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STRUCTURAL DETAILS OF GERMAN LIGHT AIRPLANES.* 

By Martin Schrenk. 

The success of the 1929 International Light Airplane Tour 

of Europe (V,D.I. Nachrichten df September 4, 1929) demonstrated 

the great interest taken in the development of the small two-

seat touring airplane. It is no accident that Germany had the 

largest number of participants, for after the war Germany soon 

became the home of the light airplane, due to the political re-

strictions of German aviation and to the development of gliders. 

Even now German airplane construction is restricted to air-

lanes for peaceful purposes. Much interest is therefore mani-

fested in the construction of light airplanes, the market for 

hich seems capable of development. I will be worth while to 

isider them more closely since, as recent solutions of a very 

ciefinite problem, they furnish information concerning the pres-

ent status of airplane construction. 

The German light airplane had two sources, one of which 

Was the glider. The simple glider was equipped- with a light en-

gine, at first usually a motorcycle engine, which did not need. 

to be very powerful. This "light airplan&' justified its right

to existence, as soon as suitable engines were put on the market. 
*"Aufbau und Einzelheiten deutscher Leicht- und. Sportflugzeuge." 
From Zeitschrift des Vereines deutscher Ingenieure, March 15, 
1930, pp. 321-330. 
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Many aeronautic engineers at first rejected this method as 

inadequate and preferred the high-powered two-seater prevalent 

at the end of the war. Under the compulsion of economy, howev .

-er, the power o± this ttsport plane" was gradually reduced, while 

on the other hand, the "light airplane" met the demand for great-

er speed by the adoption of more powerful engines. Thus they - 

met each other halfway, and to-day we find, almost every transi-

tion stage between the two original types. 

Table I gives the characteristics and maximum speed of re-

cent German light airplanes. aside from the GMG ha and the 

Klemm L 25a, they were all made in 1929. They have a flying 

weight of 500 to 750 kg (1100 to 1650 lb.) and a weight equipped 

of less than 400 kg (880 lb.), with the exception of the first 

three. Aside from the Albatros L 79, which was designed for a 

special purpose, they were of about 70 hp, in two cases even as 

loW.as 40 hp. The illustrations are grouped adcording to the 

types, Figures 1-17 being line drawings. 

Their source is revealed by the relative values of the load. 

unitG/b and power loading.* Low span loading means an econorn-
* G/b 2 is the load per m of the span. It is the chief factor 
in the determination of the power requirement, From the P,randtl 
wing theory we can derive, for the sinking speed w (that is, 
the minimum power requirement in.mkg/s.for maintaining horizon-
tal flight, based on one kilogram of flying weight), the simple 
approximation formula

= cJ	 min. 

in which Emin is the best lift-drag or fineness ratio of. the 
airplane (in part lso a function of the span), while C de-
pends onlyon the air density. Since mm likewise generally 
(Continued at bottom of page 3)
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ical airfoil system. Such a system may increase the power load-

ing without impairing the necessary power reserve (the ratio of 

the maximum to the required power). On the other hand, the 

climbing speed, as the difference between the two specific pow-

ers is, for such highly loaded airplanes, relatively smaller 

than for airplanes of like reserve power but lower power loading. 

This monoplane type, which is strongly influenced by the 

glider, is represented by the Klemm L 25 and GMG II and in a 

lesser degree by the L 26 and. BFW M23. In contrast with these 

stand the biplanes with a considerably higher loading of the 

square of the span. The differences would be still more manifest 

if the airplanes were all in the sari1 load group. 

The German airplane specifications,* according to which 

the air-traffic ministry passes on new airplane types, indicate 

five stress groups which are classified, according to their use, 

in one or the other of the four employment groups. 

Nearly all German airplanesare designed for cross-country 

flying (Load group P 3 is for carrying passengers and has the 

largest capacity of all). They are well suited to this purpose, 

since they combine large capacity with small fuel consumption. 

Their relative capacity is considerably greater in some cases 
(Continued from page 2) 
decreases with decreasing G/b 2 (increasing span for a given 
weight), G/'o 2 is a satisfactoryand obvious criterion for the 
sinking speed, i.e., the specific minimum power requirement of 
the airplane. On a biplane we must take, strictly speaking, not 
the span of the longer wing, but a value about 5% greater, which 
reduces the value of G/b about 10% on the average, 
*The 1928 Airplane Specifictions, published by the D.V.L. 
(Deutsche Versuchsanstalt fur Luftfahrt) Berlin-Adlersho±'.
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than that of large commercial airplaxles.* The BFW M23 has the 

greatest capacity with 53% of the flying weight. The fuel con-

sumption at cruising speed is no greater than that of a medium-

sized automobile (6-10 kg per 100 km at cruising speed with well-

regulated carburetor). The cruising speed in still air is about 

85% of the maximum speed given in Table I, mostly 120-140 km/h 

(75-87 mi./hr.). It is high enough to overcome a wind of 36 km 

(22 mi.) per hour without any considerable loss of time. 

What such airplanes can do was shown by the 1929 Interna-

tional Light Airplane Tour of Europe' of 6300 km (3915 mi.) over 

some geographically and meteorologically difficult regions 

(Jura, Alps, Karst) in 7- days. The successful German partici-

pants were the L 82, M 23, D 18, L 25, L 26, A 50, and RK 25. 

German airplanes won the first, third, fourth, and sixth prizes. 

As regards maximum speed (Table I, line 15), two airplanes 

made particularly good records. The high speed of the RK 25 

was largely due to the skillful installation of its air-cooled 

vertical engine in the well-formed fuselage, while that of the 

D 18 was due to the excellent aerodynamic construction of all 

its parts, despite the aerodynamically less favorable radial en-

ginewith its cylinders obstructing the air flow. Both airplanes 

attained.their high cruising speed without greatly increasing 

their landing speed. The wing loding (Table I, line U), which 

largely determines the landing speed, does not exceed the values 
*In comparing, it is to be ren-embered that some airplanes are ad-
mitted only to the S 4 class (school and simple stunts) or S 5 
(highest stressed stunt flying).
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reached by several other airplanes. 

The climbing times for the first 1000 meters (3280 feet) 

lie between 4 and 9 minutes and the ceilings between 3500 and 

5000 meters (11483 and 16404 feet). Worthy of special notice 

are the short take-off and landing runs and the steep climbing 

angles, principally for airplanes of moderate wing loading, 

which are accordingly especially suitable for landing on small 

fields surrounded by o1bstacles and for forced landings on un-

prepared fields. 

All these airplanes can be used with reduced load as train-

ing and sport airplanes (load group S 4). They , may be equipped, 

for this purpose, with a renovable set of dual controls. They 

are being increasingly used. in aviation schools and clubs for 

training beginners, for which they are excellently suited by 

their moderate landing speed (small danger of failure), but can 

also be used for learning and practicing simple stunts. The 

Focke-Wulf S 24 is indeed suitable for unlimited stunt flying 

(group S 5) with a load of 230 kg (5b7 lb.). The Aibatros L 79, 

corresponding to its special purpose as a highperformance stunt 

airplane, is classified only in this group. 

Table II gives the characteristics of the engines used on 

German light airplanes. Unfortunately more of these are from 

foreign than from German sources. In recent years, however, in 

addition to the older Siemens and Halske engines, there have ap-

peared. various German engines in this power class, but only one
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of these, the Argus vertical engine with four hanging cylinders 

and a remarkably low, revolution speed, has been practically 

tested. 

As regards the cylinder arrangement, the vertical engine is 

gaining on the radial, The reciprocating two-cylinder engine 

of 20-30 hp has practically diappeaed-, despite its undeniable 

merits. It does not follow, however, that it may not yet re-

appear .i ii connection with a further refinement of the airfoil 

system (e.g., in the direction of the backswept tailless airp1ane. 

Reduction gears for the propeller have almost completely 

disappeared. The swifter airplanes can dispense with them with-

out appreciable impairment of the propeller efficiency, when the 

engine offers but little resistance to the slipstream (as in the 

case of a well-cowled vertical engine). With the two-cylinder 

Mercedes engine, the large slow-running propeller has dane well 

in ascending and descending flight. It would probably work 

well also with the relatively rapid radial Saimson and Armstrong 

engines with their unfavorable ratio of propeller-disk area to 

the frontal area of the engine. Of course all these engines 

are air-cooled. 

The long-debated question regarding the relative merits 0±' 

the monoplane and biplane had not been settled in 1929. Of our 

twelve participants in tiie Light Airplane Tour, five were bi-

planes which were designed principally for school and sport uses. 

Five of the seven monoplanes had low wings, which may surprise
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many, since high-wing monoplanes axe appreciably superior from 

the technical point of view, as demonstrated by tests with mod-

els and experiments with high-performance gliders. Practical 

considerations doubtless constituted the deciding factor. The 

struotural.union of the wing and fuselage is simpler; the seats 

are more readily accessible and. are easier to leave with paxa-

chutes. The landing is appreciably improved by the influence 

of the ground and., lastly, in a crash, the wing takes the prin-

cipal shock and affords a considerable degree of protection to 

the occupants. 

The numerical ratio existing between monoplanes and biplanes 

also existed between the cantilever and externally braced types 

of wing construction. In general the biplanes were braced, but 

the two swiftest airplanes (D 18 and RK 25) had cantilever wings. 

Wood and mixed construction were about equally in evidence 

(Figs. 18-21). All-wood construction of the wings and fuselage, 

as in the M 23, D 18, L 25, L 26, GMG II, and L 2e, has the ad-

vantage that the aviator can make most of the necessary repairs 

without the aid of an experienced welder or the carrying of a 

welding outfit. On the other hand, a steel-tubing fuselage has 

the advantage in the event of a break, because the high-resist-

ance steel still holds after buckling, while the wood simply 

goes to pieces. 

Figure 18 shows the structure and attachment fittings of a 

wing of the BFW M 23. It is of the Messerschmitt type with the
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mai-n. spar at the point of maximum thickness 	 the wing and an


auxil,iary spar, at which the plyWood covering ends. 

Figure 19 shows the structure of a Junkers A 50 wing. 

Figure 20 shows the fuse1ge framework of the Daimstadt 

D 18. The two upward projectthg frames support the upper wing. 

Figure 21 shows the fuselage of the Junkers A 50. 

As regards endurance and weathering, the all-metal type 

(Junkers A 50) naturally has the advantage. Expeieiice has 

shown, however, that'well-cared-for wooden airplanes often last 

so long, even in strenuous operation, that they become obsolete 

before, they have to be discarded because of deterioration. 

Aalde from the single-seat stunting airplane L 79 and the 

L II, all the airplanes had two open cockpits in tandem. This 

very natural arrangement on a small school or sport plane is 

not ideal for a passenger, who would gladly be protected from 

the wind and weather and be able to converse with the pilot. 

For this reason, small airplanes with enclosed seats are becom-

ing more general in other countries, especially in America. In 

Germany only the Arado factory has made a touring airplane CL Ii) 

with two sheltered seats abreast, which shows great progress 

in this respect. Such an arrangement would also be advantageous 

on a school plane for beginners. 

In what follows, we will consider only the most important 

details with special attenti.on to those differing from the usual 

types.
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The monoplanes with wooden wings adhered to the usual mode 

of construction, with one or two spars for absorbing the bend-

ing moments and a covering of plywood over the ribbed framework 

back to the rear spar to afford the necessary torsional rigid-

ity. In conjunction with a strongly tapered contour, this type 

of construction largely meets the requirements as regards 

strength and protection against vibrations, which constitute 

the most difficult problem of the cantilever wing.* 

Instead of the ordinary cambered wing section, symmetrical 

or slightly S-shaped profiles are being increasingly ued (L 79, 

L 82, L II, S 24, RK 25). In comparison with the usual forms, 

they have a somewhat poorer fineness ratio and smaller maximum 

lift but, at all normal angles of attack, the lift remains about 

the same. This considerably reduces the static stresses of the 

whole airfOil system in gliding and diving flight and improves 

the stability and controllability under otherwise like condi-

tions (type of airplane, location of center of gravity). 

The forward location of the center of pressure of this wing 

section (about 1/4 of the chord) renders it possible, on an Un-

staggered biplane, to place the whole load on the front spar 

and omit the bracing of the rear-sar area. Torsional stresses 

are not then produced in the wing by the air forces. This fact 

is taken advantage of by the L 79 and S 24, while the L 2e has 

the usual wing stagger withbracing between the front spar of 
*Compare the corrsponding experiments of the D.V.L. (Deutsche 
Versuchsanstalt fur Luftfahrt), a short report of which appeared 
in V,D.I. 1930, page 25.
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the lower wing and the rear spar of the upper wing, which is 

free from torsional moments with cambered wing sections, at 

least in normal flight. Such a statically determinate struc-

ture with a clearly defined power curve enables a very accurate 

dimensioning of the structureal members. Despite the lack of 

torsional stresses, the wing must have a certain degree of tor-

sional rigidity with respect to vibrations. This is obtained 

by reinforcing each wing in its plane, which is never accom-

plished in German airplanes by internal bracing, but by a one-

sided boarding of the wing between the spars. 

The fittings foi assembling the parts are nearly always 

made of welded sheet stel. It is not, possible by any other 

method to make complex joints with so little material. Good 

examples of such joints are shown in Figures 22, 23, and 25. 

Figures 22 and 23 show fittings for attaching the lower wing of 

the D 18 to the fuselage. Figure 25 represents a hinge joint 

on the top of the rear wing spar 0±' the Phoenix L 2e (Cf. Figs. 

15 and 16). It serves for folding the wing for transportation. 

The fittings are welded sheet steel. 

The middle portion of the fuselage is very highly stressed. 

It is subjected to the stresses from the wings, power plant, 

landing gear and tail surfaces. It is weakened b.y cutaways for 

the cockpits. Hence it has a strong steel-tubing framework 

with rigid diagonal braces, while the adjoining rear portion 

of the fuselage is of simpler construction with wire bracing.
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The boarded wooden fuselage, whose structural advantages 

have already been touched upon, is at a disadvantage in compari-

son with the steel-tubing fuselage as regards accessibility to 

the inside spaces and controls. The accessibility of the fabric-

covered, steel-tubing fuselage has been still further improved 

in various types 'by making the top of the fuselage in a single 

removable piece from the rear cockpit to the tail. The same 

could be done with a plywood fuselage by bracing the top of the 

framework with cross wires itead of plywood, a method which 

has not been employed, however, on any German airplane. 

There is great diversity in the construction of the tail 

surfaces. On wooden airplanes the fixed, and generally the mov-

able, tail surfaces are also wooden (plywood box construction. 

This manner of making the movable tail surfaces is also found 

on some airplanes of mixed construction where, however, welded 

steel-tubing and riveted light-metal movable tail surfaces are 

also used, sometimes both on the same airplane.* Roller bear-

ings for the movable tail surfaces are also used (Arado, Junkers). 

On some types (L 79, L 82, L Ii) the elevators are placed 

high for aerodynamic reasons and for protection against injury 

(Fig. 27). 

Figure 26 is a diagram of the control lines of the Arado 

L II. They are not drawn to scale. 	 -_________________ 

*The Raab-Katzenstein airplanes have elekton ailerons. The 
light weight of the RK 25 is largely due, however, to the gener-
ous use of elektron for cowlings, etc.
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Figure 27 shows the tail of the Arado L II with its hori-

zontal empennage elev.atedto protect it from injury. Its spin-

i4ng characteristics are improved by the extension of the rud-

der below the elevator. The tail skid is fitted with rubber 

compression springs. Nearly all airplanes have stabilizers 

which can be adjusted. on the ground to various loads. Adjust-

ment during flight is not necessary on these light airplanes, 

due to the smallness of the moments. 

There is no uniformity in balancing the movable tail sur-

faces for reducing the control force. The shifting of the axes 

and outside balancing surfaces are used together. Due to the 

smallness of the moments, the balancing is usually dispensed 

with, however. 

Figure 28 shows the tail of the Raab-Katzenstein RK 25. 

The stabilizer, elevator and. rudder all have the form of ply-

wood box girders. The orientable spring tail skid is a d.uralu-

mm tube. 

In general the controllability may be pronounced excellent, 

the reaction times being very small, due to the favorable ratio 

of the flight speed to the length of the airplane. Such air-

planes are therefore well suited to stunt flying. 

11 Fiying means landing.	 This aphorism applies not only to 

the pilot, but also to the airplane. An airplane is of no value 

without a good landing gear, which can stand hard landings with-

out breaking or bouncing, with indestructible or easily replace-
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able springs. 

In the general arrangement of the landing gear, the divided 

axle hinged to the fuselage or auxiliary strut with supports 

from the fuselage or wings has been largely adopted. Due to the 

small diieter of the wheel, it has very desirable clearance 

for landing on marshy or rough ground. The springs can then be 

removed from the points of junction with the wheels, where they 

are structurally undesirable and obstruct the air flow, and 

placed in struts where they can be well cowled, or at their up-

per point of attachment (Fig. 31). This arrangement, which 

proved very successful on the Daimler airplanes of 1923, en-

tirely removes the springs from the air strearn, Figure 31 shows 

the landing-gear springs and. the junction of the wing in the 

fuselage of the RK 25. The springs offer no air resistance and 

are easily accessible on removing the fuselage covering. Fig-

ure30 shows a shock absorber of the Junkers 	 50, the springs


being made of rubber cable. 

The springs are made exclusively of rubber, either in the 

form of cables or compression blocks.. Figure 29 shows a shock 

absorber of the Arado L II, which uses rubber cable, either in 

a continuous form or in separate rings or loops. It is well 

faired and easily accessible. It is yielding at first, but re-

quires a long stroke. This is desirable, however, in any case. 

The secret of success of riiany a shock absorber lies in its long 

stroke. 

Figure 32 represents the shock absorber of the D 18. The
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spring consists of rubber compIession disks with interposed 

metal disks, which increase the shock absorption by their fric-

tion with the rubber. The down stroke is limited by two rubber 

buffers.

The tail skid, which is greatly stressed in every land-

ing and in curvilinear taxying, has recently received much at-

tention. It is generally made orientable in every direction, 

or so constructed as not to be affected by lateral forces. 

Figure 33 shows the tail skid of the Alb.tros L 82. The shoe 

is wide and has rubber compression springs. 

The wooden tail skid is often replaced by a velded steel 

skid - Junkers, Klemm and Raab-Katzenstein even using cast elek-

tron, which is very strong in comparison with the other light 

metals. The lowei end of such a skid is protecced from wear by 

a replaceable steel plate. 

Wheel brakes for shortening the landing run, which are now 

much in demand for commercial airplanes, appear only on the 

L 26, where they are operated by special pedals attached to the 

rudder pedals. With the aid of these brakes, the airplane can 

be turned almost on the spot. The engine can also be allowed 

to run at full speed while the airplane is held at a standstill 

without outside aid. These are great advantages in landing on 

small fields. 

Lastly, the airplanes M 23, L 25, L 26, and A 50 were also 

equipped with floats whose flat bottoms enable taking off from
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quiet water even under heavy lóad. Since the exbhange of the 

landing gears and floats is effected without much trouble, the 

utility of these airplanes	 thus greatly increased. 

With the exception of the A 50, the eilgines are mounted 

exclusively on welded steel-tubing frames, which are removable 

in some instances. Riveted and bolted girders have entirely 

disappeared, since they cannot permanently withstand the vibra-

tions without loosening. It has been found that a properly 

made and dimensioned weld, in which secondary stresses are avoid-

ed, is especially favora'ole in the case of alternating contpress-

lye and tensile stresses, since it forms a perfectly homogene-

OUS UiliOfl. 

Devices for starting the engine from the pilot's seat are 

being increasingly used. These starters gave an especially good 

account of themselves in the Light Airplane Tour of Europe. It 

is usually a osch hand starter, such as used. on large airplanes,. 

or some more or less simple device (crank, toothed segment and 

pinion on the engine haft with tension cable, etc.) for direct 

starting. The starter and wheel brakes rnak the pilot largely 

independent Qf outside aid. 

With three exceptions (the L 79, A 50, RX 25), the fuel was 

delivered to the engine by the force of gravity, than which there 

is no simpler nor surer method. The L 79 and RK 25 have pumps 

to return the overflow. The A50 rsquires a pump because, in 

this Junkers low-wing monoplane, the fuel tank in the wing is
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lower than the engine. 

Figure 34 shows the front end of the fuselage and the cock-

pit of the Arado L II. The seat is perfectly protected from the 

wind, The vertical engine affords good. visibility and slight 

air resistance. The framework is of ideal simplicity, which 

was made possible by utilizing the engine housir!g for the ab-

sorption of framework stresses. 

Figure 35 shows the engine mount of the Focke-Wulf S 24. 

It is characterized by steel-tubing supports with easy accessi-

bility to the auxiliary apparatus, pipes and rods behind the 

engine. 

Figure 36 shows the installation of the 40 hp Statax en-

gine on the GMG II. A engine so symmetrically arranged about 

the propeller shaft is excellently adapted. to the streamline 

shape of the fuselage. Unfortunately, this engine has not yet 

been tried out. 

Figure 37 shows the cockpit of the Junkers A 50. The oper-

ating levers (throttle on the left, fuel pump on the right) and. 

the instruments are well arranged. Note the arm rests. 

The question of stowing and transportation is a very prac-

tical one for an airplane owner. When not in use, an airplane 

should not require much space. This is especially desirable 

when laning away from home. In case of engine failure, it 

should be easily transported along the highway. It should re-

quire but a few minutes to fold or unfold and make ready for
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flight and should not require many tools. 

Figure 40 shows the Albatros L 82 with the wings partially 

folded about the hinges on the rear spars. An auxiliary strut 

is added to maintain the rigidity of the cell. 

Figure 41 shows the Focke-Wuif S 24 with its wings folded 

ready for transportation by a small automobile. 

Most airplanes solve this problem by making the wings in 

three parts, the outer parts being usually joined to the central 

part by hinges. On the L 25 and L 26 the outer parts are en-

tirely removed, on account of their great length, and laid 

alongside the fuselage. The L II, 	 18 and RK 25 have one-part 

wings which can be removed as a whOle. Their detachment and at-

tachment to the fuselage is therefore more troublesome. 

Figure 42 shows a wing of th BFW M23 folded for transpor-

tation. After removing the three coupling bolts on the main 

and auxiliary spars, the wing is svung on the universal joint 

on the, fitting attached to the leading edge and hung to the side 

of the fuselage. 

Figures 43 and 44 show the Klemm L 25 ready for transpor-

tation, its greatest width (thrdugh the wheels) being only 1.5 m 

(4.92 ft.) and its height only 3 m (9.84 ft.). 

The folding is greatly facilitated by making the aileron 

controls so they will separate and reunite automatically, which 

can be easily done. In the technical contest of the 1929 Inter-

n.tional Light Airplane Tour of Europe the time required for
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folding and unfolding the L 82 Was only l-- minutes, while the 

De Havilland Moth required only 22 seconds. 

However pleasing the large nuiriber of new types is, as an 

expression of the popular interest, it nevertheless interferes 

with the economical production and cheapening of the airplanes, 

due to the limited market.. In the interest of the populaization 

of German light airplanes, it would be well to reduce their num-

ber to a few select types. 

Wood and mixed construction require relatively small factory 

equipment, which is favorable to small-scale production. On 

the other hand, it is claimed that this method is not well adapt-

ed to large-scale. production, since the work of gluing and weld-. 

ing cannot be done so well by machines. This is contradicted, 

however, by the fact that the most widely used foreign light air-

plane, the De Havilland Moth,u was first made in wood and then 

in mixed construction. In 1929 the number reached 450, which 

can be regarded as mass production in the present status of 

airplane building. Light-metal castings (tail skids, rudder 

bearings), and pressed light-metal fittings are being increas-

ingly used and facilitate mass production. 

The A 50 represents an interesting experiment. The Junkers 

Company has ventured to make an all-metal light airplane similar 

to its large airplanes, although in a much simplified form. 

The company had the advantage of a trained personnel for the 

difficult inside riveting of the small tubes. The construction
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Was greatly simplified- by the extensive use of corrugated sheet 

metal. The use of metal enables extensive replacements and 

facilitates mass production. 

The Albatros L 79 was made for the D.V.L. in accordance 

with their specifications. It was designed especially for the 

investigation of inverted flight and therefore has unstaggered 

wings with symmetrical wing sections, far which the same flight 

characteristics can be expected in upright and inverted flight. 

The movable tail surfaces were very carefully designed for good 

agreement and. maximum efficiency. The principal masses, the 

engine and the pilot, were placed as near together as possible 

in order to improve the spinning properties. Special attention 

had to be given to the fuel system, so as to insure the deliv-

ery of the fuel even in the event of long inverted flight. 

Figure 38 represents the fuel system and Figure 39 the oil 

system of the Albatros L 79. a is the main fuel tank; b, the 

gravity fuel tank; b 1 , auxiliary oil tank for inverted flight; 

c, fuel intake on flexible tube; d, fuel pump; e, return 

valve; f, air chamber; g, reversing cock for gravity fuel; 

h, strainer; i, drain cock; k, fresh-oil pump for inverted. 

flight; 1, pressure-reduction valve; m, check valve (against 

flow of fuel into oil pipe; n, fresh-oil pump; o, return 

pump; p, return pur1p for inverted flight; q, air vent. 

In the Arado L II the designer followed his own ideas 

throughout. The form of the L II, as shown in Figures 3, 4, 26,'
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27, 29, and 34, is determined by the side-by-side arrangement 

of the two seats and by the vertical engine with hanging cylin-

ders. The seats are readily accessible through doors and are 

so sheltered that the occupants require no extra clothing. 

The peculiar hanging control stick (Fig. 26) makes the seat 

space more roomy and accessible. Large baggage pockets behind 

the seats, map pockets and nets provide for the convenience of 

the air voyagers.	 The good visibility past the low, narrow bow

is especially worthy of mention. The flight perforniancesof the 

L II are of the same order as most of the other airplanes.	 Ap-

parently the greater form resistance of the broad fuselage was 

successfully offset by a skillful arrangement of the whole and 

areful attetition to details. 

The Junkers A 50 has duralurnin tubes and corrugated dural-

urnin sheets in common with the well-known Junkers airplanes, 

but differs considerably in structure (Figs. 19, 21, 24, 30). 

The wing does not have the usual Z arrangement of five or 

more tubular spars, but has two normal, relatively close verti-

cal spars with tubular flanges joined by simple corrugated sheet-

duralumiawebmembers. The spars are the only parts in which 

inside riveting is necessary to any considerable extent. The 

function of the ribs is assumed by the corrugated duralumin. 

wing covering. The shearing forces are transmitted by oblique 

Z braces to the planes of the spars (Fig. 19). The fuselage, 

(Fig. 21) has no longerons, the longitudinal and shearing 
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stresses being transmitted only by the radially braced corru-

gated metal covering. This is supported by hoops of oval du.ral-

umin tubing with slots on the inside for introducing the rivets. 

The engine is held by a conical support of sheet duralumin which 

is attached. to the fuselage covering by fifty small screws, a 

method necessitated by the absence of longerons. This conic. 

support forms a direct continuation of the fuselage covering. 

The Darmstad-t D 18 waS not made in a regular airplane fac-

tory, but in the workshop of an academic aero club. In construc-

tion and performances, however, it compares favorably with the

other types. The Darmstadt Academic Aero Club can boast of a 

long and glorious history. It is only necessary to mention 

the excellent Mahomet of the 1925 German A i r Derby and the 

airplanes of the Bahnbedarf Company and. of M.11er-Griesheim, 

which were designed or largely influenced by the Darmstadt Club. 

The D 18 is the first biplane built by the Darmstadt Club. 

The exceptionally laxe stagger of the cantilever wings aSfords 

easy access and good visibility. It was designed to effect the 

greatest possible reduction in the air resistance, though the 

structural features were not neglected. Figures 20, 22, 23, 

and 32 show several interesting details. Mention has already 

been made of its remarkable speed. 
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Pigs. 78 hadnischen 
Plisgergru.ppe 

arms tadt 
D 18 airplane 

Pigs. 5,6 Bayerischen ?1u.gzeuwerke 
IL 23b airplane 

Figs. 1,2 Albatros L 79 airplane

Figs. 3,4 Lrado L 2 airplane
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Figs. 13,14 X1er L 25 airplane Figs. 15,16 Phoenix L 2e airplane 

Figs. 9,10 Focke-Wuif S 24 airplane

Figs. 11,12 Junkers A 50 airplane
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Fig. 17 Raab-Katzenstein F. K 25 airplane
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