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During the years of our First ISLSCP Field Experiment (FIFE) investigation

"Studies of the Net Surface Radiative Flux from Satellite Radiances during FIFE"

(NAG5-900), our efforts have focused on radiative tranfer model validation,

calibration of VISSR and AVHRR solar channels, development and refinement

of algorithms to estimate downward solar (shortwave) and terrestrial (longwave)

irradiances at the surface, including photosynthetically available radiation (PAR)

and surface albedo, verification of these algorithms using in situ measurements,

production of maps of shortwave irradiance, surface albedo, and related products

(e.g., cloud albedo, fractional cloud cover), analysis of the temporal variability

(diurnal, seasonal) of shortwave irradiance over the FIFE site, development of a

spectroscopy technique to estimate atmospheric total water vapor amount, and

study of optimum linear combinations of visible and near-infrared reflectances

for estimating the fraction of PAR absorbed by plants. Among these activities, the

last two and the one concerning PAR estimation from space were not part of our

original technical plan, but they appeared interesting to undertake since they were

addressing FIFE issues. Most of our investigation's objectives have been

accomplished, but we have not been successful in achieving useful accuracies on

estimates of downward longwave irradiance, and we have done too little work on

the longwave radiation lost by the surface. The satellite sensors available,

unfortunately, did not appear sufficiently sensitive to the key parameters

governing the variability of the longwave fluxes, making ill-conditioned and,

therefore, arduous the inverse problem. The scientific results of the investigation

are summarized below.

1. Radiative Transfer Model Validation

The radiative transfer models of Tanr6 et al. (1985) and Morcrette (1984), or

simplified schemes based on these models, are used in our algorithms to estimate

surface radiation fluxes from satellite radiances. Although these models have

been verified against exact calculations or line-by-line models, they have not been

validated against in situ measurements. During FIFE, concomitant radiosonde

observations, sky photographs, aerosol turbidity, and radiation measurements

were made, offering the opportunity to compare model outputs to surface-

measured fluxes. The comparisons were made in clear sky conditions since the

available data did not permit adequate characterization of some important cloud

parameters. The results are described in Frouin et al. (1990; see Appendix 1).

Figures 1 and 2, which display scatter plots of calculated versus measured fluxes,
summarize the results. The agreement is good between calculated and measured

fluxes, with correlation coefficients above 0.98 and standard deviations of

23.2 Wm -2 (2.7%) and 13.0 Wm -2 (3.7%) for shortwave and longwave irradiances,

respectively. The model of Tanr6 et al. (1985) overestimated shortwave irradiance

by 13.2 Wm -2 on average, whereas the model of Morcrette (1984) underestimated



longwave irradiance by 7.4 Wm -2. If significant, these biases may compensate

partially when computing the radiation budget at the surface. On longer time

scales (e.g., daily, monthly) more characteristic of climate studies, we expect the

standard deviations to be greatly reduced. These results demonstrate the

suitability of the models of Tanrd et al. (1985) and Morcrette (1984) for radiation

budget studies, at least in clear sky conditions.

2. Calibration of VISSR and AVHRR Solar Channels

We have performed a sensitivity study of the net shortwave irradiance at

the surface to calibration (Gautier and Frouin, 1988; see Appendix 2). This study

has shown that, in overcast conditions, a 10% loss in sensor sensitivity (increase

in gain) translates into uncertainties of up to -70Wm -2 on instantaneous values

and of up to -15 Wm "2 on monthly averages. In tropical regions, the monthly-

averaged uncertainty is typically -14 Wm -2 (Figure 3). This uncertainty appears as

a bias with a sign opposite to that of the calibration bias; in other words a positive

bias on calibration induces a negative bias on net shortwave irradiance (cloud

albedo is overestimated).

VISSR and AVHRR calibration was achieved by applying the indirect

method described in Frouin and Gautier (1987). This method, which uses space

and the White Sands Monument area in New Mexico as calibration targets,

computes the radiance measured at satellite altitude using the model of Tanrd et

al. (1985). The relevant atmospheric characteristice are estimated from either

climatological data (aerosol size-frequency distribution and refractive index) or

observations at nearby meteorological stations (water vapor amount and aerosol

loading). Figure 4 shows the GOES-6 VISSR calibration gain (relates count-

squared to reflectance) obtained (open circles) and how it compares with values

reported by other investigators (the compilation was made by Whitlock et al.,

1990). Some erratic fluctuations are observed from one gain estimate to the next,

in some instances reaching 10%. Changes of such amplitude, however ,are at the

limit of the uncertainty level. In addition to the relatively high-frequency

fluctuations, the gain exhibits low-frequency variations, with minimum values

in spring and early summer. From July to December 1987, the gain increased by

approximately 36%. Compared to the prelaunch gain, the gain at the end of 1987

reads higher by 64%.

3. Algorithm Development, Refinement, and Validation

3.1 Downward Shortwave Irradiance, Including PAR, and Surface Albedo

We have applied the satellite method of Gautier et al. (1980) to GOES-6

VISSR data acquired during FIFE. The version used accounts for aerosol scattering

and absorption, which was accomplished based on the model of Tanrd et al.

(1985). The objective was to assess whether the method can provide quantitative

information on the temporal variability of downward shortwave irradiance (or

insolation) and PAR during the experiment. In the calculations, surface albedo at

each observation time during the day was determined for each IFC from the
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minimum brightness count over the entire IFC. We have indicated (Frouin and

Gautier, 1990; see Appendix 3) how the Gautier et al. (1980) method can be

modified to yield PAR estimates. In this case, cloud absorption vanishes in the

model equations and clear sky PAR is computed using the coefficients given by

Frouin et al. (1989). The computational procedure included checks of the satellite

navigation and of the data quality, and calibration of the VISSR visible channel

(see above). Appendix 4 summarizes the results obtained for the five IFCs. The

satellite estimates of insolation and PAR were in good agreement with in situ

measurements. During IFC-2, for instance, the correlation coefficients were above

0.95 with the standard errors of estimate of 21.6 Wm -2 (9%) and 8.2 Wm -2 (6.5%)

for daily insolation and PAR, respectively (Figure 5). These errors are acceptable

for climate studies. The satellite estimates also described well the diurnal

variability of PAR and insolation (Figure 6). Using the ratio of PAR and

insolation determined in situ with the satellite estimate of insolation, we

obtained daily PAR values with a slightly higher r.m.s error than when PAR was

directly estimated from the satellite data. This indicates than the large scale

satellite climatologies of insolation now produced within the framework of

ISCCP can be simply converted into useful climatologies of PAR for global studies

of photosynthetic activity, although a more direct use of the satellite data would

be optimum. The various techniques so far proposed to estimate PAR from

satellite data, including the one of Frouin and Gautier (1990), are discussed in

Frouin (1993) (Appendix 5).

3.2 Downward Longwave Irradiance

The net longwave irradiance flux at the surface, owing to its small

variability, is less important than the shortwave one. It cannot be neglected,

however, particularly in the presence of clouds that decrease surface insolation

while increasing the downward component of the longwave flux. Several

methods have been proposed to estimate the downward longwave flux at the

surface from satellite measurements (see, for instance, Darnell et al., 1983; Frouin

et al., 1988; Gupta, 1989). Although some of them have been used to generate

global fields of net longwave flux, few validation studies have been made. We

therefore investigated the performance of two of them (Frouin et al., 1988; Gupta,

1989) by comparing their outputs with carefully taken in situ measurements.

Computations using the same atmospheric temperature and moisture profiles

indicated that, for clear sky conditions, the two model outputs are correlated. The

values obtained using Gupta's (1989) model are systematically higher by 15 Wm -2.

Since Frouin et al. (1988) uses Morcrette's (1984) model, and since this model

slightly underestimates downward longwave irradiance (see section 1), we may

conclude that the performance of the two models is similar, Gupta's (1989) model

overestimating downward longwave irradiance in somewhat warm and humid

atmospheres. Computations using vertical sounder (TOVS) data as input did not

show good agreement with in situ measurements, especially in cloudy conditions

(Figure 7). This was expected since other uncertainties are added: that of the

retrieved profile itself and the uncertainty resulting from the distance between
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the TOVS observations and the pyrgeometer measurements. Details of this study

are given in Br_on et al. (1990; see Appendix 6).

3.3 Atmospheric Water Vapor Amount

We have shown (Frouin and Middleton, 1990; see Appendix 7) that

viewing the earth's surface in two spectral channels, one narrow, the other wide,

centered on the same wavelength at the water vapor absorption maximum near

940 nm yields accurate atmospheric total water vapor amounts independently of

the surface reflectance properties (Figure 8). The concept was verified using

concomitant SE-590 spectrometer and radiosonde data acquired during FIFE IFCs.

Under varied geometries and atmospheric conditions, and for several surface

targets, the relationship between radiance ratio in the narrow and wide spectral

channels was stable, following an expected exponential law (Figure 9). The SE-590

instrument, however, did not view the surface from above the atmosphere or

even above the boundary layer, where most of the water vapor is concentrated,

and therefore did not permit verification of the technique in actual conditions of

aircraft or satellite viewing. In such conditions, simple physics showed that the

effect of photons backscattered by aerosols is to lower unacceptably the retrieved

water vapor amount when the aerosols are located above the boundary layer.

Airborne experiments, on the other hand, were carried out (Frouin et al., 1990;

Appendix 8) and have demonstrated the suitability of the method over both land

and sea.

3.4 Fraction of PAR Absorbed by Plants

Using the SAIL model (Verhoef, 1984), we have simulated for varied, yet

realistic soil and canopy parameters, namely leaf optical properties, soil

reflectance, Leaf Area Index (LAI), and Leaf Inclination Distribution Function

(LIDF), above canopy visible and near-infrared reflectances and daily-averaged

(weighted by incident radiation) fraction of PAR absorbed by plants, APAR. The

objective was to find linear combinations of visible and near-infrared reflectances

that improve the accuracy of APAR estimates when compared to that obtained

using Normalized Difference Vegetation Index (NDVI). Figures 10 and 11 display

some results (see, also Podaire et al., 1991; Appendix 9). The calculations were

performed for LAIs of 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5, erectophile, planophile,

and spherophile canopies, soil reflectances of 0.1, 0.2, 0.3, and 0.4, and typical leaf

optical properties. The soil reflectance was assumed white spectrally, and the

various LIDFs were considered separately in the regressions. We see in Figure 10

(bottom) that the influence of the background on the daily-averaged APAR

versus instantaneous relationships is substantial, especially at moderate LAIs, but

is substantially reduced when using linear combinations of reflectances (Fig. 11,

bottom). In this case, the points corresponding to a same LAI are generally more

aligned with the best fit line. The result is a drastic improvement in the APAR

residual error. For the geometries of Figures 10 (bottom) and 11 (bottom), the

residual error is reduced from 0.064 to 0.029 (planophile case), 0.052 to 0.018

(spherophile case), and 0.049 to 0.013 (erectophile case). When using NDVI, the

minimum residual error is obtained for nadir viewing (Figure 10, top), but when
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using linear combinations it is generally preferable to view the target at 60 °

viewing zenith angle, although in the case of a planophile canopy any viewing

geometry provides similar results (Figure 11, top). Analysis of quantum sensor
and radiometer measurements collected during FIFE have corroborated that an

optimized linear channel combination scheme is a potentially better predictor for

APAR (Figure 12).

4. Effect of Broken Clouds on Shortwave Irradiance

In operational satellite algorithms to estimate surface shortwave

irradiance, top-of-atmosphere reflectances are used to infer pixel-averaged cloud

reflectance and, then, cloud transmittance (flux transmittance). Isotropy of the

radiance reflected by the surface and clouds is generally assumed, and the clouds

are considered plane-parallel. This approach suffers a number of limitations,

basically linked to the anisotropy of the radiance field emerging from clouds.

Broken clouds, in particular, can affect drastically the spatial distribution of

surface shortwave irradiance, as illustrated in Figure 13, which contrasts the

situations on August 4, 1989 a clear day, and August 8, 1989, a partially cloudy day,

at site 16.

On August 8, cumulus clouds started to develop around 11:30 local time,

were fully developed by early afternoon, and disappeared around 16:00 local time,

which manifested in short periods of alternate high and low irradiance values.

The high values largely exceeded those observed at the same time on August 4, by

as much as 130 Wm -2 between 13:00 and 14:00 local time. The cloud field at 13:32

local time, as captured by Dr. Eloranta's lidar installed a few kilometers from the

pyranometer, is displayed in Fig. 14.

Qualitatively, when there are no clouds (August 4), the pyranometer

measures Ecos0 where E is the solar constant and 0 is the sun zenith angle (we

neglect in this discussion scattering and absorption by molecules and aerosols).

When there are clouds (August 8), two cases are possible: the clouds obscure or do

not obscure the sun. If the clouds obscure the sun, the pyranometer measures

E'<Ecos0, and the shortwave flux is essentially diffuse. If the clouds do not

obscure the sun, the pyranometer measures E">Ecos0, which is not surprising

because to the direct shortwave flux is superimposed a diffuse flux from the

clouds. In other words we expect E"=Ecos0+E' if we assume that the diffuse flux

does not depend on the location of the clouds. Figure 16, however, suggests that

the situation is more complex on August 8 since between 12:00 and 14:30 local

time we estimate E'--270W m-2 and E"-Ecos0 "130Wm'2 or about E'/2! Thus the

excess flux when the sun is not obscured is not equal to the diffuse flux measured

in the shade of the clouds.

To go further in this interpretation, consider spherical clouds of radius R

and, for the sake of simplicity, neglect cloud-cloud interactions. In the case of an

isolated cloud illuminated by a directional beam of irradiance E, Monte Carlo

calculations show that the average backscattered radiance L(X), where X is

scattering angle, is nearly isotropic for average optical thickness above 16. It



follows that L=E/4 since the cloud is conservative. Now suppose that we have N

such clouds covering an area of surface S. The fractional cloud coverage is

n=N_R2/S. For any sun position (not too low above the horizon to avoid shade

effects) the N clouds collect a flux N_R2E. Since they are Lambertian, they scatter

half of this flux toward the ground. Thus the average diffuse reflectance at the

surface is N_R2E/2S, that is nE/2. Assume that this diffuse irradiance is

homogeneous spatially. Depending on whether the sun is obscured or not by a

cloud, the model predicts that the pyranometer measures nE/2 or nE/2+Ecos0.

An interesting aspect of the model is that E' does not depend on q, as observed in

Figure 16. However, taking nE/2=270 Wm -2, Ecos0=860 Wm "2, 0=25 ° qt 14:00 local

time gives n=0.57, which is not unreasonable, but too high (see Figure 14).

So far we have been able to explain qualitatively the measurements, but

the model remains too simplistic. It appears that the clouds may not be thick

enough to behave as Lambertian bodies. Therefore we shall write E"=Ecos0+Ed

with Ed=130 Wm -2 when the pyranometer is lit by the sun and E'=Ed+EI when

the pyranometer is in the shade of a cloud, where El is an excess flux that must be

explained by the cloud transmittance (the clouds are not completely opaque). Let t

denote the cloud optical thickness. Because of the diffraction peak of the phase

function (where the light scattered is practically transmitted), we expect an

effective transmittance equal to exp(-t/2). Assume that the light scattered (order 2

and higher orders) is isotropic. We have El=ECosq exp(-t/2) and Ed=nE[1-exp(-

t/2)]/2. Using EI=140 Wm -2 and Ecos(25°)=860 Wm -2, we obtain t=3.6, which is

reasonable (if the scattering coefficient is 0.5/km, the cloud geometrical thickness

is 72m). For the fractional cloud coverage, we obtain n-0.33, which is in better

agreement with the observations.

A more specific calculation is necessary to justify the above explanation.

Using sky photographs and lidar measurements, we can estimate the average

dimension of the clouds, their average spacing, cloud base altitude and thickness.

This information was fed into a Monte Carlo code that computed the spatial

distribution of the cloud transmittance at the surface. Figure 15 gives the results

obtained at 13:50 local time for cylindrical clouds of optical thickness 12. The cloud

transmittance reaches values as high as 113% in the region not obscured by the

clouds. Using a typical dear atmosphere and a cloud-level wind of 4ms "1 blowing

from the North (as measured from Pr. Brutsaert's radiosondes), we were able to

reproduce many features of the pyranometer trace (Figure 13), including the near-
constant minimum values, the maximum values when the sun was not

obscured, as well as the fine structure associated with the cloud edges and cloud

shadowing (Figure 16).

5. Variability of Downward Shortwave Irradiance

High resolution (about 1.5 km) maps of hourly and daily surface solar

irradiance over the FIFE site have been produced for all the IFCs (1 through 5).

Maps of other useful parameters, namely equivalent cloudiness (one minus the



ratio of actual and clear sky irradiances), cloud albedo, clear sky irradiance, and

surface albedo, have also been produced.

Since cloud-radiation interactions are important to weather and climatic

prediction, we have examined the role of clouds in modulating insolation

(Frouin and Gautier, 1990; see Appendix 3). The daily cloud forcing, or the

difference between clear and actual sky conditions, reached about 75% of the clear

sky insolation on some days (e.g., days 180 and 181). Minimum (or maximum)

values occurred every 2 to 4 days, corresponding roughly to the time scales of

mid-latitude atmospheric disturbances. Compared to the effect of changes in

water vapor amount and aerosol type and amount, the cloud forcing largely

dominates, by typically one order of magnitude. While developing satellite

techniques to estimate insolation (or PAR), one should therefore concentrate on

the role of clouds (determining accurately the governing cloud parameters) rather

than on the influence of the clear atmosphere.

Correlation between cloud radiative forcing and fractional cloud coverage

was also studied using sky camera data and meteorological reports (Br_on et al.,

1990; see Appendix 10). Using the sky camera data, we found linear correlation

coefficients of 0.62, 0.31, and 0.49 for shortwave, longwave, and net radiative

forcings, respectively. Using the meteorological station data, we found lower

correlation coefficients. These rather low values show that cloud amount is not

the only parameter driving radiative forcing. A governing parameter for cloud

forcing is liquid water content, but this parameter was not measured. The average

diurnal cycle of the shortwave, longwave, and net cloud radiative forcings

exhibited a definite diurnal cycle, with maximum values around local noon for

the shortwave forcing, and minimum values at the same time for the longwave

and net forcings. These cycles, if confirmed by other observations, should be taken

into account when evaluating radiation budgets from heliosynchronous

satellites.
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RADIATIVE TRANSFER MODEL VALIDATIONS DURING
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1. INTRODUCTION

Simple (higMy parameterized, analytical)
radiative transfer models are important for climate
studies. While retaining the essential physics of the
problem, they alleviate the computational burden of
more sophisticated or 'exact' schemes, which is

particularly useful in general circulation models.
The simplified assumptions are justified not only
because of computational efficiency arguments, but

also because some of the governing parameters are
not determined or known with sufficient accuracy to

justify a detailed description of secondary processes.

Among simplified schemes, the models of Tanr6
et al., (1979) and Morcrette (1984) have been used

extensively to compute downward solar (shortwave)
and terrestrial (longwave) irradiance at the earth's
surface, respectively (e.g., Gautier et al., 1988; Frouin
et al., 1988; Gautier and Frouin, 1990). Although
these models have been verified against exact

calculations or line-by-line models, they have not
been validated against in situ measurements.

During the First ISLSCP Field Experiment (FIFE)

concomitant radiosonde launches, sky photographs,
aerosol turbidity and radiation measurements were
made, offering the opportunity to compare model
outputs to surface-measured fluxes. The

comparisons are presented here, but only in clear sky
conditions because the available data did not permit
adequate characterization of some of the important
cloud parameters (e.g., cloud vertical extension).

Furthermore, the model of Tanr_ et al. (1979) is only
valid for clear skies.

First, we briefly describe the radiative transfer
models and summarize previous comparisons with
exact calculations of more detailed models; then we

present the FIFE data used in the comparisons, and
finally we report on the comparison statistics and

discuss some implications for climate studies.

2. RADIATIVE TRANSFER MODELS

2.1

The Simulation of the Satellite Signal in the Solar

Spectrum (5S) code (Tanr6 et al., 1985; 1986) computes
the solar radiation backscattered to space by the earth-

atmosphere system. Given a Lambertian ground
target and a clear atmosphere, the code estimates the

target's apparent reflectance by taking into account
the effects of scattering by molecules and aerosols,

gaseous absorption, and spatial inhomogeneities in
the surface reflectance. The input parameters,

namely solar and viewing geometries, atmosphere
model, surface reflectance, and spectral band, can be

specified from standard or user-defined conditions.
In addition to apparent reflectance, the code provides

gaseous transmittance and irradiance at the surface,
as well as the various components of the satellite

signal. Furthermore, exact calculations at selected
wavelengths allows the user to assess the code's

accuracy.

Based on Tanr6 et al., (1979), the top-of-atmosphere

signal is expressed as a function of the successive
orders of radiation interactions in the coupled

surface-atmosphere system. If p is the reflectance of

the target, and Pe that of its environment, the

apparent reflectance is written as:

p" (_. I_', q_) = t,, (I_, I_') {p.(_, _', q0

e _ + KKIJ)]F -e"

where 0 = arc cos(lO and 0" = arc cosOl') are the solar

and viewing zenith angles, respectively, _ is the
relative azimuth angle between solar and viewing

directions, _'is the atmospheric optical thickness, ts is

the gaseous transmittance, p¢is the intrinsic

atmospheric transmittance, t,t is the diffuse



atmospherictransmittance, and S is the spherical
albedo of the atmosphere. The first term enclosed in
the curly brackets represents the contribution of

photons backscattered to space without surface
reflection, whereas the second term characterizes

photons that have sustained one or multiple surface

reflections. Absorption by atmospheric gases is
considered as a single multiplicative factor
dependent on the direct paths sun-to-surface and

surface-to-sensor. Decoupling absorption and
scattering processes is justified since, on the one
hand, ozone absorption is located at altitudes where

molecules are rarified, and on the other, water vapor
and carbon dioxide absorption occurs above 850 nm

where molecular scattering is negligible, and first and

second orders of aerosol scattering (predominantly
forward) restitute almost all of the diffuse radiation.

According to Tanr6 et al., (1986), the error introduced
by separating the two processes is smaller than one

percent, except for grazing incidence or observation

directions (,u, .u'<0.1).

The atmospheric functions t d and S are

approximated by analytical formulas determined
empirically from exact radiative transfer calculations

performed for a wide range of model atmospheres.
Table I shows the disparity between 5S and exact

calculations of the total diffuse atmospheric

transmittance, e-t/_ , + td , for various zenith angles

and a wavelength of 850 nm (near the equivalent
wavelength for the entire solar spectrum). Results

are presented for two atmospheres, clear and hazy.
The differences are small, generally less than 1% but

reach 1.6% when 8 equals 60 ° and the atmosphere is
hazy.

Table I. Comparison of 5$ and exact calculations of Ihe

atmospheric Iolal diffuse transmitlance at 850rim.

0= 15° 8= 60 °

Atmosphere 5S Exact 5S Exac!

Clear 0.973 0.973 0.926 0.924

flazy 0.926 0.927 0.819 0.806

The gaseous transmittance, tgis computed from

two exponential random band models, that of Goody
(1964) for water vapor, and of Malkmus (1967) for

oxygen, ozone, and carbon dioxide. The spectral
resolution, 20 cm -_, is sufficient to apply the random
band models confidently. Table 2 compares the

gaseous transmittance in the total solar spectrum
computed with 5S and a well-known code,
LOWTRAN-6 (Kneizys et al., 1983). For all the
atmospheres and zenith angles considered, the

agreement is better than 1.5%, with 5S giving values
systematically higher. This may be due to the fact
that LOWTRAN-6, unlike 5S, neglects the influence

of temperature on the molecular absorption
coefficient, and approximates molecular line
absorption by a one parameter band model.

Table 2. Atmospheric gaseous transmittance in the spectral interval
250-4000nm computed with 5$ and LOWTRAN-6.

o= 15° o-6o °

Atmosphere 5S LOWTRAN6 5S I£)W'TP.AN6

Tropical 0.828 0.820 0.793 0.782

Midlatitude Summer 0.838 0.830 0.803 0.794

Midlafitude Winter 0.876 0.865 0.844 0.834

Subazctic Summer 0.850 0.841 0.815 0.806

S.I)arctlc Winter 0.893 0.880 0.862 0.850

2.2 The wide-band model of Mor_;l'¢tte (19841

This model (see also Morcrette et al., 1986) is based

on a highly parameterized scheme developed for

GCMs. In a clear atmosphere, upward and
downward Iongwave irradiances at altitude z are
computed from the radiative transfer equation
developed into:

F ÷ (z) = x l:dv { [B,- B(0)] t(z, 0; r) +B(z)

I_ rill ,fie • •- dz" dT(Z ) dz(Z ) t(z, z ; r)} (2)

/"
F (z) = n J_ dv { B(Z) t(z,Z) - B(z)

JU

Izo :+ dz" _dl_(z') (z') t(z'. z; r)}
(3)

where z is altitude, B(z)is the Plank function at

temperature T(z), t(z, z';r) is the atmospheric
transmittance between altitudes z and z' evaluated in

the equivalent direction g=l/r (r is the diffusivity
factor), Bs characterizes the surface emission, Z is the

top-of-atmosphere altitude, v is frequency, and
superscripts + and - denote upward and downward
fluxes, respectively. In (2), the effect of a surface

emissivity e less than unity is taken into account by

writing Bs as ¢.B(Ts ) + (l-E) F" (0) where Ts is the
surface temperature.

To evaluate the integral over z on the right-hand
side of (2) and (3), the atmosphere is divided in N
layers of arbitrary thickness. Temperature and

absorber amounts are specified at each level
separating these layers. In spectral regions where
atmospheric absorption is strong, the radiative

energy is exchanged over short distances. Integration
over the layer adjacent to the surface is therefore
performed using a 2-point Gaussian quadrature. For
the other layers, a simple trapezoidal rule is applied.

When compared with a more accurate 32-point

Gaussian quadrature for all layers, the simpler

integration scheme gives a maximum 4 Wm "2 error
in the downward flux at the surface (Morcrette and

Fouquart, 1985).



-To perform the integration over v Rodgers' (1967)

emissivity approach is followed. Four spectral

intervals are considered (0-500 cm "I + 1250-2820 cm -1,

500-800 cm "i, 800-1250 cm "i, and 970-1110 cm'l), in

which atmospheric absorption is due mainly to water
vapor and carbon dioxide (first three intervals) or

ozone (last interval). Absorption by minor gaseous
constituents (e.g., methane, nitrous oxide) and
aerosols is neglected. The contribution of each

spectral interval to F+(z ) and F-(z )is evaluated using
normalized transmissivity functions. Absorption by
water vapor is treated with the statistical band model

of Goody (1952) whereas absorption by carbon dioxide

and ozone is modeled according to Malkmus (1967).
At high altitudes, these models are modified to

account for the Voigt profile of the absorption lines.
The strong line approximation is used for water
vapor and carbon dioxide, and the weak line

approximation for ozone. To account for

temperature and pressure dependence on absorption,
the Curtis-Godson approximation is applied and

equivalent absorber amounts are defined accordingly.
For more details, see Morcrette (1984) and Morcrette
et ai., (1986).

The wide-band model of Morcretle (1984) has been
compared with a more detailed, narrow-band model

(Morcrette and Fouquart, 1985) and with Scott and

Chedin's (1981) line-by-line model. In the
comparison, the agreement was within 2-3%. This is
illustrated in Table 3 from Br._on et al., (1990), which

shows the downward longwave irradiance at the

surface F(0) obtained with the wide-band and line-by-
line models for typical atmospheres. The differences

are small, generally a few Wm "2. Morcrette's (1984)

model, however, appears to be more sensitive thah

the line-by-line model to changes in atmospheric
temperature and water vapor (the range of values is
231.3 Wm "2 instead of 225.5 Win'2).

Table 3. Downwelling longwavc irradiance at the surface (in

Wm "z) computed using 4A and Moccrettc (1984) models.

(After Br6on el at., 1990.)

Radiative Transfer Model

4A Morcrclle

AUnospi_crc (line-by-line) (Wklc-B._d) __

Tropical 390.6 395. l

Midlafitude Summer 341.8 346.2

MidladludeWinter 213.t 2 i4.9

$ubarctic.Summcr 289.3 295.7

$ uba_ctic Winter 165. I 163.8

3. DATA

The data used to verify the 5S model and the

wide-band model of Morcrette (1984) comprise
shortwave and longwave radiative fluxes from

pyranometers and pyrgeometers, fractional cloud

cover from a sky .camera, vertical profiles of air
temperature and water vapor mixing ratio from

radiosondes, and aerosol optical thickness and
Angstr6m exponent from sunphotometers. The

measurements were made during FIFE's four

Intensive Field Campaigns (IFCs), which took place
in 1987 during the various phases of the vegetation

seasonal cycle, namely green-up (26 May - 6 Iune:
IFC-1), peak greenness (25 June - I5 July: IFC-2), dry
down (10 August - 21 August: IFC-3), and senescence

(5 October - 15 October: IFC-4). Tile experimental site,
located on the Konza Prairie near Manhattan,

Kansas, is an approximate 15x15 kin square with
various topological features including plateau, slope
and creek. Fig. 1 shows the location of tile site and,
within the site, the measuring stations selected in the
present study.

II

o o# ,I -- s;,e eoo-_,v
OII I.H. 1-70 _]

. _ Sill === R-177

9. Jib 11
II

II
tt
|1

II

U tl|llUtltt|||nn|lfllfil|||l|ll|l|l |

inlllltunu lllllllnlllnnu||llllll_llllll|llttlio |ill

n
II

II
It

ASky Camera

0 Sunphotometer

• Pyesnometer, Pyrgeomete¢

X Rmdlosondes

o _ o

II I Km
II

Fig. I. M-'q) of tbc FIFE site, ccnlcrcd at 39 ° 04' N and 96 ° 30' W,

showing the location of the sky camera, radiosondes, a.d radiation

stations selected in the study.

The radiative flux measurements are those made

at stations 2 and 38 (see Fig. 1). Table 4 compares, for
downward shortwave and longwave irradiances the

values obtained at the two stations under virtually
clear skies (fractional cloud cover less then 5%). The
r.m.s, differences are small at the scale considered

(half-hour), representing only 2.6% and 1.7% of the
average shortwave and Iongwave irradiances,
respectively, and the biases are negligible. The
agreement between the datasets further indicates that

spatial variability of the clear atmosphere is small
over the distance between the two stations; iherefore,

in tile model computations one can confidently use
concomitant atmospheric data at nearby (not
necessarily the same) locations. For the comparisons,
we averaged radiative flux measurements at the two
stations.

Surface albedo was deduced by ratioing upward
and downward shortwave irradiances. The albedo

values at the two stations exhibited significant
changes (not shown here), especially at large solar
zenith angles. Nevertheless, we averaged those

values for use in the 5S model further assuming that
spectral surface reflectance is constant in the entire

solar spectrum and equal to the broadband surface



Table4. Comparisonstatisticsof downwellingirradiancemeasured
by stations2 and 38 during FIFE. Fractionalcloudcover, as
estimatedl.romd_cskyphotographs°is lessIhan5%. Averageand
rangevaluescorrcspcmdto slalion2.

Pa_ameler Nb. Ave. Range* Corr. r.m.s. Diff. flias

PIS. (Wal 2) (Win-2) Coef. (Win 2) (Win.2)

Shorlwlve

Irradiance 326 4?6.4 294.5 0.999 12.4 2.1

Longwave

hradiance 339 355. ! 44. I 0.991 6. I 0.9

* One standard dcvialkm

albedo. This procedure is questionable, indeed, but
somewhat justified because (1) the comparison is
limited to the domain of validity of the 5S code, that

is solar zenith angles less than 60 ° , and (2) the effect
of surface albedo on downward shortwave irradiance
is small.

To select clear sky conditions, we used fractional
cloud cover data (hourly values) derived from

photographs taken by an uplooking automatic
camera. The camera was located within a few

kilometers of stations 2 and 38 (Fig. 1). In deriving
factional cloud cover, the percentage of cloudy areas
in the photographs were corrected by the viewing
angle of each area relative to the vertical. Since the
camera operated in the visible, no cloud data were

available at night. We therefore limited the
longwave irradiance comparison to daytime.

The vertical profiles of temperature and water
vapor mixing ratio were obtained from radiosonde

measurements of pressure, temperature, and wet
bulb temperature. The radiosondes were launched

nearby stations 2 and 38 (Fig. 1). More than 6
radiosondes were launched on average per day,

mostly during daytime. The calculated water vapor
mixing ratio sometimes showed negative values,
especially during IFC-4. This was the result of
improper wet bulb temperature measurements below

273K. We therefore removed all the water vapor
information corresponding to wet bulb temperatures

below that value. The data was completed using
climatological profiles, noting that the water vapor
mixing ratio cannot be larger than the saturation
value.

Aerosol optical thickness and ,_ngslr6m exponent

are those inferred from total atmospheric optical

thickness measurements at different wavelengths by
several sunpholometers distributed within l]_e FIFE
site (Fig. 1). The measurements were made at

frequent time intervals (typically every half-hour)
when the sun was not obscured by clouds (file basis of

the method). In general, the aerosol optical
thicknesses were small, rarely exceeding 0.4; the
largest ones occurred during IFC-2. Diurnal
variability was significant (typically 50% of tl_e
average values), and so were the differences between

nearby stations. The ,_ngstr6m exponent exhibited
much more variability, mainly due to errors in its

determination from already noisy (to about 20%)

optical thicknesses. Since the aerosol optical
thicknesses were small and, therefore, |he aerosol

influence on surface solar irradiance also small, we

decided to use in the 5S model the average of all the
concomitant aerosol optical thicknesses and of all the
,_,ngstr6m exponents.

4. RESULTS AND DISCUSSION

4.1 Performance of the 5S model

Table 5 summarizes the data, except ozone
amount, used in the 5S model to compute downward
shortwave irradiance at the surface. The cases

selected correspond to fractional cloud cover tess
than 5% (sky non obscured) and sun zenith angle less

than 60 ° . Furthermore, we only kept the data when
all the parameters were measured within + 30
minutes of the shortwave irradiance measurements

at stations 2 and 38. In the calculations, Ozone
amount was fixed at 0.34 atm. cm since the effect of

ozone variations is small (a few Wm -2 ). The 5%

limit in cloud cover is somewhat arbitrary, but

justified to the extent that no significant changes in
the comparison statistics were found when lowering
tl_e 5% limit to 0%.

As seen in Table 5, the optical fl_icknesses are
small (0.23 is typical of a clear atmosphere), the

maximum values occurring during 1FC-2 (0.29 on
Julian day 192). The Angstr6m exponents vary
moderately around, the value of 1, which is
characteristic of continental aerosols (70% of dust-like

component, 29% of water-soluble component, and
1% of soot component). During IFC-2, however,
values as low as 0.52 were computed, indicating the

possible presence of larger, perhaps less absorbing,

particles on average. The values obtained on Julian
day 157, 0.13 for optical depth and 1.00 for ,_ngstr6m
exponent, may be compared to those reported by

Wrigley et al. (1990), 0.12 and 1.17, respectively. The
agreement is good, giving confidence to our values.

From the ,_ngstr6m exponent, we have an idea of

the aerosol type. By mixing various percentages of
dust-like, water soluble, and soot components, we
found for each case a combination that gives the
•/_ngstr6m exponent obtained from the

measurements and a single scattering albedo of 0.89.
This value for the single scattering albedo

corresponds to the determination of Wrigley et al.
(1990), who reported values ranging from 0.889 to
0.891 on Julian day 284. Without other information,
we used 0.89 for all cases. Our procedure is subjected

to errors, indeed, all the more as the aerosol

scattering phase function is another unknown
(fortunately the forward peak, of interest here, is not

as variable as the backward peak); but we have to
keep in mind that the optical thicknesses are small,
reducing to some extent the uncertainties associated
with unknown single scattering albedo and phase
function.



Table 5. Parametersusedin the 55 model. Bis the sunzenithangle,As is surfacealbedo,N is
fractional cloudcoverage,Uw is verticallyinte_'aw.dwith vaporamounts,_550 is aerosol.-Jptical
[hicknc_ at550rim,anda is Angs[r&nexponenLAll _ parameters,except0, weremeasuredin
situduringFIFE by pyranomemrs(As ), skycan_ra 0'4), radiosondes(Uw), andsunphotomclers
(3550.a ).

0 N Uw

Date (o) As (%) (gcm.2)
'r_ 9 0c

155.688 29.34 0.18 0.0 1.93 0.13 1.11

155.708 24.57 0.18 0.0 2.04 0.14 1.07

155.729 20.33 0.17 0.0 2.12 0.13 1.00

155.750 17.48 0.17 0.0 2.21 0.13 0.99

155.771 16.76 0.17 0.0 2.30 0.13 0.99

155.792 18.42 0.17 0.0 2.30 0.12 1.03

155.813 21.93 0.17 1.7 2.29 0.12 1.07

155.833 26.31 0.17 2.9 2.27 0.12 1.07

155.854 31.52 0.17 3.2 2.14 O. ll 1.05

155.875 37.07 0.17 1.9 1.97 0.11 1.00

155.896 42.81 0.18 1.9 1.81 0.11 1.01

155.917 48.65 0.18 1.5 1.82 0.11 1.02

156.792 18.30 0.17 3.6 2.10 0.13 1.30

156.813 21.81 0.17 3.2 2.08 0.13 1.29

156.833 26.20 0.17 3.0 2.07 0.12 1.24

156.854 31.42 0.17 2.7 2.06 0.11 1.12

156.875 36.97 0.17 1.9 2.04 0.10 1.09

156.896 42.71 0.18 0.5 2.03 0.11 1.19

156.917 48.55 0.18 0.0 2.02 0.11 1.35

157.833 26.09 0.17 0.0 1.89 0.13 1.00

187.688 30.09 0.18 4.8 5.05 0.20 1.03

192.583 59.35 0.22 0.0 4.04 0.25 0.56
192.604 53.48 0.21 0.8 4.17 0.26 0.55

192.625 47.62 0.20 3.0 4.37 0.27 0.62

192.646 41.80 0.19 2.4 4.57 0.27 0.62

192.667 36.08 0.18 2.3 4.64 0.27 0.58
192.688 30.57 0.18 2.0 4.59 0.27 0.56

192.708 25.68 0.18 1.1 4.55 0.27 0.61

192.729 21.21 0.17 0.3 4.67 0.29 0.53

192.750 17.97 0.17 1.5 4.79 0.29 0.52

192.771 16.70 0.17 4.5 4.91 0.29 0.62

229.771 25.16 0.17 0.0 2.82 0.10 0.94

229.792 26.02 0.17 0.0 3.01 0.10 0.96

229.8!3 28,45 0.17 0.0 3.23 0.09 0.99

229.833 31.91 0.17 0.4 3.41 0.09 1.01

229.854 36.37 0.17 0.9 3.47 0.09 1.03

229.875 41.39 0.17 1.5 3.53 0.08 1.05

229.896 66.78 0.18 2.8 3.60 0.08 1.07

229.917 52.41 0.18 2.9 3.68 0.08 1.09

229.938 58.18 0.19 3.2 3.77 0.08 1.12

280.771 44.54 0.17 0.8 1.66 0.07 0.74

280.792 45.66 0.17 0.8 1.72 0.06 0.81

280.813 47.79 0.17 0.8 1.77 0.06 0.88

280.833 50.64 0.17 0.4 1.78 0.06 0.95

280.854 54.34 0.17 0.0 1.80 0.06 1.02

280.875 58.63 0.17 0.0 1.81 0.05 1.10

284.833 52.14 0.17 0.0 1.33 0.08 1.37



Figure 2 shows the results of the comparison. On
a half-hourly time scale, the correlation coefficient is
above 0.99, the standard deviation is 23.2 Wm "2

(about 3% of the average value), and the bias is 13.2
Wm -2 (overestimation by the 5S model). Examining
each IFC separately reveals that overestimation

occurs for all IFCs, except IFC-2. In the case of IFC-2,
the 5S model gives lower solar irradiances. As

indicated above, the _ngstr6m exponent during IFC-
2 exhibits relatively smaller values which may be

associated with less absorbing aerosols (single
scattering albedo closer to 1). Therefore we may have
overestimated aerosol absorption in the model, and,
consequently, underestimated surface shortwave
irradiance. In fact, because of uncertainties in the

model input parameters, the 13.2 Wm -2 bias may not
be significant.
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4.2 Performance of file wide-band model of
Morcrette (1984)

We ran the model of Morcrette (1984) with the

temperature and water vapor mixing ratio profiles
determined from the radiosonde observations.

Ozone mixing-ratio profiles were climatological, and

the carbon dioxide mixing-ratio was fixed at 350 ppm.
As for the shortwave irradiance comparison, we
limited the computations to cases for which the
fractional cloud coverage was less than 5%.
Furthermore, we kept only the cases for which the
radiosonde launches occurred within + 30 minutes

from the longwave radiation flux measurements.

The number of cases selected, 146, is much higher
than that used to verify the 5S model, 47.

Figure 3 shows the result of the comparison. On a
half-hourly time scale, the correlation coefficient,

0.98, is high and the standard deviation, 13.0 Wm -2,

is small, representing 3.7% of the average value. A

-7.4 Wm -2 bias is computed, indicating slight

underestimation by the model. The agreement is

good for values above 370 Wm -2, which mostly
occurred during IFC-2 and IFC-3 (warmer and more
humid atmosphere). Below that value, the model

tends to underestimate surface Iongwave irradiance,

in some instances by as much as 40 Wm -2. We find,

as in the comparison with the line-by-line model,
that Morcrette's (1984) model is more sensitive to

changes in atmospheric temperature and water
vapor. The difference, however, is that the best
results are now obtained for relatively warm and
humid atmospheres.
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5. SUMMARYAND CONCLUSIONS

Using surface and atmosphere data acquired

• during FIFE, we have compared the outputs of two
radiative transfer models, the 5S model based on
Tanr6 et al. (1979) and the wide-band model of
Morcrette (1984), to surface radiation fluxes

(downward shortwave and longwave, respectively).
The comparisons were made on a half-hourly time
scale in virtually clear sky conditions (fractional

cloud cover less than 5%). The results show a good
agreement between calculated and measured fluxes,

namely correlation coefficients above 0.98 and

standard deviations of 23.2 Wm -2 (2.7%) and 13.0

W m -2 (3.7%) for shortwave and longwave

irradiances, respectively. The 5S model

overestimated shortwave irradiance by 13.2 Wm -2 on
average, whereas the model of Morcrette (1984),

underestimated longwave irradiance by 7.4 Wm -2 . If

significant, these biases may compensate partially

when computing the radiation budget at the surface.
On longer time scales (e.g., daily or monthly), more
suitable for climate studies, we expect the standard
deviations to be reduced substantially. The model of



Morcrette (1984) performed better in relatively warm

and humid atmospheres and appeared slightly too

sensitive to atmospheric changes. From our study,

unfortunately, we cannot copclude on the aspects of

the radiative transfer models that need

improvements. This would have required a more

extensive and complete set of measurements. Using

the 5S model (or a derived parameterization) with

typical continental aerosols, a visibility of 23 km, and

climatological water vapor amounts instead of

measured atmospheric properties leads to a similar

standard deviation and an even reduced bias for the

shortwave irradiance at the surface. This suggests

that standard and/or climatological, eventually

seasonally-varying, atmospheric parameters may be

sufficient to estimate clear sky shortwave irradiance

at the surface accurately.

The comparisons made in this 15aper demonstrate

the suitability of the 5S model and the model of

Morcrette (1984) for surface radiation budget studies,

at least in clear sky conditions. However, clear skies

do not represent general atmospheric conditions, and

validation studies are necessary to assess model

uncertainties in the presence of clouds. The problem

is much more complicated, indeed, because clouds

are highly variable and lheir properties are difficult

to measure accurately. Programs such as the

Atmospheric Radiation Measurement program of

the Department of Energy, however, may provide the

appropriate measurements. In any case, it is

anticipated that the uncertainties will be larger in

cloudy conditions. Clouds, in particular, are

generally not plane-parallel, but plane-parallel theory

is used in Morcrette's (1984) model. Experiments

may be useful here, for instance, to determine

suitable corrections. When estimating the surface

radiation budget from space observations, plane

parallel approximations are currently used to

estimate the governing cloud parameters. It may be

found, because of the uncertainties in deriving

secondary cloud parameters, that improving some

aspect of the radiative transfer models are

unnecessary.
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ABSTRACT

We examine the effect of radiometrlc calibration uncer-
tainties on satelllte-derived net shortwave irradiance at the

earth's surface. Using Ref. 5's satellite technique, we ex-
press the net shortwave irradiance sensitivity to calibration
as a function of two basic components that depend on sur-

face and cloud aibedo sensitivities, respectively. The analy-
sis of these sensitivities for a wide range of atmospheric and

surface conditions, as well as radiation geometries, shows

that a 10% uncertainty in the calibration induces up to
70 Wm -2 errors in instantaneous net shortwave irradiance

(negative when the calibration uncertainty is positive). The
maximum relative errors are obtained in overcast conditions

when cloud albedos are high. On a monthly time scale, the
induced error becomes typicalJy 13 Wm-= in the tropics
and le Wm-2 in higher latitude regions during summer.

The error almost vanishes at high latitudes during winter.

A 10% positive uncertainty in the calibration gives a net

shortwave irradiance error similar to that induced by the
3-hour sampling of the ISCCP Project.

Keywords: Net shortwave irradiance, radiometrlc call-

bration, satellite, surface albedo, cloud aibedo, sensitivity,
climate.

1. INTRODUCTION

Although the earth's climate is expected to undergo
changes in response to radiative forcing induced by in-

creased trace gases, it is not clear how these changes will

take place or how they will affect atmospheric and oceanic
circulation, precipitation patterns, and cloud cover distri-

bution. Monitoring radiative fluxes at the earth's surface

and the top of the atmosphere over climatic time scales can

give us some clues as to the nature of these changes.
Long-term monitoring of radiative fluxes necessitates

assimilation of observations, data analysis, and radiation

transfer models for determining fluxes and their eventual

changes. Since it is anticipated that radiative flux changes
will be marginally above the noise level, at least over the
next decade, it is crucial that the observations have long-

term consistency so that small changes be detected early.

This can only be achieved if careful calibration of observing
instruments is performed.

Successful attempts to estimate radiative fluxes at the
earth's surface (e.g., Rare. 5, 4, and 9) have involved hlgh

space- and time-resolution spectral (visible and infrared)

radiances from imaging satellite radiometers. While in-

struments measuring in the thermal infrared are generally
checked in flight with blackbodies of known temperature,

instruments measuring in the visible lack on-board calibra-
tion. These instruments, nonetheless, can be calibrated by
other means and have been used in validated methods to
estimate net shortwave irradiance at the earth's surface.

It is therefore important to assess the effects of potential

calibration errors on net shortwave irradiance estimates.

This is accomplished in the present paper using Ref. 5's
model. After briefly reviewing net shortwave irradlance ac-

curacy requirements for climate studies, we examine how

the various sateUite-derlved model parameters, And, there-

fore, the net shortwave irradiance, axe sensitive to calibra-
tion. We then discuss the results in view of other potential

sources of uncertainty, in particular temporal sampling. We
conclude with a few recommendations for climate monitor-

inf.

2. REQUIREMENTS

The accuracy to which satelllte-derived net shortwave
irradlance at the earth's surface needs to be determined de-

pends upon the application of interest and its time scale.

For instance, when attempting to describe surface net heat

flux variations associated with the El-Nifio/Southern Oscil-

lation (ENSO) phenomenon over the Pacific Ocean, which
are on the order of 200 Wm -2, an accuracy of about
10 Wm -a over monthly time scales and spatial scales of

2* of latitude by 10 ° of longitude is required (TOGA Scien-

tific Plan). In other oceanic regions where climatic changes
axe smaller over similar time scales, a better accuracy is

required.
Over land, shortwave irradiance flux is important for

validating General Circulation Models (GCM), provid-
ing GCM boundary conditions, and studying surface-

atmosphere interactions. The requirements for these stud-

ies are more stringent than for those over the ocean because

there is a need to know the spectral composition and an-
gular distribution dependence of the shortwave irrsdiance
in addition to the total amount. If the requirement is llm-

ited to the amount, the accuracy is also 10 Win-=, but over

smaller time (1-10 days) and space (50-100 kin) scales.

Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing held at Aussois, France, 18-22 January

1988 (ESA SP-287, April 1988)
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3. NET SHORTWAVE IRRADIANCE

SENSITMTY TO CALIBRATION

3.1. Derivation of CslibrM_Qg EffectJ

Our investigation of the sensitivity of satellite-derived
net shortwave irrsdiance at the surface to calibration is

based on computations performed with the model of Ref. 5,
later refined by Ref. 2. The net shortwave irradlance at the
earth's surface, SW, ct, is expressed as

sw.,, = (1 - ,4,)[(1 - iv) swd.., + NSWdo.d] (1)

where A, is the surface albedo, N is the cloud cover, end

SWclealr and SWclou d denote the downward shortwave ir-

radiance in clear and cloudy conditions, respectively. To

estimate A,, 5Wdes: , and 5Wdoud , the following equations
are used:

_ L., - So a to,( Oo,O)
A,= So(1- -)(1- "9_o,(Oo,O) (2)

swa._ = so(1- (,)(1+ ,4,(,')to,(0o)t.(0o) (3)

SWdoud = So(1- a)(1- Ac - a_)tos(0o)tw(0o),tw(0O)b (4)

where 5o is the solar constant (instantaneous), Ls.t is the

GOES Visible Infrared Spin Scan Radiometer (VISSR) ra-
diance in the visible, a and a I are the scattering coeffclents

for direct and diffuse radiation, respectively, Oo is the solar
zenith angie, 0 is the viewing zenith angle, .4¢ is the cloud
albedo, ac is the cloud absorption, to. is the ozone transmit-

tance, t_ is the water vapor transmittance, and subscripts
"a" and "b" refer to the water vapor absorption above and

below clouds. In Eq. (4), Ac is obtained by solving the
followingquadratic equation:

7rLsat

So to,(Oo,O) =a + (1 - 0)(1 - a')Ac + a'(1 - ,,')(1 - ,_")A_

+ (i - 0)(1 - 0')(1- A¢ - a,:)2A. (5)

and ac is fixedat 20_ of A¢. To estimate 2V',a threshold

technique is employed (for details, see Ref. 5) or, alterna-
tively, Ref. l's spatinl coherence technique.

In order to examine how the 5Wna estimates are sen-

sitive to the c*l;bration of the GOES VISSR solar channel,

the only wavelength channd used in Ref. 5's technique, we
may linearize Eq. (1) about a reference state:

SWeet + _(sw.., - s--W..,) (8)

where 9 is the calibration gain that allows conversion of
satellite digits] counts into shortwave radiances and the

overbar denotes the reference state. To simplify Eq. (6), we
have assumed that the calibration is entirely defined by the
gain g. For a particular reference state, OSWnet/Og thus
represents the sensitivity to calibration of the net short-

wave irradiance. Our objective is to estimate 88SWna/Og

for a wide range of reference states (atmospheric and sur-

face conditions) and assess the effect of time averaging on
(3SW,,, / (3g.

Applying the operator (3/(39 to both sides ofEq. (1) and
using Eq. (2) yields the following expression for (3SWna/(3g:

(35W.et (3A, [ (1 - a' + 2a'A,)
(3--f--= - (3-gL(1- 7¢) -(i¥g,-X_,)s-_¢_...

] "+ _7_ao.d + _-g(1 - g,)(3Wdo.d -- _a..)

(3Acg(l - A,)_'l_doud

(3# (1 - A'c - _c) (7)

This expression is convenient since (3SWaet/(39 appears

as a ]_near combination of (3A,/(3g, (3N/89, and (3AJ(3g,

the sensitivities to the various satellite-derived parameters
involved in the SWaet computation.

Let us now examine (3A,/(3g, 0N/(39, and (3Ad(39 sep-
arately. First, (3A,/Og is difficult to estimate when N is

obtained with the threshold technique because clouds are

inhomogenous spatially. In this case, depending on the spa-

tial distribution of vertically integrated liquid water and,

hence, A¢ within the study area of fractional coverage _,

(3N/(3g can take a wide range of values; tracking down the

most probable values would require an involved statisicai
analysis of a large variety of cloud fidds. This is certainly
beyond the scope of our study. Purthermore, even if we try
to simplify the problem by taking A¢ as a constant, (3N/(3g

then becomes a Dirac function of _sst - L";sat, _'_sst being
the threshold, which is obviously not renllstlc. When the
spatiai coherence technique is used, however, (3N/(3g can

be readily obtained. We then have:

= Z_,.,- Z., (s)

where superscripts %" and "c" refer to the satellite ra-
diance in the clear and cloudy regions of the study area,

respectively. Since

Z.,= gl('cW.,) (9)

where ON,st is the satellite digital count in the reference
state and f is a function of the digital count only, the ratio
on the right hand side of Eq. (8) does not depend on g.
This leads to

ON

(3--9- = 0 (10)

At first sight, Eq. (10) suggests that Ref. l's method
should be employed to minimize the influence of calibration

errors on SWnet estimates. This cannot yet be confirmed
because (3N/(39 _ 0 might reduce the absolute value of

(3SW, a/(3g as a result of compensations between terms (see
Eq. [7]). Still, in view of the aforementioned difficulty of
estimating (3N/(3g when the threshold technique is used and

since (3N/(3g = 0 when the spatial coherence technique is

used, which can always be done, we shall ignore herea.Cter

aN/(3g in Eq. (7).
Differentiating Eqs. (2) and (5) yields the followin 8 ex-

pressions for (3A,/(3g and (3_/(3g:

(3A,, = _ + (1 - _)(1 - _)A, (11)
(3g g(1 - _)(1 - _)

(3.4.
(3g = [a(1.2A.)(1 - 1.2A¢) + (1 - a)(l - a')Ac+

a'(1 - a)(1 - r,')A_]l

(1 - a)(l - a')[l- 2.4A, + (20' + 2.88A,)A¢]

(12)
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where we have used Eq. 5 mad the corresponding equation

for dear sky conditions. We see that aA,/Sg is a linear
function of Ae, while 8A¢/Sg is a more complex function

of A¢ as we]1 as A.. Both sensitivities are influenced by
atmospheric scattering, but not by ozone absorption. We
aiso note that 8A,/Sg _ 0 when A, = 0, but 8Ac/ag = 0

when A¢ = 0.

3.2. Results and Discussion

In ai] the results presented and discussed below we as-
sume, for ease of interpretation, that the calibration uncer-

tainty is 10% of the gain. This corresponds to the uncer-
tainty achieved with present post-launch calibration tech-

niques, be they vicarious using ground targets (Ref. 3) or

direct using suitably equipped aircraft (Ref. 8).
First, we examine the sensitivity to calibration of the

surface aibedo (Fig. 1) and cloud aibedo (Fig. 2), as ex-

pressed in Eqs. (11) and (12). Figure 1 indicates that
OA,/Og depends only slightly on 00 and that a 10% uncer-
tainty in the calibration yields about the same uncertainty

on A,. The same type of dependence on O0 and A¢ instead

of A, is obtained for OAc/Og (Fig. 2). When A, becomes

large (> 0.3), however, OAc/Og increases rapidly at small
A_ values. Thus, over land, where A, can be large, we ex-

pect up to 100% 5W,,t uncertainties for clouds of small A¢

(i.e., low liquid water content). This effect is quite impor-

tant, even though SWaet is considerably reduced when A°

becomes large.
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Next we look at the SWnet sensitivity to a 10% un-

certainty in the calibration (Fig. 3). The results are pre-
sented as a function of the most important parameters in-

volved, namely Ao (Fig. 3a), N (Fig. 3b), A¢ (Fig. 3c),

and Re (Fig. 3d). As indicated in the previous section, the
SWaet sensitivity is made up of two terms (since we ne-

glect ON/Og) that depend on OAe/O9 and OA¢/Og, respec-
tively. Their contribution is aiso shown in Fig. 3. For the

atmospheric and surface conditions selected, we find simi-
lar sensitivity ranges for nil parameters, with a 75 Wm -2

maximum when N = 1. For instance, the SW, et sensitivity

decreases with 00, _om about -50 Wm -a for 8o = 0 ° to
-5 Wm -= for 00 = 80 °.

Lastly, we anaiyze the sensitivity of monthly-averaged
SW=_L to calibration during the year for various latitudes.

The results are presented in Fig. 4. As could be expected

from Fig. 3d, the sensitivity is larger in the tropics most
of the year (except in the summer). The monthly S_"n=t

sensitivity is only about -13 Wm-= in the tropicai region

compared to an instantaneous SW_=t sensitivity on the or-
der of -70 Wm-L These results are to be compared with

the accuracy obtained in estimating SWact over the ocean

in the tropics (e.g., Refs. 6 and 7) which is about 18 Wm -2

on a daily basis, when assessed by comparing sateliJte pre-
dictions with surhce measurements.
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4. OTHER SOURCES OF UNCERTAINTY

Uncertainties in determining large-scale net shortwave

irradianee at the surface have other sources than calibra-

tion. For example, they may orlg_nate from applying an im-

perfect model to the satellite radiances and from inadequate

cloud sampling. Most of these uncertainties have a random

component such that when averages are computed, the un-

certainties are reduced• Calibration uncertainty, however,

generally introduces a bias (calibration i_uctuations have

long time periods) that does not diminish through averag-

ing procedures. While it is not our intention in the present

paper to make an exhaustive study of the uncertainties that

might a_ect SV_net computations, it is [nteresting to com-

pare the uncertainty due to calibration to that resulting

from temporal sampling, for instance. In order to provide

orders of magnitude, we write SWnct as a function of a

cloud parameter, EL, which represents the integrated ef-

fects of clouds on the shortwave irradiance:

SWnet = (1 - A.)SWd,=( 1. - CL) (13)

If Ah denotes the sampling interval, the sensitivity of

SWne t to Ah c_kll be expressed as:

8SW==t 8SW¢Io=, , 8CL SWd,,¢(l-As)

a_h o_h (1-a'A1- eL)- a-S-_ (14)

where we neglected ÜA,/O(Ah). To compute 8SWnet/OAh,

we have to assume a variation of CL with time. In the

tropics, for instance, a typical diurnal cycle exists that can

be parameterized as

CL(h) = O.5 _ O.2 cos (2rr___) (15)

where ho is local noon.
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F_. 5: Sensitivity of monthly-averaged net shortwave irra-
dlance at the earth's surface to sampling !nterval;

A typical diurnal variation iS assumed for the cloua

parameter.

When Eq. 15 is used and SW==t averaged over one

month, we obtain the results presented in Fig. 5. We see

that OSWnet/SAhresches -12 Wm -2 when Ah = 5 and

that the largest contribution comes form sampling 5Wae.,.

If we change Ah from I to 3 hours, for example, SWntt will

change by:

asw.., = SW=,(Ah = s) - SW=,(Ah = 1)
msw=, _ (osw.,q

_ _15Wm-Z (16)

This bias is similar in magnitude to that introduced by

a calibration uncertainty of 10%. It is interesting to note

that, for the conditions considered, the sampling adopted

in the International Satellite Cloud Climatology Program

(ISCCP, i.e., 3 hours) introduces a bias of -15 Wm -2-

5. SUMMARY AND RECOMMENDATIONS

We have performed a study of the sensitivity of the net

shortwave irradiance at the earth's surface to calibration.

This study has showed that a uncertainty in the calibration

leads to uncertainties up to -70 Wm -3 for instantaneous

values of net shortwave irradiance in overcast conditions

and up to about -15 Wm -2 for monthly averaged values.

In the tropical resnons, the monthly averaged uncertainty

is -13 Wm -I. This uncertainty appears as a bias with a

sign opposite to that of the calibration bias, i.e., a positive

bias in calibration induces a negative bias on net short-
t

wave irradiance. We have compared the uncertmn y due to

calibration to that introduced by temporal sampling. We

have found that the ISCCP sampling (3-hour) introduces a

bias of typically -15 Wm -_ in the tropics. This indicates

that, if the calibration bias is negative, the biases intro-

duced by the calibration could compensate that introduced

by temporal sampling. The amount of compensation could
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be partly assessed by comparing monthly-averaged estima-
tions of net shortwave irrs_ance from sate]_te observations

to those obtained from pyranometer measurements.

Considering the results just summarized, it is very im-

portant to improve the calibration of spectra/ radiances
used to compute net shortwave irradiAnce at the earth's

surface, such as those from imaging radiometers. This cali-

bration can be performed on-board future instruments, but

for present instruments it must be done using a combina-
tion of complementary techniques. Ca/ibratlon of the visi-

ble radiances is important for ISCCP data sets since they

are, at present, only normalized to one particular visible

sensor, which is itself poorly calibrated. We recommend

that a calibration strategy be established with the objec-

tives of providing both long-term calibration changes and

the best possible absolute instantaneous calibration. Such

a strategy could involve a continuous monitoring of call-
bration targets and a complete ca_bration experiment that

provides the necessary measurements to apply all possible
calibration methods.
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VARIABILITY OF PHOTOSYNTHETICALLY AVAILABLE AND TOTAL SOLAR

IRRADIANCE AT THE SURFACE DURING FIFE: A SATELLITE DESCRIPTION

Robert Frouin and Catherine Gautier
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I. INTRODUCTION

Sunlight drives the energy, water, and biochemical

cycles of the earth surface/atmosphere system. The flux of
solar energy through the various spheres of the system,

namely the stratosphere, troposphere, and hydrolithosphere,
is understood generally, but specific rates and underlying
processes are not well-known. This prevents our accurate
prediction of the system's response to natural and
anthropogenic changes, including changes inherent to the
system's internal dynamics.

Over land surfaces, this study's domain of interest,

insolation largely determines the surface temperature and the
rate of evapotransph'ation, with important consequences on
air-surface interactions and the global hydrologic cycle.

Precipitation, for instance, is sensitive to changes in
evapotransptration, at least on a regional scale. On the other
hand, solar radiation at the wavelengths between 0.35 and
0.7 wn is used by plants in the process so fundamental for
life: oxygenic photosynthesis. Photosynthetically active
radiation (PAR) governs primary production, the rate of

carbon fixed by terrestrial vegetation, and knowing the
geographical Location of the fixed carbon, as ,,',eli as its rates

and forms of release, is important in studying the increase in
atmospheric CO2 and trace gas concentrations.

Various methods, based on visible and near-infrared

observations from meteorological satellites, have been
proposed to estimate insolation at the earth's surface (e.g.,
Tarpley, 1979; Gautier et al., L980; M6ser and Rashke,

1984; Pinker and Ewing, 1985; and Dedieu etal., 1987,_.
These methods offer the opportunity to map insolation

accurately (within 10% on a daily rime scale) over large areas
and, eventually, the entire globe (global scale satellite
datasets are now becoming available). The perspective of a
globaL, long-term climatology of surface insolation, which

can only be established using satellites, should help in the
investigation of the climate system's sensitivity to surface

processes by providing yalidation capabilities and boundary,
conditions.

While numerous studies have been devoted to

estimating insolation from satellite data, no satellite-based
method has been proposed for PAR. This is because, for

many applications involving small space and time scales,
PAR can be measured directly. Furthermore, it has often

proved satisfactory, to take PAR as a more or less constant
fraction of insolation. The relationship between PAR and
insolation, however, depends on atmospheric conditions and

radiation geometry, (e.g., Baker and Frouin, I987). Clouds,
in particular, which do not absorb at PAR wavelengths but
do absorb sub,stantially in the near-infrared, increase the ratio

of PAR and insolation. Therefore, deducing PAR from a

satellite estimate of insolation (also suNect to uncertainty) is
not optimum. Moreover, since meteorological satellites

(except METEOSAT) carry instruments that measure in

spectral channels resembling more the PAR wavelength
range than the entire solar spectrum, it appears appropriate to
use these data to esdmate PAR directly.

In the present study, we apply the satellite method of
Gautier et al. (1980) to GOES-6 Visible and Infrared Spin
Scan Radiometer (VISSR) data acquired during the First

ISLSCP Field Experiment (FIFE). The objective is to
assess whether the method can provide quantitative
information on the temporal variability of PAR and

insolation during the experiment. First, we describe the
salient features of the Gautier et al. (1980) method and

indicate how the method is modified to yield PAR. The

problem, in this case, is simplified since the VISSR solar
channel is mostly sensitive to photosynthesis wavelengths,
and cloud absorption vanishes in the radiative transfer
model. Subsequently, we discuss the calibration of the
V[SSR solar channels, and then we compare the satellite
estimates to the in situ measurements. The suitability of

deriving PAR from insolation is evaluated, with implications
for global studies of photosynthetic activity, since large-scale
satellite ciimatologies of insolation are now becoming

available. Finally, the importance of clouds in modulating
insolation and PAR is analyzed, and we conclude with a

perspective on future work.

2. METHOD

The method used to compute surface insolation.
originally developed by Gautier et al. (1980), is based on

simple, physical modeling of the most important radiative
processes occurring within the atmosphere, namely
scattering and absorption by molecules, clouds, and
aerosols. Since variability of surface insolation results

primarily from changes in solar zenith angle and cloudiness,
the method focuses on determining the effect of clouds on
surface insolation (solar zenith angle can be computed

accurately from simple formulas). The method accomplishes
this by computing cloud albedo, the governing cloud
parameter, from GOES VISSR measurements in the visible.
The repeat coverage of the GOES VISSR data (one

obse_'ation every 30 minutes) allows one to adequately
sample the diurnal cloud variability, a strength of the
method.

[n the computational procedure, we first determine
from a time series of satellite images (typically 15 days) the

minimum brightness count at each observation time during
the day. This minimum count defines a threshold (taken a
few counts higher) that is used to classify each GOES

VISSR pixel as clear or cloudy. The procedure, indeed,
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doesnotallowonetodeterminewhetherthepixel_ispartially
contaminatedbycloudsornot.Weutilizefullresolution
data,however,whichminimizestheerrorintroducedbynot
modelingtheresultingeffectoninsolation.Oncethepixel's
nature(clearorcloudy)hasbeendetermined,weapplyclear
andcloudyskyradiativetransfermodelsaccordingly.

Inclearskyconditions,surfaceinsolationisexpressed
as:

Io= So(@)-2cos 0 exp(- Ct/cos /9)/(1- CsAs)

u ° b u b

xexp[- ao(:o--ffT-g-)°]exp[-a_(co_o) "] (1)

where So is the solar constant, r/r o is the ratio of actual to

mean earth-sun distance, o is solar zenith angle, Uo and u_
are ozone and water vapor amounts, respectively, As is
surface albedo, and ao, bo, a_,b_,C:, and C2 are

coefficients (CI and Ce depend on the type and concentration
of aerosols). The term 1-C,_As accounts for photons that
have sustained multiple surface reflections. Equation (I)
differs from that of the original model, but not in essence.

Ozone and water vapor amounts are specified from
climatology and As is obtained by solving the following
equation.

asa,(C,Vin ) = ce ÷ (1- C_)(l- at)(l- ag)A s (2)

where A_a_ iS the albedo measured at the satellite (the surface

is assumed to reflect solar radiation isotropically), CN,,,,,, is

the minimum brightness count, cr and o_t are direct and

diffuse reflection coefficients, respectively, and ao

characterizes ozone absorption. Equation (2) simply states
chat Asa, is the sum of an atmospheric component (photons
reflected back to space without surface reflection), and the
signal reflected by the surface and diffusely transmitted to

space.

In cloudy sky conditions, the clear sky formulation is
modified to account for reflection and absorption by clouds
which are assumed to occur in one layer. Cloudy sky
insolation is therefore given by:

lc = Io(1- Ac - ac) (3)

where Ac is cloud albedo and ac is cloud absorption (taken as

a constant fraction of At). In Eq. (3) we neglect the effect of
multiple reflections between the cloud and the surface. This

effect, of order [c kc As. is generally small (a few Wm'2).

Cloud albedo is obtained by solving the following quadratic
equation:

A,,_, = a + (I- a)(l- cq)(l- ao)_

+ (1- A c - ac)a(l- c_)(1- ao)A s (4)

where A,at is the top-of-atmosphere albedo, assuming that
clouds reflect solar radiation isotropically. This equation, in
fact, gives Ac in the GOES VISSR solar channel (mostly

wavelengths in the visible). We assume, however, that A,:
takes the same value in the total solar spectrum, which is
reasonably well justified (see, for instance, Welch et al.,
19g0).

The above formalism, developed for insolation, only
requires slight modifications to become applicable to PAR.

In this case, we eliminate ac in the cloudy sky equations
(clouds do not absorb in the visible), replace So by the
extraterrestrial solar irradiance in the PAR spectral interval,
and modify the coefficients of the clear model so that they
represent the PAR wavelengths. For these coefficients we
take the values given by Frouin et al. (1989). Since ac does

not need to be parameterized as in the insolation case, and
since the VISSR solar channel mostly captures radiation in
the visible (no narrow-band to broad-band transformation is

necessary), we expect the model to perform better in the
PAR case.

3, INSOLATION AND PAR COMPUTATIONS

We focus, in this preliminary report, on FIFE's second
intensive field campaign (IFC), which took place at the end
of June and the beginning of July 1987 (peak greenness of
vegetation) on the Konza Prairie near Manhattan, Kansas.

Figure 1 locates the experimental site and, within the site, the
radiative flux stations selected for validation purposes.

To compute insolation and PAR over the FIFE area,
GOES-6 VISSR visible and near-infrared (solar channel)

data were acquired at full resolution (0.9 km at nadir) every.
half-hour during daytime. The data, g-bit coded, navigated,

but uncalibrated numerical counts, were made available by
the Space Science and Engineering Center of the University
of Wisconsin, Madison. In a preprocessing stage, we
calibrated and checked the data for navigational errors and

quality.

Calibration was achieved by regularly applying it_ice
a month) the indirect calibration method described in Frouin

and Gautier (1987). This method, which uses space and the
White Sands Monument area in New Mexico as calibration

targets, computes the radiance measured at satellite altitude

using a fairly accurate radiative transfer model, the model of
Tanrd et al. (1986). The relevant atmospheric characteris:ics
are estimated from either climatological data (ozone amount,
aerosol size-frequency distribution, and refractive index) or
observations at nearby meteorological stations (water vapor

amount and aerosol loading). The method's theoretical
accuracy is 8%, but it might even be better, as comparisons
with a more direct method involving high-flying aircraft have

suggested (Whitlock et al., 1987). Figure 2 shows the
calibration gain (relates count-squared to reflectance)
obtained during 1987. In the figure, each point corresponds

to a daily average performed with three White Sands
observations near local noon and one observation of space.

The vertical bars represent one standard deviation (around
the daily average) of individual calibrations. Somewhat
erratic fluctuations are observed from one gain estimate to
the next, in some in'stances reaching t0%. Changes of such

amplitude, however, are at the limit of the uncertainty level.
In addition to the relatively high-frequency fluctuations, the

gain exhibits a low-frequency variation, with minimum
values in April, May, June, and July. Prior to 1987, similar
),early variations have been detected by other indirect
calibration methods (see Whitlock et al. 1987), which
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suggest that the observed feature is actual and not the result
of a bias in the method. From July to December 1987, the

gain increased by approximately 36%. Compared to the
prelaunch gain, the gain at the end of 1987 reads higher by
64%.

Navigation was checked by comparing the computed
earth coordinates of reference points on the surface, in
particular small lakes (that appear very black on the visible

images), to the actual coordinates. The agreement was
generally good, within a few kilometers. In exn'acting the
FIFE area from the satellite images, we therefore shifted the
pixel lines and samples accordingly. Note, however, that
navigational errors of a few kilometers, although they

change the actual radiation geometry, do not affect the
insolation and PAR results significantly (errors in the'
parametedzation of atmospheric process largely dominate).

After the preprocessing stage, we produc'_d
instantaneous and daily e<:_.mates of insolation and PAR by

applying the procedure described in section 2. [n the
calculations, we used the continental aerosol model of the
International Radiation Commission (WCP, 1983) and fixed

the atmospheric visibility (characterizes aerosol turbidity) at

23 kin. Climatological values of 3.0gem 2 and
0.31 atm-cm were takeri as representative of the water vapor
and ozone amounts during the IFC, respectively. Since the

surface albedo of vegetated surfaces differs substantiallyin
the visible and total solar spectrum (vegetation reflects more
in the near-infrared), we increased the VISSR-derived

surface albedo by a typical factor of 1.64 in the insolation
calculation (Eq. I). The daily averages were obtained by

simple trapezoidal integration, which is sufficient since the
sateltite observations are well-sampled in time
(approximately 24 observations at 30 minute intervals during
daytime). Such a simple scheme, however, biases low the
daily integrals ,,,,'hen the sampling frequency is not as high

(case of missing data), especially in clear or mostly clear sky
conditions.

4. COMPARISON WITH IN SITU
MEASUREMENTS

For selected days during the IFC Fig. 3 show's the
diurnal variation of measured insolation at stations 5 and 26

and the corresponding satellite estimates at particular times
during the day. In the figure, the surface values are half-
hourly averages and the satellite estimates are spatial
averages over the FIFE area. Julian days 176, 177, and 178

are mostly clear, whereas the others are mostly cloudy.
(Note that the Julian days are depicted with respect to GMT

and not local time). We notice slight differences between the
values measured by the two stations, but not a systematic
bias. The discrepancy is more pronounced in cloudy

conditions (e.g., day 188), which plausibly results from
spatial cloud variability (stations 5 and 26 are 15 km aparti.
In general the satellite estimates are in agreement with the
measured values; they describe well the actual diurnal cycle

Even rapid insolation changes, for instance at the end of day
177, are detected. During day 189, the satellite estimates did
not see the early afternoon variations, but the two stations

measured a significandy different incoming solar flux.

The same type of results are obtained for PAR
(Fig. 4). Satellite estimates are in good agreement _,,ith
surface values, and reproduce well the diurnal cycle. The
surface PAR data, however, are noisier than the surface
insolation data. Station 5, for instance, which measured
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Fig. 3: Calculated and measured insolation for selected days

during FIFE's second IFC. Satellite estimates are
instantaneous, whereas measured values are half-hourly

averaged.
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191.0

both PAR and insolation, reports anomalously tow PAR
values on day t78. Examining Figs. 3 and 4, we note the
similar diurnal variation of PAR and insolation, which
indicates, as we know, that the two quantities are highly
correlated.

Figures 5 and 6 show, respectively, the tempo_l
variation of daily insolation and PAR during the entire EFC

(2t days total). The agreement is generally within 15-

20 Wm -2 for insolation and 5-10 Wm 2 for PAR. Day
182, however, stands out. The method, in that case, did not

detect much cloudiness. [n fact, the clouds during day 182
exhibited brightness count values slightly less than the
clear/cloudy threshold and, therefore, were not seen. This

is, indeed, the disadvantage of using a threshold to separate
clear and cloudy pixels; notwithstanding, with exception of
that day, the clouds were distinguished properly. [f we now
examine the scatter plots of estimated versus measured daily
insolation and PAR (Figs. 7 and 8), we do not notice a bias

in the satellite estimates. [n cioudy conditions (the lowest
values on the plots), the PAR estimates are closer to the line
of slope 1 than the insolation estimates, which indicates a
better performance of the satellite method in the case of
PAR. This is somewhat expected, as mentioned in the

introduction, since the modeling of the cloud processes is
simplified for PAR. The atmospheric conditions, however,
were rather clear during FIFE's second FFC, and more

comparisons in the presence of clouds are necessary to
quantify the improvement.
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Fig. 5: Calculated and measured daily insolation dunng
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Table 1 summarizes the statistics of half-hourly and
daily comparisons for both insolation and PAR. The
statistics are drastically improved when passing from a half-
hourly to a daily time scale. Even though the correlation
coefficient is similar, yet above 0.95, the standard error of

estimate decreases from 86.7 to 21.6 Wm a in the case of

insolation and from 41.9 to 8.2 Wm 2 in the case of PAR.

The bias always remains small, not exceeding a few Win z

on a half-hourly time scale, and reducing to about 1 Wm "z

on a daily time scale. For PAR, however, the overall
statistics are better. The standard error of estimate for daily
comparisons, in particular, represents only 6.5% of the
average measured value in the case of PAR, but reaches
almost 9% in the case of insolation. Note finally, that the
results obtained for insolation are similar, in terms of

comparison statistics, to those reported by Gautier et al.
(1980), Diak and Gautier (1983), and Raphael and Hay

(1984), who applied the satellite method over varied
terrestrial sites.
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Table 1. Comparison statistics of calculated and measured
insolation and PAR.

Insolauon PAR

Parameter Haft. Daily Half-
Hou rlv Heudy

Daily

CorrelationCoefficient .961 .964 950 .968

Standard Error (Wm 2) 86.7 21.6 41.9 8.2

Bias (Wm 2) -5.3 -1.5 4.0 1.4

Number of Points 469 21 471 21

5. DISCUSSION

We have shown in the previous section that the method
of Gautier et al, (1980) for insolation and its modified

version for PAR provide reasonably accurate insolation

estimates, especially on a daily time scale. On a half-hourly
time scale, the assessment of accuracy is inherently more
difficult to make since the satellite estimates are quasi-

instantaneous whereas the in situ measurements are time

averages. Furthermore, it is not clear whether a spatial
average over 15 x 15 km at a given time is represented

adequately by a half-hour average at a specific location. 1-he
discrepancies, however, are substantially reduced on daily

inte_als. The accuracy of the daily insolation estimates is
sufficient, or at least useful, for large-scale surface-

atmosphere interaction studies (10Win 2 is typically
required for climate studies) and that of PAR adequate for

global primary, production computations. In the latter case,
the major uncertainty comes from estimating the fraction of
PAR that is intercepted and absorbed by the vegetation

canopy.

Insolation and not PAR, however, is being produced

from global satellite datasets, such as those compiled within
the framework of the International Satellite Cloud

Climatology Project (ISCCP; Schiffer and Rossow, 1983).
Since PAR and insolation are highly correlated (see, for

instance, Figs. 3 and 4), it is interesting to compare the
accuracy with which one can deduce PAR from a satellite
estimate of insolation to that obtained when PAR is directly
estimated from the satellite data (the method described in

section 2). Figure 9 shows the ratio of daily PAR and
insolation at station 5. We did not use the data of stations 21

(PAR) and 26 (insolation) because, even though these
stations were close, they were not at the same location, and,

therefore, spatial cloud variability may introduce errors in the
ratio (in fact an anomalous value was obtained for day 185).

We notice that the ratio is fairly constant around the average
value of 0.448. We do not detect at this time scale,

however, a tendency for the ratio to increase when average
cloudiness increases, as theory predicts in cloudy

conditions.

Using the average value of 0.448 for the ratio of daily
PAR and insolation with the satellite estimates of daily

insolation presented in section 4, we deduced PAR values
that we compared to in situ measurements. The comparison
statistics revealed the same correlation coefficient as m

Table 1 (0.969) and a slightly larger standard error of

estimate (I0.0 instead of 8.2 Wm "2) and bias (2.4 instead of
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Fig. 9: Ratio of daily PAR and insolation during FIFE's
second IFC.
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1.4Win2). Althoughbasedon21points,thesefigures
showconvincinglythatsatellitee_timatesofinsolationyield
usefulPARestimatesonadailytimescale.Keepinmind,
however,thattheratioofPARtoinsolationmaychange
significantlydependingonthetypeof atmosphere.In a
moistandhumidclearenvironment,it mayreachvalues
above0.50.Largevariationsintheratio,however,arenot
likelvtooccurataspecificsiteduringafewweekperiod
(see"Fig.9). YetincalculatingPARfrominsolation,we
determinedinsitutheratioofPARandinsolation,which
minimizestheuncertaintyinthisratio.Ontheotherhand,
adaptingtheinsolationmodeltoPAR(andthismayapplyto
othersatellitemethods)israthersimp[eandeliminatesnot
onlytheuncertaintyinthePAR/insolationratio,butalsothe
uncertaintyincloudabsorptionandnarrow-bandtobroad-
bandconversion,whichaffectsinsolationestimates.

Finally,sincecloudradiationinteractionsareimportant
to weatherandclimaticprediction,it is worthwhile
examiningtheroleof cloudsinmodulatinginsolation.
FollowingCharlockandRamanathan(1985),wedefinethe
cloudforcingoninsolation(PAR)asthedifferencebetween
insolationinclearandactualskyconditions.FigureI0
showsthedailycloudforcingduringtheIFCfor both
insolationandPAR.[nthecalculationweusedthesatellite
estimatesandcomputeddearskyirradiancesfromtheclear
skymodels.Thecloudforcingreachesabout75%of the
clearskyinsolationondays180and181.Minimum(or
maximum)valuesoccurevery2 to 4 days, which

correspond roughly to the time scale of mid-latitude
atmospheric perturbances. Compared to the effect of
changes in water vapor amount and aerosol type and amount
(Fig. 1 l), the cloud forcing [argely dominates (by typically
one order of magnitude). This indicates, in other respects,
that while developing satellite techniques to esnmate
insolation (or PAR), one should concentrate on the role of
cIouds (and, therefore, determine accurately the governing

cloud parameters) rather than on the influence of the clear

atmosphere.
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6. SUMMARY AND CONCLUSIONS

In the fLrst part of the study, we have indicated how the
satellite technique of Gautier et al. (1980) can be modified to

yield PAR as well as insolation estimates. In the case of
PAR, cloud absorption vanishes in the model equations and

clear sky PAR is computed using the coefficients given by
Frouin et al. (1989). The technique was then applied to
GOES-6 VISSR data acquired during FI:F'E's second [FC.

The computational procedure included checks of the satellite
navigation and of the data quality, as well as calibration of
the VISSR visible channel. The calibration, achieved using

space and White Sands, New Mexico as calibration targets,
revealed an important sensor degr. adation, reaching 64% in
December 1987. Compared to m situ measurements, the

satellite estimates of insolation and PAR exhibited small
biases, correlation coefficients above 0.95, and standard

errors of estimate of 21.6 Wm "z (9%) and 8.2 Wm 2

(6.5%), respectively. These errors are acceptable for climate
studies. The overall statistics were found to be better for
PAR, which is expected since, in that case, cloud absorption
does not need to be pararneterized and no narrow-band to
broad-band conversion is necessary. The satellite estimates
also described welt the diurnal variability of PAR and

insolation. Using the ratio of PAR and insolation
determined in situ with the satellite estimates of insolation,
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we obtained dally PAR values with a slightly better r.m.s.
accuracy than when PAR was directly estimated from the
satellite data. This indicates that the large-scale satellite

climatologies of insolation now being produced within the
framework of ISCCP can be converted simply into useful
climatologies of PAR for global studies of photosynthetic
activity, although a more direct use of the satellite data would
certainly be optimum. Examining the cloud forcing on
insolation and PAR, we found that over the time period

considered, clouds strongly modulate insolation with a 2-4
day time scale, variations in the characteristic of the

atmosphere yielding i.rradiance changes of typically one
order of magnitude less. This is not surprising, indeed, but
the situation might be different when considering insolation
variability over longer time periods (e.g., one year).

The above results, however, only concern a 3 week
period. Three other [FCs were conducted during FIFE in
1987, and they correspond to different seasons and states of

the vegetation (surface albedo), in addition, only data from
a few surface stations were analyzed in the present study,
and many more stations provided radiation data. Our next
step, therefore, is to extend the conclusions drawn in this

study to the other IFCs, in particular regarding accuracy of
insolation and PAR methods, and contrast the surface flux

variability (including spatial variability within the FIFE site)
during each IFC. More work will also be devoted to the

surface albedo, a parameter that needs to be specified as a
boundary condition in general circulation models. We did

not elaborate on this parameter in the present study because
of its small influence on insolation, but this is not the case,

indeed, when the net radiation budget is considered.
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AND TOTAL SOLAR IRRADIANCE AT THE SURFACE

DURING FIFE'S INTENSWE FIELD CAMPAIGNS
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Estimating Photosynthetically Available Radiation (PAR)

at the Earth's Surface from Satellite Observations

Robert Frouin
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Abstract

Current satellite algorithms to estimate photosynthetically available radiation

(PAR) at the earth's surface are reviewed. PAR is deduced either from an

insolation estimate or obtained directly from top-of-atmosphere solar radiances.

The characteristics of both approaches are contrasted and typical results are

presented. The inaccuracies reported, about 10% and 6% on daily and monthly

time scales, respectively, are useful to model oceanic and terrestrial primary

productivity. At those time scales variability due to clouds in the ratio of PAR

and insolation is reduced, making it possible to deduce PAR directly from

insolation climatologies (satellite or other) that are currently available or being

produced. Improvements, however, are needed in conditions of broken

cloudiness and over ice/snow. If not addressed properly, calibration/validation

issues may prevent quantitative use of the PAR estimates in studies of climatic

change. The prospects are good for an accurate, long-term climatology of PAR

over the globe.

Introduction

Solar radiation reaching the earth's surface in the wavelength range 0.35-0.7 _tm

is. used by aquatic and terrestrial plants in photosynthesis. Called

photosynthetically available radiation (PAR), it governs primary production, the

rate of carbon fixed by the plants. Knowing the geographical location and

temporal variability of the fixed carbon and its forms of release is important in
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assessing the climatic impact of anthropogenic changes such as the destruction of

major vegetation systems or the increase in atmospheric carbon dioxide. PAR is

defined by

0.7

PAR(WIn-2) = _I(k)d_.
0.35 (1)

where I(k) is the downward spectral irradiance at wavelength _.. Since

photosystem processes are quantum reactions, it is useful to consider the

equation

1 0.7

PAR(quanta m-2s -1) = m [kI(_.)d_.

hc o_35 (2)

where h is Plank's constant and c is the velocity of light in vacuum. Eqs. (1) and

(2) indicate that PAR depends on the spectral interval considered which, for

operational constraints, may sometimes differ from 0.35-0.7 _tm.

Fig. 1 shows how primary production varies as a function of PAR over land (Fig.

la) and ocean (Fig. lb). The land case corresponds to typical, live, horizontal

leaves (Sellers, 1985, Fig. 13a) and the ocean case to a 20°C, homogeneous water

body (calculations were performed with the model of Morel, 1988). Over land,

primary production increases rather linearly with PAR, the slope of variation

depending on leaf area index (higher slope as leaf area index increases). The

relationship, however, is affected little by leaf area index for leaf area indices

above 4. Over the ocean, by contrast, the effect of PAR is highly non-linear in the

range of PAR values generally encountered. As PAR increases, primary

production becomes quickly insensitive to PAR. Saturation occurs at PAR values

as low as 200 Wm "2 when phytoplankton concentration is as high as lmgm -3.

Unlike over land, where primary production becomes independent of leaf area

index at high values of the index, primary production over the ocean increases

substantially even when phytoplankton concentration is high.



Fig. 1 provides some insight about the accuracy requirements for PAR. Owing to
non-linearities in the relationship between primary production and PAR, the

error permitted on PAR to achieve a reasonable 10% accuracy on primary

production will depend on PAR as well as the biomass level. In the PAR region
for which primary production can be considered directly proportional to PAR

(i.e., 0-100 Wm -2over land and 0-50 Wm °2over the ocean), the 10% accuracy on

primary production translates equally into a 10% accuracy on PAR, but 20% and
35% accuracieswill be sufficient over land and ocean respectively, when PAR is

above 300Win-2. Thus, a better relative accuracy on PAR is required at low PAR

values, which occur either at low solar zenith angles or in the presence of clouds;

under those conditions, unfortunately, satellite algorithms are less accurate. In

view of available primary production models, however, the accuracy

requirements on PAR may be relaxed. The models generally incorporate the fact
that the growth rate of many plants is proportional to the rate of radiant solar

energy absorption by chlorophyll pigments, but this rate (absorbed PAR) and the

efficiency factors (functions of plant type, environmental conditions) are difficult
to estimate with accuracies comparable to those mentioned above for PAR. In

other words, useful estimates of primary production may still be obtained with

larger errors on PAR.

If we are to understand truly the interactions between the biosphere and the

atmosphere and their effects on climate, we need to know the geographic
distribution and temporal variability of primary production and, thus, PAR over

the globe. Until recently, our information was based on surface pyranometer
networks (essentially over land) and a few PAR sensorsdeployed during research

experiments. The networks are clearly insufficient for global change studies; the

oceans and polar regions, in particular, are virtually not sampled, and long-term
time series (from well-maintained, regularly-calibrated sensors) are only existent

at a few locations. Furthermore, pyranometers measure insolation, or the solar

radiation incident in the spectral range 0.4-4 _tm, and the relationship between

PAR and insolation depends on atmospheric conditions and radiation geometry

(e.g., Baker and Frouin, 1987; Pinker and Laszlo, 1992). Clouds, which do not
absorb at PAR wavelengths but do absorb substantially in the near-infrared,

increase the ratio of PAR and insolation. Data from the pyranometer networks

can be complemented by estimates based on empirical formulas and cloud
observations made routinely at meteorological stations (e.g., cloud cover, cloud
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type). The formulas, unfortunately, have been established locally and are

therefore difficult to apply confidently over large areas. Moreover, the dataset is

uneven and too often of questionable quality. Because of these limitations, we do

not yet have a clear picture of PAR's modes of variability over the globe.

However the situation is being changed with existing earth-observing satellites,

which provide regular coverage of the earth and observations of the basic cloud

properties governing PAR variability.

Satellite Algorithms

While numerous studies have been devoted to estimating insolation from

satellite data (e.g., Tarpley, 1979; Gautier et al., 1980; M6ser and Rashke, 1984;

Pinker and Ewing, 1985; Dedieu et al., 1987; Darnell et al., 1988), only a few

satellite-based methods have been proposed for PAR, including the methods of

Frouin and Gautier (1990), Eck and Dye (1991), and Pinker and Laszlo (1992). Part

of the reason is that for many applications involving small space and time scales

PAR can be measured directly. Furthermore, it has often proven satisfactory to

take PAR as a more or less constant fraction of insolation. Deducing PAR from

insolation, in fact, is the basis of Pinker and Laszlo's (1992) method, which can be

qualified as indirect (requires an insolation estimate). Noting that meteorological

satellites (except METEOSAT) carry instruments that measure in spectral

channels resembling more the PAR wavelength range than the entire solar

spectrum, Frouin and Gautier (1990) use the satellite radiances directly.

Uncertainties in insolation are not propagated in that case, and the modeling of

cloud effects is simplified (no narrow-band to broad-band transformation is

necessary, and cloud absorption vanishes in the equations). This method, also

used by Eck and Dye (1991), can be qualified as direct (does not require an

insolation estimate). In what follows, we contrast the salient features of the

indirect and direct methods, and we present typical results.

a Indirect approach

In Pinker and Laszlo's (1992) method, insolation (estimated using the model of

Pinker and Ewing, 1985) is converted into PAR using a relationship established

theoretically. This relationship depends on atmospheric conditions, which need

to be specified. Under clear skies, the ratio of PAR to insolation varies little



around 0.48, except at high solar zenith angles or extreme (low as well as high)

water vapor amounts (Fig. 2), and the effect of aerosol turbidity is only significant
when horizontal visibility is less than 10km. This suggests that the ratio of PAR

to insolation can be considered constant to a good degree of approximation under

clear skies. The situation is quite different under cloudy skies. Cloud optical

thickness substantially changes the ratio of PAR and insolation, which can vary

by more than 50% at low solar zenith angles (Fig. 3). This variability in the PAR-
to-insolation ratio is corroborated by in-situ measurements (Fig. 4). Pinker and

Laszlo's (1992) procedure is to therefore apply a variable conversion factor to
insolation estimates. This factor depends on cloud optical thickness and

fractional amount, parameters derived from the satellite measurements.

Applying this method to hourly ISCCP C1 data at 250 km resolution, Pinker and
Laszlo (1992) have produced the first global map of monthly PAR, effectively

demonstrating that global satellite datasets produced within the frame of ISCCP

will soon result in a global, long-term climatology of PAR. Owing to non-

linearity, conversion factors are applied before averaging instantaneous
insolation estimates over daily and longer time scales.It may be possible to apply

conversion factors to daily or monthly insolation estimates without significant

loss of accuracy• Fig. 5, established from surface data collected during the First

ISLSCP Field Experiment (FIFE), shows that the PAR fraction of daily insolation

remains fairly constant regardless of cloud conditions. The same finding was

reported by Howell et al. (1983) and Rao (1984) on a monthly time scale. At those

time scales the PAR fraction variability due to clouds is reduced because it

strongly depends on sun zenith angle (Fig. 4). It may, therefore, prove useful to

deduce PAR directly from the various insolation climatologies (satellite or other)

currently available or being produced at daily or longer time scales (e.g., Bishop

and Rossow, 1991)• Fig. 6 shows a typical example obtained with METEOSAT

data.

b Direct approach

Frouin and Gautier's (1990) method is based on the formalism developed by

Gautier et al. (1980) for insolation, that only requires slight modifications (in fact,

simplifications) to be applicable to PAR. Cloud absorption vanishes in the cloudy

sky model equations (clouds do not absorb at PAR wavelengths), and the clear

sky model coefficients represent the PAR spectral interval instead of the total



solar spectrum. Cloud albedo, the governing cloud parameter, is computed as in
Gautier et al. (1980) from geostationary satellite observations in the visible and

near-infrared. Since the solar channels of geostationary satellite instruments

(except the METEOSAT radiometer) mostly capture radiation in the visible no
narrow-band to broad-band conversion of cloud albedo is necessary. Becauseof

these simplifications in the radiative transfer modeling, we expect, at least in

principle, more accurate results for PAR than for insolation. Furthermore, by
estimating PAR directly from the satellite radiances, uncertainties due to errors
on insolation estimates and on the ratio of PAR and insolation, which are

inherent to Pinker and Laszlo's (1992) method, are avoided. Fig. 7 shows, for

selected days during the First ISLSCP Field Experiment (FIFE), the diurnal
variation of measured PAR at the study site (Konza prairie, Kansas) and the

corresponding satellite estimates at particular times during the day. In the figure,

the in-situ values are half-hourly averages and the satellite estimates are spatial

averages over the FIFE area (15x15km). Julian days 222, 223, 226, and 227 are

mostly clear, whereas days 224 and 225 are cloudy. In general, the satellite
estimates compare well with the measured values; they describe the diurnal cycle

properly. The larger discrepancy observed during days 225 and 226 may be linked
to spatial cloud variability, which is not accounted for in the modeling (see in the
next section the discussion about effects of cloud heterogeneity). For daily

averages, Fig. 8 shows the temporal variation of PAR at the site during intensive

field campaigns 2 and 3. Satellite estimates correspond to measurements to
within 10-15 Wm -2 (about I0%), and more than 85% of the observed variance is

explained. These comparisons, although performed for a single geographical

location, are strongly indicative of the method's ability to quantify PAR

variability on daily or longer time scales.

Instead of using radiances in the visible and near-infrared, Eck and Dye (1991) use

radiances (or, equivalently, reflectances) in the ultraviolet and test their method

with Total Ozone Mapping Spectrometer (TOMS) data. Noting that cloud

reflectivity is constant across ultraviolet and PAR wavelengths and that clouds

do not absorb radiation at ultraviolet and PAR wavelengths, they parameterize

the effect of clouds on PAR as a simple, linear function of TOMS ultraviolet

reflectance. Cloud-screening is achieved by applying a threshold technique, and

the authors argue that using data in the ultraviolet makes it easier to
discriminate clouds from high-albedo background surfaces, except for ice and
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snowl The cloud-screening, however, may not be efficient because the TOMS

data are in the form of monthly, 500x500km averages, and there is no way of

assessing from the TOMS data alone whether the 500x500 km areas are partially

contaminated by clouds or not. Furthermore, the radiative transfer modeling is

rather crude (e.g., no correction is performed for molecular scattering above the

clouds). Nevertheless, the effects do not appear significant on a monthly time

scale (individual errors somewhat cancel out), as comparisons with surface

measurements, which reveal less than 6% relative differences, demonstrate (Fig.

9).

Issues

The satellite algorithms so far proposed to monitor the variability of PAR over

the globe utilize data from instruments (e.g., Advanced Very High Resolution

Radiometer, Visible and Infrared Spin-Scan Radiometer) that are generally not

calibrated after launch. These instruments have been shown to exhibit

significant, even large changes in sensitivity. The resulting errors on PAR can be

important, as Fig. 10 illustrates. For a cloud containing 100gin -2 of liquid water at

40ON, for instance, a 10% loss of sensitivity translates into errors of up to 50Wm °2

on monthly averages. Degradation of that amplitude is quite common, as many

studies have demonstrated (e.g., Frouin and Gautier, 1987; Staylor, 1990;

Whitlock et al., 1990; Brest and Rossow, 1992). Therefore, unless a check-of-

calibration is maintained on a regular schedule during the lifetime of the

satellites, and instruments from various satellites cross-calibrated properly, it

will be difficult to extract a meaningful signal for climate studies from observed

changes.

Another issue deals with cloud spatial heterogeneity. The satellite estimates are

generally less accurate in conditions of partial (broken) cloudiness (see for

instance the results for days 224 and 225 in Fig. 6). This is not surprising as clouds

are considered plane-parallel in the modeling, and top-of-atmosphere radiance is

often assumed to be isotropic. Drastic assumptions of that sort are necessary,

however, to close the system of equations and reduce the problem to one of

estimating PAR from a single top-of-atmoshere radiance measurement. The

drawback is that large errors on the PAR estimates may be introduced for some



situations. Broken clouds, in particular, can significantly affect the spatial

distribution of PAR, as the Monte Carlo simulations of Fig. 11 illustrate. For the

cloud field considered, namely a regular network of cylinder clouds characterized

by a radius of 0.5 kin, a geometrical thickness of 0.2 km, an optical thickness of 12,
and a distance between clouds of 2.5 km (typical conditions observed during the

FIFE experiment on August 9, 1989), the cloud transmittance (flux transmittance)

exhibits strong spatial variance, depending on whether the sun disk is obscured

by the clouds or not, and reaches over 110% in areas directly illuminated by the
sun. In other words, more sunlight that would be observed in clear sky

conditions reaches the surface in those areas. This effect, observed by many

investigators on pyranometer traces, cannot be reproduced by assuming plane-

parallel clouds. Furthermore, depending on the cloud field, it may not cancel out

on daily or monthly averages.

To assessthe accuracy of the PAR estimates, one needs to compare them to other

data, particularly surface measurements. The networks of well-calibrated PAR
sensors, unfortunately, are generally inadequate, even over the continents. In

fact, the networks of surface radiation instruments have been designed to
monitor insolation not PAR -and deducing PAR from insolation is subject to

uncertainty (see above). Furthermore, the satellite estimates are instantaneous
whereas the surface measurements are local, making it difficult to compare the

two types of data. When the method utilizes coarse resolution pixels (seeEck and

Dye, 1991), validation by surface measurements becomes very difficult. One
alternative is to compare low resolution PAR estimates to estimates obtained

from higher resolution data using a validated satellite method; but the procedure

is far from optimum. It is clear, however, that without proper validation

strategy, satellite PAR estimates will not find quantitative use in global change

studies of the carbon cycle.

Summary and Recommendations

Developing methods for estimating PAR from satellites is a recent activity that

has strongly benefited from the work performed on insolation by many

investigators. Satellite estimates of insolation can be converted accurately into

PAR, which makes it possible to exploit already existing datasets (satellite and
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other). From the radiative transfer point of view, the problem of deriving PAR

from top-of-atmosphere radiances in the visible is simpler for PAR than

insolation because narrow-band to broad-band transformation is not necessary,

and cloud absorption does not need to be parameterized (clouds do not absorb in

the visible). In situations of partial cloudiness for which plane-parallel theory

does not apply, the problem is as complex as for insolation. Although limited

comparisons have been made, an inaccuracy smaller than 10% on a monthly

time scale appears feasible by the methods reviewed. In view of the existing

models of primary productivity, which involve terms other than PAR more

difficult to estimate, a 10% inaccuracy is more than sufficient and should allow a

correct description of the month-to-month PAR variability and reveal large scale

seasonal and interannual phenomena.

Many of the recommendations of previous workshops on surface radiation

budget (e.g., Suttles and Ohring, 1986; Sellers et al., 1990) are in order for PAR.

Some effort particularly should be put to rigourously specifying the required

accuracy on PAR. As suggested by Sellers et al. (1990), sensitivity studies are

necessary, but it is unrealistic to expect that they will provide a complete,

universal answer; the space and time scales of geophysical phenomena

influenced by PAR are too varied. Whatever the phenomenon under study it

will always be safe to define the required accuracy so that the variability of PAR

over the phenomenon's characteristic space and time scales, g@nerally

observable, is described properly.

Regarding the calibration issue, a lot of progress has been made during the last 2-

3 years to monitor sensor degradation of meteorological satellites, those used for

PAR, after launch (e.g., within the frame of ISCCP, NOAA and GOES pathfinder

activities). Despite the numerous studies a consensus sometimes has been

difficult to reac.h on the calibration coefficients to use for some sensors. This

underscores the need for instruments that possess on-board calibration

capabilities and for detailed, realistic calibration plans prior to launch• In view of

the potential of radiometers carried by meteorological satellites for PAR

monitoring, it appears in order to equip future versions with a proper calibrator

for their solar channels• In the long run, the strategy might prove more

economical and rewarding, since costly aircraft calibrations would be downsized,



and scientists would be relieved from tedious, time-consuming calibration tasks

they too often have to perform themselves at the expenseof other work.

Regarding validation activities, care should be exercised when satellite-derived

estimates are compared with in-situ measurements. In general, the two

quantities are not the same. On the one hand, satellite-derived values are

instantaneous and averaged spatially; on the other hand, surface measurements

are local and averaged temporally. The space and time scales at which the

comparisons should be made need therefore to be selected rationally, and
instrument networks designed accordingly. Using a single instrument is not

optimum; dense networks are more appropriate. Such networks were installed
during various ISLSCP experiments but covered'a limited time period. They

should be operated continuously at sites representing world-wide conditions and

include measurements of other parameters (e.g., cloud properties) to test

individual parameterizations in the models. PAR sensors, which are

inexpensive, should also be deployed to complement the networks of

pyranometers already in place, at least in representative areas of the globe. Effort
should also be made to create a database of PAR measurements from various

research experiments and make it available for validation studies. Comparisons

of algorithms such as those for insoIation should be made (e.g., Whitlock et al.,

1990), but with the purpose of understanding the advantages and drawbacks of

each algorithm instead of selecting one.

One of the major limitations of the methods is their inability to provide

reasonable estimates when plane-parallel theory is not applicable (case of broken

clouds_ liquid water spatial heterogeneity). Efforts to improve the techniques

should therefore focus .on situations of cloud heterogeneity. One approach is to

perform radiative transfer calculations for realistic cloud fields, determine the

cloud parameters that govern departures to plane-parallel theory, and investigate

relationships between the governing cloud parameters and observable cloud

characteristics (texture, moments, etc.). If this approach proves suitable, current

strategies to create long-term, large-scale satellite datasets might have to be

reviewed to include those cloud characteristics.

Two other aspects of the methods should also be addressed, namely the presence

of snow or ice at the surface and diurnal sampling. Over snow and ice it is not
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easy to distinguish clouds, and the methods proposed would likely fail. Efforts

should be made to improve the methods in those situations, all the more as the

polar oceans cannot be neglected in studies of the global carbon cycle because of

their high primary productivity. Regarding diurnal sampling, the success of the

satellite methods generally resides in their ability to sample diurnal cloud

variability properly. Polar-orbiting satellites do not provide adequate sampling at

middle and low latitudes. Statistically obtained correction factors may be used,

but they do not offer the solution. The problem may be obviated, however, by

complementing data from polar-orbiting and geostationary satellites, as is

currently being done to generate ISCCP datasets.

The sensors adapted to PAR monitoring from space are not limited to those used

in the algorithms so far proposed. Other instruments, scanners as well as wide-

field-of-view radiometers, have not yet been exploited, in particular those of the

Earth Radiation Budget Experiment. In fact the current algorithms can be easily

modified to become applicable to those sensors. Furthermore, their longevity,

careful calibration and characterization, as well as the continuity of the mission

weil beyond the end of the century (Clouds and Earth's Radiant Energy System,

CERES, investigation), make them an ideal tool for studying PAR's inter-annual

modes of variability and related questions of climate change. Looking ahead,

apart from the future versions of meteorological satellites and the CERES

scanner a battery of instruments will be available for PAR monitoring during the

Eos era, in particular the MODerate resolution Imaging Spectrometer (MODIS)

and the MEdium Resolution Imaging Spectrometer (MERIS). Our prospects are

good for an accurate, long-term climatology of PAR over the globe.
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Figure Captions

Fig. 1. Primary production as a function of photosynthetically available radiation,

PAR. (a) Case of a green canopy with horizontal leaves and a leaf area index

ranging from 0.1 to 6 (after Sellers, 1985). (b) Case of a homogeneous, 20°C ocean

containing 0.3, 1, 3, and 10 mgm 3 of chlorophyll pigments.

Fig. 2. Ratio of photosynthetically available radiation, PAR, and insolation as a

function of water vapor amount (top), ozone amount (middle), and aerosol type

and visibility (bottom). (After Baker and Frouin, 1987.)

Fig. 3. Ratio of photosynthetically available radiation, PAR, and insolation as a

function of cloud optical thickness and sun zenith angle. (After Pinker and

Laszlo, 1992.)

Fig. 4. Surface-measured ratio of half-hourly photosynthetically available

radiation, PAR, and insolation as a function of satellite-derived instantaneous

cloud liquid water content during the First ISLSCP Field Experiment. The ratio

varies between 0.25 and 0.75, corroborating theoretical calculations.

Fig. 5. Surface-measured ratio of daily photosynthetically available radiation,

PAR, and insolation as a function of satellite-derived daily cloud cover during

the First ISLSCP Field Experiment. At this time scale the PAR fraction variability

is small, with values ranging between 0.43 and 0.52.

Fig. 6. Monthly photosynthetically available radiation, PAR, derived from

METEOSAT data for June 1990. Monthly insolation was first obtained using the

method of Dedi¢u et al. (1987) and PAR was then deduced by taking the ratio of

PAR and insolation equal to 0.45.

Fig. 7. Surface-measured and satellite-derived photosynthetically available

radiation, PAR, for selected days during the First ISLSCP Field Experiment.

Satellite estimates are instantaneous whereas measured values are half-hourly

averaged.
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Fig. 8. Surface-measured and satellite-derived daily photosynthetically available

radiation, PAR, during the second and fourth intensive field campaigns of the

First ISLSCP Field Experiment.

Fig. 9. Satellite estimates of monthly photosynthetically available radiation, PAR,

versus surface estimates from pyranometer measurements adjusted to PAR.

(After Eck and Dye, 1991.)

Fig. 10. Typical error on satellite-derived monthly photosynthetically available

radiation, PAR, due to a 10% increase in the calibration gain, g, of the sensor's

solar channel. Clouds contain 100gm 2 of liquid water, and the clear atmosphere

contains 0.3 atm-cm of ozone and aerosols of continental type and optical

thickness of 0.22 at 550 nm. Latitude is 39°N. As fractional cloud coverage, N,

increases, the error increases in magnitude, reaching -50 Wm -2 in June and July.

Fig. 11. Monte Carlo simulations of the spatial distribution of cloud

transmittance (in percent) on August 8, 1989 at 13:30 local time over the Konza

prairie, Kansas. The clouds are cylindrical of radius 500m, separated by 2,500m,

and located between 2,000 and 2,200m (geometrical thickness of 200m). The cloud

optical thickness is 12. When the sun disk is not obscured by clouds, cloud

transmittance reaches 113%, indicating that the surface receives more

photosynthetically available radiation than in clear sky conditions.
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1. INTRODUCTION

During recent years public and scientific interest

in the planet earth's climate system has grown
remarkably. This is attributable, in part, not only to
an increased concern about possible environmental

problems (e.g., global warming due to the famous

greenhouse effect), but also to the emergence of
technologies enabling new forms of climate study.
Meteorological satellites, for instance, now provide

global views of the earth's atmosphere and surface,
while increasingly powerful computers permit
more realistic simulations of atmospheric and

oceanic circulations.

One of today's main climate research topics
concerns ocean-land-atmosphere interactions on a

global scale. This includes studying energy, water,
and momentum exchanges at the media's

interfaces. Characterizing the energy budget with a

reasonable spatial and temporal accuracy is of major

importance to various applications, in particular: 1)
diagnostic studies of heat transport, cloud forcing,
radiative heating; 2) specification of boundary
conditions for global circulation models (GCM); 3)
amelioration of sub-grid process parameterizations
in such models; 4) validation of climate models;

and 5) determination of long-term trends (NASA,

1986).

Moreover, since the land surface, unlike the

oceans, has a small hea't capacity, radiation and

water budgets are strongly related: the net heat

budget, which is the balance between radiation and
the sensible and latent heat fluxes, is close to zero

when averaged over time periods longer than a

day. The latent heat flux is directly related to the

evaporation rate and is consequently determined
largely by the sum of the radiation and sensible heat

budgets.

The net longwave irradiance flux at the surface,

owing to its small variability, is less important than
the shortwave, or solar, one. It cannot be neglected,

however, particularly in the presence of clouds
which decrease surface insolation while increasing

the downward component of the longwave flux.

Several methods have been proposed to estimate
the downward longwave flux at the surface from

satellite measurements (see, for instance, Darnetl et

al., 1983; Frouin et al., 1988; Gupta, 1989). Although
some of them have been used to generate global

fields of net longwave flux, few validation studies
have been made (WMO-ICSU, 1984). We therefore

investigated the performances of two of them,
choosing among the most promising ones, by

comparing their computations with carefully taken
in situ measurements.

In the first part of this paper we describe the data
used in this study. The data were collected during
the First ISLSCP Field Experiment (FIFE). In

analyzing the data quality, we emphasize the

difficulty to acquire reliable longwave irradiance
measurements and, therefore, validate radiative

transfer" models. We then present briefly the two
methods selected to estimate downward longwave
flux at the surface, namely those of Frouin et ai.

(1988) and Gupta (1989). Finally, the two methods'
results are compared and verified against in situ

pyrgeometer measurements.

2. DATA

FIFE, an international surface-atmosphere

experiment, took place in 1987 at and around the
Konza Prairie Long Term Ecological Research

(LTER) site near Manhattan, Kansas (Sellers et al.,
1988). The FIFE objectives were to gather the

necessary data to permit interpretation of satellite
observations suitable to infer climatologically

significant land surface parameters.

The experimental area is a 15 x 15 km square
with various topological features including burned
and unburned plateau, slope, and creek (Fig. 1).

Although the central portion of the area is studied
continuously and additional parameters are



measured throughout the year, the experiment

concentrated on four Intensive Field Campaigns
(IFCs) corresponding to four different states of the

surface vegetation:

First IFC : "green up"
Second IFC : "peak greenness"

Third IFC : "dry down"
Fourth IFC : "senescence"

May 26th to June 6th

June 25th to July 15th
August 10th to August 2|st
October 5th to October 15th

Our study uses 4 different types of data acquired
during the IFCs, namely surface measurements,

atmospheric soundings, sky photographs, and
satellite-derived parameters.

Several surface stations collected radiative flux

measurements. At the time of our study, only data
from stations 2 and 38 (see Fig. 1) were available

through the FIFE information system. These

stations were operated by Eric Smith's group
(University of Florida) during the four IFCs. A first

check of the data was made by comparing hourly
measurements from one station to those from the

other (Fig. 2). Some of the station 2 measurements

are obviously bad (values higher than 450 Wm'2).
A plot of the time series of these measurements
shows that the unrealistic values are limited in

time to the first days of the first IFC. At other times,
the two stations' data are well correlated with each

other, but exhibit a relative bias (higher
measurements at station 2) which is rather small

for low flux values (a few Wm "2) but up to 20 Wm "2

for the highest fluxes. Since we know with

confidence that station2 provided inconsistent
measurements at the beginning of the experiment,
-we have an objective reason to favor station 38. It

is possible, however, that the problems experienced
by station 2 did not propagate a bias along the four
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Fig. 1: General presentation of FIFE experimental field.
Station 2 and 38 are the two Iongwave measurement sitesused
in this study. The black circle indicates the soundings' launch
location.
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IFCs. Further discussion with E. Smith convinced
us that more work has to be done to favor one

station rather than the other. Before the

experiment, the two pyrgeometers had been
carefully intercalibrated and gave very close values.
The reason for the discrepancy found during the
IFCs is still unclear, but a different instrument

orientation is suspected (E. Smith, 1989, personal
communication).

During the four IFCs there was a strong diurnal
cycle of downwelling longwave flux at the surface.

The cycle showed a maximum at about 5:00 PM
local time and a minimum around sunrise. This

does not exactly follow the temperature cycle as

could have been expected. However, the
development of convective clouds in the

afternoon, leading to an increase of the flux, may be
responsible for this delayed maximum. The

amplitude of the cycle is about 30 Wm "2 for IFCs 1

and 3, close to 20 Wm "2 for IFC 2 and only 10 Wm "2

for IFC 4. The 4 IFCs are not long enough for those

figures to be statistically significant; the smaller
amplitude for IFC 4 may be explained by its later

period in the year, leading to a smaller daily cycle
temperature.

Cloudiness was another parameter acquired
from the surface. This was done by an uplooking
automatic camera. Cloudiness was deduced from

the percentage of cloudy areas in the photographs,

taking into account the viewing angle of each area
relative to the vertical. Since this camera was

operating in the visible spectrum, no cloudiness
information could be obtained at night. In the

study that follows, we considered that the sky was
clear when, according to the photographs, less than

1/8 of the sky was covered by clouds.

The atmospheric measurements used in our

study were obtained from radiosondes launched
from the experimental site (see Fig. 1). These



-measuredpressure,temperature,and wet bulb
temperature,from which the water vapor mixing
ratio was derived. We first had to clean the data:

the pressure, which usually decreased smoothly,
sometimes showed 50 mb jumps. This problem
was resolved by removing corresponding
measurements. More bothersome, we found that

the water vapor mixing ratio occasionally exhibited

negative values! This was the result of improper
wet bulb temperature measurements when the air

temperature was low; in such cases, the water
surrounding the thermometer simply freezes and
the wet bulb measurement loses its significance.

We overcame this problem by removing all water

vapor information for which the wet bulb

temperature was negative. The water vapor profile
was then extrapolated to higher levels using

climatological profiles, taking into account the
valid information about the lower layers and the

actual temperature profile so that the mixing ratio
could not be larger than the saturation level.

The satellite products we used are the pre-

processed TIROS-N Operational Vertical Sounder
(TOVS) sounding data. The TOVS instrument, a

multi-frequency radiometer designed to remotely
sense, among other variables, atmospheric

temperature and water vapor mixing ratio profiles,
has been flying for many years on board the NOAA
series satellites (Kidwell, 1981). The TOVS observa-

tions were processed with NOAA/NESDIS's

operational algorithm (Kidwell, 1981). The TOVS

products include surface pressure, surface
temperature, air temperature at 15 pressure levels,

three layers of water-vapor content, cloud top

pressure, and effective cloud amount.

3. METHOD

Two methods that determine downweiling

longwave flux at the surface from a description of
the atmosphere were selected for this study. These
are the method of Frouin et al. (1988), which

employs the fairly detailed radiative transfer model

designed by Morcrette (Morcrette, 1984; Morcrette
and Fouquart, 1985; Morcrette et al., 1986), and a

simpler parameterization recently proposed by

Gupta (1989).

Morcrette's model uses as input temperature,

water vapor and ozone mixing ratio, and cloud

amount profiles at levels which can be chosen by
the user. The model divides the infrared spectrum

into six intervals and explicitly takes into account

absorption by the radiatively important atmos-

pheric gases.

To determine the model input parameters,

Frouin et al. (1988) proposed various methods. In

all the methods, temperature and water vapor
mixing ratio are obtained from TOVS data. In the
most refined method (method 1), cloud base

altitude is deduced from cloud top altitude and

liquid water path, assuming a liquid water

d_tribution within the cloud. In the other

methods, simplifying assumptions are introduced
which include directly relating liquid water path to

cloud geometrical thickness (method 2), fixing the

cloud geometrical thickness to its climatological
value (method 3), and, finally, parameterizing the

cloud effects only as a function of fractional cloud

coverage (method 4). In the calculation presented
later in this paper, we only employed method 3

using a thickness of 500 m.

The Gupta (1989) scheme, a much simpler one,
limits the computational burden. It is a simple

parameterization developed using regression
techniques applied to a set of atmospheric profiles
and the corresponding longwave fluxes at the
surface, as determined using a radiative transfer
model similar to Morcrette's. Although the Gupta

(1989) method can be applied, in principle, to any

complete atmospheric description, it has been

explicitly designed to use TOVS products; the input

parameters are surface temperature, 1000-850 mb
and 850-700 mb temperatures, cloud base tempera-

ture, total water vapor content, water vapor content
below the cloud, and cloud amount. Since cloud
base information is not accessible from the TOVS

instrument, the method uses the estimated cloud

top pressure and assumes a mean cloud thickness
of 50 mb; the cloud base temperature and water

vapor below the cloud are then obtained from the

corresponding profiles. The same assumptions
have been used in the study that follows.

One of the goals of this study is to accurately

compare longwave flux estimates from the models
with in situ measurements. The objective is to

estimate how precise the models really are because

although model intercomparisons have been

performed, careful comparisc_ns with in situ
observations have not. When model estimates and
measurements show large differences, the

differences can be attributed not only to the

uncertainty of the model itself, but also to the
measurement or to the quality of the input

atmospheric profile. To validate a model, we
therefore need high quality and reliable longwave
radiation measurements and atmospheric profiles.

Temperature and water vapor profiles can be
obtained with a reasonable accuracy from
radiosonde data. This is not the case for the cloud

parameters, particularly cloud base pressure and
effective cloud emissivity. Therefore, in cloudy

conditions, a discrepancy between estimated and
measured fluxes will not be conclusive, and we
decided to concentrate on clear periods. Clear sky

radiosoundings were selected using the

information given by the sky camera.

Another goal of the study was to evaluate the
Frouin et al. (1988) and Gupta (1989) methods in

estimating the longwave flux from satellite
observations over the FIFE area.

This includes not only the algorithms

themselves, but also the inversion process that

retrieves geophysical parameters from TOVS data.



-In the-evaluation,we included cloudy observations

as well as clear ones. Only TOVS observations

closer than 200 km from the center of the

experimental area were used. In order to keep the
more accurate TOVS products, we selected-only

"class-l" soundings as defined in Gupta's (1989)

paper. In other words, the radiative calculations
were performed when all the parameters
(temperature, water vapor, and cloud parameters)

were present in the products.

4. RESULTS AND DISCUSSION

Figure 3 illustrates a comparison between the
Morcrette et al. (1986) and Gupta (1989) model

outputs when using clear sky radiosoundings

acquired during FIFE. The longwave estimates

range from 235 to 420 Wm'2. " Morcrette's and
Gupta's values are very close; the standard
deviation of the differences is only 3.5 Wm -2 and

the correlation coefficient is 0.999. However, a large

bias of (15 Wm 2) between the two estimates is

observed. This bias is larger than the accuracy

required for estimating longwave flux at surface for
most scientific applications; it is therefore

important to evaluate which model is in fact most
accurate. This can be accomplished by comparing a

time series of the iongwave flux measurements to

the values found when applying the two models to

the sounding data in clear conditions. Figure 4,

which shows an example of such a comparison, was
obtained for the third IFC at station 38 using
Morcrette's model. Similar comparisons for other

IFCs, stations, or models are not presented here but

give comparable results. These results show that,
in general, the models accurately reproduce the
variability of the clear sky flux. In particular, the
increase in downwelling longwave flux associated
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with the diurnal variations of air temperature is

well-reproduced by the model. It is also interesting
to note that the maximum values observed in late

afternoon in clear conditions are almost as large as

the overall maximum values observed. This

suggests that, over land, the cloud effects are no
more important in increasing the downwelling

longwave flux than the atmospheric temperature
(and moisture) effects are. As already mentioned,

there is large uncertainty in the measurements
themselves. The bias observed between the models

is comparable to the one between the measure-
ments. Gupta's model reproduces well the station 2
measurements, while Morcrette's models does the

same for station 38. As a consequence, the results

do not allow one to conclude which model is more

precise.

Figure 5 depicts the time series of downward
longwave flux measurements at station 38 (line)
and corresponding satellite estimates (open circles)
for clear and cloudy conditions. The satellite
estimates were obtained with the Frouin et ai.

(1988) method 3 (Fig. 5a) and the Gupta (1988)

method (Fig. 5b). Even though Fig. 5 was obtained
for the third IFC, the results are similar for the

three other IFCs. Occasionally several satellite

estimates are displayed for the same time; they

correspond to different satellite soundings during
the same satellite pass within the 200 km distance
limit. This discrepancy, which can be larger than

20 Wm "2, is mainly due to variable cloudiness

parameters. These figures indicate that when using
satellite cloud and atmospheric products instead of

in situ observations, the estimations of the

downwelling longwave radiation degrade

significantly. In comparison with the model results

presented earlier, it suggests that the TOVS satellite

products used are not sufficient for achieving an

accuracy of 10 Wm "2. Both methods provide results
that are smaller, in general, than the in situ

measurements. The reason for this is not

understood.
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Investigating the quality of the TOVS products
by comparing them to their radiosonde equivalent,
we did not detect any bias in the temperature or the

water vapor content. We therefore suspect that the

cloud parameters were responsible for the bias. The
underestimation can possibly result from a lower
than actual cloud effective emissivity, which is

equivalent to an underestimation of cloudiness
and/or cloud emissivity in the TOVS data, or from

an overestimated cloud base height. The only

cloud parameter we can compare to surface
observations is the cloudiness. We attempted to

perform such a comparison but the study was not
conclusive because either:

a) the surface-estimated cloudiness displayed a very

high temporal variability;

b) TOVS-based estimates displayed a rather large

spatial variability" for the same satellite pass,
TOVS retrievals within 200 km of the area often
exhibited several octa differences in cloudiness;

or,

c) the two types, of measurements were not exactly
comparable: the camera estimate gives a
fractional cloud cover whereas the satellite

instrument gives an "effective cloudiness", a

product of the cloud cover and the mean cloud

emissivity.

5. SUMMARY AND CONCLUSIONS

In this paper we have attempted to compare two
methods (i.e., Frouin et al., 1988, and Gupta, 1989)

for estimating the downwelling longwave flux at
the surface and assess their respective accuracies.

Computations with these two models using the

same atmospheric temperatures and moisture

profiles indicated, that for clear sky conditions, the
two model computations are highly correlated. The

•¢alues, however, present a systematic bias of

15 Wm "2. Since Gupta's parameterization was
derived from a radiative transfer model applied to a

set of atmospheric profiles, it is likely that the same
bias would also be found when this radiative

transfer model is compared to that of Morcrette.
Additional work needs be done to understand and

explain the systematic difference.

These model computations were then compared
with in situ measurements at two nearby locations.

The clear sky longwave flux estimates from both
models were found to be very consistent with in
situ measurements. In this case, differences were of

the same order of magnitude as the uncertainty of

the measurements themselves. One of our goals in

comparing the two models with in situ
measurements was to favor one of them, as far as

the bias was concerned. Unfortunately, the Gupta

(1989) model results were found to be comparable to
the station 2 measurements, while the Morcrette
model results were found to be comparable to those

of station 38. Since we have no reason to have
more trust in either dataset, it is impossible, in

view of this study, to favor one model or the other.

We hope that further work with the in situ
measurements at Florida State University will help

us understand the differences between the two

stations so that we can achieve more solid

conclusions regarding the superiority of one model

versus the other.

Computations were then performed with the
two models under all conditions and using TOVS

data as input. Comparisons with in situ
measurements indicated that the model

computations were much more scattered around
the in situ measurements than were the clear sky

model estimates with the radiosonde data. This

was expected since, to the method's uncertainty,
other uncertainties are added: that of the retrieval

profile itself and the noise due to the separation

between the TOVS sounding and the pyrgeometer
sites. More bothersome, however, is the fact that,

on average for this small dataset, the flux is
underestimated by both satellite-based methods.

No explanation is available for this at present.

The general conclusion to the present study is
that, once again, it is difficult to definitively

quantify the accuracy of radiative transfer models
because of the lack of reliable surface

measurements. We have shown, however, that

the clear sky flux estimates obtained by the two



models-we investigated were within the

uncertainty of the measurements lhemselves,
which is of the order of 5%. The cloud effect

computed by the models, unfortunately, cannot be

validated against in situ measurements because of

the large uncertainty in the input variables,

particularly the cloud parameters.
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1. INTRODUCTION

It has long been observed that direct solar
radiation is absorbed substantially by water vapor in
a cloudless atmosphere, and that the phenomenon

is even more pronounced when the observations
are conducted in the infrared part of the solar

spectrum. Fowle (1912, 1913) first exploited these
observations for measuring vertically-integrated

(total) atmospheric water vapor amounts. He
developed a spectroscopy technique that consists of
viewing the sun from the earth's surface through

two spectral channels located near the center and
outside a near-infrared water vapor band. The ratio

of the two voltage outputs, as measured by a
radiometer, gives a direct measure of the water

vapor amount integrated along the sun-to-surface

path. Fowle's differential absorption technique has
been subsequently verified and applied in many

studies (e.g., Hand, 1940; Foskett and Foster, 1943;
Gates, 1956, Siversten and Solheim, 1975; Pitts et al.,

1977; and Reagan et al., 1987).

A practical corollary to Fowle's water vapor

measuring technique, and this paper's focus, is to
view the earth's surface (i.e., measure the solar

radiance reflected by the surface) instead of the sun.

Although such an extension of the technique is
non-trivial, impeded primarily by uncertainties in
surface reflectance effects, it is feasible, and its

successful implementation would be invaluable to
global earth studies. That is, by viewing the surface

in place of the sun, this modified technique could
be conveniently adapted for aircraft and satellite

measuring systems, thus offering the capability to

map water vapor amounts over large areas.

The problem in estimating water vapor

amounts by viewing the surface in spectral
channels centered at the different wavelengths, as
in Fowle's technique, is that the ratio of the

channels' voltage outputs depends not only on the

ratios of the source intensity (the sun) and of the
atmospheric transmittance (mostly a function of

water vapor abundance) in the two channels, but

Elizabeth Middleton

Earth Resources Branch

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

also on the ratio of the surface reflectance in the

two channels. This ratio is not constant; on the

contrary, it varies strongly with surface type and
radiation geometry (see, for instance, Bowker et al.,
1985). Consequently, applying the current band

ratio technique to a radiometer viewing the surface

will yield significantly different water vapor
amounts depending on the nature and bi-

directional properties of the underlying surface.

Our study extends the sun-viewing

spectroscopy technique to surface viewing for use
with aircraft or satellite-based instruments. We

provide appropriate channels in the 0.940 an/water

vapor band to retrieve total water vapor amount
independently of the surface reflectance properties
and other atmospheric constituents. The 0.940_m
band is selected because it is not saturated, thus

sensitive to even large water vapor amounts;

furthermore, the spectral reflectan.ce of vegetation
in this band is not influenced by leaf water content,
and soil moisture content generally shifts the entire
reflectance curve. In other words, liquid water

absorption by vegetation and soil (also by rocks and
minerals) is not expected to affect differentially the

spectral signal reflected by the surface.

In the following section, section 2, we describe

our technique to minimize surface reflectance
effects. We quantify, by performing radiative
transfer simulations, the gain in accuracy when

employing the proposed instead of the usual
channel combination. Section 3 presents a
verification of the technique using SE-590

spectrometer measurements and concomitant
radiosoundings acquired during FIFE. Section 4
examines, in the case of an airborne or spaceborne

instrument, the effect of photons backscattered

directly by the atmosphere toward the sensor,

which may be a problem over low reflective
surfaces, such as the ocean in the presence of

vertically-extended aerosols. Finally, Section 5
summarizes the findings and concludes with a

discussion of the technique's perspectives in the
context of the Earth Observing System (Eos) and

future international scientific projects.



2. "I_CHNIQUE

To eliminate the surface reflectance effect, one

may choose two spectral channels, one narrow, the

other wide, centered on the same wavelength at the

water vapor absorption maximum in the 0.940 am
water vapor band. If the surface reflectance depends

linearly on wavelength or varies symmetrically
with respect to the central wavelength, then it
becomes constant when averaged in the narrow

and wide spectral channels. In this case, spectral
variations in the surface reflectance do not affect

estimates of water vapor amount. Indeed, the
question arises: does the reflectance of natural and

non-natural surfaces exhibit a sufficiently

symmetric or linear behavior in the spectral range
of the 0.940 _m water vapor band?

Using the 5S radiative transfer code (Tanr_ et

at., 1986), we performed simulations of the radiance

measured by a radiometer viewing a wide range of
surface targets (water, snow, ice, rocks, minerals,
vegetation, wet and dry soil, etc.) whose reflectance
properties were taken from Bowker et al. (1985). In

the calculations, the atmospheric path from the
surface to the sensor was considered negligible,
corresponding to the radiometer close to the

surface. The results, presented in Fig. 1, for a
23 km-visibility US62 atmosphere containing
continental aerosols, indicate that variations in the
radiance ratio, due to differences in the surface

reflectance spectral properties, are substantially
reduced when choosing the 0.935-0.955 am, 0.920-
0.970 am channel combination instead of the 0.945-

0.955 am, 0865-0.875am combination (the typical
combination when viewing the sun).
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Fig. 1 Simulations for 140 surface targets, including water,

snow, ice,bare soil,and dry and wet vegetation, of the radiance

ratio in spectral channels centered in the region of the 0.940 am

water vapor band. Two channel pairs are considered: 0.945-

0.955/am, 0.865-0875 am (crosses) and 0.935-0.955 am, 0.920-

0.970/.an (open circles).

If we now examine the resulting errors in

water vapor amount (Fig. 2), the standard deviation
around the actual value (1.4 gcm -2 for the selected

atmosphere) is reduced from 0.3 to 0.1 gcm -2 (by a

factor of 3) when using the narrow and wide
channel combination. The radiance ratio in these

channels, however, is less sensitive to water vapor

amount as Fig. 3 demonstrates (the entire depth of
the band is not measured in that case); but this

should not be a problem since the instrumental
noise level in the radiance ratio can be as low as a

few thousandths. Note, finally that we have only
considered one model atmosphere. Varying the

nature and concentration of atmospheric aerosols,
however, does not change the radiance ratio

significantly (see Table 1).
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0.865-0.875 am (a), and channels 0.935-0.955 p.m and 0,920-

0.970 _ (b).



0.20

0.15

u

0.10

>

O3

z
w 0.05

0.00

- - - R(o.g45-O.955)/R(O.865-O.875)

_ R(O.935-O.955)/R(0.920-0.970)

\

\

\

\

\
o_.

US62
SUN AT ZEtllftt
CON'[INEHTAL AEROSOLS
VISIBILITY=23km

0

_0

0 1 2 3 4 5 6

WATER VAPOR AMOUNT (g/cm 2)

Fig. 3 Sensitivity of the radiance ratio to water vapor amount
for channel combinations 0.945-0.955/.tm, 0.865-0.875 #m and

0.935-0.955/Jm, 0.920-0.970/Ira.

Table 1. Radiance ratio for various aerosol models. The values

are for a sun at zenith and a Lambertian, perfectly reflecting

surface.

Model

Atmosphere

R (0.945 -0.955/an)

R (0.865 -0.8"/5#m )

R (0.935 -0.955/_n )

R (0.920-0.970jam )

USg2,Continental, V=23 krn .4042 .3119

US62,Confinemal, V=5 km .4064 .3119

US62.Urban, V=23 km .4051 .3119
US62,Urban, V=5 km .4097 .3 ! 20
US62.Maritime, V=23 km .4035 .3119
US62,Maritirne, V=5 km .4040 .3119

3. VERIFICATION

The concept of viewing the surface in narrow
and wide spectral channels centered on the same

wavelength to eliminate the effect of spectral
variations in the surface reflectance has been

verified using SE-590 spectrometer data and
concomitant radiosonde observations acquired

during the 1987 FIFE experiment. Figure 4 shows
the location of the. SE-590 spectrometer
measurements and radiosonde launches, and

Table 2 summarizes the dataset collected during

FIFE's four intensive field campaigns (IFC's).

The SE-590 spectrometer, which measures in
252 bands from 0.4 to 1.1 mn, collected data at 8 sites.
At each site the instrument head was installed

approximately 4.5 m above the ground in a
relatively uniform and representative area of the
site. Many of the measurements were made with
the instrument Viewing at nadir, but bi-directional

datasets were also acquired in the solar principal

plane during the second, third, and fourth IFC's at

10 ° viewing angle increments. To characterize
diurnal variations in the surface reflectance, the

data were collected at about every 10 ° change in

solar zenith angle.
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Fig. 4 Map of FIFE area showing SE-590 spectromeler and

radiosonde locations.

Table 2. Summary of concomitant SE-590 spectrometer and

radiosonde data collected during FIFE. The SE-590

spectrometer measurements were performed at sites 2, 4, 6, 8,

10, 16, 36, and 44 and the radiosondes were launched near site

31 (see Fig. 4 for locations).

Intensive Field Number of Number of Data Sets

Campaign Field Days SE-590
Specaemea_ Radiosonde

1 (May/Jane 1987) 8 53 65

2 (June/July 1987) l0 64 48

3 (August 1987) 7 104 50

4 (October 1987) 7 55 48

A total of 276 SE-590 spectra were acquired

over 32 field days, and more than 6 radiosondes
were launched on average per day within 6 km of

the sites. In the preliminary results presented

below, however, we only used the data collected at 4
sites (4, 6, 10, and 36) during the four "golden" days

(June 6, July 11, August 15, and October 11) of FIFE.

Figure 5 shows the radiance ratio in channels
0.938-0.953/_m and 0.919-0.972 am deduced from the

SE-590 spectrometer measurements as a function of

water vapor amount along the optical path
calculated from the radiosonde data. The points fit

very well the law given by:

U 1
R 0.326expl-0.177(-_- F) /21= (1)

where R is the radiance ratio, U is the total water

vapor amount, and 0 is the solar zenith angle. This
law, where the exponential exponent varies as
(U/cosO)Z/2, is expected since the absorption regime is

strong in the 0.940 am water vapor band (see, for
instance, Goody, 1964). Using (1) yields U/cosO to

+0.5 gem "2, which indicates the good stability of the
relation between radiance ratio and water vapor

amount for varied surfaces and a wide range of



solar zenithangles(the spectral reflectance of the

sites varies with radiation geometry). Let us
emphasize, however, that only 4 days of data were

considered in Fig. 5. More data remain to be
analyzed (see Table 2) to corroborate statistically the
above results.
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Fig. 5 Radiance ratio in channels 0.938-0.953/am and 0.919-

0.972 pm, computed from SE-590 spectrometer data, as a

function of water vapor amount deduced from concomitant
radiosonde data.

4. EFFECT OF AEROSOLS

So far we have considered the case of an

instrument viewing the surface from just above the

ground. In the case of surface viewing from higher

altitudes or above the atmosphere, the signal

measured by the instrument contains not only
photons that have been reflected by the surface, but

also photons directly backscattered by the
atmosphere. In the presence of aerosols located

high in the atmosphere over a low reflecting
surface such as the ocean, the contribution of these

photons, mostly backscattered by the aerosol layer,

may surpass significantly the signal reflected by the
surface; it is this signal that contains the water

vapor information (the bulk of the atmospheric
water vapor is generally.encountered within 2 km

of the surface). The water vapor amount, in that
case, would be underestimated.

To assess qualitatively the underestimation
introduced, let us assume that the aerosols are

located above the Rayleigh atmosphere. For not-

too-horizontal sightings, small aerosol optical
thicknesses, and a Lambertian surface, the solar

radiance reflected by the surface-atmosphere system
can be written simply as:

Io

R= + +pT. (2)

where R,A and R_ are the signalsbackscattered by

the aerosols and molecules, respectively, pis the
surface reflectance, /o is the extraterrestrialsolar

irradiance, T,, is the diffuse atmospheric

transmittancel anti T s is the gaseous transmittance.

In this formulation, we have neglected the effect of

photons that have sustained multiple surface

reflections, which is justified for surface targets of
low reflectance.

Although extremely simplified, the above

modeling retains the essential physics of the
problem. The gaseous transmittance does not affect

the signal backscattered by the aerosols. When p is
A

small, R. may dominate the right-hand side of

Eq. (2). As p increases, the relative contribution of
A

R, to R decreases and R becomes more sensitive to

water vapor amount.

Fig. 6a shows the radiance ratio in the 0.935-

0.955/am and 0.920-0.970 /am channels, computed
using Eq (2), as a function of surface reflectance.
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When the reflectance is low (p<0.1), the radiance

ratio departs substantially from the 0.28 value
corresponding to a pure Rayleigh atmosphere (no
aerosols), all the more as the visibility decreases. In

the 5 km visibility case, the difference reaches 0.09

(32%) for a surface reflectance of 0.01.

The resulting error in water vapor amount is

displayed in Fig. 6b. Absolute values below

0.3 gcm "2(21% of the actual value) are only obtained
when pis above 0.2 and the atmosphere is clear

(23 km visibility case). For both model

atmospheres, the underestimation reaches over

0.9 gem "2 (63%) when p is less than 0.02. The errors,
however, should be regarded as upper limits for the
aerosol backscattering effect. Tropospheric aerosols

are generally located within the boundary layer,
which reduces the effect considerably. Radiative

transfer calculations for realistic atmospheres are

necessary to quantify the error introduced as a
function of the relative vertical distribution of

aerosols and water vapor.

5. SUMMARY AND CONCLUSIONS

We have shown, from radiative transfer

simulations, that viewing the earth's surface in two

channels, one narrow, the other wide, centered on

the same wavelength at the water vapor absorption
maximum near 0.940 #m provides accurate

atmospheric water vapor amounts independently
of the surface reflectance properties. The concept

was verified in situ using concomitant SE-590

spectrometer and radiosonde data acquired during
FIFE. Under varied radiation geometries and

atmospheric conditions, and for several surface

targets, the relationship between radiance ratio in
the narrow and wide spectral channels and water

vapor amount was found to be stable, following an
expected exponential law. The SE-590 instrument,
however, did not view the surface from above the

atmosphere or even above the boundary layer,
where most of the water vapor is concentrated, and

therefore did not permit verification of the

technique in actual conditions of aircraft or satellite

viewing. In such conditions, simple physics
showed that the effect of photons backscattered

directly by the atmospheric aerosols toward the
sensor is to lower unacceptably the retrieved water

vapor amount when the aerosols are located at

high altitudes.

The technique, however, is only suitable in
cloudless conditions or, at least, when the sensor

views a surface target lit by the sun. Still, compared
to satellite microwave techniques, which are

applicable under most weather conditions, it has
the advantage of simplicity and constitutes a

promising alternative over land, where microwave

radiometry is not appropriate.

By providing the means of estimating

atmospheric total water vapor amounts simply, yet
accurately from space, our study is relevant to

international programs, such as the International
Land Surface Climatology Project (ISLSCP), for

which atmospheric corrections to retrieve land

surface parameters require estimates of water vapor
amount, and the planned Global Energy and Water

Cycle Experiment (GEWEX), whose objectives
include establishing an observational basis for

predicting water transport in the atmosphere. In
this regard, note that the differential absorption

concept is applicable to Eos platform's High
Resolution Imaging Spectrometer (HIRIS) and

Moderate Resolution Imaging Spectrometer

(MODIS), instruments that possess channels in the

region of the 0.940 am water vapor band.
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ABSTRACT

A newtechniquetsproposedtoestimateatmospherictotalwatervaporamounts fromspace.The technique
consistsof viewingthe Earth's surface in two spectralchannels,one narrow,theother wide, centeredon the
samewavelengthat thewatervaporabsorptionmaximum near940 nm. With thesecharacteristics,the ratio of
the solar radiancemeasured in the two channels is independentof the surfacereflectanceand yieldsa direct
estimateof thewater vaporamount integratedalongthe opticalpath. To test the technique,we designedand
built a two-channelradiometerbased on the aboveconcept. Airborneexperimentscarriedout with the new
devicedemonstratethe technique'sfeasibilityunder clearskyconditionsoverbothseaand[and.Overthe ocean
and in the presenceof thickaerosollayers,however,total watervapor amounts may beunderestimatedby as
muchas 20%.Comparedto satellitemicrowavetechniques,whichareapplicableunder mostweatherconditions,
theproposedtechniquehas theadvantageof simplicityandconstitutesa promisingalternativeoverland, where
microwaveradiometryis inappropriate.

1. Introduction

Water vapor is an important constituent of the at-
mosphere. This is manifested in the ability of water
vapor to change phase within atmospheric pressure and
temperature ranges, producing clouds and hydrome-
teors (e.g., rain, snow, hail). When significant amounts
of water vapor condense, the latent heat release be-
comes a source of energy for the maintenance of at-
mospheric processes. Water vapor also affects atmo-
spheric energetics through radiative interactions.

Previous efforts to obtain water vapor data on a
global scale have relied primarily upon radiosondes at
hundreds of weather stations scattered around the
world. Remote spectroscopy systems operating from
space have more recently been deployed, and their ma-
jor advantage is in obtaining continuous spatial and
temporal data from not easily accessible regions (e.g.,
over the oceans, deserts, and poles).

Microwave measurements near the peak of the
22.235 GHz resonance line from the Nimbus series
and Seasat have proved very suitable to derive the ver-

* Presentaffiliation:CaliforniaSpaceInstitute,ScrippsInstitution
of Oceanography,La Jolla,California.

** Presentaffiliation:Laboratoired'Etudes et de Recherchesen
Trlrdrtection Spatiale,Toulouse,France.

Correspondingauthoraddress.Dr. RobertFrouin,CaliforniaSpace
Institute,ScrippsInstitutionof Oceanography,LaJolIa,CA92093-
0221.

tically integrated (or total) water vapor amount over
the oceans under most.atmospheric conditions (e.g.,
Staelin et al. 1976; Chang and Wilheit 1979; Grody et
al. 1980; Prabhakara et al. 1981). Typical accuracies
of 0.1 to 0.5 g cm -2 have been reported. The results
obtained over land, however, have not been satisfac-
tory, mainly because the surface emissivity in the mi-
crowave spectral region depends strongly on soil type
and moisture. This strong and variable surface emission
camouflages the water vapor information in the mea-
surements.

Infrared measurements in the 6.3 um rotation-vi-
bration band from Nimbus-6, the NOAA series, GOES-
5, and GOES-6 have been used to infer the vertical
distribution of water vapor (e.g., Smith and Woolf
1976; Smith 1983), but with degraded accuracy, both
in cloudy conditions and near the surface. The inver-
sion techniques employed by these authors have typ-
ically yielded a 30% accuracy in the estimated water
vapor mixing ratio.

It has long been observed, however, that direct solar
radiation is absorbed substantially by water vapor in a
cloudless atmosphere and that the phenomenon is even
more pronounced when observations are conducted in
the infrared part of the solar spectrum. Fowle ( 1912,
1913) was the first investigator to exploit these obser-
vations for measuring atmospheric water vapor
amounts. He produced laboratory graphs relating the
opacity of near-infrared water vapor bands to water
vapor amount. His differential absorption concept has
been subsequently verified and applied in many studies
(e.g., Hand 1940; Foskett and Foster 1943; Gates 1956;

© 1990AmericanMeteorologicalSociety
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Siversten and Solheim 1975; Pitts et al. 1977; Reagan

et al. 1987).
Fowle's concept is given further development in the

present paper. We intend to demonstrate that it can
be extended to the sensing of total water vapor amounts

from space. For this purpose, we designed and con-
structed a radiometer that measures the intensity of
the solar radiation reflected by the earth's surface in

two spectral channels, one narrow, the other wide,
centered on the absorption peak of the 940 nm water

vapor band. The ratio of the radiometric signals mea-
sured by the two channels is independent of the surface
reflectance properties and yields a direct estimate of
the water vapor amount along the optical path. We

report on the first few flights of this new device.

2. Differential absorption technique

The differential absorption technique consists of

viewing a source of radiative energy at two (or more)
wavelengths through the same atmospheric path; the
wavelengths are chosen so that the absorption coeffi-
cients of a given gas, the amount of which is to be
measured, are different. In the aforementioned inves-
tigations, the technique was applied to water vapor (the
gas studied) by viewing the sun (the source) directly
through the atmosphere. Instead of viewing the sun,
however, one can view the earth's surface from above
the atmosphere to estimate the water vapor amount

alo5g the optical path. In this case, it is the solar energy
reflected by the surface that is measured, and this is
done through a double atmospheric path (sun-to-sur-
face and surface-to-sensor); but, a priori, one must
know the surface reflectance. Here we derive a tech-

nique which requires no a priori knowledge of the sur-
face reflectance.

We first consider the case of a direct path between
the sun and the sensor. Denoting the voltage outputs
of the radiometer in channels 1 and 2 by V_ and V2,
we have the following proportionality:

V__2 _ I17_1 ( 1 )
V2 I2t2

where I_ and /2 are the source intensities and 7_ and

72 are average transmission functions. If channel i
(i = 1, 2) is characterized-by the spectral response
R,(X), 7, is defined as

fS t,(X)R,(X)dX

7_ = (2)

_ R,( X)dX

where X is wavelength and t,.(X) is the spectral atmo-
spheric transmittance. When .the two channels are lo-
cated in a spectral region where atmospheric absorption
is essentially due to water vapor, l_/t2 can be expressed
as a function of an equivalent amount of water vapor
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along the optical path, U*. Measuring Vl/V2, therefore,

gives access to U*.
We now consider a surface target illuminated by the

sun. In this case, we have to account for the solar energy
reflected by the target, which yields

V__kt_ Ii7j7_1 (3)
V2 I272t2

where 71 and 72 are average target reflectances. If the
channels are selected such that 7_/72 is a constant, V_/

V2 remains a function of U* only (Ii/I2 does not de-

pend on the type of atmosphere encountered), and we
can still obtain U* by measuring G/V2.

In the present study, the technique employs two
channels centered on practically the same wavelength

at the absorption peak of the 940 nm water vapor band.
The channels have narrow and wide spectral band-

widths, respectively. These characteristics, while dif-
ferentiating between t_ and 72 for a fixed water vapor
path, allow one to eliminate the ratio 7_/72 in (3) (?-_

?-2). We are aware that the region around 940 nm
is influenced not only by water vapor absorption, but
also, although to a lesser degree, by carbon dioxide,
ozone, and aerosol absorption as well as molecular and
aerosol scattering. It is assumed, however, that the
properties of all the attenuators except water vapor do
not vary significantly (or vary linearly) across the
channels' bandwidth and, thus, cancel in the ratio. This

assumption is justified, as radiative transfer calculations

performed with various standard atmospheres dem-
onstrate (see section 3).

Note, furthermore, that (3) neglects the signal back-
scattered by the atmosphere toward the sensor, which

fnay not be justified under certain atmospheric con-
ditions (i.e., thick aerosol layers) when the surface re-
flectance is small. An analysis of this effect will be pre-
sented later in the paper, when examining the experi-
mental results (section 5).

Let us now express the average atmospheric trans-

mittance 7,. For a homogenous path, two basic random
band models can be used (for more details, see Paltridge

and Platt 1976):

1) the model ofGoody (1952)

7i_exp - di 1_1 + trail .I; (4)

2) the model of Malkmus (1967)

i, exp - G 1+ -a----7/ (5)

where d, is the average line spacing, &_ is the average
Lorentz half-width, and _q, is the average line intensity.
In these expressions it is assumed that the spectral in-
terval considered is wide compared to &. Since o6_U
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,> 7r_i in the water vapor bands above 0.7 #m, both

(4) and (5) reduce to

7i_exp[ (_¢'U1r_i)'/2]- d, " (6)

For a nonhomogenous path, the pressure and temper-
ature variations along the path (_q, depends on tem-

perature and 8, depends on temperature and pressure)
can be taken into account by scaling U appropriately.

A one-parameter scaling approximation (e.g., Goody
1964) is sufficient, since the absorption regime is strong
and the effect of tropospheric temperature changes on
_q, is small. The scaled amount then takes the usual

form:

dU (7)

where T* and P* are the temperature and pressure of

the equivalent homogenous path, respectively, and Ut
is the water vapor amount integrated along the path.
In the major water vapor absorption bands of the
shortwave solar spectrum, including the 940 nm band,
rn = 0.9 to 1 and n = 0.45 (Selby et al. 1978; Stephens

1984). The procedure to calculate t, is therefore to re-
place U with U* in (6) and evaluate _q,at temperature
T* and 3i at temperature T* and pressure P*.

Using the scaling approximation for a vertical at-
mospheric path characterized by a temperature profile
T = Toe -z/_tT, a pressure profile P = Poe -'/trp, and a
water vapor density profile p = poe -z/H"', and taking
T* = To and P* = Po yields

raN.. ,,tt,,,l-'U* =poHw 1 + He . _ ] (8)

Typically, Hr _ 30 km, He _ 8 km, and Hw _ 2

kin, which gives:

U* _ 0.8p0Hw = 0.SU0 (9)

where U0 is the vertically integrated water vapor
amount. Thus, U* is relatively close to Up. The factor

relating U* to U0, however, is not constant and its
changes result mainly from the variability of Hw (the
effect of variations in Hr is negligible). Still, the rela-

tionship is stable enough to deduce accurately Up from
U*, as shown quantitatively in section 3.

The average transmittance 7, over a slant path can
therefore be expressed as

7i _ exp[-13,(m*Uo) 1/2] (10)

where m* is the equivalent air mass (1/cos0 when
viewing the sun at zenith angle 0 and 1/cos0 + 1/cosy
when viewing the surface at zenith angle 0' with the
sun at zenith angle 0) and/3, is an average absorption
coefficient. Note that atmospheric refraction cannot

be neglected at high solar or viewing zenith angles (0,
0'> 80°). The resulting increase in air mass, however,
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can be easily taken into account using, for instance,

Kasten's (1966) approximation formula.
Using (10), the ratio of atmospheric transmittances

in the two channels takes the final form

72 exp[__,(m* U0) _n I ( l 1)
t2

where/3' = /31 - fl',. By measuring 71/72 and knowing

fl' and the radiation geometry, it is therefore possible,
at least in principle, to derive U0 from ( 11 ).

3. Radiometer

A schematic description of the radiometer is given

in Fig. 1, and Table 1 lists the sensor specifications.
The radiance passing through the collector is focused
on one extremity of an optical fiber. Two condenser
lenses form an image of the other extremity of the fiber
on the detectors. Using fiber optics was appropriate
because the instrument was designed to be flown on

an aircraft. The detectors are silicon photodiodes op-

erating at ambient temperature. Two interference filters
are mounted in front of the detectors on a rotating

wheel driven by a synchronous motor. The spectral

response of the filters is shown in Fig. 2. The center
wavelength is 938 nm for both filters, and their band-
widths are 13 and 46 nm at half-power points, respec-

tively. These characteristics for the filters ensure that
Ft/F2 is practically equal t6 1 in all conditions (surface
type, illumination, and viewing geometry). Also shown
in Fig. 2 is the spectral response of the detectors, which
is fairly constant over the wavelength range of interest.
The temperature dependence of the detector response
is small, not exceeding 0.1% per degree Kelvin in the
range of temperatures encountered in the troposphere.
In addition to the filters, a reference surface is mounted
to the wheel so that the detectors view an optically

black target at each rotation of the wheel. A timing
device permits control of the radiation signals generated
by the optical system. The signals from the detectors
are amplified and converted by a 12-bit analog-to-dig-
ital processor. Two amplifier sensitivities can be se-
lected, and are appropriate for measurements over land
(St) and sea ($3), respectively. Once converted to dig-
ital format, the signals are fed into a data acquisition

unit. The integration time is 0.05 s for each filter and

the optical zero.
The differential technique requires only a relative

calibration of the radiometric outputs. This calibration
was carried out in the laboratory by directing the light
collector toward a diffuse target illuminated by a solar

simulator. The diffuse target was placed about 30 cm
from the solar simulator and the light collector was
installed just behind the diffuse target. Typical labo-

ratory conditions were 292 K for air temperature and
80% for humidity. With this experimental setup and
these conditions, atmospheric absorption along the

optical path was negligible. The procedure was repeated
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before and after each in situ experiment. The ratio V_ /

V2 was observed to vary little from one calibration to

the next, by no more than a few tenths of a percent

around the value 1/0.775.

Figure 3 gives the ratio of the transmission functions,

t_ and 72, for the narrow and wide band channels, re-

spectively, computed with the 5S code (Tanr_ et al.

1985, 1986) for different air masses and atmospheric

conditions specified in the code. The salient features

of the 5S code are given in the Appendix. In the cal-

culations, the spectral atmospheric transmittance was

convoluted with both the spectral response of the in-

terference filters and the spectral response of the de-

tectors. We see that 7_/72 fits fairly well with the law

given by ( 1 1) and the coefficient/3' deduced from the

simulation is 0.178 g-l/2 cm. For a fixed water vapor

amount, the dependence of 71 ]72 on atmosphere type

is negligible. The curve in Fig. 3, which was obtained

TABLE I. Radiometer characteristics.

-- Value/description
Parameter

Wavelength at half-power points
Instantaneous field-of-view (total)

Collecting aperture diameter
Rotating wheel (supporting the optical filter)

Detector type
Detector operating temperature

Amplifier sensitivity
Dynamic range

Narrow-band channel
Broad-band channel

Integration time
Cadence of measurements

Signal quantizing levels

Narrow-band channel
Broad-band channel

Weight
Size

Power (high/low)

Design Parameters

927-944 nm (narrow), 914-959 nm (wide)
3 ° (instrument viewing the sun); 11.5" (instrument viewing the surface)

3 cm
3 positions (2 filters + a zero); 2 rps
photodiodes EG&G (type: HUV 4000)
ambient
Sl: 0.12 Wm-: st-I/V; $3:0.46 W m-2 sr-t/V

0-0.49 W m -z sr -_
0-1.84 W m-2 sr -t

0.05 s
1 measurement (2 filters + zero) every 0.5 s

4096 (12-bit coding)

Noise equivalent radiance

St: 0.12 × 10 -3 W m -2 sr-_; $3:0.42 × 10-3 W m -2 sr -_
S_: 0.46 × 10-3 W m -2 sr-_; $3:1.61 × 10 -3 W m -z sr -_

Physical characteristics

4 kg
20 × 20 × 24 cm

70/25 W
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by least-square fitting log(7_fi2) as a function of
(m*Uo) _/2, departs significantly from the simulated
points at water vapor amounts above 15 g cm-2. At
rn*Uo = 17 g cm -2, for instance, the discrepancy in
t_/72 reaches 0.014, which translates into a 10% error
on m*Uo. Small solar and viewing zenith angles are
therefore favored for greater accuracy in the water va-

por retrievals. Note also that the radiometer is suffi-
ciently sensitive to _1/72 variations in the 0-20 g cm-2

range of water vapor amounts considered in Fig. 3: Vt /
V2 and, hence, -/1/72, are measured to within a few

thousandths.
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distance between the radiosondes and the radiometer.
Time differences between radiometer measurements
and radiosonde launches were accounted for by linearly

interpolating the radiosonde data. The above-described

procedure is indeed subject to error, especially since
some of the radiosonde sites were located several
hundreds of kilometers from the experiment sites. Most

of the radiometer data, however, were acquired in Nia-

mey, where radiosondes are launched on a regular basis.
Processing the radiosonde data revealed that total water

vapor amounts ranged from I to 2 g cm-2. This range
of Uo values is small (in a tropical atmosphere, U0 can
exceed 4 g cm-2), but according to theory, 71/72 is gov-
erned by m*Uo and not atmosphere type (see Fig. 3 ).

Therefore, calibrating the instrument in the range 1-

2 gcm -2 for U0 (using rn* from 1 to 5) should algo
be valid for Uo > 2 g cm-2.

Figure 4 shows the ratio of the intercalibrated signals

generated in the narrow and wide spectral channels as
a function of m'U o, from which fi' can be deduced by

regression. This was done as for the simulations in Fig.
3. Table 2 gives the values offi' obtained for each day
of measurements. The overall mean value of fi' is 0.185
+ 0.14 (la) g-W2 cm. The dispersion offi', 7.5% (la)
of the mean value, is due largely to uncertainties in the
radiosonde total water vapor amounts [ 10%- 15% errors
are frequently reported; for instance, see Richner and
Phillips (1982)]. Also, the mean value of fi' corre-

sponds fairly well to the value predicted by the 5S code
(0.178 g-_/2 cm) within the accuracy of this code and
experimental uncertainties. We conclude that the two-
channel radiometer may derive total water vapor
amount with a 15% (la) accuracy (a 7.5% uncertainty

on fi' yields at 15% uncertainty on m*Uo) rasing ( 11 ),

4. Measurements

a. Ground-based measurements

The two-channel radiometer was used in a sun-
viewing configuration from the ground to validate ( 11 )
and derive experimentally the coefficient fi'. Measure-
ments were made at several locations and various dates
in France and Niger: Dinard (48.38 °N, 2.03°W) on
20 June 1980; Lille (50.39°N, 3 -05°E) on 13 and 15

May 1980; Roscoff( 48.43°N, 3.59°W) on t6 Septem-
ber 1980; and Niamey (.13.32 °N, 2.05°E) on 19, 20,
21, 23, 24, 26, and 29 November and 1,2, 3, 4, 5, and
7 December 1980. For each day, the data were collected

at regular time intervals when 0 < 80 ° ( 1 < m* < 5).
Radiosonde observations were available for Niamey.

(one launch per day at t200 UTC), but 1:ot for the
other locations. In order to estimate Uo at those loca-

tions, we used 0000 and t200 UTC radiosonde obser-
vations at the nearest launch sites, namely Brest

(48.45ON, 4.4t°W), Trappes (48.76°N, 2.01°E), and
Camborne (50.21°N, 5 .31°W) for Dinard and Ros-
colT, and Uccle (50.80°N, 4.35°E), Crawley (51.08°N,
0.2t°W), and Trappes for Lille, and weight-averaged
the computed total water vapor amounts according to

,.,..-
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FIG. 3. 5S simulations of the transmission function 7,/7= for dif-

ferent water vapor amounts and atmosphere types (tropical, midlat-

itude summer, midlatitude winter, subarctic summer, subarctic win-

ter).
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with/3' empirically fitted as 0.185 g-l/2 cm. It is im-

portant to emphasize, however, that the 15% accuracy
indicated above corresponds to one standard deviation

in #' and is therefore valid at the 68% confidence level
if we assume a normal distribution of re'U0 values for

any V;/V2 measurement.

b. Airborne measurements

In order to demonstrate the validity of deriving total

water vapor amounts from space by measuring the solar
radiation reflected by the Earth's surface, we installed
the two-channel radiometer aboard a small aircraft with

the light collector viewing the Earth's surface at nadir.
Two flights were made on 16 May 1979 and 22 May
1980 over sea and land in the northern part of France.

Figure 5 shows the aircraft flight pattern for each day
as well as the nearest radiosonde launch sites (Uccle,

Trappes, and Crawley), and Table 3 displays the total
water vapor amounts at these sites before and after the

flights. The aircraft flew over varied surfaces (forest,
crops, bare soil, and ocean) whose altitudes did not
exceed 100 m above mean sea Ievel.

Figures 6a, 6b, and 6c present the data acquired dur-

ing the flight of 16 May 1979 at 2800 m altitude over
land. The two channels' voltage outputs are plotted as
a function of time in Figs. 6a and 6b, respectively, and
their calibrated ratio is shown in Fig. 6c. It is striking
that each channel output varies rapidly with time,

echoing changes in the surface reflectance, while the
ratio of these outputs is very independent of the surface

properties. This proves quite well that using two chan-
nels centered on the same wavelength allows one to
eliminate surface reflectance effects. The ratio in Fig.

6c, however, exhibits a few abnormal values. Due to a
malfunction of the timing device, the measurement in
the narrow band channel was erratically skipped. The

problem was corrected prior to the second flight on 22

May 1980.
Figures 7a, 7b, and 7c show the data record for 22

May 1980 when flying at 900 m altitude over land and
sea. Again the ratio of the two voltage outputs (Fig.
6c) is quite independent of the surface properties, even
when passing from land to sea, and the technique also
worked when measuring the small radiation energy re-

flected by the sea surface.
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TABLE 2. Best linear fit between calibrated VdV2 and exp[-_' × TABLE 3. Radiosonde data used to compute total water vapor

(m*Uo) _n] for the different ground-based measurements (instrument amounts along the aircraft flight paths.

viewing the sun). The mean J' value is 0.185 +--0.014 g-ta cm.

Date /_' Residual Station

location (d/mo/yr) (g-m cm) error Crawley

Dirard, France
(48.380N,
2.03"W)

22/6/80 0.175 0.008

Lille, France 13/5/80 0.117 0.009 Trappes
(50.39"N, 15/5/80 0.165 0.009
3.05"E)

Roscoff, France
(48.43°N,
3.59°W)

Niamey, Niger
(13.32"N,
2.05"E)

17/9/80 0.189 0.005

19/11/80 0.174 0.015

20/11/80 0.167 0.018
21/11/80 0.207 0.020
23/ll/80 0.174 0.013
24/11/80 0.184 0.012

26/11/80 0.176 0.009
29/tl/80 0.207 0.006
01/12/80 0.210 0.003
02/12/80 0.182 0.010
03/12/80 0.194 0.002
04/12/80 0.202 0.002
05/12/80 0.194 0.001
07/12/80 0.175 0.003

When flying at such relatively low altitudes, the water

vapor amount along the optical path is not m*Uo, with

m* defined in section 2, but

U, = Uo/cosO + Ub/cosO' (t2)

52°N

51°N -
{_ ,,t _

_(_ 44m) _CALAIS .............. .._ ,rr_r

50°N -

49°N I

48°N L_ ;

._ LILLE

ENGLISH (s2m)

CHANNEL

........ 6/79
_-- s/22/8o

TRAPPES

(_ sam)

RADtOSOUNDING SITES
. 5°E

1°W O* 1 °E 2°E 3°E 4°E

FIG. 5. Aircraft flight pattern For 16 May 1979 and 22 May t980.
The nearest radiosonde launch sites are also shown.

Date Time Water vapor amount Uo

(d/mo/yr) (UTC) (8 cm-Z)

Uccle

16/5/79 00 2.01
16/5/79 12 1.94
22/5/80 00 1.78
22/5/80 12 t.77

16/5/79 00 1.96
16/5/79 12 t.89
22/5/80 00 2.27
22/5/80 12 1.95

16/5/79 00 1.87
16/5/79 12 2.46
22/5/80 00 2.05

22/5/80 12 1.78

where Ub is the water vapor amount along the path

from the surface to the flying altitude. Figures 8a and

8b give U_ as a function of time for each flight, deduced

from the radiometer measurements and computed

from radiosonde observations. The radiosonde data

were weight-averaged according to the distance between

the launch sites and the aircraft location duri_tg the

flights, taking into account differences between the al-

titude of the launch sites and the altitude of the surface

viewed by the radiometer. The procedure was per-

formed for times preceding and following the flights,

and the resulting water vapor amounts were interpo-

lated linearly with time. As seen in the figures, the

agreement between the two types of U, estimates is

fairly good. For the flight of 16 May 1979 (Fig. 8a),

the average value of Ue obtained by the differential

method is 5.2 g cm -2, and compares with 4.5 g cm -2

from the radiosonde data. For the flight of 22 May

1980 (Fig. 8b), the values are 2.2 and 2.6 g cm -2, re-

spectively. These results, however, are not conclusive;

they are based on only two flights. Furthermore, un-
certainties in the water vapor amounts derived from

the radiosonde data may be largely responsible for the

discrepancies. A definitive assessment of the method

will require more measurements. Perhaps an optimum

means of verification would be to install the instrument

aboard a helicopter flying above the planetary boundary

layer (where most of the water vapor is concentrated)

and over surface areas where concurrent high-quality

radiosonde observations are made as well as standard

sunphotometer measurements.

5. Aerosol contribution to measurement errors

A possible limitation of the method over the ocean

should be pointed out. At the very low level of the

radiation signal reflected by the sea surface, the aerosol

scattering contribution cannot be ignored and may lead

to an underestimation of the water vapor amount. Let

us assume, for the sake of simplification, that the sur-
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dra(z) ra exp -
dz HA

where U(z, _ ) is the vertically integrated water vapor
amount between altitude z and the top of the atmo-

sphere.
Developing the right-hand side of (14) to first order

in U(z, oo) and taking U(z, 0o) = Uo exp(-z/Hw)

yields

-ti(z, oo) ._ 1 - fli(rn*Uo) t/2 exp -

Although this approximation for ti(z, oo) is not verified
C1 (by definition, water vapor absorption is strong in the

940 nm band), it is sufficient to provide the order of
11.5 magnitude of the aerosol backscattering effect on the

differential method's accuracy.
Substituting ( 15) and ( 16) into (13), one can easily

evaluate the integral on the right-hand side of (13),

which gives

PA_'.a Ii

Li _ _oo_4 cos0' _r

(17)\HA + 2Hw/]

Since the ratio of the radiometer voltage outputs in the
narrow and wide spectral channels is proportional to

Lt/L2, we have

_ r • /2H____.__E__w_2]'/2

Vt I, (18)

V2 12l-fl2[m*U°_,, A + 2Hw) ]

Thus, the total water vapor amount detected is

( 2H,v (,9)
Uoa _" UO\H A + 2Hw] "

Taking typical values of 0.5 km (e.g., Patterson et
al. 1980) and 2 km (e.g., Roll t965) for HA and Hw,
respectively, over the ocean, we obtain U0_ _ 0.79U0,
which indicates that the retrieved total water vapor
amount is underestimated by 21%. If H.4 is higher or
H..j _. Hw, the error becomes unacceptable. One has

to point out, however, that (19) gives a superior error
limit. As soon as the surface reflectance reaches a few
percent, the contribution to L, of photons reflected by

, RADIOMETER

o RADIOSONDE

TIME (GMT)

5/22/80

e-o-e a,.-o._l o-o _ o-o

b

I I .70 1 I .80 ] I .90 12.00

TIME (GMT)

FxG. 8. Time evolution of retrieved and observed water vapor
amounts for the [lights of(a) 16 May' 1979 and (b) 22 May 1980.

face reflectance is null and that the diffuse atmosphere

is composed only of aerosols whose concentration de-

creases exponentially with altitude (optical thickness

rA, scattering phase function PA, single scattering al-

bedo woA. scale height tIA). Let us further assume that

the aerosol optical properties vary smoothly with

wavelength, so that they ean be considered equal in

the narrow and wide spectral channels. Using the first

order scattering approximation, the aerosol atmosphere

scatters toward the sensor in channel i the radiance

(e.g., Deschamps et al. 1983)"

fo ''_ dra (z______)dz.PA [, 7,(:, co) dz
Li = wo: -4 cos0'

(13)

In this expression, t,(z, m) and drA(z)/dz can be
writter_:

t,(z, oo)_exp{-ff,[m*U(z'°°)] '/z} (14)

the surface generally surpasses that of photons uniquely

backscattered by the atmosphere.
In fact, no noticeable decrease in U_ is observed on

22 May 1980 when passing from land to sea around
11.9 UTC (Fig. 8b). On the contrary, U_ increased
from 2.0 to 2.3 g cm-2. This change may be attributed
to the amplifier sensitivity $3 used over land, which is
not adapted to measurement over the ocean. After
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switching to the more appropriate sensitivity S_, U,
quickly recovered the value of 2.0 g cm -2 observed

over land.

6. Summary and concluding remarks

From the ground-based measurements, we have first
shown that the differential technique can be used to
derive total water vapor amounts by viewing the sun

through the atmosphere in two channels of different
spectral bandwidths centered on the same wavelength
near 940 nm. The experiment was calibrated by com-

paring the ratio of the radiometric outputs generated
for the two channels with water vapor amounts de-
duced from radiosonde observations. The relative ac-

curacy of the water vapor retrievals is 15% ( l a). This
value, however, incorporates uncertainties in the ra-
diosonde data (including space and time interpolation
errors), so that the actual accuracy is likely to be better,

probably around 5%.
The two-channcl radiometer was then used in an

airborne configuration, measuring the solar radiation

reflected by the Earth's surface. In this configuration,
the instrument was able to yield a measure of the water

vapor amount along the optical path independent of
the surface nature, even for the lower radiation signals
reflected by the sea surface. In the presence of thick

aerosol layers, however, the water vapor amounts de-
rived over the ocean may be underestimated by as
much as 20%. One way to remove this limitation, fit

least partially, is to view the sea surface in the sun glint,
which substantially increases the contribution of the

signal reflected by the sea surface. Additionally, viewing
the sea surface inside and outside the sunglint region

would provide information on the ratio of aerosol and
water vapor scale heights by giving access to U0 and

U0a [see Eq. (19)].
We conclude by suggesting that the differential ab-

sorption technique presented herein can be applied to

yield accurate space observations of total water vapor
amounts under clear sky conditions over land and sea.

Compared to satellite microwave techniques, which are
preferred over the ocean since they are applicable in
almost all weather conditions, our technique has the
advantage of simplicity and would complement the
microwave techniques over land where they fail. In-

terestingly, the Earth Observing System of the 1990s

will carry the High Resolution Imaging Spectrometer
(HIRIS), an instrument that possesses adequate chan-
nels to exploit our differential absorption concept.
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APPENDIX

The 5S Code

The Simulation of the Satellite Signal in the Solar

Spectrum (5S) code (Tanr_ et al. 1985, 1986) com-
putes the solar radiation backscattered to space by the
Earth-atmosphere system as it may be observed by a
satellite sensor. Given a Lambertian ground target, the

code estimates the target's apparent reflectance by

taking into account the effects of gaseous absorption,
scattering by molecules and aerosols, and spatial in-

homogeneities in the surface reflectance. The input
parameters, namely, solar and viewing geometries,
atmosphere model, surface reflectance, and spectral
band, can either be specified from standard conditions
or user-defined. In addition to apparent reflectance, the
code provides gaseous transmittance and irradiance at
the surface, as well as the various components of the
satellite signal. Complementary results are also avail-
able; exact calculations at selected wavelengths, in par-

ticular, allow one to assess the code accuracy.
Based on Tanr_ et al. (1979), the satellite signal is

expressed as a function of the successive orders of ra-
diation interactions in the coupled surface-atmosphere

system. If p is the reflectance of the target, and Oe that
of its environment, the apparent reflectance is written

as

p*(O, 0', ¢) = t_(O, O'){pa(O, 0', ¢)

[e -,/¢°s° + td(O)] [pe_,/¢o_o,+ p_ta(O')l} (AI)
+ 1 - p_S

where 0 and 0' are the sun and satellite zenith angles,

respectively, 4_ the relative azimuth between sun and
satellite directions, r the atmospheric optical thickness,

tg the gaseous transmittance, td the atmospheric diffuse
transmittance, and S the spherical albedo of the at-

mosphere. The first term enclosed by the curly brackets
represents the contribution of photons backscattered
to space without surface reflection, whereas the second
term characterizes photons that have sustained one or

multiple surface reflections. Absorption by atmospheric
gases is considered as a single multiplicative factor de-
pendent on the direct paths sun-to-surface and surface-
to-sensor. Decoupling absorption and scattering pro-
cesses are justified since, on the one hand, ozone is
located at altitudes where molecules are rarefied, and
on the other, water vapor and carbon dioxide absorp-
tion occur above 850 nm where molecular scattering

is negligible, and first and second orders of aerosol
scattering (predominantly forward) restitute almost all
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of the diffuse radiation. According to Tanr6 et al.

(1986), the error introduced by separating the two
processes is smaller than one percent, except for grazing
incidence or observation directions (cos0, cos0' < 0. l ).

The atmospheric functions ta and S are approxi-

mated by analytical formulas determined empirically
from exact radiative transfer computations performed

for a wide range of model atmospheres. Table A l shows
the disparity between 5S and exact calculations of
the total atmospheric diffuse transmittance, e -'/¢°s°

+ re(O), for various solar zenith angles and wave-
lengths. Calculations were made for two atmospheres,
clear and hazy. The differences are small, generally less
than 1%, but may reach over 2% (hazy atmosphere,

0 = 60°).
The gaseous transmittance, is, is computed from two

exponential random band models, that of Goody
(1964) for water vapor, and of Malkmus (1967) for
oxygen, ozone, and carbon dioxide. The spectral res-
olution, 20 cm-t, is sufficient (contains enough spectral

lines) to apply the random band models confidently.
Figure A1 compares the gaseous transmittance in the
spectral region of the 940 nm water vapor band com-
puted using the 5S code and with a well-known code,
LOWTRAN-6 (Kneizys et al. 1983). For the tropical
and midlatitude summer atmospheres considered, the

agreement is good near the peak water of vapor ab-
sorption, but notable differences exist in the wings of
the band. We recall here that for computational effi-

Ciency, LOWTRAN-6, unlike 5S, neglects the influence
of temperature on the molecular absorption coefficient,
and approximates molecular line absorption by a one
parameter band model. Nevertheless, integration over
the wavelength range of the narrow and wide band-
passes considered in the present study provides very
similar results with both codes.

TABLE A-I. Comparison betv, een 5S and exact calculations of the

total atmospheric diffuse transmittance.

8 = 15 ° _ = 600

Wavelength (nm) 5S Exact 5S Exact

Clear atmosphere

450 .877 .873 .755

550 .930 .928 .841

650 .954 .953 .885

850 .973 .973 .926

1600 .988 .989 .966

2200 .992 .993 .976

fh_cy atmo.where

450 .810 .806 .648

550 .866 .864 .721

650 .895 .895 .766

850 .926 .927 .819

1600 .963 .964 .899

2200 .973 .976 .925
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FIG. A- 1. Gaseous transmittance along a vertical path sun-to-sur-

face computed with 5S and LOWTRAN-6 for tropical and midlat-

itude winter atmospheres.
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ABSTRACT

A useful parameter to estimate terrestrial primary productivity,

that can be sensed from space, is the daily-averaged fraction of

photosynthetically available radiation (PAR) absorbed by plants.
To evaluate this parameter, investigators have relied on the fact

that the relative amount of radiation reflected by a vegetated

surface in the visible and near-infrared depends on the fraction of

the surface covered by the vegetation and, therefore, correlates

with absorbed PAR. They have used vegetation indices, namely

normalized difference and simple ratio, to derive absorbed PAR,

even from coarse spatial resolution sensors such as the Advanced

Very High Resolution Radiometer (AVHRR) aboard the NOAA
satellites. The problem with normalized difference and simple

ratio is first, they are non-linear functions of radiance or reflectance

and, therefore, cannot be readily applied to heterogenous targets,
second, they are uscKt in generally non-linear relationships, which

make time-integrals of the indices not proportional to primary

productivity, and third, the relationships depend strongly on the

type of canopy and background. To remove these limitations, we

propose linear combinations of visible and near-infrared
reflectances at optimum (one or two) viewing zenith angles.

Keywords: radiation, plants, primary, production.

1. INTRODUCTION

Lahd primary productivity, or the rate at which materials from
the atmosphere and soils are accumulated into biomass through

photosynthesis, is of great importance. The reasons are numerous
and have been discussed extensively in the literature (see, for

instance, Ref. 1). Basically, the ran}or portion of human food is

provided by plants growing over land. Land primary productivity
also affects the environmental context in which man and societies

develop. In addition to its key role in sustaining human

populations and structuring communities, land primary

productivity governs to a large extent the seasonal oscillations of
atmospheric carbon dioxide and impacts the water and energy
available to the atmosphere. Anthropogenic changes, such as

those linked to the destruction of ma_or vegetation systemS, have

potential implications on climate. If we are to truly understand the
interactions between the terrestrial biosphere and the atmosphere

and t?_eir effects on climate, v,,e need to know the geographic

distribution and temporal variability of land primary productivity

over the globe.

To achieve this goal, satellite observations are essential. A

promising technique for sensing primary productivity from space; at
least in the case of light-limited situations, incorporates the fact

that the growth rate of many plants is close to proportional to the
rate at which radiant solar energy is absorbed by the foliage (Ref.

2):

PP =e fp,_ PAR (1)

where PAR is the incident photosynthetically active radiation,

i practically the solar radiation reaching the canopy in the 0.4-

0.71.tin spectral interval, fPAR is the fraction of PAR intercepted by

the canopy, and ,' is an efficiency factor for carbon fixation that

depends slightly on plant type, temperature, and available soil
water. For various canopies (mostly crops), ¢ has been found to lie

between 1.1 and 1.4 g C per M J of PAR (Ref. 3).

Photosynthetically active radiation represents a nearly constant

fraction of total insolation (e.g. Ref. 4), and total insolation can be
retrieved accurately from satellite observations (e.g., Refs. 5, 6, 7,

8). Direct satellite estimates of PAR can also be obtained, as recent

studies demonstrate (e.g., Ref. 9).

The absorbed fraction of PAR can be estimated from vegetation

indices, the most commonly used being simple ratio, SR and

normalized difference, ND. These radices are defined by

R,v

SR = V (2)

ND = RN +----'-_ (3)

where RV and RN are upwelling radiances in the visible and near-

infrared (for instance radiances in channels 1 and 2 of the Advanced

Very High Resolution Radiometer aboard NOAA satellites),

respectively. Instead of radiances, reflectances are also used. That
SR and ND are sensitive to fPAR results from the characteristic

spectrum of sunlight reflected by leaves, which is distinct from
that of sunlight reflected by soils. Chlorophyll pigments absorb a

large fraction of the light which reaches them in the visible, but
not in the near-infrared where scattering by the chloroplasts is

effective. This is not the case of soils, whose reflectance increases

more linearly with wavelength in the visible and near-infrared. It

follows that the relative amount of radiation reflected by a

vegetated surface in the visible and near-infrared depends on the
fraction of the surface covered by vegetation and, therefore,

correlates with/'PAX"

Several theoretical studies have predicted how SR and biD relate

tofpaz (e.g., Refs. 2, 10, 11, 12, 13). Kumar (Ref. 2) suggested a near-
linear relationship between SR and fPAR " Asrar et al. (Ref. 10) and

Sellers (Refs. 11, 12) showed that fPAR should vary non-linearly

with SR, but almost linearly with ND. Choudhury (Ref. 13) found

that the relationships between fPaR and vegetation indices are

generally non-linear. Soil reflectance changes, in particular,

appeared to significantly affect the linearity of the relationships.

Experimental studies (e.g., Refs. 2, 14, 15, 16, 17) have also

provided disparate results and, therefore, did not resolve the

apparent theoretical controversy. Kumar (Ref. 2), for instance,
observed that SR is linearly related to fPAl_ for sugar beet, which

supported their theoretical analysis, yet Steven et al. (Ref. 14)

reported an exponential relationship. In short, the observations
indicate that the relationships between fPAR and vegetation

indices depend strongly on the type of canopy and underlying

surface, as pointed out by Choudhury (Ref. 13).
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That the interdependence of fpan and vegetation indices is linear or

non-linear is an important issue because linearity implies that the

time-integral of SR and ND should also be linearly related to

primary production (e.g., Refs. 11, 12, 18). Even though serious
doubts exist about the linearity of the relationships, especially

when considering various ecosysterr_ and climates, Tucker et al.

(Ref. 19) and Goward et al. (Refs. 20, 21) have reported agreement
between ND time-integrals obtained from AVHRR data over the

Senegalese Sahel and North and South American biomes,

respectively, and published production rates.

Using SR or ND for estimating fpxa , has several limitations. First,

as mentioned above, the relationships are generally non-linear,

which makes SR and ND time-integrals not proportional to

primary production. Second, SR and ND are non-linear functions of
radianc_. Since vegetation is highly heterogeneous spatially, sub-

pixel variability is likely to introduce uncertainties in SR and ND,

particularly when the sensor spatial resolution is coarse (case of
AVH'KR). For such sensors, which have the advantage of frequent

global coverage, applying relationships established for

homogeneous canopies is not satisfactory. Third, satellite-derived
SR and ND may reduce to some extent the effects of sensor

calibration uncertainties and atmospheric interference, yet they

depend on atmospheric composition, in particular aerosol and water

vapor amounts, and viewing geometry (e.g., Ref. 22). Even time
series of maximum AVHRR vegetation indices over a several-day

period, which correspond to minimum atmospheric contamination,
remain relatively noisy, and it has not yet been possible to identify

whether the noise is due to residual variations in the atmospheric

contribution or to variable directional surface properties. We need

to address these limitations if we are to remotely sense fVAR from

space accurately.

Our objective, therefore, and the purpose of this paper, is to define

optimum combinations of visible and near-infrared refleetances
that: a) relate linearly to ft'AR; b) can be used independently of the

type of foliage and substrate; c) eliminate the effects of sub-pixel

spatial heterogeneity; and d) improve the accuracy of fPAR

estimates when compared to SR and ND.

.7. METHODOLOGY

Instead of using radiance ratios, we express fPAR as a linear

combination of visible and near-infrared radiances or,

equivalently, reflectances. This procedure, ",..,hen applied to a
coarse resolution sensor such as AVHRR, should eliminate or, at

least, substantially reduce sub-pixel variability effects. Linear

combinations of reflectances, known as "greenness" transformations,

have been used for many years to study vegetation parameters, in

particular by Hatfield et al. Ref. 15) and Asrar et al. (Ref. 17).
These authors found that greenness obtained by combining

reflectances measured by a Barnes Modular Multispectral
Radiometer (MMR) in two visible and two near-infrared bands is a

much more linear predictor of /P,_R than simple ratio and

normalized difference. They did not favor greenness, however,

because of the smaller sensitivity of this index to fp,_R and the

strong dependence of the relationship between fP,_R and greenness

upon solar zenith angle and canopy geometry. If known (e.g., from
theoretical calculations), the dependence upon solar angle or, more

generally, radiation geometry, should not be a problem because

solar and viewing angles can be determined exactly. The problem is
to eliminate the effects of variable canopy geometry and soil

reflectance in the relationships. Given a sun position, this may be

pessible for specific viewing angles.

Our approach, therefore, is to simulate for varied soil and canopy

parameters, namely leaf optical properties, soil reflectance, leaf
area index (LAD, and leaf inclination distribution function (LIDF),

above-canopy visible and near-infrared reflectances as welt as fp._...AR

and daily averaged (weighted by incident radiation) fP,_R, [Pan'

The simulations are performed which the SAIL canopy reflectance
model (Ref. 23). Various radiation geometries (solar and viewing

zenith angles, relative azimuth angle) are considered, as well as
direct and diffuse fractions of incident solar radiation. The

absorbed fraction of PAR, fPAR , is computed as a function of solar

zenith angle and fP,'_R as a function of latitude and season. From the

reflectances, simple ralio and normalized difference are derived.

We focus on fp-7,_ since this parameler rather than fear is required in

primary productivity models. In addition, since the sensors

potentially useful to monitor land primary productivity from space

are, or will be carried by heliosynchronous satellites (AVHRR on
the NOAA series, the POLarization and Directionality of the

Earth Reflectance instrument, POLDER, on ADEOS, and the

MODerate resolution Imaging Spectrometer, MODIS, on EOS) and,

therefore, offer the possibility of viewing the same target under

one or several geometries during a _veral-day period, we attempt

to estimate ]'P,_R from single or multi-angle combinations of visible

and near-infrared reflectances. Indeed, the multi-angle approach

is only suitable when the characteristics of the surface target do not

change significantly over the several-day period.

Thus, we regress/"d-an at each latitude and month during the year

against simple ratio, normalized difference, and visible and near-
infrared reflectances. One and two viewing geometries are
considered for the combinations of reflectances. The regression

statistics, namely correlation coefficient, regression coefficients,
and residual error of estimate are analyzed to determine the solar

and viewing angles that minimize the effects of variable L1DF and

soil reflectance. The improvement in the predicting power of the

linear combinations is also assessed.

3. RESULTS

To illustrate our theoretical approach and show the promise of

linear combinations, Figs. 1, 2, and 3 display selected results

obtained with the SAIL model. The calculations were performed

for LAIs of 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5, erectophile,

spherophile, and planophile canopies, soil reflectances of 0.1, 0.2,
0.3, and 0.4, and typical leaf optical properties (reflectance and
transmittance of 0.1 and 0.001, respectively, in the visible, and 0.45

and 0.4 in the near-infrared). The soil reflectance was assumed

white spectrally, and the various LIDFs were considered conjointly

in the regressions. A US 62 standard atmosphere (Ref. 24)

containing continental aerosols (Ref. 25) was overlying the canopy.

We see in Fig. 1 (bottom) that the influence of the background on

the/p"_ versus ND relationships is substantial, especially at

moderate LAIs, but is reduced considerably when using linear

combinations of reflectances (Fig. 2, bottom). In this case, the points

corresponding to a same LAI are generally more aligne.._d with the
best fit line. The result is a drastic improvement in the [_AR residual

error. For the solar and viewing geometries of Figs. 1 and 2 ,bottom,

the residual error is reduced from 0.058 to 0.033. When using ND
the minimum residual error is obtained for a nadir viewing (Fig. 1,

top), but when using linear combinations it is prefe.._rable to view the

canopy at a 45 ° zenith angle (Fig. 2, top). The/par residual error

can be further reduced by combining linearly visible and near-

infrared reflectances at two viewing zenith angles (Fig. 3). Using

reflectances at nadir and 60 ° from zenith, for instance, reduces the

/-;-an residual error to 0.026 (Fig. 3, bottom). Smaller residual errors

can even be obtained when the second viewing zenith angle is as far

• as possible from nadir ( Fig. 3, top).

The above results, however, are only valid for a sun at 60 ° of zenith

in July and at 45 ° latitude. For a sun closer to zenith, the minimum

[p---_residual error is encountered at higher viewing zenith angles

when using ND, for instance at 45 ° when the sun is at 30 ° from

zenith. In the ease of uni-angle linear combinations, the minimum

at 45 ° (Fig. 3, top) moves to 60 ° when the sun zenith angle

decreases to 30 ° . The picture is more complex with multi-angle

combinations because of the many angular possibilities. In general,

for a particular sun configuration, several viewing zenith angle

pairs provide similar good results (/'t,'--_Rresidual error around 0.020).

For a sun at 30 ° from zenith, for instance, viewing at nadir, 15 °, or

30 ° from zenith and at 75 ° from zenith gives residual errors ranging

from 0.019 to 0.021. The regression coefficients, however, are quite

sensitive to the viewing geometries selected.

4. DISCUSSION

The results presented in section 3, although encouraging, should be

interpreted with caution. No hasty generalization can be made at

this point. First, the SAIL model has often showed weaknesses

when compared to measurements; it does not predict a hot spot and

is only appropriate for agricultural plants that form a layer-type

canopy. More accurate canopy reflectance models may be used, at

least to provide a reference. Second, the background reflectance
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Fig. 1 Top: JP,4Rresidual error as a function of rue'wlng geometry for a

sun at 60 ° from zenith in July at 45°N. In the calculah'ons, [PAR

estimated from normalized difference, ND, is comparedto fPAX
obtained with the SAIL model. Bottom: scatter plot of ft'AR versus

ND for a nadir viewing. Variable soil reflectance results in points
aligned rather perpendicularly to the best fit line (dashed line),
especially at"moderate LAIs fr'AR and ND values around 0.5), which
indicates that the relationship between fp,_R and ND is not only

non-Iinear, But also strongly depends on the type of background.

may vary with wavelength in the visible and near-infrared, as is
the case with most soils (e.g-., Ref. 27) and leaf litter fret. 28). "['he

canopy may also be composed of living as well as dead leaves or,
more generally, leaves of different optical properties.
Calculations, therefore, should include more realistic situations.

Still, our study strongly suggests that linear combinations at
sEecific viewing angles may be rr,u. h more accurate in predicting
fpAX than indices that are non-linear functions of radiances or
reflectances.

The relationships established theoretically, the gain in fPXR

residual error when using preferential viewing geometries, the

ability of the linear combinations to reduce soil and LIDF
dependence, etc., remain to be verified using in situ measure._ments.
Unfortunately, few data sets exist that contain concomitant fPARand
reflectance measurements at various viewing angles. The results,

therefore, may not be statistically significant. A dedicated
experiment to establish and verify the validity of the SAIL-based
data fits, therefore, appears necessary.

One should further emphasize that surface reflectances observed
from space are inherently subiected to instrument noise and are
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Fig. 2 Same as Fig. 1, but linear combinations of visible and near-
infrared reflectances (single viewing geometry), Pv and pn,
respectively. Compared to Fig.l, the fPAR residual error is

substantially reduced when viewing around 45° from zenith. Points

corresponding to a same LAI, but different soil reflectances, are now
more aligned along the best fit line.

contaminated by the atmosphere. Consequently, it will be necessary

inthecomparisonsofthevariousestimators'performancetoinclude
theeffectsof instrumentnoiseand atmosphericinterference,which

act differentiallyon simple ratio,normalized difference,and
linearcombinations.This can be done by simulatingthe top of

atmospherereflectancescorrespondingto thesurfacereflectances,
correctthosereflectancesforatmosphericeffectsassuming typical

atmospheric characteristics,and translatethe effects of
uncertaintiesin thesecharacteristicsintoabove-canopy reflectance
uncertainties.The procedureisthentoinlroducetheabove canopy
reflectance uncertainties in the regression datasets, as well as

typical instrument noise.

Our investigation should be viewed in the context of future

spaceborne radiometers, in particular MODIS on EOS and POLDER

atmosphere reflectances for atrn__ospheric interference, are
particularly adapted to monitor [Pa_ and, therefore, primary

productivity from linear (uni- and multl-angle) combinations of
reflectances. This should lead, during the EOS era, to a better
characterization of terrestrial primary productivity on a global
scale.
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2, the fPaR residual error is further reduced when reflectances at

nadir and 60 ° from zenith are linearlv combined.
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1. INTRODUCTION

Spurred by the possible consequences of the so-

called greenhouse effect, or the trapping of

longwave radiation within the atmosphere by
water vapor, carbon dioxide, and trace gases,
public awareness and scientific interest in the

planet Earth's climate system has grown
considerably during recent years.

General Circulation Models (GCMs) have been

trying to identify pertinent climate changes.

Predictions of global changes, however, vary
widely. For a doubling of carbon dioxide

concentration, for instance, the predicted mean
temperature increase ranges from about I°C to
4°C. It is now believed that the main factor of

-uncertainty is cloud feedback: changes in the
Earth's climate may drive variations in cloud

parameters (height, liquid water content,

brokenness, distribution) that could amplify or
cancel out the greenhouse effect.

Clouds affect climate in many ways; however,
their main effect regarding climate research, of
particular interest in this study, is on radiative

exchanges occurring within the
surface/atmosphere system. Except for some
pathological cases of very high surface albedo
(Kobayashi, 1989), clouds increase the Earth's

system albedo which, by reducing the solar
radiation absorbed by the surface, leads to a

cooling of the Earth. On the other hand, clouds

trap terrestrial radiation within the troposphere,
reducing the amount of longwave flux escaping
to space, and thereby causing a warming of the
surface. The net cloud radiative forcing is
therefore a difference between the two effects,
which are of the same order of magnitude. Its
sign and amplitude depend on cloud

characteristics, in particular height and water
content (Somerville, I984).

Current cloud forcing predictions are of poor
quality for the following reasons: 1) we still

cannot correctly predict the occurrence of clouds
under given atmospheric conditions and 2) the

radiative effect of a cloud, given it_ liqltid water

content and height characteristics, is subject to
uncertainties, even though the radiative

transfer through a vertically inhomogeneou s

atmosphere is now well understood (Flateau
and Stephens, 1988).

Given this situation, it is important to conduct

observations of cloud radiative forcing and
understand what parameters drive the main

variations. Parameterizing cloud forcing from
variables that are well predicted by GCMs when

compared to present climate is a key objective.
The study presented in this paper evaluates a set
of radiative flux surface measurements,

concomitant with other meteorological
observations, so as to derive the cloud radiative

forcing at the surface. The forcing is then
analysed in terms of variability and relation to
other meteorological parameters.

In the first part of this paper we describe the data

used in this study, which were collected during
the First ISLSCP Field Experiment (FIFE). We
then present the methods that are used to
process these data and characterize the cloud

radiative forcing at the surface. This forcing's
variability is finally examined as a function of

cloudiness and atmospheric changes.

2. DATA

The First ISLSCP Field Experiment (FIFE),an

international surface-atmosphere experiment,
took place in 1987 at and around the Konza

PrairieLong Term Ecological Research (LTER)

sitenear Manhattan, Kansas (Sellersetal.,1988).

The FIFE objectiveswere to gather the necessary

data to permit interpretation of satellite

observations suitable to infer climatologicaIly-
significantland surfaceparameters.

The experimental area was a 15 x 15 km square
with various topological features including
burned and unburned plateau, slope, and creek
(Fig. 1). Although the central portion of the area
is studied continuously and additional

paramelers were measured throughout the year,



the experiment concentrated on four Intensive

Field Campaigns (IFCs) corresponding to four
different states of surface vegetation:

First IFC : "green up" May 26th to June 61h

Second [FC : "peak greenness" June 25th to July 15th

Third IF-C : "dry down" Aug. 10th to Aug. 21st
Fourth IFC : "senescence" Oct. 5th to Oct. lSLh

Our study uses 4 different types of data acquired
during the IFCs, namely surface radiative

measurements, atmospheric soundings, sky
photographs, and conventional cloud
observations.

Several surface stations collected radiative flux
measurements. We selected stations 2 and 38

(see Fig. l) and acquired the radiation data from

the FIFE information system. These stations

were operated by Eric Smith's group (Florida
State University)during the four IFCs. The

surface measurements were compared with
other stations and with radiative models

outputs using atmospheric profiles (Br_on et al,

1990a). A bias was found in the longwave
measurements, but was later corrected (E.
Smith, personal communication), so that we

can expect an accuracy at least equal to the
manufacturer's specifications (within a few
percentile).

;S km
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Fig. 1: General presentation of the FIFE
experiment field. Station 2 and 38 are the two
surface radiation me_isurement sites used in this
study. The black star indicates the location of the

soundings.

Fractional cloud cover was another parameter
observed from the surface. Within the FIFE
area, observations were made with an
uplooking automatic camera. Cloudiness was

deduced from the percentage of cloudy areas in
the photographs, taking into account the
viewing angle of each area relative to the

vertical. Since the camera was operating in the

visible spectrum, no cloudiness information

could be obtained at night. Another limitation
of the camera is that no information on cloud

thickness or height could be provided.

In the immediate vicinity of the FIFE area, two
stations (MHK and FRI) collected standard

meteorological data. We acquired their cloud
observations through the FIFE information

system. These observations consisted of hourly
estimates of three, or less, cloud layers giving
their height and fractional cover in octas. In

order to use the data in our particular study, we
classified them in three atmospheric layers: low,
mid-level, and high, with limits at 900 and 3000

meters. For each layer and each day, a mean

cloudiness was computed, assuming a random
overlap if several cloud layers were found

within the same atmospheric layer. Fig. 2
presents a comparison of the mean cloudiness
as found during the 4 IFCs by the two stations.
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Fig. 2: Comparisons between the daily cloud
amount estimates from two nearby
meteorological stations for the three cloud layers
(less than 900 meters, between 900 and 3,000
meters, more than 3,000 meters). Values are

given in octas.

The scatter is rather large, even though the two
stations are close to one another (about 10

kilometers) and are located in a similar surface

environment. It is interesting to note, however,
that the correlation between the two estimated

cloudiness datasets, increases from low to high
clouds. With the levels chosen, mean

cloudiness results mostly from high clouds
(altitude greater than 3000 m) that can produce
overcast skies on a daily average. Most low
cloudiness values are less than 2 octas but
reached 5.5 octas on one occasion.

The atmospheric measurements used in our



studywere obtained from radiosondes launched

from the experimental site (see Fig. 1). These

measured pressure, temperature, and wet bulb

temperature, from which the water vapor
mixing ratio was derived. Pre-processing and
extrapolation of the profiles is described in
Br_,on et al. (1990a).

3. METHOD

To derive the cloud radiative forcing from the
surface observations, one must first estimate the
downwelling irradiance in the absence of

clouds. The two spectral intervals, shortwave
and longwave, need different methods.

The "dear" longwave flux was computed using
Morcrette's radiative transfer model (Morcrette,
1984; Morcrette and Fouquart, 1985; Morcrette et

al., 1986), with the FIFE soundings of
temperature and water vapor mixing ratio as
input. Ancillary data, namely ozone profile,

carbon dioxide concentration, and temperature
and water vapor profiles in the upper layers of
the atmosphere, had to be set to their
climatological value since no other information

was available. Although necessary, these data
have little effect on the results. After

comparison with other radiative transfer
models (WMO, 1984) and validation with in-

situ observations (Br6on et al., 1990b), it is
believed that accuracy of models such as

Morcrette's is better than 10 W m 2. During the
FIFE experiment, there was an average of 6
soundings per day, during day-time, which
provided a time step sufficient to follow the
longwave flux variability. "Clear" lon_wave

fluxes could therefore be interpolated from one
sounding to the next.

Main variations of the shortwave irradiance at

the surface are driven by the solar zenith angle
and cloud parameters (amount, optical
thickness). Other parameters, such as the water
vapor profile and the ozone con'tent, have a
second order effect and can be set to._their

climatological value. Effects of aerosols,

although small in manycases, can be large.
During FIFE , aerosol turbidity measurements

were too sporadic to establish their variability
since they were taken only during clear days.

We therefore estimated an ad-hoc atmospher!c
visibility for each of the IFCs by adjusting our
shortwave irradiance estimates to the

measurements obtained during clear periods, as
seen by the clear-sky camera. Computations

were done with an half hour time step, usihg a
parameterization developed by Frouin et al.
(1988) from the radiative transfer model of
Tanr_ et al., (1979).

From the "clear" flux values obtained by the two

radiative transfer models, it was easy to

determine the cloud effect. The longwave effect

is simply the difference between the
measurement and the "clear" flux estimate.

The shortwave estimate is defined differently

because we have to compensate for the large
diurnal cycle of the shortwave irradiance. We
define the shortwave cloud effect by the
formula:

S woe ' )S W
CL ft = (1

S Wctur _dy (1)
a

where SWobs is the instantaneous shortwave

flux measured at the station, and SWclear and

SWaaily are the instantaneous and daily-
integrated "clear" shortwave flux as estimated

by the model, respectively. This formulation
allows one to cancel out most of the diurnal

variability for a constant cloudiness. It is

obviously not usable for night period, when
SWclea r is equal tO zero. When doing time

averages, however, we did not simply average

CLe[[ but gave each instantaneous value a
weight proportional to the shortwave "clear"
flux estimate. This method allows one, in case
of variable fractional cover and non-continuous

measurement, to obtain the statistically best
possible estimate of a time average.

Net cloud radiative forcing at the Surface is the
difference between the longwave and shortwave
cloud effects. On a daily time scale, a negative

value corresponds to a net cooling of the surface
(shortwave forcing is larger than the longwave
forcing); a positive value indicates that
longwave heating overcomes shortwave
cooling.

4. RESULTS AND DISCUSSION

Because of the notably variable cloudiness, as
well as the uncertainties on each of the

parameters, time series of the instantaneous

cloud radiative forcings are extremely variable,
especially close to the sunrise and sunset when
SWclea r values are small. Fortunately, when
doing time averages, these values are given a

low weight and the uncertainty is therefore
reduced. Similarly, the uncertainty is

st atistica|ly reduced when averaging several
observations taken at the same local time. We

therefore chose not to present instantaneous
values, frOm which information is difficult to

distinguish from the noise, but rather the daily

cycles and the day-averaged values.

Table 1 gives, for most days of the FIFE

experiment, a daily average of the various
measurements and estimates presented above.
"Mod" refers to the model estimates of clear sky
radiative fluxes, "obs" to the observations, and

"cl_eff" to the cloud effect. "Nobs" gives the
number of half-hourly values that were used in



Tab.I: Dailyaveragesof radiativeparametersandcloudinessduringthefour FIFE IFCs.

SW refers to the shortwave irradiance and LW to the longwave irradiance. Clear sky
estimates from a model are denoted "mod", observations "obs" and cloud effects

"cl eff". Radiative flux parameters are given in Wm -2. "Cloudiness" is the cloud
amount given in percent from the sky camera observations, Low_neb, Mid_neb and

High_neg are the cloudiness, in octas, obtained from nearby meteorological stations for
three cloud layers as defined in the text.

D_e SWmod LWmod SWobs LWobs Cld.am, SWcl_eff LWcl ¢ff_TOTcl eft

28-Ma_¢ 354.1 341.9 228.7 384.1 91.O 117.9 42.1 -75,8

29-Ma_ 354.8 335.2 248.6 3758 84.9 100.O 4'O.6 -59.4

30-May 355.6 349.3 316.4 .' 367.1 29.3 37.0 17.8 -19.2

31-May 356,3 363.I 315,9 377 1 50,4 38,I 14.0 -24.I

I-lun 357.0 356.9 331.5 374,2 25.2 24.0 17.3 -6.7

2-Jan 357,6 355.0 76.8 392.5 83.7 264,6 37.5 -227.1

3-1un 358.2 300.8 351.8 3246 391 6,1 23.7 17,7

4-Jun 358,8 320.6 353.3 334.6 0.9 5.2 14.1 8.9

5-Jun 359.4 331.7 355.6 347.0 4.3 3.5 15.4 11.8

6-Jun 336.3 319.7 352.3 ,_340.4 0.I -16.1 20.7 368

25-Jun 355.8 337.4 346.2 355,3 12.4 9.I 180 8.9

26-1un 355.7 314.3 323.3 345.8 16.2 30.6 31.5 0.9

27-Jun 355.5 326.9 348.9 359.8 44.4 6.3 32.9 26.6

28-Jun 355.3 361.9 323.7 369.5 42.3 29.8 7.7 -22.2

l-/ul 354.5 354.6 331,5 361.5 30.8 21.8 6.9 -14.9

2-Jul 354.2 361.3 291.1 375.5 49.5 59.4 14 2 -45.2

3-Iul 353.8 376.3 225.8 390.5 64.2 120.8 14.2 -106.6

4-Jul 353.4 372.1 125.2 393.5 79.9 215.6 21.3 -194.3
5-Jul 353.0 375.9 332.3 376.6 38.2 19.5 0.8 -18.7

6-Jul 352.5 410.1 316.6 413.8 29.1 33.9 3.7 -30.2

7-1ul 352.0 388.8 125.9 413.4 85.6 213.3 24.6 -188.7

8-Iul 351.5 375.4 287.6 384.5 73.2 60.3 9.1 -51.2

9-1ul 350.9 399.0 260.3 40.7.0 74.8 85.5 8.0 -77.5

I0-lul 350.3 399.7 304.3 .....403.8 55.8 43.5 ,_.i -39.4

Il-lul 326.0 396.3 293.3 401.8 21.0 33.1 5.4 -27.7

Il-Aug 304.7 395.3 297.6 393.3 7.9 6.7 -1.9 -8.6

13-Aug 301.7 401.9 120.5 427.6 92.9 171.1 25.7 -145.4

M-Aug 300.1 414.8 276.9 414.3 54.7 22.0 -0.4"" -22.4

15-Aug 298.6 401.4 311.2 401 8 2.6 -12.0 0.4 12.4

16-Aug 296.9 387.5 300.1 3870 5.2 -3.0 -0.4 2.5

17-Aug 295.3 365.5 303.1 370.5 1.7 -74 5.0 12.4

18-Aug 293.6 363.8 266.9 380.4 41.0 25,3 16.5 -8.8

19-Aug 292.0 387.7 248.6 389.7 30.0 40.9 2.0 -38.9

20-A ug 290.2 398.I 286.4 402.0 13.I 3.6 3.9 0.4

2I-Aug 267.5 392.4 272.8 3986 2.9 -5.4 6.2 11.6

6-Oct 214.0 275.2 214,8 286.5 0.0 -0.8 11.3 12.1

7-Oct 211.7 269.1 209.1 279.5 4.1 2.4 10.4 7.9

8-Oct 209.4 274.8 221.9 292.0 4 9 -I1.7 17.3 290

1043cl 204.8 232.2 76.6 325.8 99.1 1208 93.6 -27.2

1-Ocl 202.6 243.1 199.2 2747 22.8 3.1 31.5 28.4
12-Oct 200,3 283,9 191,0 302.8 18.8 8.7 18.9 10.2

13-Oct 198.0 292.6 177.4 322.7 48.6 19.4 30.0 10.7
,,,14-Oct 195.8 313.8 111.7 355.2 656 79.0 41.3 -37.7

15-Ocl 193.5 306.0 172.5 341.7 82.2 19.8 35,7 159

the averaging. "Cloudiness" is the fractional

coverage from the sky camera (in per cent.), and
the three last columns give, in octas, the mean

cloudiness of the three layers defined above, as
observed by the meteorological stations.

Unexpectedly, for a few days: the longwave or
the shortwave cloud effect took negative values.
The negative values for the longwave cloud

effect are -1.9 W m -2 and -0.4 W m -2 (twice),
which is negligible and could be attributed to
either the measurement or the model estimate.

For two of these cases, cloudiness is very low, as
expected since no cloud effect is computed. In

the third case, however, cloudiness is larger
than 50% and, therefore, we would have

Nobs _w_Neb Mid_N_ Hi__Ne
14 1.1 42 6.7

17 2.5 4.2 5.1

16 0.1 2.0 4.2
20 0.0 1,4 4.7

20 0.7 0.7 2.0
22

28

19 0.0 0.5 0.I

19 0.0 0.2 2.5

9 0.0 0.0 1.5

17 2.3 1,6 1.2

30 0.0 1,0 2,2

9 0.0 3,2 2.3

9 0.0 2.5 4.7

19 0.0 2.3 2.0

0.0 1.5 4.4

30 0.5 1.0 5.2

15 0.3 2.8 5.9

12 1,4 2,8 4,1

18 0.8 I.! 1.0

19 0.7 2.7 5.5

27 0.8 3.3 6.4

28 0.3 1,8 6,9

28 0.8 0.9 5.5
28 0.0 1.0 3.3

17 0.0 1.3 0.9

19 5.3 4.9 5.3

22 1.4 3.7 1.8

14 0.0 0.7 0.5

21 0.1 1.7 1.7

26 O.0 1.3 0.3

22 1.1 5.0 3.4

27 0.1 3.2 1.7

24 0.0 0.5 1.8

20 0.0 0.0 0.8

23 0.0 0.0 0.9

23 0.0 0.4 1.9

6 0.0 0.0 5.1

9 1.4 4.3 7.0

6 0.3 2.4 2.1

14 0.0 0,0 2.1

22 O0 0,0 3.7

21 0.0 2.4 6.3

7 1.5 4.7 S_

expected a larger longwave cloud effect. One
notices the high value of the estimated "clear"

flux found for that particular day (May 14). A

'careful analysis of the soundings showed that
May 14 was exceptionally humid, which in turn
explains the high value of the longwave
irradiance, and the absence of a discernable

longwave cloud effect.

Seven days (out of 44) showed a negative
shortwave cloud effect. The values decrease to

-16Wm -2 and are only found for very low mean
cloudiness (less than 5%). These erroneous

value can be explained by model and
measurement uncertainties when the actual

shortwave irradiance is very close to the



theoretical "clear flux" (clear days). One of the
major uncertainties for the modeled "clear" flux

is the effeet of aerosols. It is possible that the
actual visibility was higher than that modeled

for some of these days, leading to a higher
"clear" flux.

The largest shortwave cloud effect is found on

June 2, with an absolute value of 264 Wm-2 (less

than 24% of the clear sky radiation reaches the
ground). Instantaneous observations showed a

very variable insolation with values constantly
low and reaching extremely low levels. During
a half hour period centered on local noon, for

instance, only 1% of the clear sky irradiance was

measured. A detailed analysis of other

meteorological observations showed a very high
cloudiness during most of the day and gusty
winds frequently changing directions. This

strongly supports the presence of Cb type clouds.
Surprisingly, despite the obvious presence of

very thick clouds, no rain was reported for that
day over the site. It is possible, however, that
very localized rainfall occurred, but did not
reach the measurement station.

The largest longwave cloud effect (94W m -2) is

more than twice the value of the second largest
(42W m-2). It is found on October 10, an

overcast day with a very low boundary layer
temperature: An average bf 4°C of surface air
temperature during daytime was measured, to

be compared to about 15°C on average during
the IFC. This low temperature leads to a record-

low "clear" flux and explains the magnitude of
the cloud effect. The shortwave cloud effect for

this day is also one of the largest reported. Both

effects partially compensated each o*ther leading
to a -27 W m -2 net cloud forcing.

Net cloud radiative forcing ranges are from

-227 W m -2 to 37W m -2, most days showing
negative values. The few positive values are
obtained for small mean cloud fractions. The

highest negative values result mainly from the
shortwave component.

Correlations of radiative forcing with cloudiness
values were done using the sky camera and the

meteorological reports (Fig. 3a,b,c). Using the
sky camera, we found a correlation of 0.62, 0.31 •
and 0.49 with the shortwave,: longwave, and net

cloud radiative forcing, respectively. Using the
observations from the meteorological stations,
we found an even lower correlation. This

shows, that cloud amount is not the only "

parameter driving the radiative forcing.
Another parameter governing shortwave cloud
forcing is liquid water content, but this

parameter was not measured. On the other.
hand, we know that the longwave flux should
be more sensitive to the low cloudiness than to

total cloudiness. We therefore correlated
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Fig. 3: Cloud forcing (in Wm "2) as a function of

cloud amount (in %) as seen by the sky camera.

The cloud forcing is given for the shortwave (Fig.
3a), the longwave (fig. 3b) and the net (fig. 3c).

longwave radiative forcing with low cloudiness;
but, once again, the results were rather

disappointing.

Fig. 4 shows the average diurnal cycle of the
shortwave, longwave, and net cloud radiative
forcing as a function of day fraction. No values
are given at night since the shortwave cloud

forcing has no meaning. Sunrise and sunset
occur approximately at day fractions 0.5 and 1.1,

respectively. It is clear that the three quantities,
which are not independent, show a diurnal

cycle. The longwave radiative forcing has an
amplitude of about 15 W m -2, with a minimum

around local noon. The cycle of the shortwave
cloud radiative forcing is even larger: it is
minimum at sunset and sunrise but remains

rather constant during a large part of the day.
Note that, owing to our definition of the

shortwave cloud radiative forcing, the

shortwave cloud effect in Fig. 3 is not directly

related to the actual amount of incoming
radiation. As mentioned above, the accuracy of
the shortwave radiative forcing is lower for low

solar zenith angles than during the rest of the

Daily cycle
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Fig. 4: Daily cycle of the Cloud radiative forcings
(in Win-2) during FIFE. Sunrise and sunset occur

when the fraction of day is:about 0.5 and I.I
respectively.

day, but we believe that the large cycle is not
entirely due to uncertainties. The net cloud

radiative forcing exhibits an even larger cycle,
enlarged by the longwave component.

5. SUMMARY AND CONCLUSIONS

During FIFE, a large set of meteorological

measurements was taken. "Clear" longwave
and shortwave fluxes at the surface were

computed using atmospheric soundings and
radiative transfer models. Coincident radiative
flux measurements were used to derive the

surface cloud radiative forcing for both
components.

Both shortwave and longwave cloud forcings
show a very large temporal variability due_ for
the most part, to the changing cloudiness, and to

measurements and computational
uncertainties.

Daily values of the cloud radiative forcings were
analyzed and compared to cloud parameters
obtained from a sky camera situated on the FIFE

site and from conventional meteorological
observations in the immediate vicinity. The
advantage of the sky camera was its immediate
proximity to the surface radiative observations,

but the stations near the FIFE area also gave
information on cloud height, another

important factor governing longwave cloud
radiative forcing variability.

No dominant correlation between either

components of the cloud radiative forcing and
cloudiness were found using the sky camera

data. This is explained by the fact that forcings
are a function, not only of cloudiness, but also of

cloud liquid water content (mainly for the
shortwave) and cloud base height (for the
Iongwave). We expected that more results
could be drawn from the conventional cloud

observations which enabled distinction between

low cloudiness and cirrus; once again, however,
the correlation was very low. One reason for

this is the poor spatial coherency of the
cloudiness, especially for low clouds, as was
shown by comparing two similar observations
about 10 km apart.

Surface cloud radiative forcing showed a rather
large diurnal cycle with a minimum at local
noon for the longwave component and two
pronounced minimum at sunrise and sunset

for the shortwave component. These cycles, if
confirmed by other studies, should be taken into

account when evaluating radiation budgets
from space using hqliosynchronous satellites.

Otis main deficiency of this study was the
limited number of days during which

observations were made. To provide
convincing results on the mean radiative effect

of clouds, at least one year of observations is
needed. The measurements should include

radiative fluxes, cloudiness, cloud base height,
cloud optical thickness, as well as temperature
and water profiles, and should be done within a
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; very limited area. Such measurements are

: planned within the Atmospheric Radiat_n

/ Measurement Program of the Department Of
: Energy (DOE, 1990), which, therefore, should be

: useful to cloud radiative forcing studies.
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