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By Herbert Wagner

PART II

Shee+. I,,ietalGirders with Spars Resistant to Bending -

Oblique UpriGhts - Stiffness

",T_oting that the o_,,oiffness of the [,;irder increases very rap-

idly as _ increases, the result can be sm_m_ed UP as follows"

When the cross stress preponderates in one direction and when

the web plo.te is to be c_iven the dimensions commensurate to its

stresses, it is advisable (regardless of any ensuing structural

difficulties) to set the uprights at about 8 = 120 °, thereby

lowering the v:eicht of the plate wall Ib per cent (in contrast

to _ = 90°), and rmisin,T the stiffness 55 per cent. But,

when the cross stresses alternate and are approximately of the

same intensity in both directions, or, if the web plate thick-

ness is determined by other structural reasons, then 8 : 90 °

should be chosen.

"-<on-7:_rai !ei Spars

In this ca;_e (Fi_'. 14) part of the cross stress is carried

by the spa.'s re!'s.zdless of <=hethcr the web plate is under ten-

*"Ebene _±_-unwanr_cracer_._ nit _enr _unnem Ste_blech." From Zeit-

schrift f_r Flu.;_teohnik und ii_Otoriuftschiffahrt, Vol. _0, Nos. 9,
I0 and Ii, I;[ay 14 8: 28, and June 14, 19_9. For Part I, see
i!.A.C.A. Technics.l !{emoran!um No. 504.
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8 i: e ,._-L •

We _CE_';!nour £iscussion with the qir:"ole es_se of a web plate

subjected to shear, but essume the crosn section of the spars to

be large with respect to that of the web and further _resum.ie

file/ten u _ * _t_R_t the bending .... is sole!.V taken up oy _h ,_ spars and that

_._om th_ ueb _-' eve'.__lydistrib-
the cross stress Qs taken up "_" -_,

uted over it.

Now let us T!etcrmino tke v:eb stress s_t cut I, for the sheet

• _no_n in Figm_re 14. Q is _o _,=_ometal g._.rder ..... _ -_....._ent the result-

.... etc to
a_t cross stress of tn_ ..................... .

_. t_....il0sidc str_ ......s tr_n_mT__ted st Ithe left of 7 _._.o,?oI- "_

as outside stresses and %.,ring tb.e left-oortion cf the _irdEr in

..-. _-_-, ......... -.-.... _+s of the soar
equilibrium. Witk X o :-,,:d Xu ,:_._ _.,e .__-_.... .,_.,_ ......

forXO _; (- XU),

which yield

or

for y oompfonents,

Q x : x h x : !,{x_ for momei_ts,

0 [hx - x (tan _0 + tan ¢%-)] = Q--;_
=

m i_. the v_,ob_ we he,re

(l a)

As shear stress

hx s s b.x _
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If the spars in a girder are not parallel the cross stress

in the web can become hi[_her, lower, or even inversely directed

to the outside cross stress, accordins to the spar setting. The

ratio Qs/Q being solely affected by that of the girder height

at both points, but not on the angle of setting of both spars

to each other, the difference between Qs and Q remains, even

if the spars are only slightly inclined, _£_en only the height

of the girder decreases, as in the wing spars of an airplane.

NoSy we calculate the tension stresses in an infinitely thin

web plate (diagonal tension field) with spars not set parallel

Fig. 15). For simplification we assume the spars straight and

_o = %u -= %, so that the uprights are perpendicular to the mean

direction of both spars (i.e., perpendicular to their angular

synm_etry); other similar cases can be treated as in Part I of

this report (N.A.C.A. Technical _{emorandum l,To. 604). We consider

only the case that the cross stress within the scope of our dis-

cussion of the plate _vall is constant. Lastly, we suppose the

dimensions of the girder to be such that the direction of the

tension stresses (wrinkles) is constant within the entire scope

of examination of the web plate (_ = constant).

It becomes apparent from equation (19b) that the shear

stresses in the web under shear vary in the x-direction even

when the cross stress Q is constant. Consequently, the tension

stresses will be of different magnitude in different parts of the

web plate even by the diagonal tension field. But from the as-
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smuedly co:.st_no-_,- ÷ c_zrec_mon..... oF _b_.-,wrinkles "_ug. from the freedom

of sources in the field of _he c,ri_icip%l stresses (See Part I -

FA CA "" "" "-.... Teo!,nl_t_l i{e::_orendtuu ;;o. 604, theorem 2, PaSs II), it

' ,,_,.... ,_:_r_t along every stressfollows that the tension sCreso<:_, cre u,o_...._....

°trajectory (;rrznnle).

The e,_ct treatment of the -r_roclem yi-_i_s_,,.. _n intecral equa-

tion whick we shall omit here, atx!, simply [;ive .,:_,n approxim%t!on

which is sufficiently _ccurate for all pr_m-io%l purooses. V;e

assume tl_at the "-e-_.:'._,:>_.O_A str esF',.ps cm -_n _:ze ,,zdc_!e of the {Tit-

der (that is, on axis -) corresoon! +__. the o_,_-'._,_<,_stresses, ac-

vOM .... ro ._'t:_v.l'C .:__ 8.1%_i "'" ' eq,,:_,ion 9)cordin C" to (!9b),, so "sns_ f.-,. ...... -- -_

(Part i Tcc_fnica! ......... " ......

Q h _ Zs !Q'r ..... :,. (£o)

In coni'ornit'.y with tkis as.:--<uption t:u) teusion stresses in the

whole field are now known_ inum-tuok _ss ii-£sv %re constunt along

o.,. u .,S i1%every streqs tra.jecbo=,'y. So_ for exa:,_.le, the tension s '-_-_

<:o__._'_.0 a_ the upper ,_._.__t point "" is justthe web p!,::to in L -_.... _'":?_ "_-

as hir(h as in ooint _ wkis.,t lies on axis x at point

• o _ :, j;ayex- _ kx cot _. The tension e ...._, tki _' pom_o is o_r

q hQx I hx _
::._ _; _ _ ___

and with

:: h x - 3 8 cot o. t:_n

we obtain
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hx2 I

_? = _m hi2 - am (! - cot a tan _)2 (20a)

which, apc!ied, to point U, _._ie!ds

hx2 _

_U Cm h2 (I + cot a tan _)_
(2o )

Thus it becomes apparent that the tension stresses are not uni-

formly distributed over the cross-sectional helsnt; it is nlgner

i_..the up o3r than in z_e'_lower petries_, of the cross' _._,_ctlon._ "

_Jo_: to check the Calculation we _'- _exaa,lne t:_e equilibrium

on a:_ u.pri '•''_.>..t. The stress exerted by the upper spar on the up-

richt due to the stressed skin is (See Fi_are 13):

- V 0 : Z (sin c - cos _ tan _).

._ere_Dy, Z = _0 s t (sin a - cos a tan .5),

consequently, - VC = _0 s t (sin (_ - cos _ tan _)_.

For _0, in itself varia%le over the width t, we use the ap-

oroxinate value G0 (according to equation (20a) ) at the point

of aCtach_ent of t:'.e --'_-_up_isn_ , which inserted, reads as

- V0 = om s t sin= _.

For

rcet

VU we obviously obtain the same value.

V C = VU V and vi_ds with (20)

Our check is cot-

t tan a- V _,:Qs .-- (2oc)
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Introduction of 0_tside Stresses

_z.eso distribution in a ......_.A discussion of _ - _ o_ metal girder

_t the _,oint of introdu.ction of outside stresses is beyond the

scope of this paper, o_nd we shall merely coint out sevGral fea-

tur es.

If a stress (-'"__i s. 17) is a cplied <_t the end of a sheet

metal @_irder, the end ::_m_f_ermust be resistant to bending in

order to be able to tmke up the l_terallF actinT stress oomoo-

nent of the skin stress, in relatively hiTh gir_!ers this is

emsily accomplished aud it is best, as sho:-_'non Fibre 17_ to

stiffen the panci _ et-_een the first t_o uprights by special re-

inforcements _nd tLen assumG that the tension stresses to the

right of <ale panel _re uniformly dis_r±_ed across t_e web

nlate.

Applying stress Q at any other cen:{a! upriF_ht (instead

of at the end of the 7ir_ie_] v_h_ch is n{_i<her resistent nor

rigid in bending, ti_en the si_eet _el! [Fig. 18) prevents the

me_foer from later_ol deflection, which then is s<Cojected to ten-

sion stresses even in the initially uu_{trcssed pmrt of the gir-

der (left of Q, Fi C. iS). In the strcssed portion (at right

of Q, FiCo 18), tLe {ension stresses in Cue web 9re evenly

distributed near the ooint _;_here Q is s_p!ied. If the girder

dimension is conformal to t_-_is !omdin!_, it will be advisable to

sion stress distri]oution v-ou!d cali for,
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Applying stress Q at an upright in the middle of the gir-

der Q distributmd over both sides (Fig. 19) and the size of

the upright at wa_ch Q is applied, such as to assure the same

compression stress in every point (Fig. 19, cross-sectional area

increasing upv._ard), we can presume the distribution of the ten-

sion stresses in the web pl'ate to be uniform, even if the up-

right is not rigid in bending.

i_ow we discuss the case of cross stresses acting on every

up_ign_ (disregarding exception_l cases) We asstm_e t_e dimen-

sion of the sheet metal girler such that the direction of the

tension stresses is constant anTi, ere in the vreb plate• While

makin_ this asstu_._ption, we shall discuss two specific limiting

cases, that is, the case of uprights perfectly rigid in bending

and tnao of uprig_hts witi_out any rialiloy in Lending.

In uprights oerfectly rigid in be:_ding, _vhich are pin-

jointed to the spars (Fig. _°0), the tension stresses in the web

are constant in every panel lying between two uprights. If QL

and _%R denote the cross stresses to be taken up by the girder

in the right and left panel of the upright (that is, QR = QL+Pn),

the web tension stresses in these two panels are (Compare equa-

tion (9) , Part I - Technical l{emorandum 1,7o. 604) :

_L = h--s_sin'_ cos a; OR = --hs sin _ cos

Stress V in the upri_[P_t varies over its length; it is higher

by Pn at the upper end (V0) than at the lov;er end; stress
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Pn is evenly initi_,ted in the v:eb (%ecc:ase _R is [reater by

a constant amount than eL"

_.,:o.:_._the stre _o:_=in the u_oright, is

_ Vv: QR + qL t Pn at center
•-- 2 h cot _ + _-,

- V0 = - _m + -:_ , at top

ID

e=_<_n<_ to case eTke_e equations _'e easily ._-__ _e the wher

"e_ ' _,_ _p or where_p@ll.,x at -pie %o_tom instead of "_ th3 _

up-'ari .iRsteo_d of <1.owm-rard.

Pn is

Pn o_o _o

_:L< case of upri3hts vTitLo_r_ ri6i<ity in bending (Fig. 2_)

which :.<ol:<ro_ches c_c+_:u%!conditions much x_ore closely than the

one ,?iscu'ssed here can, by oonst%nt direction of the wrinkles,

be deb_ted only with the ass.mption thr_t tl:e outside stress on

every upriTh+_ (at least within tl_e so_pe _f our oonsiJ_eration)

by constant spaci::_; of u_riukts is equiv_,!cnt (respectively

proportional to this spacing v_hen the %scing varies). When, as

supposed, the <_irection of the tension stress on the upright

,ices not okan_'e an<i tkere is no lateral stress, the intensity

of the tension stress is likewise unche,ng'e_%ie. The tension

stre_.s_ o Dr "" "-"".... s ooeed u::c_zstm_,ed, ,)evond t,:e u_rio-ht" they are

e_o _ eotoryconstant a!ons every stress _j

ZRt nor the tension stresses oontiLue (in contrast to the

case sLove) to increase ups:oral <rod dowTr::ard, and from left to
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_i_ht respectively L'ow tile ...., • so=eos in every upright is constant

over its length.

Again, using our previous syn_ols QL and QR, and express-

ing the tension s<_resses in the web by _0, _U,_°m, (Fig. 21),

w e comput e

QL+ I 1
_m - 2 hs sin _ cos

_0 = Gn_-
- P I
_- n

2 ts sin2a

2 ts sin _

V QL + QR t Pn-- tan _ + _.
2 h 2

Tile Stress in Uprights-

Eccentrically Arranged Uprights

in Part I we analyzed the stress in the upright of a sheet

metal girder whose web plate formed a dialectal ten_ion field.

Now we discuss the resistivity of an uFrijht against this stress;

foremost we shall consider the effect of the stressed skin on

its buckling strength.

Take a sheet metal girder with a very thin-walled web plate

(Fig. 22) and having uprights whose spacing t is very ns_row

with respect to the height h of the girder. These uprights _

are to be arranged on one side of the _late wall only, so that

the stress initiated by the spar on the upright, due to the
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stressed skin becomes eccentric. The result of this eccentric

compression is bcndinc stresses in the upright, which bulges and

carries the web, fastened to it, alon_ v,ith i_.

Now let us discuss the general case where the cross-section-

al area Fv of the upright as _Te!l as the _istance e of its

C.G. from the plane of the slate, and its inertia moment Jr,

varie_ along the length of the upright. ?<_t at the same time

we assume that these cross-sectional quantities of the uprights

are identical for _II others within the scope of the sheet wall

in question, so that the elastic line of all these eccentrically

stressed uprights is tile s_._e.

To define the stress _e mow envis'ige a separate piece of

the skeet wall of width t and heicht a y ani sy_metric

to the uprisht, _o, _t__cl with the co_resconiing Dart of the up-

right. The inside stresses acting at the intersections of this

wall element are a oplicd as outside stresses snd _Te analyze its

e qui Iib r iurn.

First_ we have the stresses exerted by the surrounding sheet

on the sheet element, which we divide into shear acting along

the section edges and normal stress perpendicular to the edges,

as illustrated by Figure _2. It becomes apparent that these

stres:3es are in equilibrium with respect to direction x as well

as direction y. Comoonents perpendicular to the initial plane

of the sheet hsve only the two shear stresses acu1n_, on sections

II (the comnonents of t]_ese two stresses are inversely equiva-

lent, hence compensate cach other) and the two normal stresses
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acting at I. The intensity of these normal stresses is V (- V

denoting the force in the upright ). The sum of their components

perpendicular to the o!ane of the sheet is V A _, when I is

the angle betwe_n the two tangents in the direction of the up-

right to the surface of the sheet wall in both intersections.

Since_ however, the totality of all stresses acting on the

wall element must be in equilibrium, the two stresses disregard-

ed thus far and which themselves are transmitted at the intersec-

tions of the upright (these forces are - V) must have as result-

ant an inversely equiw_!ent component perpendicular to the ini-

tial plane of the <_neet. Thus it follows that these t_vo stresses

must also form an_le A q0, that is, form the same angle 6

(Fig. 2o°) at their points of application with the curved surface

of the sheet. This being valid for all possible intersections,

we have theorem 3: The angle of the c"_urved line of action of

the stress in the upright with the curved surface of the web

plate is constant along the entire length of the upright. This

is even applicable, in general, to uprights with variable iner-

tia moment and eacentricity in length.

i;ow let us consider the special case of uprights not re-

strained at the end (Fig. 22). Owing to the movement of the

web out of its initial plane the stress exerted by the web on

the spar is no longer in the initial plane of the wall, but

moves along with the wail. So the stress of the spar at the

attacb_uent of the upright acts in the tanoo'ential plane on the
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wall. Its ,%n_7!e lith the wall and its distance from it is zero.

This being valid for upper and lower end of the upright, the

curve o_ action of stress V must _:octalong the entire member

with the wall. From this it follows - even for variable eccen-

tricity e - that the bending moment I,_V in the upright is

i_Iv = V ° (21)

So_ wl_ile rue eccentricity of a_ r.ember merely stressed in

o_e ......s increases in thebucklin_ by the eccentrically acting" _+_ _,_

middle as the stress increases_ t_-_:_ of -_.ne_l-oris"hts lyinrg within

_'_ _ ....Ity of the stressthe sheet _-_all is not a_zected %_- the int o'_°" •

Such upri6hts, v,_ry closely spaced in the wall, surely will not

_ u_as_,Io line for allbuckle as lon_ as the _ssumotion of eq_sl __ _"

_-r-_-:_-7_ their calculation is very sin-members hol<Is true; oo:_,o_,,___j,

ple. They _erely must Le dinensioned for eccentric compression,

whereby tb_e resultant stress in coK_ression snd bendin_ must

'-_ mo,tor speotively, tma,_not exceed the yie!__ limit of _c i_,l, re _

stress in compre'_smon w=_mo=_ in@uces v/ri._3:lin[_.

_T_o,r_.we oonsi&_er tke case (Fi_....._3'i :_'hore the ends of tke

uprii.:hts are more or !es_ constr' '-,_-_,%no :_ave constant cross-

sectional dimensions. Conformaliy u'ith tkeorem S, th<_ {_ifferen-

tisl equation for the elsstic line of the uprig, h$ ([ : def!ec-

tion of u1_ri_ht at •point

A _i-
dy _

y) reaas :

1 ( ,io + i: )s Jv ,7 y
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, d M characterize the moments and
The two constants L 0 and _--_

may, in given cases, be considered as defining constants of in-

tegration. The solution with c0nstants A and B yields

Y
2EJ V 3dy/

d_ Ve for y =:o; -
dy E JV'

and at y

= O; _ = O, for y = 0
dy

The moment I_ at the point of constraint is

I_0 =- ½ V e

The elastic line and the moments are shown in Ficg_re 23.

If the upright is -perZectly constrained at both ends and

the cross section is oonstant_ then the moment along the whole

member is zero.

Thus far we have treated very (infinitely) closely spaced

uprights, but the conditious become somewhat different when these

members are spaced farther apart. Im Fig_ire 22, in particular,

bending moment i_ is higher in the uiddle (that is, from y = t

tana to y = h - t tan a) than at the ends, even by constant

In the particular case where the upright is perfectly con-

strained at the bottom (y = 0), but not at the top (y = _),

the four limiting equations become:
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_,_,_ uprz<_nts, so o__t (without giving theinertia moment Jv in _-'-_ "_

derivation)

l (23)
!_ = V e t_ ta_ a

I- V
12 Jv

This hinges on the condition that the non'real stress acting at

section ! (Fig. 22)_ which represents the resultant of all nor-

mal stresses applied at this section, is slightly closer to the

initial plane of the sheet metal by wider spacing than the sheet

" • " _ _'_s spaceditself on t±_e upr!_no. _ec.%use, when t!-e -l-p_'_5=.. are

farther apart the portions of the sheet - after deformation-

more in the mi¢i!e bet_veen tv_o u-oriLhts, _-re a little closer to

the initial 9!ane of the _._] o2an tne,:,e portions on one up-

rights.

The vmlidity of (23),, e<-BenAs to 0 <::tan a <: ['h !T.e appar-

ent inc-ease in ecccntricit7 rsises_ as To see, with t2e stress.

_oa__ LOTZ,rCC,:. :from ___-12S fo','mv.la (23) isThe buok!in_ 7 _,; ' ,'- ; '-_'

i2 _ "
v - (23a)

t_ t an _ cL

,.:,_C blOi__. )(We ..,r_.__r to this _£<ain in the fo!lowin_ ...._"

The results are exactly si_nilar for o-:!ique upriL_hts. They

also show that t2e bending moment is i; : V e, etc. by very

narrow spacing.
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The Theoretical Buckling Load of Uprights

This section is confined to the purely theoretical problem

of buckling in uprights, while the next section treats the wrink-

ling phenomena.

To simplify matters we limit ourselves to sheet metal gir-

ders _:_ith uprights perpendicular to the spars, after _vhioh the

results are easily applied to oblique members (Compare Figure 25).

_Z_en a_ upright buckles from 'the original plane of the wall,

the web plate must, perforce, do likewise. The web, stressed in

tension, buc1_-!es at the upright and exerts a side load p (due

to deflection in tension) on it, which endeavors to force it

back to ils original position. (This load p increases direct-

ly proportional to the deflection of the uprights, thus effect-

ing a hi_her buckling load V. )

T_e elastic line of a compressed and simultaneously later-

ally stressed menber complies with the we!i-kno.vn

+ v = (2 a)
dy _ E JV dY 2 E Jv

(See foregoing section for ezplanation of synfools.)

In the following we assume the inertia moment JV constant

and of equal, maznitude.

We now compute t_c sidc load p. Z is the tension in a

strip of the skin, crossing the length l, of the upright;

Z = 1 cos a o s. So, in conformity with equations (9) and (lO),

we have :
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Z = V h oct a !
t sina

This tension Z is no,.v turned at an_le A (Compare, for exsz_Iple,

Fi[_.res 2a. an'_ 25), so that _ = Z A. _o_-'e-'÷ed._in equ_,tion

26e) it :-z,Jl,-s

d4_ + V d2( V 2 £ h cot a-- . - _ (2_b)
d-_ E JV dY_ E JV _ sin _ t

A_ a rule, A varies over the lencth of the upright, and depends,

in particular, on its spacing.

Discussion of lTario_s Speci_l Cases

Case I, t >h _ _ .

Here every tension dia:sona! crosses :n_!y one vertical men-

_oGr. '_**.e ._e ..... of ,:..:,.!e._ A of the tension -!irLuon_! becomes 9.p-

parent frou_ Fi_'a_''_Z--_ 24. We obtain

......... _ + _ h
• , :

!___: _ ....

Lsi.n a s-'._. _ I
J

We write, this value in (26b), resolve tliis equa_'ozon* and obtain

J-% -, ' " _r-
as oleoJ,e_z_<tl buckling !oa<i V T

"-- PE ! (24o)
'".... --- h cot a

! - 0.49
t

*In these and s_,_seq._ent differeutis! equations, we represented

the elastic line of tb.e upricht b ,,_Fourier series. The finite
number of terms _,_-"_-_'........_,_ ....in the calcu].atio:] :.:akes the buckling

loads only approximaLc!y correct, <_Ithou[_h the error amounts to

only o, very small per cent.
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for uprJ._hts not restraired at the end;

17

vT = 4. ____I. ........
h cot a

]. - 0.33
t

for uprights rigidly restrained.

Here PE is Euler's buckling lo{%d of the second order, so

: E JV
PE = _ _ h _ (24e )

All uprishts hawe the same elastic line when buckling. If

h cot _/t is very hi{-fh, the bucklin_ load chan_es into Euler_s

load..

1
Case 2_ t - z h cot _.

I:a this case every t,_ _._ _n_,ion diao'onol,o .... crosses two uprights.

(A is read from Fijure 25.) We obtain

A

sin a sin a ....

kb 1. il (_

. h y h
2 sii! a

(2 f)

where _l is the dE.flee ....Io'_.:_f tke af:-_@..._ upzlgLlt a_. poln_"

y + h/8. "_ ....._ Of., ?[:l) 60].%%11].,3@ ou.r oslou?_;_.ici'i _.:J,(le:ctl..c tyro assump-

tions:

A s sump t ion _R) % <7' • CeWhile _ulbln_ , the elastic line of two adjacent

uprl_lt, S is inversely c,:ui_:!ent. In this ease

we i-_us_:set [l in (2.=_ equiv_ient to the nega-

ti_'e deflection of the considered upright, even

at point y + h/2. Written in (24b) the theoret-

ioal buckling lo_d V T beooRes:
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VT= = 3 _-

for uori_hts not constrained;

vT = 8 (2 h)

As sum-orion b)

V_ = 5.3 P,_

for uprights rigidly constrained.

The elastic _!l:es are as shown in Fiz_re 25, every member

forms two waves when bul[_ing.

All uprichts have the s'_,m_,eela,_tlc lime when

bulging. Then _i is at the same time the de-

flection in the considered upright even at

point y + h/2. So, when we _:Trite (24f) in (24h),

we obtain as theoretical bucklins load"

(24i)

for uprights not restre.imed;

for u-ori_hts riEidly co:.strained.

The elestic line in this type of buck!ins shows on].y one wave

(Fig. 25b). Thus v:e see both assumptions accidentally yield

J- " wideno__cally high buckling loads for this oa±_ticular spacing of

unrestrained uprig_ht s.

_-_ts have the sameNow it becomes apparent that all upr _,_

elastic line (one wave) by wider spacinc (t > [- h cot a) and

adjacent uprights have different elastic lines (two i/_<ves) when

spaced close together (t < ½ h cot _). The change-over occurs

at precisely t = _- h cot a.
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0nly one wave occurs at t = _- h cot a when the uprights

are constrained (the same elastic line), because this type of

deformation is induced by a lower buckling load.

_,ase 3_ Limitin_ case tN>0.

Here the uprights aze very (infinitely) close tosether.

AssunTption a) All uprights have different elastic limes.

Axis x is placed parallel to the spar, axis y as be-

fore, in the direction of the uprights_ and _ = _(x,y) is the

deflection of the uprights. In this case of infinitely close

uprights _ (x,y) represents at the same time the surface (for

it is connected to the uprichts) into which the web changes

when buckling.

Here it is perhaps more sppropriate to speak of bulging of

the plate wall (web) instead of bulgin_ of the uprights; the

whole web forms oblique wrinkles (li _-__ a sheet in wrinkling un-

der shear).

Denoting with

tension _, then

dz a linear component in the direction of

__ - _' is the angle of the tension diago-
8z

p.al due to bulging and the original plane of the wall. As seen

from Figure 26_ angle A, at which the tension is deflected

when bulging, is of the order of

A = _/_' t =_2_ t
c%z cos _ 8z _ cos

We note that

dx dy

dz cos _, dz sin c_,



theft, in foot,

COS 2- C_

3x _y

_-"",I dl.i'fcrcntiationaccording to the rules of tbc par o_.:_.

write this value for A into (24b)

cntir.tion), and obtain

- Ly4 E JV _ (x tan a)_

(including the patti "1 _" -_-_ "-

-I-S ...........
y_.(x tan_

..m.n [ (x,y) 0 But,This equation is_ oi' course, fu.lfille:l "-'- : •

(n t)

ms in every sirmole problem of _::uch]_in.T, the ouest$on is to find

those vr°lues of -_-y-, <_._<ffni.chthis dilzerentia! equation

yields a solution for _ • O.

In the sc,lection 0:.7limitinT conc_.l<mons _.::remust observe.

• ,......... - .... " " lasticThat the oaloule.tion is _.......s on tL.e assume-L!y dl_ezen% e _

lines of the upriffkts. T-uls, if the sMJ.r is rot rigid in tor-

sion (and the e<.to of -_he _,,,_=_"-_"_'hts.are no_. restrained), the

e].astic lines of the indivi_luai vertical m:m_Z0ers may assume a

different '_....am_._e of slope on t!_e s-:_arwmthout the distortionless

spar o'ferin_ shy resistsnce e<ainst this reciprocel distortion

of its cross sections. On the other hand, if the spar is ri[<id

in torsion (provided, of course, the vertical mehi)ors are ric-

idly attached to ti=e spar), it offers so:.:e resis_a_.ce a_ainst

..... fin_._!!ydistortion, and, if very hi!_hly torsion-resio_ent,

forces the elastic lines of all uprmi:>_o into the same e_.gle of

slope as the ori_ri_al olane of the sheet. This raises the re-



LI".A.C.A. Technical Mem'or:._ndumL_o. 605 _I

sistivity of the i_late wall against bulging.

i:oreover, we stre_' _ thin point __''_ab o__,_othere is an exact

buckling load even for ecc_norzcally arrange@ uprights, that is,

(by equal distortion stiffness of the spars) exactly the s_uue

buckling load as in centrioally arran_._ed uprights . (This ap-

plies to very (infinitely) closely spaced uprights. For differ-

ant spacing, p_:,romcularly by t > ½ l_ cots there is no ptu-e

buckling load in eccentrically sx'ranged upri_:hts; the conditions

then are similar to those in the conventions,l, eccentrically

loaded bucklinT members. )

If, for exaz.:p!e, = _l(x,y) is the solution of (24_)

for centric uprigfhts _ith torsion-re_Jist_nt spars (_I complies

with 8 _ 0 at upper and lower spar), .....
_y - t'nen _II = _I + ao +

a_ y + a@ y2 + as y3 is likewise a solution of this equation.

But by appropriate choice of constants a $ O, -[Ii now satis-

fies_r : constant for upper and lo_er spear. In this manner

the solution conforms to the case of torsion-resistant spars,

which, due to the eccentrical uprights, t_rist at a constant

angle over their whole length under loading (Fig. 22). The

case of perfectly torsion-resistant spars with eccentric uprights

is, of course, identiosl vlith that of rigidly restrained up-

rights.

Dr. Schmieden, Danzig, made an accurate solution of (2%_)

which he intends ,to discuss at some other time. We simply

state his results.
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Tnc )__:c!:?.'.'_3 7.o:::.:1 of the u_oright is

v T = 7.Ol PE (_m)

for unrestrained uprights or spars not resistant to distortion

vT = II.43 P_ (24n)

for perfectly restrained uprights or perfectly distortion-

resistant spars, regardless of whether the vertical members are

stressed centrically or eccentrically.

A_s_ssu_v_n_tionb) All uprights have the ssme c!astio line. The

buckling load is:

V T = IS (h cot _ PE (2Ao)
t /

for restrained and unrestrained uprights.

As seen from Figure gT, this equation yields the buckling

load for unrestrained uprights with completely torsion-resistant

spars; because the above assumption yields for this case the

lowest possible buckling load.

The results of all these calculations have been tabulated

in Figure 37, n_nely;

AB applies to eccentric or oentric uprights rigidly re-

strained or rigidly attached to distortion resistant

spars ;

BO applies to oentric, rigidly restrained uprights;

BF applies to centric, unrestrained uprights, rigidly at-

st_n_ spars;tached to distortion-resi _ _
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DF is valid for centric or eccentrically arranged, but

unrestrained uprights with spores not resistant to

distortion;

• FG applies to centrioally [,orranged, nonrestrained upri_;hts.

The Fig_ures 2_:0 to 2&n _ ....- _.e_o_e the respective equations by

which the dotted portions of the curves :snd the points enclosed

by a small Circle were con_puted. (The comput.ed p°rtions of the

curves which do not check with the final curves are shown as

dotted lines.)

Of course, there is no such thin_g as a perfectly rigid re-

straint in uprights_ nor ocrfectly distortion-resistant spars.

But the riTidity of restraint tcchnica!!y obtainable has, as a

rule, relatively little effect on the buckling strength of ver-

tical members. For that reason it is advis_ble to stay on the

safe side and to use only the lov.,est curves of Figure 27.

If some uprirjhts _'e stronscr than others near by or braced

perpendicular to the plane of t;le sheet wall, the buckling

strength of the latter is naturally augmented.

The Actual Bucklins Load; Index V.!_lue*

• • J-

This section pertains to uprlgho .... syi_:etrica_lly attached

to the _,_,'ebplate.

In the Iast see%ion we treated the theoretical buckling

stress of _prig.h_ts vr_tbout consideration of wrink!inc phenomena

*It is assumed that t_:_ feeder is familiar '_ith my report "Re-

marks on Buc__,l_ug Members; InSex V_,_ue, y,eltscnrlft fur Flug-
technik und Liotorluftschiffahrt, 1928, p. 241.
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or excess of yield limit. So in the followi_n_ we shall show how

to dimension the verticml men.bet ";hen the bucklin_ strength of

unrestraiued free buckling members of corresponding cross-sec-

tional shape is known (as from tests, for instance). By "free"

ot_u_s mean here the conventional type_ that is,buckling _' • _ we

without l_tera! support, in contrast to the vertical members of

a sheet metal wall, which we call, for short, "uprights."

For we can assume that the actual buckling load V of an

upright of length h, even when wrinklin C and excess of yield

• u_-_b as hi£h ss _limit is taken into account, is j _ u_:at of a free

bucklin_ member with the same cross-sectional form and area

. _,zess _) %'; so selecting the(hence, of ecual s.ctu;_! ,.uc_!z.!,_ <-_

length _, of this free buckling memi3cr ___ both men_oers have

the same theoretTcal _cl_'_ _• _ xzz._g load

(Cor_p%re (24e)):

VT; 8:-c.°[_, in consequence

n_E J V T _ E J V_

_-_ = VT =: PE _ i.2 -_
1 PE PE

A comparison of the left with the ""_°=• i_±_ siic of this formula

_- -_ _ this "equival<_nt" _zc_ buckling membernow yields the Icn6bh o-_ _e

at
!

v VT

I_ this manner we reSuce tkc problem of the dimension of

the upright to that for this "e<luivalent" tree buckling member

of length _ _ and to the (&c-sua!) buckling load V.

a_.lo_.,.o.].es __._ss of this "e@uiva-The profile shape an:_ the _ -_ .....
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lent" free member with index value

/

is best taken from ti_e index-stress-strain diagram (Compare

Zcitsohrift f{_r Flu_tochni!: und H?torluftschiffahrt, 1928, page

242_ Bearing in mind formula (!0) this index c_n also be ex-

pres_od* as

K = -_ h cot a PE

We note that

/ t / v_T:= x

tVT

PE
with respect to

h cot

and plot --K a_<..zn_.t_n"- _ _ t
XW h oot-_'

der _ "_ ....,mz_no h and equal cross s_re,:qs

is known (Fig. 27),

as in. Fig-are oo By equal gir-

Q the: index value K. for

the ui_ri_jhts of a <'"'-<_,<.t um_ll £_irder is a,l_'rayshigher than the

index vmlue
/

: v Qlh

for the upri_hts of a trussed girder, Provided, the uprichts of

the former
apart than I h cot a. A higher

are sp_o@d farther

index value, ho_,pevcr, denotes hi_her sllowablo stress.

_=y virtus of the closer spacing of the uprights and the en-

suing- reduced buckling length of the spars, those of a sheet

metal z_irder can a!ays be subjected to nijher stresses than

those of a trussed t;irder. And this is the reason a correctly

constructed sheet metal cirJer is always lighter than a trussed

*Xw is the inden value for the sheet metal <girCer (Compare Part
I, N.A.C.A. Technical Memorandum YO. 604); at the re?me time it is

the index value for the uprights of o trussed cirler by cqual
cross stress Q and girder height h.
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o]irder; and it applies, in particu!sor, to girders stressed in

both directions (alternating) by cross stresses. For sheet metal

_irders need merely be constructed for the higher of the two

stresses_ while a trussed _-irder must be reinforced by crossed

tension diargonals, unless tke dias, onal is resistant to compres-

sion; both constitute an increase in weight.

E n a _._p i e

Height of _]irdor, h = 80 cm; sp['cin{<; of uprif[hts, t :

The uprights, which are to %e .......'- _'"_,_un_e_or__l_:<,_, are of the shape

shown in Fi_zre 29.

_T,_at are the dimensions of these uor_rnts. With

t : h cot c : 8S : 80 = O.SI3, ?igurc 23 yields

Consequently (Cor pare equation (26))

K
-- = !._!3.
KW/

For tkis index value, Fiom_r@ 2D [_ives the allowable stress

o = 3650 and the wall thickness _._io of tb_o orofiles. a_

. " _" -,40 _ t _

a/S := - 18. With a stress in t,c up±_<_nt of V : Q h cot

lOOOO × O.t:iS = $130_ we select from our table _, section with

a oross-seotione_l area of FV = !-/o = 3!30 : 86S0 = 1.2 om _

snd a wall thickness ratio of a/s : _ 1° .

Sut w<" have ignored as yet tke vck between the two pieces

forming • the profile of the uprig:ht, which likewise contributes

25 cm; wrinkles at o. 45°; cross s-cress, Q - lO,uOu kg.
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to the cross section of the upright. The allowable stress is

found as follows: Let Fp be the cross section of both profiles

alone, and FB that of the stressed skin. Then we assume the

actual buckling stress _ (inclusive of wrinkling and exceeding

the yield limit) of the profile with enclosed skin portion to

be Drecisely as high as that of the identical profiles without

this skin portion, when we so choose the length ratios of both

members that both offer the same safety with respect to theoret-

ical buckling load under buckling stress o.

First we compare two free buckling members:

F = Fp + FB -i : Fp

O 01 : G

V : (Fp + FB)(_ V_ : Fpo = V

J J1 : J

pE = w_ E___J

Fp

Fp + FB

_ °

PE I (_occordln o to assmnption)

t2 Fp + FB t _
consequently,

/ Fp + F Btl
Fp [

x --J;r ,, : ,, Fp : Fp
"_ = _ _ ,j Fp + F_-,, ""Fp + FB

Applied to the upright of the sheet _,._etal wall, the index value

(Note formula (86)) becomes

Fp Fp K
K_ : _pp-_-._K : F-F-<__ _w _ (27)
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Since Fp itself dc,_onds upon t_:,.callo<:rJ01c stress for a given

o_-- _.p=ic.n_ , wc first estimate o ._._:d Fp,o_±ess in the ....." .... '_ then define

K_ and finally determine o snd Fp from _his value.

E x and ]. @

:Vc use the fig_:res of tke :prccc_inc c::a,m-ole and further as-
a

sums/' 0.7 mm skim coveriug (equivalent to a. 3560 stress in tcn-

sion). We csoz,_a_c the wi..d%h o:f -c_c strc,Js_Jd skmn at i00 s,

so ...._=__ F__ = !00 s _ --= 0._'0. cr:n" . With st,_ .....__.!owa,_!e stress of

V _7 30 :8" _ ..... _ .... - ._ o0_, = ! 36 cm _,2300 (u_,[:i:;_,_,to.d) we have: + -_p

a.nd ( ........ _ . -.... ,-£ l:, .,_-_-:_)m.p_,_e figure o£ .:_recod.iss o ........ O...... ...,. for:uu].a (27)):

!.36 - O.!9- I 7,?....I ]A.
1(i := .... ;....>--- -......!..3o

Ro2S

furtker _./_.,_o = 15", hence FV .... -- [:!50 : L)2,I-O = 1.40; _'s -_
g

1.40 - 0.49 = O.9l cm 2 inc savln_." ',o-:e a_._.,,_,.os_o $5":_co,£os,re_

_ _ O.'k_..dlO..O •to the -_rcco:din3: ........ _

For Kv:-.: 4' -= 1,25, FirTirc 29 y_]..,__ g = :.,o_0 as tke
Yl

al!ow_o!c s gross for the u-oright of a trusqc£ circler; the cross-

q

• o,.,0 4.3 cn_ s-_4socbio.,.a! arcs of tki<_ iJ.oiubor is _ ]..OOO$ : 2 _°

(".ith a, diajonai set at 45 °) co:._.9..'orc,i !_n 01).) chc<;t metal to.!! at

- 25 7 34 cr:: _ T.hc sr,vi.<_, in weiG'ht in the uo-t = 85 c;u : 4.0 X <_.-- _, . '_:"

rights of t;tc she._t met,_! va].l is 32 o,er a.,:_.tconparad to that

in the trussed Tirder.

VS,.on t_.c _:cb ola.bes i_a.vc rel .... - ...... '--'e'-• , _,,.,l_::±_, o .-L,_, _Ta?.Is (i. e , by
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hi.gh index values) it is advisable to space the uprights compar-

atively close, for in that way it becomes possible to use a large

portion of the web plate as cross section for the uprights.

The T_ansition s-->-O

Deviations from the Simple Theory when Y!ate Thickness is Finite

Wall Component

First we discuss the permissible omissions in the stress

calculation of web plates (of a sheet metal girder) when chang-

ing from plates with infinite thickness to such with finite

thickness.

Let us consider the component of a plate wall shown on Fig-

ure $0, where

s : wall thickness of web plate,

b = width of a half wrinkle,

f : depth of a wrinkle,

m : transverse contraction factor (for example, m = 8.3)*

= principal stress actin_ in <irec_lon of the _vrinkles,

-_qk = compression stress acting transverse to the direction
of the _rinkles,

I
aE = _ = elongation factor.

The resistance to wrinkling of a plate of finite thickness,

must balance (since we disregard the presence of outside stresses

.perpendicular to the plate) the compression stresses Oqk acting

on edges A. Euler's buckling formula yields these compression

*For simplification, we set I- i/r/_--_=_T/----
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s-Sresses s,s

Their intensity is (with infinitely smo,!l error) unaffected by

the dep%h of the :_rrink!es and.(conformai t_ _ssumption

I ~ I) by the presence of tens2on stress _.
I .- ]_-_=

_m_ _._÷ the depth of the wrinkles for a civen trans-

_- - wi_ich like the ao-oroach of both edges
verse OOP..tl_c0iol_ - tq, . _

A is due to

!) the ( ..... _" -_
sion stress - oOk,

2)

s)

.-, ,o-,,] by the comores-
6 qk C ._A_ o e <. ,.

the tr%nsverse oonhrac__on in,:iucc<< by the, tension

stk_oSS _ [t,I_t..

the sinusoido, l pl _':':_wrinkles

Accordi_-=cly_ v.re ht_vc for - .Cq

q E m E 4 b _

and conformably, to ecuation (o_,_,):

( f o / I a (_s%"=
_=_,- J - _-q -[7- i-fftb/

(s9)

2 y i r + Cqk (29a)::_. - _q - _ -

Due %0 the wrinkles_ we have bending stresses in the web

plate which attain their m[xi_num .ii_the o__ter fibers of the

plabe in the culmin%tion poi.nts (oz' better, culmination lines).

1 r'1Tne_,e m_xinmm stresses in bending c_ _or n -given depth and
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width of wrinkles are

w_ s f
(3o)

_-_eforc discussing the boundary S'->0, we wish to make

seve'_al Generalized statements re_ardiiig infinitely small quar:.-

:tities of the elasticity theory. The elongation factor

aE = __ is considered an infinitely small quantity of the first

order, so that (by finite o) the elongations ¢ = _ are assu_led

as infinitelysma]]l Of the first order with resoect to the di-

mensions of the body. T:_n the bu6kling stress Ok, for exam-

ple, in a buckling member 7ields, acc6rdin_ to Euler's formula

_ Ok = _ E (_/i = degree of fineness)

The infinitely largos qua<_tity E of the first order is in the

nu_nerator of the ri_j __n_ side, so the fineness ratio of buckling

members, which buek!e,-according to Eulor and thereby show a fi-

nite bucl,'_lin6, stress - Ok, are rated'as infinitely large of

the order of ½. _

Applied to the conditions of a!:shee$ met_l wall, it follows

that the wall thickness J. of a web plate_ which bulges under

finite stresses, must be considered as infinitely %hin of the

order of ½ _ith resFect to the other dimensions of the plate.

For example, the plate tLickness of, say, I centimeter, in a

sheet metal girder with stiffeners (s-oars) s oaced go cm aoart,

must be looked uoon as infinitely thin of the order of ½. Such
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wall thicknesses ".Je call _'normally thin. "

From equations (22), (_39a), and (30) _e deduce for no_mal

thicknesses s (infinitely thin like _E_/=) and for finite

width b, of the wrinkles, the quantities for Oqk, f/b, f,

and oh, given in Ta_ole II, colu_n__I.

ilow we reduce the wall thic?ness s still further, that is,

from C_EZ"_ to C_E1/=+_ (_ > 0). lYith _vidth b of the _._rrinkle

ass_u'aed finite, we obtain according to equations _(_°8), (29a),

_.nd (SO) the order of magnitude for Oqk, f/b, f, and @o,

civen in column 2, of Table Ii.

T.Tesee, in p_r-"_icular, that - oqkj r(<_sches zero ahead of

_ _.d_en s is reduced. The ratio of depth to width of wrinkle,

that is f/b, remains infinitely s::lal!, _o_ _E I/= , as for fi-

nite wall thickne_._s, :,c_ording to (2_9a), _n<: a:>proaches, by in-

finitely thin s within this order of size, the limit value

!

2 7 - (q - c (29b)I im f/b = _ n----T

s/b --> 0

For ].ater puriooses _e include _he ca_'e _rhere the _ridth b

of the r_rinkle becomes infiritely small at the s_ne time that

tnzcKne_s is reduced asthe order of magnitude of the wall _ " _" ,_'

_E B (B > 0); _ as a. rule ,_.ifi'ers from _.
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TABLE II

h*

b

, . r

f/b

f

Cb

1

infinitely
small as

!
c_2
E

ao
E

E

!

E

E

finite

norn_lly
thin

finite

finite

normally
small

inormally
small

finite

2 3

infinitely! ...............infinitely i
small as small as I

_0
E

E

(K>o)

!
O.2
E

I

E

C__
E

finite

thin com-

pared to

nor_l&l

I finite

I
i

very low

norm liy-
small

normally
small

low

aO finite
E

½+K thin com-

c_ pared to

(_>0) normal

small

a_ (K-_ very low

I
normally

aE small

_+_ mall
E

a_-_" flow, but

E |not
!very low

* h = spacing f reinforcements (uprights and spars, respectively).

If the stresses prevailing durin_ defor_nation are to be of

no higher order than finite (that is, not infinitely high), then

must be _ B (- _qk and cb become finite for K = 8). The

order of magnitude of °ak, f/b, f, and cb applying to this

case, will be found in column 3 of Tshle IZ.

Surmuing up, _ve find that - °qk is soon negligibly low when

the order of _agnitude of the wall thickness decreases with re-

spect to the width of the _rinkle; the bending stress _b like-

wise becozles lo_er (and finally very low), although not quite as

rapidly. The ratio f/b approaches a well-defined liuit value

of low _ua_%'nitude.



P!_.o'_,to the Sparso_±eco _ Attaching the

i,[o_::we extend our considere_tions to ittc!ude the whole sheet

wall (Fi[f. 31). We d.isre@fard for the -pre,se:,._.t,the existence of

spars and subject the whole s:_c_;t to a t.__,._:overoecontraction

- Cq, by-.:Trink!ing it, and apply the ten:_!on stresses o in the

t__e sheet is lengtheneddirection of the wrinkles. As a result " •

by Az in the direction of the _:rrinkles. (The stresses preva-

lent "__ those deformations ,:;ere discussed in the -reccdin[_ para-

gr _<oh.)

..:o,:; :re <,otach zne ::,-o::_,rs "+_"'" _.'._o set-.)urpendicular to t[ie

.... Fie'-
direction of the _.-_rinl:!c8, -c_le,_:ts_ oaro_llol to axis x, in , <_

uru ZS. T)-o ,,,d._es (9 =t_t Fir]. S!) co,p_blo of lc:..vinc the o._!,_z ......1

plane of the sheet freely, are no,.; fastenc.! -to the spars its.such

...... ' - "_ ' $0a manner theft these _:louo stay in _._.,-.'ri:_i_ial _!a_.e, and,

0._ _,,,o oo.se _ ,assume -0_-.e r, ost unfav -_'_c _,:e ,)renu, ne the ",_ to be ta,_-

_u se .gentie.!ly restrained ....t!'_,e edifes.

At -_'ir_+ _'redi .... _"d the <listurbances at the ed<._es A a.:;t:l

asstm',e the distance X of these edges ""o_ -_:c very -'rear:,with re-

e<z_es B, ,.spect to distance h o-f the '_" • ,?.ud'.'econsider only tb_e

o_ess corresoondin_ly rc,_o_e from t:zc trices A

_o:, it c_,n be sheath t_:_at the enti::'e _,orm cb.__nce A, wh:).oh

the sheet " - _n ....... to _ke up c!urins all t:_cs'e dc.1[ormations, is _zr:,._e_

than
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Amin is the work of form change to be taken up by a sheet of

given dimensions, _,vhen it is merely subjected to a uniform elonga-

tion _&_z in the direction of h, so_the ensuing stresses are
h

simply symmetrical tension stresses E A z

The difference A - Ami n is due to stresses - Oqk and ob

and. to supplementary stresses induced by the rigidity of the

ed[_es.

ITqv,_;Tecalculate

spect to the size of

A for the special c__,,:,e_,,.d_cre

h is infinitely thin as CE_/_

infinitely thin as _E I/2 _K _¥e ""• !_Ive this infinitely thin _heet

an arbitrsry deformation Amax, which s',<tisfies the e_d_e_ equa-

tions r_nd retains the con=eotion of the sheet at every point.

From the theorem of least work of deformation it fo!lo_vs that the

work of form change A of the actually ocou:ri:ig attitude of

deformation must be less than that of the arbitrarily chosen,

that is, A_:_ax > A > Ami n

So when wc know the work of deformation

chosen state of deformation, we have A

its. To keep these limits as close as possible the arbitrary

deformation is chosen for the least 0ossible work of deformation,

that is, as near to Ami n as possible. And now wc are able to

select a deformation attitude which yields (aside from infinitely

small quantities) Areax = Amin, so that_ in consequence,

A = Ami n.

• (31)

Areax of the arbitra_i!y

confine:! within t_vo !in-
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But first we must define the properties of a form chan.o;e

whose _ork equals Amin, or more exsot, v_hich differs from

Ami n only by infinitely small quantities:

!) The deformations within the whole sheet (aside from in-

finitely small points) must be such that the stresses of this

deformation s_ttitude differs from _ = _ E

small qua_htities_ or in other words, that

_z = _; _qk = 0; _b _ 0; T

only by infinitely

xz .... 0; etc. (3!a)

Any deviations of finite magnitude from these stresses

must be keot to infi_hitely narrow limits.

One for-u n_,'e which "-_"s_,.bzsfies these conditions is shown

sz_e<_ is evenly wri:_.kled _n the entire middlein Fio-_re 32. __e _ .... .=

range, which is h - 2_ r, _u2d has within this ran_se the con-

stant c!on,_ation A z 8i_ce - _ok _nd db (respectively, the

correspondin_ elon_ations) ,.-Pastbe infinitely low, the width of

the wrinkles must either be ckoscn as finite or infinitely small

of the order of _E B, T._hereby _ must %,e > @ > O. In addition

f/b must be so chosen _._.at uquaoion (SOb) is oomclied with.

At the edges the wrinkles are forced in the plane of the

spars; in this upper and lower rans£e .of _Aridth r the ,:iepth of

the wrinkles decreases to zero, that is, less than in the middle.

So for a o3iven width of wrinkles and jiven - Cq, - qqk as well

as d (accordin_£ to (29a))must differ by a finite e]nount from

zero and ! A z }ioreover_ other addition_l stresses (such as
E h



_.A.C.A. Technical _emorandum I_o. 605 37

shear stresses) of finite ma3nitude can occ_ur within this range.

Hence it is imperative to make this ran$_e infinitely small; in

fact, we make r infinitely small as aEP(P > 0).

Now, if _ Ama x is to equal Amin, the work of form change

A r in the infinitely small range of r n_st perforce be infi-

Ar
nitely small compared to Ama x in the whole web plate;

Amax

must be infinitely small.

Then with the width b of the wrinkles small as aE_

(where _ = 0, that is, finite width of wrinkles is included in

the consideration), and the depth of the wrinkles (according to

infinitely small as aE al+B- the ratio Ar attains the(29a))
' Amax

order of aE4_-3P. But this value is infinitely small only when

4 _ - 3 O > 0, that is, when

> 3 p (32)

But since the range r must be made infinitely small

(P > 0), _ must be made greater than 0(_ > O) for otu" arbi-

trarily chosen deformation, or in other words, we must choose

infinitely small width of wrinkles.

In sumnarizing, we may say, if

quantity of the first order, and if

Ti%en Areax = Amin*

aE is an infinitely small

, _, and P are figures

I

above zero, and if the plate s is infinitely thin, _:_.s aE_+"K ,

B > 3 p ' theeadditive stress_.,s in range r become in-

finitely hi_jh,_notwi ths

*For P >

tanding the infinitely little _'ork of def-
ormation. 0nly when _ a p, (complied with oy equation (32)),

that is, when we choose our arbitrary deformation attitude of the

width of wrinkles of the same order (or smaller) as range r,

do the additional stresses become finite in this range.
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then Areax equals Amin_ provided we so choose this deformation

that within the '_'"_.no.e finite range o: the metal sheet (excepting

the two infinitely small ranjes r) the _,_._idthof wrinkles b is

infinitely s[.:_a?.!as aE'__ and the distu!%ing range r at the

edge is infinitely small as _E0:

K > S £ _z p > o (S2a)
4

Translation by J. Vanier,

National Advisory Committee
for Aeronautics.
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