 9).

Hereby, Z=058 1% (sina - coea tan 9),
- ' . , 2
consequently, - V5 = 05 s %t (sina - cos a tan §)°.

For Op, in itself variactle over the width 1+, we use the ap-
oroximate value o0p laccording to equation (20a) ) at the point

el

of attachuent of the uprigh%, which inserted, reads as
- Vg =0p 8t sin a.

For 7; we obvinusly obtain the same valuc. Our check is cor-

Tecet Vo = Vo= Vo oand yvields with (20)
-V = Qg L tun « (20¢)
B :lX
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Introduction of Outside Stresces

A discuseion of stress distribution in a siheet metel girder
2% the point of introduction of nutside stiresses is beyond the
scépe 0T tais pancr, =2ud we shall verely voiat out several Iea-
tures.

I7 & stress (Fig. 17) is acplied at the end of a sieet

00

ct
]
o]
ct
ct

metal girder, the end number must be rezist o vending in
order o be able to take up the lateralll acting stress comoo-
nent of the skin stress. 1In relatively hiza
easily accomplished aad it 1is test, as shown on Figure 17, to
gtiffen the opunel 'etvesn tae first two vprights by special re-
inforcements and Shen ascume that the tension gtrescses to the
right of thals panel oTe tniforily dissrivuted across the webd
plate.

Applying stress Q at any other cen-ral upright (instead
of a4t the end of The 7irders; which is ~eitner resistsnt nor
rigid in bending, toen ~he sheet wall (Fiz. 18) preveats the
qerber from labteral deflection, which then is sunjected to ten-
sion stresses even in the iniltially unsiraessed part of the gir-
der (left of Q, Fig. 18). In the ciresced portion (2t rignt
of {, Fig. 18), the tengioa stresses in ine web are evenly

distributed newr the -oint where Q 18 rrplied. If the girder

13111 he advisable to

O

&)

0,

’_f
U3
AY ]

} 1

ot

dimension is conformal to Tais

aake the wen at this opoint slipatly ctronger than The even tTen-

Hh
O
L]
-

sion stress distribution would call
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Aoplying stress Q at an upright in the middle of the gir-
der Q distributad over both sides kFig. 19) and the sigze of
the uprignht at which Q 1is applied, such as to assure the same
corpression stress in every point (Fig. 19,‘cross—sectiona1 area
increasing upward), we can presume the distribution of the ten—
sion stresses in the web plate to be unifdfm, even if the up-
right is rot rigid in bending.

Wow we discuss the casé of crogs stresses acting on every
upright (disregarding exceptional cases). We assumc the dimen—
sion of the sheet metal girder such that the direction of the
tension stresses is constent anywhere in the wed plate. While
making this asswmption, we shall discuss two specific limiting
cases, that is, the case of uprights perfecily rigid in bending

and taas of uprights without any rigidity in tending.

In uprights verfectly rigid in tending, which are pin-
jointed to the spars (Fig. 30), the tension stresses in the web
are constant in every panel lying between two uprights. If Q1
and Qn denote the cross stresses to be taken up by the girder
in the right and left panel of the upright (that is, QR = QutPn),

the web tension stresses in these two panels zre (Compare egua-
b L

tion (9), Part I - Technicsl Memoraniwa Fo. 604) :

o. - 2L 1 . 0, - SR 1 .
L hs sin o cos o’ R hs €in a cos a

Stregs V in the upricht varies over its length; it is higher

by P, at the upper end (Vb) than at the lower end; stress



-

8 -.:- uA . C . A . TCCL__- STURS I.. ,4"Or8-.¢ it :TO . EOD

&

a nstant amount tiian oy,-

g T . PN ~ . U .
Yow +the stress in the upright is:

‘ Pr
V%::__WE_mﬁ — cot a + —, at center

~ Vg = - Vgt SF, at top

P.,
-V ==V, - Ef , nv kotiton

There aquations are easily extended to the case where Pn 1is

uprard instend of downrard.

'lj

The case of upri~uts without rigldity in bending (3
which aoproaches actusl conditions much nore cleosely than the
one Jiscussed rere can, by constant direction of thue wrinkles,

be devased only witn tae assumption thnt tiie cuiside stress on

every wprisat {(at least witlin the scope 5 our sonsideration)
by constant spacing of uprisuts is equivalent (respeciively

proportional to thiis spacing when the specling varies). When,
supposcd, tie direction of tle tension stress on the upright
Joes nos carange and tuere is ro lateral stress, the intensity

07 the tension stress ig litewise urcasngeatle. The tension
stresses 0 proceed undisturved eyond tre vpricat; they are
onstant Qlong every gtiress trajectory.

L. 4 f

a1t o the tension girescsos convinuvs ‘in contrast to the

case atove) %o iancrease upvsard and cowarard, and from left to

P, 13 evenly initi:ted in the web (recouce on is greater Dy

5 tne tosiom instead of ot ths top or where P 2cts

ig. 23)

as
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fight, respectively. ow the strecs in every upright is constant
~over its length.
Again, using our previous symbols Qr and Qg, and express-

1)
L/

[AV]

ing the teasion stresses in the web by S5 OUs Oy (Fig.

we compute

O * 9p 1 1
m = 77277 %8s sina cos a ’
GO: C)'m—;'-.zr_l___.}___,
’ 2 ts sin® a
1P 1
Oy = Op + = =0 —=
U B2 tg sind a’
Qrn + Qp ¢t Fn
- - +
v 3 n tan « 3

The Stress in Uprights -

Eccentrically Arranged Uprights

In Part I we analyzed the stress in the upright of a sgheet
rnetal girder whose web plate foried a diazonal tension field.
Now we discuss the resistivity of an urrigat against this stress;
foremost we shall consider the effect of the siressed skin on
its buckling strength.

Take a sheet metal girder with a very thin-walled web plate
(Fig. 23) and naviag uprights whose spacing 1t is Very narrow
with respect to the height h of the girder. These uprights
are to be arranged on one side of the rlate wall only, so that

the stress initiated by the spar on the upright, due to the
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streszed skin becomes ccceniric. The result of this eccentric
compression is tending stresses in the upright, which bulges and
carries the web, fastened to it, zlong with it.

~Now let us discuss the general case where the cross—section-

al area F of the upright as well as the iistance e of its

v
6.6, from the plane of the plate, and its inertia moment  Jy,
varies along the length of the u@right. Tat at the same time
we assume that these cross—sectional quantities of the uprights
are identical for ¢ll others within the ecope of the sneet wall
in qusstion, so that the elastic line of all these eccentrically
stressed uprights is tihe sgme.

To define the strecss we now envisage a scparate piece of
the shect wall of widith t and neight Ay  end symmetric
to the uprisht, together with the corresponiing part oJ the up-
right. The inside stresses acting at the intersections of this
wall element are aprglicd as outside streseces end we analyze its
equilibriu.

First, we have the ectresses exerted by the surrounding sheet
on the sheet element, which we divide into siear acting along
the section edges ond normel stress perpendicular to the edges,
as illustrated by Figure 23. It becomes asparent that these
stresses are in equilibrium with respcect to direction x - as well
as direction v. . Jomoonents perpendicular to the initial plane
of the sheet Lave only the two shear stresscs acting on sectiomns
II (the couponents of these two stresses are inversely equiva-

lent, hence compensate cach otheor) and the two normal stresses
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acting at I. The intensity of these normal stresses is V (-~ V
denoting the force in the upright). Tne sum of their components
perpendicular to the olane of the sheet is V A ¢, when I 1is
the angle between the two tangents in the direction of the up-
right to the surface of the sheet wall in both intersections.
Since, however, the totality of all stresses acting on the
wall element must be in equilibriﬁm, the two stresses disregard-
ed thus far and whiéh themselves are‘traﬁsmitted at the intersec-~ ¢
tions of the upright (these forcésvare - V) must have as result-
anf an inversely eaquivalent component pérpendicular to the ini-
" tial plane ol the sheet. Taus it follows that these two stresses '
must aiso fornm angle A ¢, that is, form the same angle &
(Fig. 22) at their poihts of application with the curved surface
of the sheet. This being valid for all possible intersections,
we have theorem 3: The‘angle of the curved line of action of
the stress in the upripght with the curved surface of the web
plate is constant along the entire length of the upright. This
is even appliCablé, in general, to uprights with variable iner-
tia moment and eecenfricity'in length.
fJow let us consider the specisl case of uprights not re—
strained at the end (Fig. 22). Owing to the movement of the
web out of its initial plane the stress exerted by the web on
the spar is no longer in the initial pléne of the wall, but
moves along with the wall. So the stress of the spar at the

attachment of the upright acts in the tangential plane on the
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wall., Its ancle 7ith the wall and 1ts di

This being valid or upper and lower

curve of action of stress -V must a
with the well. From this 1%t follows - ev

tricit e — that the vending moment Ik
= V

ily = Voo

So, while the eccentricity of e

buckling by the eccentrically acting

~ gtress increases

b
211 is not af:l

Such upriphts, very closely spaced in tie

buckle as the assumption of equal

menbers holds truc; counnecuenily, Thelr cn

ple. They erely nust Le dinensiocnec for

whereby the regultant stress in compressi

not exceced the yield limit of the woterie

stre

il

end of the upright,

ct along

meriber

t.uat oi Il

facted T thes inte

ss in cowmpression whlclh induces wrink

Ho. 605

gtance from it is gzero.

the

the entire member

en for variahle eccen-

in the upright is

(

2

I

1)

merely stressed in

noreases in the

Tithin

10

wprights lying
naity of the stress.

wnll, surely will not

lnstic line for all

0
o

lculetion is very sim—

SO
o

centric compression,

on and bvending wust

1, vespectively, that

ling.

Now, we consiaer tiue cabe (Fig. 25) wnere tiae ends of Thae
uprichts are more or less coastrained and aave const ant cross-
sectional dimensions. Oonforwelly with theorem 3, the differen-
tial equation for the elestic line of the upright (¢ deflec—
tion of upright at poiat y) reads:

2a)

~
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The two constants MO and g&% characterize the moments and

may, in given cases, be considered as defining constants of in-

tegration. The solution with constants A and B vields

= A + + X2 (1 + L DM 3
y=A+RBy 5E Ty Lo 7 dy/ (22b)

In the particular case where the upright is perfectly con—

strained at the bottom (y = 0), %but not at the top (y = 1),

the four limiting equations become:

{ = 0; %3.8;...:0, for y =20

= : -g'_g. = —-..Ve e o == 7,
¢ = 0; e o for v .

The moment 1% at the point of constraint is
MO:——%VG
and at y

.

H=-3ve(1-5%)
The elastic line and the morients are shown in Figure 23.

IT the upright is perfectly constrained at hoth ends and
the cross section is constant, then the moment along the whole
menber is zero.

Thus far we have treated very (infinitely) closely spaced
uprights, but the conditions become somewhat different when these
members are spaced farther apart. In Figure 322, in particular,
bending moment I is higher in the uiddle (that is, from vy = %

tana to y = h - %t ten o) than at the ends, even by constant
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<+

inertia moment Jy in the uprigats, so that (without giving the
derivation)

M=V e ——————— (25)

1

This hinges on the condition thot the normal stress acting at

section I (Fig. 83), which represents the resultant of all nor-

mal strecses applied at this section, i1s sliphtly closer to the

initial plane of the sacet metal by wider cpacing than the sheet

£

itself on the upright. Tecause, when the uprights zre spaced
farther epart the portione of the sheet - alter deformation -

o

more in the niddle

vetrcen two uorichts, sre a 1lifttle closer to
the initial plane of the sheet than taese cortions on the up—

rights.

" .o PR < < T
The validity of (23) extenls to 0 = tan a = z. The appar-
[

ent increase in eccentricity reises, as vl see with ti.e stregs.
v 2 )

) is

el

The buckling load derivcd from “nig formula (2

n oo
[

Fal J‘v’

T = (23a)

2 tanca

n

(We Tefer to this egain in the following ssction.)

48]

The results are excctly similar for oulicue uprignts. They

W

»1so show that tie tending moment is i =V e, etc. b very

narrow spacing.
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The Theoretical Buckling Load of Uprizhts

This section is confined to the purely theoretical problem
of buckling in uprights, whilé the next section treats the wrink-
ling phenomena.

To simplify matters we limit ourselves to sheet metal gir-
ders with uprights perpendicular to the spais, after which the
results are easily applied to oblique members (Compare Figure 23).

Wnen an upright buckles from the original plane of the wall,
the web plate must, oerforce, do likewise. The web, stressed in
tension, buckles at the upright and exerts a side load p (due
to deflection in tension) on it, whicih endeavors to force it
back to its original position. (This load p increases direct-
1y proportional to the dellection of the uprights, thus effect-
ing a higher buckling Load V.)

Tye elastic line of a compressed and simultaneously later-

ally stressed nmeriber complies with the well-known

dﬁf + v dzg _.p (24a)
dy E Jy dy E Jdy

(See foregoing section for explanation of symbols.)

In tae following we assume the inertia moment Jy constant
and of equal magnitude.

We now compute the side load p. Z 1is the tension in a
strip of the skin, croseing the length 1, of the uprights
Z=1cosac s. So, in conformity with equations (9) and (10),

we have:
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7 o Lcota —
: t sin

This tension % is now turned at angle A (Compare, for example,
Tigures 24 and 25), so that p = 2 A. Inserted in equation
(242) it vields

S S AN o SN A L h cota (24b)

d:‘ i) Jv dyz B JV C sin a t
As & rule, A varies over tae length of the uprignt, and depends,

in periticular, on its spacing.

cf Veriousg Special Cac

Zere every vension dlason cross~s only one
ber. The asize o) cnole A of toae tension Tlat
parent from Tigure 34. We obtain

A 1
S S S U SO
{ sin o ¢ sin ;_ng_ 1=y
 sina sin a |
.
We write b alue in (249),
as theoretical buckling load Vs
1
Tv,‘.;-' o= Pﬁ\ D e e ~':."w__.
- sielehred

-— 4 e S
l O . .I:q t

onal

o
€]
93]
92}

becones ap—

hvl

CFEe

resolve tiiie eguation* and obtain

(24c)

*In these and subseruent diz feLuAtlol equas
the clastic 1136 o€ the wpripght by Fouriex
nunber of terms asswicd in the CJ’CulauloJ nakes
Joads only upprox imntely correct, elthwusa the e
only n very smell per cent.

ions,

nseries

TTOT amounvs

we represented
The finite

trie Tuckling

to
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for vpriznts not restrained at the end;

1
Vo = 4 Pp — By (244)
L= 0.33 —wgp—

for uprights rigidly restrained.

Here Py 1is Eulsr's dbuckling load of the sccond order, so

P = L 4

Py m e (2‘6)
All uprigints have the same elastic line whea buckling. If

h cot o/t is very high, tne buckling load changes into Euler's

load.

Jase 3, t = %+ h cot a.

In this case every tension diagonal crosses two uprights.

(A is read from Figure 25.) We obtain

— S £ S Y
SLTL 2 8liia

A L1 ¢ L - 81y 2 2 L) (24f)
¢ sin a { sina | h h \7 fl/
where {, 1s the &eflection ol tue acdiccent upricut at point
¥ + h/2. Tow we cont;nvevour coleulnsion under tie two assuﬁp;
tions:
éEEE@PtEQQmé) Yinile bulging, the elastic line of *two adjacent
upricoats is inversely coulvelent. In this case
we sy set Cl in (221) eaquivalent to the nega-
tive dcflection df the considered upright, even
at point v + h/2. Written in (24b) the theoret—

ical buckling load Vqp Tbecoues:
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for uprights rigidly constrained.

The elastic lires are as gsiown in r member

}_J
o
[
)
[aS]
()]
@
<
[}
=
€.

forms two waves when bulging.

Assumption b) All uprights have the sume elagtic line when

at The same time the de-

m
)

bulging. Then §, 1
flection in the considered upright even at
point ¥y + h/°. So, whcn we write (24f) in (24b),

we obtain as theoretical buckling load:

Vo = 5.3 Pr (241i)
for usrights not restrained;
Vo= 9.7 By (24k)

The elestic line in thie type of buckling shows only one wave
(Fig. 25b). Thus we see both assumptiones accidentally vield
identically high buckling loads for this conrticular spacing of
unresitrained uprights.

Now 1t becoizes aoparent that all uprights have the sane
elastic line (one wave) by wider spacing (t > % h cot a) eond
adjacent uprights have different elastic lines (two waves) when
spaced close together (t < 4 h cot a). The change-over oocurs

at precisely t = 3 n cota.
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il

Only one wave occurs at 1t F h cot @ when the uprights
are constrained (the same elastic line), because this type of

deformation is induced by a lower buckling load.

fase 3, Liumitinz case t—>0.

Here the uprights are very (infinitely) close together.

Assumption a) All uprights have different elastic lines.

Axis x 1s placed parallel to the spar, axis y as be-
fore, in the direction of the uprights, and - ¢ = ¢(x,y) is the
deflection of the uprights. In this case of infinitely close
uprights ¢ (x,y) represents at the same time the surface (for
it is comnnected to thc upriruts) into whichvthe web cahanges
when buckling.

dere it is perhaps more appropriate to speak of bulging of
the plate wall (web) instead of bulging of the uprights; the
whole web forms oblique wrinkles (like a sheet in wrinkling un-
der shear). ‘

Deroting with dz a linear component in the direction of

ac :__Cf

tension o, then ==
qz

nal due to bulging and the original olane of thae wall. As seen

is the angle of the tension diago-

from Figure 28, angle A, at which the tension is deflected
when bulging, is of the order of

2t 2%t %
2z cosQ  3dz? CoOs &

A =

We note that

T— = ¢os o, =— = sin a,
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that, in fasct,

2 ~2
N . ¢ .
cog? a 3 9% gina cos a +_5ﬁ§ sin? a
’ : wr : v
)

Q

M
e

Q

-3
-
4
«
9]

according to the of the partial differcntiation. TYow we

~n

A irto (240) (including the parti -1 differ-

H

write this velue fo

oentistion), and obtain

: o 3% ¢t (

LA TR — n41

ay* EJy |o (x tan a)g © 3 v a.(x tana) )
V .

-

This equotion is, of coursec, fulfilled when ¢ (x,y) = 0. 3ut,
as in évery simple problem of Tuckling, the question is to Tind
those volues of :jl_, at ~rhich this diiferential eguation
ool T

yields a solution For ¢ * O.

In‘the gelection of lialting conditions we must observe!:
Theat tho'calculation is Zuséd’on the assurmelly different elastic
lines oi the wprisits. Trhas, if tae opur 1o rot rigid in tor-
sion (and the ends of the uwprichte are not restrained), the
elastic lines of the individucl vertical rombers may assunme a
different angle orf slope on the spar without the distortionless
spar o Tering eny veslistance eroinst thls reciprocel distortion
of 5ts cross sections. On the other hand, if the spar is rigid
in +orsion (vrovidsd, of course, the vertical memoers are rig-
idly attached to tiLe soar), it offers soue resistance against

distortion, and, if very hishly torsion-re sistant, finally

forces the ecluostic lines of into the same angle of

~

slope as the origincl olane of ©he sheet. This ralses the re-
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sistivity of the plate wall againsﬁ bulging.

lloreover, we strecs at thie point that there is an exact
puckling load even for eccentrically arranged uprights, that is,
(by equal distortion stiffness of the sgpars) exactly the same
vuckling load as in oentrically arranged uprights . (This ap-
plies to very (infinitely) closely spaced uprights.‘ For differ-
ent spacing, particularly by‘ t'> % h dota,’ théie is no pure
buckling load in eocentribaliy arranzed uprights; the conditions
then are'siﬂilai to‘thosé in the conventional; éccentrically
loaded bucikling members. )

If, for exzrple, CI;: §I(x5y) ig the solution of (241)
for centric uprights with torsion-resistant soars (CI conmplies
with gé.:_o at upper and lower spar), then CII = CI t ag +
a, y + az_y? + ag y3 is likewise a solution of this eguation.
But by anpropriate choice of constants a % 0, {71 now satis-
fiesg% = constant for upper and lower spar. In this manner
the solution conforms to the case of torsioﬁ~resistant spars,
which, due to the eccentrical uprights, twist at a constant
angle over their whole length under 1oading‘(Fig._22). The
case of perfectly torsion-vesistant spars with eccentric uprights
is, of course, identicel with that of rigidly restrained up-
rights.

Dr. Schmicden, Denzig, made an accurcte solution of (241)

which he intends to discuss at some other time. We simply

state his results.
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The “uclling Zond of the upright is

Vy = 7.01 Pg | (24m)
for unrestrained uprights or spars not resistant to distortion
Vo = 11.43 Py - (24n)

for perfectly restrained uprights or perfectly distortion-
resistant spars, regardless of whether the vertical members are

stressed centrically or eccentrically.

Assumption b) A1 uprights have the ssme clastic line. The

buckling load is:

<
vy = 13 (BCOEZY py (240)

for restrained and unrestrained uprights.

As seen from Figure 37, this equation yields the buckling
load for unrestrained uprigats with conpletely torsion-resistant
spars; because the above assumption vields for this case the
lowest possible buckling load.

The resulbts of all these calculations have been tabulated
in Figure 37, namely;

AB - applies to eccentric or centric uprights rigidly re-
strained or rigidly attached to distortion resistant
spars;

BC applies to centric, rigidly restrained uprights;

BF epplies to centric, unrestrained uprights, rigidly at-

tached to distortion-resistant spars;
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OF is valid for centric or eccentrically arranged, bdbut
unrestrained uprights with spars not resistant to
digtortion;

“FG  applies to centrically arranged, nonrcstrained uprights.
The Figures 34c to 24n denote‘the respective eguations by
whici the dotted portions of the curves -and the points enclosed
by a senmall circle were computed. (The computed portions of the
curves which do not check with the final curves are shown as
dotted lines.)

Of cource, there is no such thing as a perfectly rigid re-
straint in uprights, nor perfectly distortion-resistant spars.
But the riridity of restraint technically obtainable has, as a
rule, relatively little effcct on the buckling strength of ver-
tical members. TFor that reason it is advisable +o stay on the
safe side and to use only the lowest curves of Figure 27.

If some uprights cre stronger than otliers near by or braced
perpendiculer to the plane of the sheet wall, the buckling

strength of the latter is naturally augmented.
The Actual Buckling Load; Index Value®

This section pertains to uprighis syrrietrically attached
to the web plate.
In the lest section we treated the theoretical buckling

stress of nprignte without consideration of wrinkling phenomena

— e B

*It is assumed that the vecder is fanllla with my report "Re-
marks on Tuckling Hewbers ;o Index VUTue " Zeitschrift fur Fluv—
technik und lMotorluftschifriahrt, 1338, p. 241.
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or excess of vield limit. ©So in the following we shall show how
to dimension the vertical member whcn The buckling strength of
unrestrained free buckling members of corresponding cross—sec-
tional shape is known {(as from tests, for instance). By "free"
buckling struts we mean lhere the conventional type, that is,
without lateral support, in contrast to the vertical members of
a sheet metal wall, which we call, for short, "uprights.!

For we can assume that the actural btucxkling load V  of an
upright of length h, e¢ven when wrinkling and excess of yield
limit is taken into account, is just as hish es that of a free
tuckling nember with the same cross-sectlonnal Tform and area
(aence, of equal =actucl vuchkling stress o) by co selecting the

length 1 of this Tree buskling wmenier tant both memoers have
g &

10
the same thseoreticel buckling load Ve, tant, in consequence

(Compare (24e)):

T°E J - Yo T EJ Vo
—_— = = Pm = o 2
1,7 T7 "2 pg ¥ Pgp

A comparison of the left with the right eile of this Tormula

now yields the length of this "eaquivalenth free buckling member

at /Pg
1 = h o (25)
' J Vr

Ia this manner we reduce tnc problem of the dimencion of
the upright to that for tais "equivalent" Iree ovuckling member
of length 1, and to the (actval) buckling load V.

The profile shape and the allowsble stress of this "equiva-
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L

lent" free member with index value

K _ A//..‘.T . ,\/:‘7—
= l ) = h
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is best taken from the index-stress-strain diazram (Compare”

Zeitsehrift fur Flugtcehnil und Motorluftschiffalirt, 19238, rage

242)

presscd* nags

_ﬁz_/ : /Y.I
" h n cota Px

searing in mind formula (10) this index can slso be ex—

K
—— _
v Vo . X
= Ky L = =z 1 e 25
W J/ hcota rr Y Xy (28)
M 4. S TJT : 2 <4 3 3
We note that == with rcspcct —————- is kunown (Fig. 27),
Pg ncota
and plot #i against —t as in Figure 38. 2y equal gir-
D r jas) B H L >
Ty h cota
der hieight h and ecuval cross stress Q the index value XK for

the uprights of a shect woll girder i

index value

. s
L.'T Y, Q/n
for the uprights of o truused girder,

the former are spaced farther apart 1

index value, however, denotes higher

g

Ey virtus of the closer spacing

suing reduced buckling lengtih of the

metal girder can alweys be subjected

those of a trussed And tais

lavel

constructed sheet metel girler is alw

¢ always higher than the

provided, the uprights of
han % 2 cot a. A higher
allowable ctress,

of the uprights and the en-—
gparc, those of é sheet
to higher stresses than

S

is the rcason e correctly

ays lighter thar a trussed

o

(%)
*%w is the index value for tne shect
I, li.A.C.A. Tcehnical Memorandum i'q.
the index value for the uprights of o
cross stress Q and girder height bk

aetal gircder (Compare Part
604); at the scme time it is
truesed girder by cqual
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girder; and it applies, in particular, to girders stressed in
p 3 IS H [

both directions (alternating) ©v cross stresses. For sheet metal

girders nced nerely be constructed for thc higher of the two
stresses, wille a trussed gilrder must be reinforced by crossed
tension diagonals, unless the diagonal is resistant to conmpres-

sion; both ceonstitute an increazse in weight.

mZeight of girder, h = 80 cu; spreing of uprizghis, + =
25 cm; wrinkles ot o = 45°; cross siress, Q ¢ 10,000 kg.

The uprights, which are to be uarestroined, are of the shape
shown in Figure 29.

Wnat are the dimensions of thesc uprishits? With
- - - — : ¥
t ¢t heocotao = 20 ¢ &0 = 0,318, Tigurc 23 yields i; = 1,13.
W
Consequently (Tonpare ecuntion (28))

AT
Vo= Ty oo “-/~2—9 x 1.43 = 1.78.

For this incdex velue, Figure 239 gives the wllowcbhble stress

N

0 = 2650 and the wall thicknesns ratio of fiie profilec

2.5

2/s = ~ 13. Wi%th a stress in thc upright of V Q n——Ez~—-:
h cot a

100790 x 0.4:3 = 3130, wec select fron ocur table o section with

a cross-scctionel area of Fy = V/3 = 2130 : 2050 = 1.2 cn

and a wall thickness ratio of a/s = ~ 13.
ut we have ignorcd as vet thie wek between the two pieces

forming the prorile of the upright, which likewice contributes
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to the cross scesion of

found as follows: Let

alone, and Fgy that of
actual buckling stress

the yicld limit) of the
be precisely as high as
this skin wortion, when

ulecmmbers that both offer

Technical lenorandwnm
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the upright. The allowable stress is

Fp Dbe the cross scetion of both profiles
the stressed sliin., Then we assume the
o (inclusive of wrinkling and exceeding
profile with enclosed skin portion to
that of the identicel profiles without
we go choose the length ratios of both

the same safcty with respect to theoret—

ical buckling load under buckling stress 4.

First we comparc two free buckling members:

= -
F = Fp + Tt F = Fp
Fp
= {7< + = & = ————
V = (Fp + Fp)o v, Fpo Fo 7 TS
J g o= J
E J . e .V
Pp = m? X Pg, = (according to asswuption) P VL =
-m EJd _Fp _n2EJ
12 Fp *+ Fp 1,°
consequently,
+ o
, =/ 21Ty
¥p
e :/TJ 7 ’\/v;:'\/v {' ___F__P______fzv______lfp
) l I 1, L N/ Fp FFp/  Fp g

Applicd to the vpright of the sheat metal wall, the index value

(Jote formuls (26)) becomes

K, =

—

P
o K

rxf
3|

(87)

i)
1l
‘:j-’

lav]
=31

3
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Since Fp 1itscli depends upon the slloweble stress for a given
stress in the voright, we firgt csitimate 0 an Fp, then define

X ond finally detcrmine o end Fo  frow thi
1

i

Jec uec tue figures of the preccding example and further as-
a
swnc / 0.7 mm skin covering (equivalent to o 3560 stress in ten-

sion). We cstimate the width of the siresced skin at 100 s,

g0 that Fo = 1200 s° = 0.49 cw®. With oun n2llowable stress of
v 3 3 -
2300 {cotinntad) we have: T T Fp = é ~ U130 ¢ 2300 = 1.326 cwi®,
— 4

Nal

and (Jomparc figurc of vrecoding cuewple ard formala (27)):

O I R . a3 - L, T g ) . . )
a0 ellowable ohreoss, according to Figure 29, 1s o = 3340;

+
o

Lo
7 - facd r
further a/s = 15; hence Ty = = = CL30 @ 2340 = 1.40; Tp -

1.40 = 0.49 = 0.3 cw2. Thao gcaving aere oiounts to 3% compared
to tac prceccdiny cxoaple.
—
/
. ! G - e . - :
For Xy = Aﬁl = 1,25, TFiruare 28 yiclls 0 = 2030 as the

ollowable ssrcces for the upricht of a Gruscced girder; the cross—
1 L ?

-

soctional arce of this member is < = 10CI0 ¢ 2330 = 4.3 e ond
o

(ith a diasonal set at 459 couonred to tan cheot netal wall at

t =25 ca ¢t 4.3 x £2 = 1,34 cm®. The saving in weight in the uo-
[
rights of the sheot metal wall 1o 82 2er sunt compered to that

in the trussed zircder.

Tien the web plates have relatively thick walls (i.e., by
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e
O

high index values) it is advisable to space the uprights compar-
atively close, for in that way it becomes pousible to use a large

portion of the web plate as cross section for the uprichts.

The Transition g-—0

Deviations from the Simple Thecry when Flate Thicknesa is Finite

Wall Component
r:r”t we alscuss the permissible omissions in the stress
calculation of web plates (of a sheet uetal girder) wlien chang-
ing from plates with infinite thickness to such with finite
thickness.
g

Let us consider the component of a plate wall shown on Fic—

ure 30, where

s = wall thickness of web plate,

b = width of a aalf wrinkle,

f = depth of a wrinkle,

m = transverse contraction factor (for example, m = 3,3)%*
O = principal stress acting in direciion of the wrinkles,
~Cgk= compression siress acting transverse to the direction

of the wrinkles,

eg = % = elongation factor.

The resistance to wrinkling of a plate of finrite thickness,
must balance (since we disregard the presence of outside stresses
perpendicular to the plate) the compression stressecs oqk acting

on edges A. uler s buckling formula yields these compr6381on
*For SlﬂDllflCatLOP we set 1 - 1/m2 =~1.
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asresses as
e (S
- Oy = == B (= 28
gl 12 2 \1y / ( )

TneiTr intensity is (with

infinitoly small crror) unaffected by

the deoth of the wirinkles and- (conformal to assumption
1 . ; o :
1 - ==~ 1) by the prescnce 0f tension stress 0.
e :
Tow we calculate the depth of the wrinkles for a given trans-

waich like the approach of both edges

verse corntraction - € S
A ig due To
1 the (neontive) elonqction ¢ .. coused by the compres—
. = / i f
sion gtress -~ OqL’ '
2) the transverse contrachion induccd by the tension
stress g, and

the sinucoidnl pls

]
u)\_

wrinkles.

Accordingly, we have for = €
O o} me f=2
.~€~.__.'~]_:+.1;_+_.___9_ (39)
4 3 nE 4 ©v?
amd conformably to ecuation (272)
If ' ja}
i.:.?:/_f_ul?__"l‘_;(_ﬁ\:
o m a m B 2 \Vb/
ST T
2

Due +to the wrinkles
plate which atvain thelr

5

plate in the culmination

These maxinum stresses 1

we hove bending stresses in the webd

=

i in the oubter fibers ol the

UOAPRE
lic .o

roints (or vetier, culminavion lines).

n bending 0 For @ given depth and
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width of wrinkles are

[ M)

o'l +

(30)

o'l m

T

Seforc discussing the boundary §-—>0, we wish to make
several gencralized statements regarding infinitely small quar-—

‘tities of the elasficity thedry; bThe elongation factor

Op = % is considered an infinitely‘small qudntity of the firet
5 . ‘ o G
order, so that (by finite o) the elongations ¢ = T are assuned

-~

as infinitely small of the first order with resnect to the di-

mensions of the body. Then the buckling stress 0y, for exam-

ple, irn a buckling mewber viclds, according to Tuler's formuls
p 3 E J b >

~ Oy = T2 T_Efjg (1 /i = degree of fincness)
(1/1)
The infinitely large quantity E  of the fi?st order is in the
numerator ol the right side, so the fineness ratio of buckling
members, which buckle*aCCOrding to'Eulei and thereby show a fi-
nite buckling stress - Oy, are rated as iﬁfinitely large of
the order of %..-

Apprlied to the coanditions of e ©heet metal wall, it follows
that the wall thickness ¢ of a web plate, which bulges under
Tinite stresscs, rmust be considered as infinitely thin of the
order of % with respect to the other dimensions of the plate.
For example, the plate tuickness of, sny, 1 centimeter, in a
sheet metal girder with stiffeners (spars) spaced 50 cm apart,

must He looked upon as infinitely thin of the order of %. Such
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we call "normally thiiln."

From equations (28), (£%a), =nd (30) we deduce for normal

thicknesses (infinitely

S

width b,

and Oy,

How we rTeduce tie wall

of the wrinkles,

-

siven in Tavle II,

from aEl/2 to aE1/2+K (k

~

afssune

d finite, we obiain according to eguations (

.. . / . .
thin like <1E1 ) and for finite

the quantities for o

ak?

coluan 1.

thickness s still further, that is,

-

> 0). With width b of the wrinkle

3

8)) (295))

and (30) the order of magnitude for Tk » /b, f, and o,
siven in column 2 of Table II.

e see, in particular, that - OJy; reecihes zero ahead of
G, when s is reduced. The ratio of depth to width of wrinkle,
that is f/b, remains infinitely simall, as apl/®, as for fi-
nite wall thickncss, ~ccordinz to (3%.), anl approaches, by in-

finitvely thin s within this order of size, the limit value
S
. - 2 C
lin f£/b = 2 V/ - €y = —= 290
/ T 9 WE ( )

S/b —>0

For later purvcses e include the cace where the width b

of the wrinkle becomnes infinitely small at the scme time that

4

the order of amagnitude of the wall thnickness is reduced as

aEB B >0); B as a rule differs from K.
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TABLE II
1 3 3
infinitely infinitely! infinitely
small as small &8s _fmall as
h* o0 finite ag finite of finite
i é_,px . 1k .
a2 - a thin com- 2 thin com-
s E no%ﬁ?%ly E pared to GE pared to
. (k>0) normal (x>0) normal
B
b 0 | finite o0 finite og small
E E | (k>B>0)
0 ; 2k % 2(k-B)
a » ] ,
Oqk T finite GE very low aE very low
b i il .
5 nornally 5 normally 5 normally
£/o o small 9 small O small
A By . . 1B
5 normally | 2 normally z+
f GE small aE small QE small
0 . K K-R low, but
o} 1 H
Ty 7 finite GE low aE not
very low

* h = gpacing of reinforcements (uprights and spars, respectively).

If the stresses prevailing during deformation are to be of
no higher order than finite (that is, not infinitely high), then
k must be 2 B (- Oy and Op become finite for k = 8). The
order of wmagnitude of Ogk>» f/b, £, and op applying to this
case, will be found in column 3 of Teble II.

Summing up, we find that - qu is soon negligibly low when
the order of magnitude of the wall thiokness‘decreaSes with re-
spect to the width of the wrinkle; the bending stress Oy like-
wise becomes lower (and finally very low), although not quite as
rapidly. The ratio f/b approaches a well—=defined linit value

of low magnitude.
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The Effect of Attaching the Plate to the Spars

J

o we extend our considerations to include e whole gsihecd

)

wall (Fig. 31). We disrvegard for the present, the existence of

N

spars and subject the whole sheet vo a transverse contraction

- €y by wrinkling it, end apply the tenslion streoses O 1in the
direction of the wrinkles. As a ronsult the sacet is lengthened
by Az in the dircction of The wrinkles. (The stresses preva—
lent ot these deforrmations werc dioscussced in the ~recedlng paro-—
graph.)

Ty ve nttach the goors whiel we set orpendicular fto tie
dircetion of the wrinkles, thst is, parallel to axle x, in Pig-
ure 33. Tre cdmes (3 in Fig. 51) cooable of lezving thc orirfid
plane of thc shest rrocly, arce novw fagstencl to the spars in such
a manner that thesc cdgzes stay in thoiw inicial plane; and, o
assunie the 108t unfevorable case, we prerwae the sheet to be tan-—
gentially restraincd ot these 33;5C8.

At iirst we disre_ard the Adisturbances st the cdyges A end
asgowae the listance X of thesc edges to oo very creat wita re-
spect to distance h of tae edpes Bj end we consider only the
stress correcpondingly remote from tic odfes A.

cn Me shown that the entire foTi change A, which

[ P
G

S0% 1T

€]

the sheet Qo

i

. to *eke up during all thcse derformations, is aigher

thon
Y
1 . 7 v v
A — (,_i,__ \ 1 s

g3 - T
ik ﬂ [ [ ’
I

e
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Anin 1s the work of form change to be taken up by a shcet of
given dimensions, when 1t is merely subjected to a uniform elonga-
tion E%E in the direction of L, so:the ensuing stresses are
simply symuetrical tension stresscs E iig.

The difference A - A is due to stresgsecs - cqy and Oy,

min
and to supplementary siresses induced by the rigidity of the
edges.

Jgw we calculate A for the specicl cace where s with re-
spect to tlie size of 1 1isg infinitelyvthin 0.8 GEI/E, nanely,
infinitely thin as aEl/z*K. We wive thié infinitely thin sheet

moxe Which s:tisTies the edpe egua-

an arbitrery deformation A
tions and refains the connection of the sheot at every point.
From tie theorem of least work of deformation it follows that the
work of forwm change A of the actually occurriag attitude of
deformation zust be less than that of the arbifrarily chosen,

that is, ' Avgs > A > Apip . (31)

So when we Inow the work of deformation Apysx of the arbitrerily
chosen state of deformation, we have A confined within two lim-
its. To keecp these 1imits as close as possivle the arbitrary
deformation is chosen for the least possible work of deformation,
that is, as near to Anin as poscible. And now we are able to
select a deformation attitule which yields {zside from infinitely

sirall quantities) Amgy = Anin, S0 that, in consequence,

A = Anin.
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[

Sut Tirst we rmet define the properties of a form chenge
whose work equals Apin, OT more exsct, vhich differs from
Anin only by infinitely small quantitics:

1) The deformetions within the whole sheet (aside from in-

finitely small points) must be such that the stresses of this

[

deformation attitude difrers {from O = —EE T only by infinitely

B3

L
v

small quertities, or in other words, taa

2) Any deviations of finite magnitude from these siresses

mist be kept to infinitely narrow limits.

[9p3

One form chanpe which sntisfies thiese conditions is shown

+

in Figure 32. The sheot is evenly wrinkled in the entire middle

range, which 1s

n
fm
l
AV
H

and has within tais range tie con-
stant clongation = Since - Oyx «and op (respectively, the
corres éOﬁdlAr elongatiops) aust be infinitely low, the width of
the wrirkles rust either be chosen as Tinite or infinitely smell
of the order of QEB, whereby ®k must ve > @ 7 0. In eddition
f/b must be go chosen that equation (2%%) is complied with.

At the edges the wrinkles are forccd in the plane of tae
spars; in this upper and lower range of width r  the depth of
the wrinkles decrcascs tO‘ZGIO, that is, less than in the middle.

So for a rlv n width of wrinkles and iven - as well

€ qu

as o {according to (89a)) must differ bty &« finite amount from

Az 1

zero and ~=. loreover, other 2ddition~l strenses (such as

== o
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shear strcsses) of finite magnitude cen occur within this range.
Hence it is imperative to make this rance infinitely small; in
fact, we wmake r ‘infinitely small as aEp(p > 0).

Yow, if A is to equal A the work of form change

nax nin?
Ar in the infinitely suwell reange of r rmust perforce be infi-
Ar

max

nitely small compared to A in the whole web plate;

max

must be infinitely small.
Then with the width b of the wrinkles small as aEB
(where B = 0, that is, finite width of wrinkles is included in

the consideration), an? the depth of the wrinkles (according to
agh*®,

the ratio Ar attains the
max

order of GE4B"39. But this value is infinitely small only when

(29a)) infinitely small as

a4

4B ~-3p >0, that is, when

B > % o (32)

3ut since the range r must be made infinitely snall
(0 > 0), B rnust be made greater than O(8 > 0) for our arbi-
trarily chosen deformation, or in other words, we must choose
infinitely smell widith of wrinkles. Then Apgyx = Apin™.

In suwmmarizing, we nmay say, if ap is an infinitely small
quantity of the first order, and if «, B, end P are Tigures

L
above zero, and if the plate s 1is infinitely thin, os aE2+K,

*For P > B > 2 p the additive stresscs in range r becoime in-
finitely high, *notwithstanding the infinitely little work of def-
ormation. Only when B 2 o, (complied with by equation (33)),
that is, when we choose our arbitrary deformation attitude of the
width of wrinkles of the sawme order {or smaller) as range T,

do the additional stresses become finite in this range.
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then Aygy equals Apsy, provided we so caocose this deformation

that within the whole finite range of thie metal sheet (excepting
the two infinitely small ranges 1) the width of wrinkles b is

. . s !
infinitely small as ox

;
o
&0

and the disturbing range. r at the

edge i3 infinitely small as aEp:

2

K > B 0 >0 ' (32a)

o> |03

Tranesletion »y J. Vanier,

National Advisory Commnlttee
N

for Aercnzutics.
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