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Abstract

Consistent distribution of single-source data to replicated comput-

ing channels is a fundamental problem in fault-tolerant system design.

The "Oral Messages" (OM) algorithm of Laxnport, Shostak, and Pease

solves this problem of Interactive Consistency (also known as Source

Congruence or Byzantine Agreement) in the presence of m arbitrary

(i.e., Byzantine) Faults, using rn + 1 rounds of message exchange and
n > 3m channels.

A deficiency of OM and similar algorithms is that all faults are as-

sumed to exhibit worst-case (i.e., arbitrary) behavior, so that the algo-

rithm can tolerate no more "simple" faults than truly Byzantine ones. To

overcome this deficiency, Thambidural and Park introduced a "hybrid"

fault model that distinguished three fault modes: asymmetric (Byzan-

tine), symmetric, and benign; they also exhibited, along with an infor-

mal "proof of correctness," a modified version of OM that withstands

a asymmetric, s symmetric, and b benign faults simultaneously, using

rn + 1 rounds, provided n > 2a + 2s + b + m, and m > a.

Unfortunately, this algorithm is flawed; it fails, for example, in the

case n = 5, rn = 1 when the transmitter has a benign fault and one of the

receivers is Byzantine. We detected this flaw while undertaking a for-

mal verification of the algorithm using our PVS mechanical verification

system. Repairing this algorithm is not easy. We developed an incorrect

version ourselves, and even "proved" it correct using ordinary, informal
mathematics.

The discipline of mechanically checked formal verification eventually

enabled us to develop a correct algorithm for Interactive Consistency

under the hybrid fault model. We present this algorithm, discuss its

subtle points, and describe its formal specification and verification. Be-

cause informal proofs seem unreliable in this domain, and because the

consequences of failure could be catastrophic, we believe formal verifica-

tion should become standard for algorithms intended for safety-critical

applications. We argue that formal verification systems such as PVS are

now sufficiently effective that their application to such problems may be
considered routine.

Keywords: interactive consistency, Byzantine agreement, hybrid fault

models, formal verification.
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Chapter 1

Introduction

Fault-tolerant systems are designed and evaluated against explicit assumptions re-

garding the kinds and numbers of faults they are to tolerate. "Fault models," which

enumerate the assumed behaviors of faulty components, range from those that iden-

tify many highly specific modes of failure, to those that comprise just a few broad
classes. The advantage of a very detailed fault model is that the mechanisms of fault

tolerance can be finely tuned to deliver maximum resilience from a given level of re-

dundancy; the corresponding disadvantages are that an overlooked fault mode may

cause unexpected failure in operation, and the need to counter many fault modes

can lead to a complex design--which may itself be a source of faults.

In contrast to designs that consider many fault modes are those that make no

assumptions whatsoever about the behavior of faulty components. The advantage

of such "Byzantine" fault-tolerant designs is that they cannot be defeated by un-

expected failure modes; their disadvantage is that all faults are treated as "worst

case," so that large levels of redundancy tolerate relatively few faults. For example,

a conventional Byzantine fault-tolerant architecture requires 3m + 1 channels to tol-

erate m simultaneous faults of any kind within some of its functions [25,1]. Thus, a

4-plex is needed in order to withstand a single fault, 1 and 5- and 6-plexes provide no
additional benefit (in fact the additional channels will increase the fault arrival rate

and thereby lower overall reliability). 2 This seems counterintuitive, since it is clear

that suitably organized 5- and 6-plexes can withstand more faults, of some kinds,
than a 4-plex.

These observations motivate the study of fault-tolerant architectures and al-

gorithms with respect to hybrid fault models that include the Byzantine, or "ar-
bitrary," fault mode, together with a limited number of additional fault modes.

ISingle fault tolerance can also be provided by architectures such as Draper Laboratory's FTP,

which uses only three full processors plus three simpler "interstages" [13].

2If the system can be reconfigured following a fault, then a fifth and sixth channel can increase

reliability if used as standby spares--but they serve no purpose as live channels.
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Inclusion of the arbitrary fault mode (i.e., faults whose behaviors are entirely un-

constrained) eliminates the fear that some unforeseen mode may defeat the fault-

tolerance mechanisms provided, while inclusion of other fault modes allows greater

resilience to be achieved for faults of these kinds than with a classical Byzantine

fault-tolerant architecture.

Our interest is architectures for digital flight-control systems, where fault-

masking behavior is required to ultra-high levels of reliability. This means that

not only must stochastic modeling show that adequate numbers and kinds of faults
are masked to satisfy the mission requirements, but that convincing analytical ev-

idence must attest to the soundness of the overall fault-tolerant architecture and

to the correctness of the design and implementation of its mechanisms of fault

tolerance. 3 Such a rational design for a "reliable computing platform" suitable for

ultra-critical applications was established in the late 1970s and early 1980s by the

SIFT architecture [36]: the system workload is executed by several independent

channels operating in approximate synchrony, and results are subjected to majority

voting. If all channels execute identical workloads on identical data, then majority

voting is sufficient to mask arbitrary channel failures. However, majority voting
is not sufficient to mask arbitrary failures in the distribution of single-source data

(such as sensor samples) [25], nor in clock synchronization [161.

In this report, we focus on algorithms for reliably distributing single-source data

to multiple channels in the presence of faults. This problem, known as "Interac-

tive Consistency" (although sometimes called "source congruence"), was first posed

and solved for the case where faulty channels can exhibit arbitrary behavior by

Pease, Shostak, and Lamport [25] in 1980. 4 Interactive Consistency is a symmet-

ric problem: it is assumed that each channel has a "private value" (e.g., a set of

sensor samples) and the goal is to ensure that every nonfaulty channel achieves

an accurate record of the private value of every other nonfaulty channel. In 1982,

Lamport, Shostak, and Pease [17] presented an asymmetric version of Interactive

Consistency, which they called the "Byzantine Generals Problem"; here, the goal is

to communicate a single value from a designated channel called the "Commanding

General" to all the other channels, which are known as "Lieutenant Generals." The

problem of real practical interest is Interactive Consistency, but the metaphor of

the Byzantine Generals has proved so memorable that this formulation is better

known; it can also be easier to describe algorithms informally using the Byzantine

Generals formulation, although the balance of advantage can be reversed in truly

formal presentations [27]. An algorithm for the Byzantine Generals problem can be
converted to one for Interactive Consistency by simply iterating it over all channels

3There are examples where unanticipated behaviors of the mechanisms for fault tolerance became

the primary source of system failure [18].
4Davies and Wakerley had anticipated some of the issues a few years earlier [9].
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(eachchannelin turn taking the roleof the Commander),sothereis no disadvan-
tageto considering the Byzantine Generals formulation. See [27] for more extended

discussion of this topic.

Lamport, Pease, and Shostak presented algorithms for solving the Byzantine

Generals problem. The principal difficulty to be overcome in such algorithms is

possibly asymmetric behavior on the part of faulty channels: such a channel may

provide one value to a second channel, but a different value to a third, thereby mak-

ing it difficult for the recipients to agree on a common value. Byzantine Generals

algorithms overcome the possibility of faulty channels exhibiting asymmetric behav-

ior by using several rounds of message exchange during which channel p tells channel

q what value it received from channel r and so on. The precise form of the algorithm

depends on assumptions about what a faulty channel may do when relaying such a

message; under the "Oral Messages" assumption, there is no guarantee that a faulty

channel will relay messages correctly. This corresponds to totally arbitrary behavior

by faulty channels: not only can a faulty channel provide inconsistent data initially,

but it can also relay data inconsistently, s

Using m + 1 rounds of message exchanges, the Oral Messages algorithm of Lam-

port, Shostak, and Pease [17], which we denote OM(m), can withstand up to m

arbitrary faults, provided n, the number of channels, satisfies n > 3m. The bound

n > 3m is optimal: Pease, Shostak, and Lamport proved that no algorithm based on

the Oral Messages assumptions can withstand more arbitrary faults than this [25].

However, as we have already noted, OM(m) is not optimal when other than ar-

bitrary faults are considered: other algorithms can withstand greater numbers of

simpler faults for a given number of channels than OM(m).

We are not the first to make these observations. ThambiduraJ and Park [33] and

Meyer and Pradhan [20,21] have considered Interactive Consistency algorithms that

resist multiple fault classes. Thambidurai and Park's "Unified" model divides faults

into three classes: nonmalicious (or benign), symmetric malicious, and asymmetric

malicious. A nonmalicious fault is one that produces detectably missing values (e.g.,

timing, omission, or crash faults), or that produces a "self-incriminating" value that

all nonfaulty recipients can detect as bad (e.g., it falls checksum or format tests). A

malicious fault is one that yields a value that is not detectably bad (i.e., it is a wrong,

rather than a missing or manifestly corrupted, value). A symmetric malicious fault

delivers the same wrong value to every nonfaulty receiver; an asymmetric malicious

fault delivers (possibly) different wrong values (or missing or detectably bad values)

to different nonfaulty receivers. The classical arbitrary or Byzantine fault is an

asymmetric malicious fault in this classification. Note that a nonmalicious fault

may be asymmetric in that different detectably bad values may be sent, but if a

SUnder the "signed messages" assumption (which can be satisfied using digital signatures), an

altered message can be detected by the recipient.
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good value is sent to some receivers and manifestly bad values are sent to all others,

then the sender is considered asymmetric malicious in this taxonomy.

Thambidural and Park present a variant on the classical Oral Messages algorithm

that retains the effectiveness of that algorithm with respect to arbitrary faults, but

that is also capable of withstanding more faults of the other kinds considered. 6

In a later paper, Thambidurai, Park, and Trivedi [34] present reliability analyses

that show this increased fault tolerance indeed provides superior reliability under

plausible assumptions. McElvany-Hugue has also studied the reliability of related

algorithms under this fault model, reaching similar conclusions [14].

Unfortunately, Thambidurai and Park's algorithm (which they call Algorithm

Z) has a serious flaw and falls in quite simple circumstances. In this report, we

describe the flaw, and explain how straightforward attempts to repair it also fail.

We then present a correct algorithm for the problem of Interactive Consistency

under a hybrid fault model and present a proof of its correctness. Thambidurai and

Park presented a proof of correctness for their flawed algorithm, and we have also

developed some rather convincing "proofs" ourselves for other incorrect algorithms

for this problem. Accordingly, we have developed a mechanically checked formal

verification for our algorithm using the PVS verification system [22]. (In fact, all this.

work grew out of the attempt to formally verify their Algorithm Z.) We describe this

formal verification and show that it is not particularly difficult. Because informal

proofs seem unreliable in this domain, and the consequences of failure could be

catastrophic, we argue that formal verification should become routine.

1.1 Related Work

Hybrid fault models were first introduced for the MAFT architecture, developed

at Anied-Signal's Aerospace Technology Center [15]. MAFT provides a rich set

of fault-tolerant mechanisms and services, including clock synchronization (both

steady-state and startup), interactive consistency with both exact and approxi-

mate agreement, and sophisticated error detection and reconfiguration [35]. The

interactive-consistency algorithm employed in MAFT apparently does not suffer

from the problem we identified in Algorithm Z, and Michelle McElvany Hugue and

others at Allied Signal have developed corrected versions of Algorithm Z and proofs

of correctness that are similar to ours.

The reason we selected hybrid fault models and their algorithms for study is that

these seem among the most interesting and useful directions in current research for

6Meyer and Pradhan [21] consider a fault model that, in Thambidurai and Park's taxonomy,
comprises only asymmetric malicious and benign faults. Their algorithm is derived from the algo-
rithm of [11] and, like the parent algorithm, is not particularly suitable for the cases of practical
interest (i.e., m = 1, or possibly m = 2, n less than 10).
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fault-tolerant architectures. However, our interest is less in the algorithms them-

selves, and more in the use of mechanically-checked formal methods as a systematic

and rigorous means to analyze these algorithms, to identify all the assumptions on

which they depend, to detect and help correct errors in their formulation, and to

provide compelling arguments for their correctness. From this point of view, algo-

rithms for hybrid fault models are particularly interesting because of their subtlety,

and the extended case analysis required in their analysis. As with other algorithms

where we have discovered errors in published analyses [28], our corrections are tech-

nical adjustments (though quite radical in the case of the algorithm considered here)

that build on the insights, algorithms, and analyses of the original authors.



Chapter 2

Requirements, Assumptions,

and the Algorithms OM and Z

Although the problem of real practical interest is Interactive Consistency, all the

algorithms we consider are presented here in their Byzantine Generals formulation,

since this appears simpler in informal presentations. The relationship between In-

teractive Consistency and the Byzantine Generals Problem is examined in [27].

2.1 Requirements

In the Byzantine Generals formulation of the problem, there are n participants,

which we call "processors." A distinguished processor, which we call the transmitter,

possesses a value to be communicated to all the other processors, which we call the

receivers. 1 There are n processors in total, of which some (possibly including the

transmitter) may be faulty. The transmitter's value is denoted v and the problem

is to devise an algorithm that will allow each receiver p to compute an estimate vp

of the transmitter's value satisfying the following conditions:

BGI: If receivers p and q are nonfaulty, then they agree on the value ascribed to

the transmitter--that is, for all nonfaulty p and q, uv = Vq.

BG2: If the transmitter is nonfaulty, then every nonfaulty receiver computes the

correct value--that is, for all nonfaulty p, uv = v.

Conditions BG1 and BG2 are sometimes known as "Agreement" and "Validity,"

respectively.

1Lamport, Shostak, and Pease [17] speak of a "Commanding General" and of "Lieutenant Gen-

erals" where we say transmitter and receivers.
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2.2 Assumptions

The principal difficulty that must be overcome by a Byzantine Generals algorithm

is that the transmitter may send different values to different receivers, thereby com-

plicating satisfaction of condition BG1. To overcome this, algorithms use several

"rounds" of message exchange during which processor p tells processor q what value

it received from processor r and so on. Under the "Oral Messages" assumptions,

the difficulty is compounded because a faulty processor q may "lie" to processor

r about the value it received from processor p. More precisely, the Oral Messages

assumptions are the following.

AI: Every message that is sent between nonfaulty processors is correctly delivered.

A2: The receiver of a message knows who sent it.

A3: The absence of a message can be detected.

In the classical Byzantine Generals problem, there are no constraints at all on

the behavior of a faulty processor.

2.3 Algorithm OM

Lamport, Shostak, and Pease's Algorithm OM solves the Byzantine Generals prob-

lem under the Oral Messages assumption. The algorithm is parameterized by m, the

number of rounds of message exchanges performed. OM(m) can withstand up to m

faults, provided n > 3m, where n is the total number of processors. The algorithm

is described recursively; the base case is OM(0).

OM(0)

1. The transmitter sends its value to every receiver.

2. Each receiver uses the value obtained from the transmitter, or some

arbitrary, but fixed, value if nothing is received.

Now we can describe the general case.

OM(m), m > 0

1. The transmitter sends its value to every receiver.

2. For each p, let vp be the value receiver p obtains from the transmit-

ter, or else be some arbitrary, but fixed, value if it obtains no value.

Each receiver p acts as the transmitter in Algorithm OM(m- 1) to

communicate its value vp to each of the n - 2 other receivers.
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3. For each p, and each q _ p, let vq be the value receiver p ob-

tained from receiver q in step (2) (using Algorithm OM(m - 1)), or

else some arbitrary, but fixed, value if nothing was received. Each

receiver p calculates the majority value among all values vq it re-

ceives, and uses that as the transmitter's value (or some arbitrary,

but fixed, value if no absolute majority exists).

The correctness of this algorithm (that it achieves BG1 and BG2 under certain

assumptions) was proven in [17, page 390] and mechanically checked in [1,27].

2.4 Algorithm Z

Thambidurai and Park's Algorithm Z is a modification of OM intended to operate

under their hybrid fault model described earher. The difference between OM and Z

is that the latter has a distinguished "error" value, E. Any processor that receives a

missing or manifestly bad value replaces that value by E and uses E as the value that

it passes on in the recursive instances of the algorithm. The majority voting that

is required in OM, is replaced in Z by a majority vote with all E values eliminated.
Thambidurai and Park claim that an m-round implementation of Algorithm Z can

withstand a + s + b simultaneous faults, where a is the number of asymmetric

malicious faults, s the number of symmetric malicious faults, and b the number of

nonmalicious faults, provided a _< m, and n, the number of processors, satisfies

n > 2a q- 23 + b + m. In the case of no symmetric malicious or nonmalicious faults

(i.e., Byzantine faults only), we have m = a and s = b = 0, so that n > 3m and the

algorithm provides the same performance as the classical Oral Messages algorithm.

We and our colleagues at SRI have undertaken mechanically checked formal ver-

ifications for a number of fanlt-tolerant algorithms, including OM [27], and have

identified deficiencies in some of the previously published analyses (though not in

the algorithms--see, for example [24,29,30]). Any changes to the established algo-
rithms for Interactive Consistency must be subjected to intense scrutiny, for errors

in these algorithms are single points of failure in any system that employs them.

Changes that widen the classification of faults considered are likely to increase the

case analysis, and hence the complexity and potential fallibility of arguments for

the correctness of modified algorithms. We therefore considered Thambidurai and

Park's Algorithm Z an interesting candidate for formal verification.

We began our attempt to formally verify Algorithm Z by studying the proof

of its correctness provided by Thambidurai and Park [33, pages 96 and 97]. This

proof follows the outline of the standard proof for OM [17, page 390] quite closely.

However, we soon found that Thambidurai and Park's proof is simultaneously more

complicated than necessary and flawed in several details. The most serious fault
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is that their Lemma 1 (all nonfaulty receivers get the correct value of a nonfaulty

transmitter) fails to consider the case where the value sent by the transmitter is E.

This can arise in recursive instances of the algorithm when nonfaulty receivers are

passing on the value received from a faulty source. Further thought soon reveals

that not only is the proof flawed, but the algorithm is incorrect: even systems with

large numbers of processors may fail with only two faulty components.

The simplest counterexample comprises five processors in which the transmitter

has a nonmalicious fault, one of the receivers has an asymmetric malicious fault,

and the algorithm is Z with one round (i.e., n = 5, a = 1, s = 0, b = 1, m = 1).

All the nonfaulty receivers note E as the value received from the transmitter, and

relay the value E to all the other receivers. The faulty receiver sends a different

(non-E) value to each of the nonfaulty receivers. Each nonfaulty receiver then has

three E values, and one non-E value; because E values are discarded in the majority

vote, each nonfaulty receiver selects the value received from the faulty receiver as

the value sent by the transmitter. Since these values are all different, the algorithm

has failed to achieve agreement among the nonfaulty receivers. Observe that this

scenario is independent of the number of receivers (provided there are more than

three of them--two that should agree and one that is faulty), so the problem is not

due to an inadequate level of redundancy.



Chapter 3

The Algorithm OMH

OMH is our new algorithm for Interactive Consistency under a hybrid fault model.

In this chapter, we present the fault model, the algorithm, and its correctness prop-

erties semiformally; the mechanically-checked formal specification and verification

are described in the next chapter.

3.1 Hybrid Fault Model

Our fault model is that of Thambidurai and Park, but with the cases renamed--we

find the anthropomorphism in terms such as "malicious faults" unhelpful.

The fault modes we distinguish for processors are arbitrary-faulty, symmetric-

faulty, and manifest-faulty (also called crash-faulty). (These correspond to Tham-
bidurai and Park's asymmetric malicious, symmetric malicious, and nonmalicious

faults, respectively.) Of course, we also need a class of good (also called nonfaulty)

processors. We specify these fault modes semiformally as follows (the formal char-

acterizations are presented in the following chapter).

When a transmitter sends its value v to the receivers, the value obtained by a

nonfaulty receiver p is:

• v, if the transmitter is nonfaulty

• E, if the transmitter is manifest-faulty 1

• Unknown, if the transmitter is symmetric-faulty, but all receivers obtain the

same value,

1Some preprocessing of timeouts, parity and "reasonableness" checks, etc. may be necessary

to identify manifestly faulty values. The intended interpretation is that the receiver detects the

incoming value as missing or bad, and then replaces it by the distinguished value E.

10
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• Completely unconstrained, if the transmitter is arbitrary-faulty.

Note that it is not necessary to define the value received by a faulty receiver,

because such receivers may send values completely unrelated to their inputs. Also

note that manifest faults must be symmetric. If a processor were to "crash" during

this protocol (or if some of its outgoing links are broken, or if it is early or late

transmitting on some links), it would have to be counted as arbitrary-faulty, since

different good receivers may obtain different values--even though the values sent

are either correct or identifiably bad. It is possible to treat such cases as a new class

of faults, which, depending on practical considerations, may be an interesting area

for future research (see Section 3.6).

3.2 Repairing Algorithm Z

It seems that the flaw in Algorithm Z stems from the fact that it does not distinguish

between values received from manifest-faulty processors and the report of such values

received from nonfanlty processors; the single value E is used for both cases. Thus,

a plausible repair for Algorithm Z introduces an additional distinguished value RE

(for Reported Error); when a manifestly faulty value is received, the receiver notes it

as E, but passes it on as RE; if an RE is received, it is noted and passed on as such.

Only E values are discarded when the majority vote is taken. In the counterexample

to Algorithm Z given above, the nonfaulty receivers in this modified algorithm will

each interpret the value received from the transmitter as E, and pass it on to the

other receivers as RE. In their majority votes, each nonfanlty receiver has a single

E (from the transmitter), which it discards, two REs (from the other nonfanlty

receivers), and an arbitrary value (from the faulty receiver). All will therefore select
RE as the value ascribed to the transmitter.

Unfortunately this modified algorithm has two defects. First, a receiver that

obtains a manifest-faulty value from the transmitter notes it as E, but passes it on

as RE. Thus, this receiver will omit the value from its majority vote, but the others

will include it (as RE). This asymmetry can be exploited by an arbitrary-faulty

transmitter to force the receivers into disagreement (consider an arbitrary-faulty

transmitter and three nonfaulty receivers, where the transmitter sends the values

E, RE, and a normal value).

It therefore seems that receivers must distinguish between an E received from

the transmitter (which must be treated locally as RE and passed on as such), and

one received from another receiver (which can be discarded in the majority vote).
This repair fixes one problem, but leaves the other: the value ascribed to a manifest

faulty transmitter is not E, but RE. This might seem a small inconvenience, but

it causes the algorithm to fail when m, the number of rounds, is greater than 1
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(consider the case n = 6, m = 2 when there is a nonfaulty transmitter and three

manifest-faulty receivers).

A repair to this difficulty might be to return the value E whenever the majority

vote yields the value RE. This modification has the problem that receivers cannot

distinguish a manifest-faulty receiver from a nonfanlty one reporting that another is

manifest-faulty (consider the case n = 4, m = 1, all the processors are nonfaulty, and

the transmitter is trying to send RE--as can arise in recursive cases when m > 1).

Like Thambidurai and Park did for Algorithm Z, we produced rather convincing,

but nonetheless flawed, informal "proofs of correctness" for these erroneous repairs

to Algorithm Z. Eventually, the discipline of formal verification (where one must

deal with the implacable skepticism of a mechanical proof checker and is eventually

forced to confront overlooked cases and unstated assumptions) enabled us to develop

a genuinely correct algorithm for this problem.

Our new algorithm, OMH (for "Oral Messages, Hybrid"), is somewhat related

to the last of the modifications to Algorithm Z indicated above, but recognizes that

a single "reported error" value is insufficient. OMH employs two functions R and

UnR that act as a "wrapper" and an "unwrapper" for error values.

The basic idea of OMH is that at each round, the processors do not forward

the actual value they received. Instead, each processor sends a value corresponding

to the statement "I'm reporting value." One can imagine that after several rounds,

messages corresponding to "I'm reporting that he's reporting that she's reporting an

Error value" arise. This wrapper is only required for error values, but for simplicity

we assume that the functions R and UnR are applied to all values. Alternatives to

this are explored in Section 3.7. This leaves the following intuitive picture of the

algorithm.

Proceed as in the usual OM Byzantine agreement algorithm presented above,

with the following exceptions. Add a distinguished error value E, and two functions
on values R and UnR. When a manifestly bad value is received, temporarily record

it as the special value E.

When passing along a value received from the transmitter or incorporating it into

the local majority vote, apply R, standing for "I report..." to the value. Discard

all E values (received from other receivers) before voting, but treat all other error

values (R(E), R(R(E)), etc.) as normal, potentially valid values during voting.

After voting, apply UnR (strip off one R) before returning the value.

The key idea here is that in Z and related algorithms there is a confusion about

which processors have manifest faults: if there is only one error value, E, how

can a processor distinguish between a manifest-faulty receiver and a good receiver

reporting a bad value (or the lack of a value) from a manifest-faulty transmitter? The

counterexample to Algorithm Z given above exploits this confusion, but it is handled



3.3. Semiformal Analysis and Correctness Arguments 13

correctly by OMH, because the nonfaulty receivers in OMH(1) each receive a single

E from the transmitter, which they pass on to the other receivers and themselves as

R(E). The values thus voted on include three R(E)s and an arbitrary value (from

the arbitrary-faulty receiver). All nonfaulty receivers therefore select R(E) as the

majority value. After stripping one R from this value, the result correctly identifies

the transmitter as manifest-faulty. In short, OMH incorporates the diagnosis of

manifest faults into the agreement algorithm.

The Hybrid Oral Messages Algorithm OMH(m) is defined more formally below,

and completely formally in Chapter 4.1:

OMH(0)

1. The transmitter sends its value to every receiver.

2. Each receiver uses the value received from the transmitter, or uses

the value E if a missing or manifestly erroneous value is received.

OMH(m), m > 0

1. The transmitter sends its value to every receiver.

2. For each p, let Vp be the value receiver p obtains from the transmit-

ter, or E if no value, or a manifestly bad value, is received.

Each receiver p acts as the transmitter in Algorithm OMH(m- 1) to

communicate the value R(vp) to all of the n - 1 receivers, including
itself.

3. For each p and q, let vq be the value receiver p received from re-

ceiver q in step (2) (using Algorithm OMH(m - 1)), or else E if no

such value, or a manifestly bad value, was received. Each receiver

p calculates the majority value among all non-error values Vq re-

ceived, (if no majority exists, the receiver uses some arbitrary, but

functionally determined value) and then applies UnR to that value,

using the result as the transmitter's value.

3.3 Semiformal Analysis and Correctness Arguments

We make explicit a few unsurprising technical assumptions:

• All processors are either nonfaulty, arbitrary-faulty, symmetric-faulty, or

manifest-faulty. (Any fault not otherwise classified is considered arbitrary.)
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Processors do not change fault status during the procedure; for example, if

a nonfaulty processor were to become manifest-faulty during this procedure,

we would say that processor is arbitrary-faulty because it has effectively sent

different values to other processors.

For all values v, R(v) _ E. (Wrapped values are never mistaken for errors.)

For all values v, UnR(R(v)) = v. (Unwrapping a wrapped value results in the

original value.)

Algorithm OMH must satisfy the Byzantine Generals conditions naturally ex-
tended to the fault model described above.

When the transmitter is symmetric-faulty, it is convenient to call the unique

value received by all nonfaulty receivers the value actually sent by the transmitter.

BGHI: If processors p and q are nonfaulty, then they agree on the value ascribed

to the transmitter; that is, vp = vq.

BGH2: If processor p is nonfaulty, the value ascribed to the transmitter by p is

• The correct value v, if the transmitter is nonfaulty,

• The value actually sent, if the transmitter is symmetric-faulty,

• The value E, if the transmitter is manifest-faulty.

The argument for the correctness of OMH is an adaptation of that for the Byzan-

tine Generals formulation of OM [17, page 390]. We define

• n, the number of processors,

• a, the maximum number of arbitrary-faulty processors the algorithm is to

tolerate,

• s, the maximum number of symmetric-faulty processors the algorithm is to

tolerate,

• c, the maximum number of manifest-faulty processors the algorithm is to

tolerate, 2

• m, the number of rounds the algorithm is to perform.

2We cannot use m for the number of manifest-faulty processors, because the parameter m is

traditionally used for the number of rounds (although Thambidurai and Park use r). The symbol
c can be considered a mnemonic for "crashed," which is one of the failures that can generate

manifest-faulty behavior.
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Lemma 1 For any a, s, c and m, Algorithm OMH(m) satisfies BGH2 if there are

more than 2(a + s) + c + m processors.

Proof: The proof is by induction on m. BGH2 specifies only what must happen

if the transmitter is not arbitrary-faulty. In the base case m = 0, a nonfaulty receiver

obtains the transmitter's value if the transmitter is nonfaulty. If the transmitter is

symmetric-faulty the value obtained is the value actually sent. If the transmitter is

manifest-faulty the receiver obtains the value E. So the trivial algorithm OMH(0)
works as advertised and the lemma is true for m = 0. We now assume the lemma

is true for m - 1 (m > 0), and prove it for m.

In step (1) of the algorithm, the transmitter effectively sends some value v to all

n - 1 receivers. If the transmitter is nonfaulty, v will be v, the correct value; if it is

symmetric-faulty, v is the value actually sent; if it is manifest-faulty, v is E. In any
case, we want all the nonfaulty receivers to decide on v.

In step (2), each receiver applies OMH(m - 1) with n - 1 participants. Those

receivers that are nonfaulty will apply the algorithm to the value R(v). Since by

hypothesis n > 2(a + s) q- c q- m, we have n - 1 > 2(a + s) q- c q- (m - 1), so we

can apply the induction hypothesis to conclude that the nonfaulty receiver p gets

Vq = R(v) for each nonfaulty receiver q. Let c' denote the number of manifest-faulty

processors among the receivers. At most (a + s + c r) of the n- 1 receivers are

faulty, so each nonfaulty receiver p obtains a minimum of n - 1 - (a + s + d) values

equal to R(v). Since there are c' manifest-faulty processors among the receivers, a

nonfaulty receiver p also obtains a minimum of c_ values equal to E and, therefore,

at most n - 1 - c_ values different from E. The value R(v) will therefore win the

hybrid-majority vote performed by each nonfaulty processor p, provided

2(n- 1-(a+s+c'))>n- 1-c',

that is, provided

n > 2(a+ s) +c'+ 1.

Now, c' (_ c, and 1 _< m, so this condition is ensured by the constraint

n > 2(a-t-s)÷cd-m.

Finally, UnR is applied to the result R(v), which results in final value v. [:3
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Theorem 1 For any m, Algorithm OMH(m) satisfies conditions BGH1 and BGH2

if there are more than 2(a + s) + c + m processors and m > a.

Proof: The proof is by induction on m. In the base case m = 0 there can be no

arbitrary-faulty processors, since m > a. If there are no arbitrary-faulty processors

then the previous lemma ensures that OMH(0) satisfies BGH1 and BGH2. We

therefore assume that the theorem is true for OMH(m- 1) and prove it for OMH(m),

m>0.

We next consider the case in which the transmitter is not arbitrary-faulty. Then

BGH2 is ensured by Lemma 1, and BGI-I1 follows from BGH2.

Now consider the case where the transmitter is arbitrary-faulty. There are at

most a arbitrary-fanlty processors, and the transmitter is one of them, so at most

a - 1 of the receivers are arbitrary-faulty. Since there are more than 2(a + s) + c + m

processors, there are more than 2(a + s) + c + m - 1 receivers, and

2(a+ 8)+c + m- 1 > 2([a- 1]+ s)+c +[m- 11.

We may therefore apply the induction hypothesis to conclude that OMH(m- 1)
satisfies conditions BGH1 and BGIt2. Hence, for each q, any two nonfaulty re-

ceivers get the same value for vq in step (3). (This follows from BGH2 if one of the

two receivers is processor q, and from BGH1 otherwise). Hence, any two nonfaulty

receivers get the same vector of values Vl,..., v,_-l, and therefore obtain the same

value hybrid-majority(vl,...,v,_-l) in step (3) (since this value is functionally de-

termined), thereby proving BGH1. El

3.4 Extreme Cases

Although a major improvement on OM, the number of faults that can be tolerated

by OMH according to the analysis given above is not optimal in some of the extreme
circumstances. In some cases, the algorithm is suboptimal; in others, the general

analysis given above is too conservative. As an example of the latter, consider the

case where only manifest faults are present. In this case, the general analysis above

indicates that the number of manifest faults that can be tolerated is n - m - 1:

in other words, the greater the number of rounds, the fewer manifest faults that

can be tolerated. In fact, alternative analysis shows that OMH(m) tolerates the

maximum possible number of manifest-faulty processors when there are no arbitrary

nor symmetric faults. The only constraint is that there must be more processors

(whether faulty or not) than rounds (since otherwise some recursive instances would

be run on the empty set of processors).
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Theorem 2 If arbitrary and symmetric faults are not present, Algorithm OMH(m)

satisfies conditions BGH1 and BGH2 provided there are more than m processors. 3

This theorem has been formalized and mechanically verified. The formal proof

follows that of Theorem 1 closely, using analogous lemmas. However, here there

are only two cases to consider (good and manifest) whereas there are four in the

previous argument (good, manifest, symmetric, and arbitrary).

When only symmetric faults are present, it is the algorithm, rather than its

general analysis, that is less than optimal. Here, the additional rounds of message

exchanges are actively counterproductive in the cases m > 0 (compare n = 4, s = 2

for the cases m = 0 and m = 1). Additional rounds of messages are the price paid

for overcoming arbitrary faults, and these seem to reduce the ability to deal with

symmetric faults. An interesting topic for future research is to investigate whether
this trade-off can be mitigated.

When no manifest faults are present, Algorithm OMH becomes similar to the

traditional Algorithm OM. A related point was made in [33]: in the absence of

error values, hybrid majority is equivalent to majority. Thus the only substantive

difference between OMIt and OM are the wrapper and unwrapper functions applied

to values. As discussed in Section 3.7 these functions may be identity on nonerror
values, in which case OMH becomes exactly OM in the absence of manifest errors.

Thus the analysis above may be applied, showing that the traditional algorithm

OM(m) can withstand more faults than is suggested by its standard analysis: in

fact, OM(m) satisfies conditions BGH1 and BGH2 if there are more than 2(a+s)+m

processors, m _>a, and manifest faults are counted as symmetric.

3.5 Benefits

Recall that OM achieves agreement and validity if there are more than three times

as many good processors as arbitrary-faulty processors (n > 3a). From the bounds

given in Theorem 1, n > 2(a ÷ s) + c + m and m _> a, it may be seen that OMH

achieves the same resilience to arbitrary faults if there are no symmetric-faulty or

manifest-faulty processors. Also, from Theorem 2, if a = s = 0, then all that is
required is that n > r.

While providing the same resilience to arbitrary or Byzantine faults, OMH
achieves a higher degree of tolerance to other classes of faults than OM. Table 3.1

indicates the different numbers of simultaneous faults that a 6-plex can withstand

using OMH(1); for comparison, observe that OM(1) can withstand only a single

3of course, the conditions are somewhat vacuous if there are less than two good processors.
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Number of Faults

Arbitrary (a) Symmetric (s) Manifest (c)
1

0

2

1

0

Table 3.1: Fault-Masking Capabilities of OMH(1) with n = 6

(arbitrary) fault in this configuration. 4 Thambidurai, Park, and Trivedi [34] present
reliability analyses that show this increased fault tolerance indeed provides superior

reliability under plausible assumptions 5. McElvany-ttugue has also studied the reli-

ability of related algorithms under this fault model, reaching similar conclusions [14].

In fact, our crash-only analysis above shows that OMH exhibits slightly greater fault

tolerance than that assumed in these reliability analyses.

3.6 Communications Faults

A disadvantage of most fault models for Interactive Consistency, including the one

used here, is that they attribute communications failure on a link connecting two

processors to one or other of the processors concerned. 6 In the draconian fault-

model of the original OM algorithm (i.e., all processors faults are Byzantine) this

causes a communications fault on a link--a physical fault that may be considered

fairly likely, and relatively innocuous in its effects--to be counted as one of the most

difficult, and hopefully rare, of all faults.

It is worth inquiring whether the hybrid model used here can be extended to

treat communications faults as other than arbitrary processor faults. The problem

in developing a hybrid fault model that includes communications faults as well as

arbitrary processor faults, is that a communications fault does have the asymmetric

character of a Byzantine or arbitrary fault. If we introduce communications faults

as a new fault class, different from arbitrary processor faults, then we must account

4That is according to the classical analysis. As noted in the previous section, revised analysis of

OM(1) shows that it can actually withstand two simultaneous faults, provided at most one of them

is arbitrary. The chief difference between OM and OMH is that OM does not distinguish manifest

faults from (other) symmetric ones.
sAlthough Algorithm Z is flawed, the analysis in [34] can be correctly applied to OMH

SPerry and Toueg [26] presented an interactive-consensus algorithm for a fault model that admits
communications failures, but that model does not consider Byzantine faults at all.
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for these faults either in the result corresponding to Lemma 1 above, or in that

corresponding to Theorem 1. The latter seems the most likely candidate, since

it is the case that deals with asymmetrically faulty transmitters. However, the

inductive proof used in Theorem 1 does not work for the case of a transmitter with

an asymmetric but nonarbitrary communications fault (because in the recursive

subcases we will still have the same number of arbitrary faults to mask, but one less

round to do it in--and we cannot mask more arbitrary faults than rounds). The
alternative is to consider communications faults in Lemma 1. It turns out that this is

feasible, but is equivalent to regarding a communications fault as a symmetric-fault
in the receiver.

This conclusion seems fairly useful, so we record it in the following definition
and theorem.

• Let p and q be processors; if there is a communications fault on the link p _ q,

then a receiver can receive any value (i.e., we allow intermittent and Byzantine

behavior). 7

Theorem 3 Let C be the set of links with communications faults. Then Theorem

1 can be applied provided that for each p _ q E C, either:

• processor p is counted as arbitrary-faulty (whether it actually is or not), or

• processor q is manifest-faulty, symmetric-faulty, or arbitrary-faulty and is

counted as such, or

• processor q is nonfaulty but is counted as symmetric-faulty.

Proof: First, we consider the cases where processor q is faulty. In all cases

(arbitrary-fanlty, symmetric-faulty, and manifest-faulty), the behavior of a faulty

processor is independent of the values it receives; hence the faulty link p _ q is
irrelevant.

If q is nonfanlty, we can attribute the faulty link p _ q to either p or q. If we

attribute it to p, then p appears to manifest arbitrary (i.e., Byzantine) behavior,

and must be counted as arbitrary-faulty.

If we attribute the link fault p --. q to q and q is nonfaulty, then the behavior

seen by other processors is precisely that of a syinmetric-faulty processor: if the link

delivers a wrong value (or the correct one) to q, it will faithfully pass it on to all

the other receivers; if the link delivers a corrupted (or no) value to q, it will pass on

R(E). Thus q should be counted as a symmetric-fanlty processor. []

This and related alternative models of link faults, and other simple but asym-

metric classes of communication faults, are interesting avenues for further work.

7In the treatment used here, there is no advantage in a more restrictive model of communications
faults.



20 Chapter 3. The Algorithm OMH

3.7 Implementing R and UnR

Although the informal and formal specifications suggests that R and UnR are ap-

phed to all values at every round, this is unnecessary. R and UnR may be identity

on nonerror values. That is, the following definitions suffice:

R(z) _f if z = R.iE for some j then R3+IE else x endif

UnR(x) d_efif x = RJ+IE for some j then RJE else x endif

Thus, values v could be passed with an extra (say, highest order) bit denoting

whether the word actually stands for a data value or for RV(E). R and UnR would

then become increment and decrement operations conditional on the highest bit.

If R and UnR are applied to all values at every round, perhaps as uncondi-

tional increment and decrement operations, then intermediate error values such as

R(R(E)) may coincide with valid data values. The algorithm remains correct be-

cause UnR (decrement) is always applied to the output of the majority vote.

Both of these implementations of R and UnR require unbounded integers in

order to truly satisfy the requirements on R and UnR (for all v, R(v) _ E, and

UnR(R(v)) = v). However, for an m round OMH, just m + 1 error values (E up to

Rm(E)) suffice with suitable modifications to the algorithm.

One could add a comparison of the number of apphcations of R with the depth

of recursion in the algorithm OMH. (Simply computing RX(E) where x is taken
modulo the total number of rounds leads to erroneous results.) Any values with

more R's than elapsed rounds may correctly be considered to indicate manifest

faults and treated as E, thus reducing the number of possible error values to one

more than the number of rounds. In the common case of one-round OMIt, two error

values, corresponding to E and R(E) suffice. With only a small set of error values,

it may no longer be necessary to distinguish them by setting a special bit: they

could simply be allocated to values beyond the valid data range.

Using these techniques, one may reduce the overhead of using OMH-like algo-

rithms (as compared to OM) to a small constant number of extra data values, and

a slightly more complex algorithm. These implementation techniques have not been

formally verified.



Chapter 4

The Formal Specification and
Verification

We have formally specified the 0MH(n) algorithm and formally verified that it sat-

isfies the properties of agreement and validity using the PVS verification system [22].

The specification language of PVS is a higher-order logic with a very rich type sys-

tem. This allowed us to specify the OMH algorithm, its assumptions, and properties

fairly directly. PVS's theorem prover or proof checker (we use either term, though

the latter is more correct) is interactive and operates under the direct control of

user: the user chooses each step that is to be applied and PVS performs it, displays

the result, and then waits for the next command. PVS differs from most other in-

teractive theorem provers in the power of its basic steps: these can invoke decision

procedures for arithmetic, automatic rewriting, induction, and other relatively large

units of deduction; it differs from other highly automated theorem provers in being

directly controlled by the user. This style of mechanized proof checking allowed us

to discover the flaws in our early formulations of the OMIt algorithm, and to verify

the properties of the final version with relatively little effort.

We describe the formal specification in the next section, and its formal verifica-
tion in the section after that.

4.1 Formal Specification

The formal specification is a single PVS theory omh (shown starting on page 31)

that takes several parameters, beginning with a natural number m denoting the

number of rounds of message exchanges to be performed, and a strictly positive

natural number n that denotes the number of participants (i.e., channels or "fault

21
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containment units"). Both the natural numbers (0, 1,2,...) and the strictly pos-

itive natural numbers (1,2,3,...) are predefined types in PVS (nat, and posnat,

respectively), which are specified in the "prelude" of standard definitions that are

automatically loaded into PVS. The prelude theories are described in the PVS lan-

guage reference [23], and can also be examined on-line using the PVS commands

view-prelude-file and view-prelude-theory.

The parameter list continues by introducing an uninterpreted type T, to repre-

sent the class of values exchanged in the algorithm, and an uninterpreted constant

error used to represent values that are recognized as manifestly erroneous.

The remaining parameters to the OMH theory are the functions R and UnR,

representing the "wrapping" and "unwrapping" functions that are performed on

values as they are exchanged on the OMH algorithm. These functions must satisfy

certain constraints (namely, wrapped values must not look like error values, and

unwrapping a wrapped value must return the original value) that are stated as

assumptions on the theory OMH, and discussed in Section 3.2. FormaLly, both
are functions from T to T. The function R is used to prevent a value from being

discarded by the hybrid majority vote. UnR is used to recover the correct value after
the vote. Recall that error values are recorded as the values "sent" by manifest-

faulty processors. The first assumption states that no R value is an error.

R(t) # e r.

The second assumption states that UnR of R of a value is the same value.

U.R(R(t)) = t.

The algorithm proceeds through a number of "rounds" counted by the natural

numbers 0, 1,...,m; this range of numbers is specified as the type rounds, using

the predefined type-constructor upto from the PVS prelude. Processors, or "fault

containment units" are represented by the natural numbers 0, 1,..., n- 1. This

type, called fcu, is specified in terms of the predefined type-constructor below from

the PVS prelude. 1 The type fcuset represents sets of fcus, and is specified in terms

of the predefined type-constructor setof, also from the PVS prelude. Finally, the

type fcuvector is specified as the type of functions from fcus to T.

Several variables are then introduced, and instantiations of some prelude theories

are imported. Prelude theories are always available and do not need to be imported

explicitly; the advantage of doing so, however, is that the required instances can
be indicated, so that later references can use simple, rather than qualified, names.

1A slightly more elegant approach would make .[cu a type parameter, with an assumption that

it is bijective with below[n]; several prelude theories use this approach.
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The theory finite_cardinality is one of several cardinality theories available in the

PVS prelude; these theories differ in their assumptions concerning the type of the

elements of the sets concerned. The theory finite_cardinality is applicable to sets

whose elements are drawn from a finite type; its parameters are the type concerned

(here fcu), a natural number that is the cardinality of that type (here n), and a

bijection (here identity[fcu]) from the canonical set below[n] of cardinality n to the

type concerned.

The theory filters defines a function filter that returns the set of members of a

given set that satisfy a given predicate. Since predicates and sets are equivalent in

higher-order logic, this operation is the same as set intersection. 2 The theory card_set

provides some standard lemmas concerning cardinality, and filters (for example, the

cardinality of a set is nonzero if and only if the set is nonempty); it takes the same

arguments as finite_cardinality. The imported theory hybridmjrty is not essential to

the main development and is described in Appendix A.

The type statuses is defined to be an enumeration of exactly four constants,

corresponding to the four categories of behavior: arbitrary, symmetric, manifest,

and good. 3 The function status returns the status of a given processor (or fcu); this

implicitly enforces our notion that a processor not change status during execution

of the agreement protocol. A processor that, in reality, is symmetric-faulty one

moment and manifest-faulty the next must be modeled as one that is arbitrary-
faulty throughout the computation.

Some shorthands are then defined for describing statuses: a, s, c, and g are

predicates recognizing the arbitrary-faulty, symmetric-faulty, manifest-faulty, and

good processors, respectively. Similarly, given a set caucus, as(caucus) is the set of

arbitrary-faulty processors in caucus. The functions ss, cs and gs similarly select

the symmetric-faulty, manifest-faulty, and good processors, respectively. A simple

lemma, fincard_all, states that the cardinality of a set of processors is equal to the

sum of the cardinalities of the subsets of its processors of each status. This lemma

follows from a property implicit in the definition of statuses as an enumeration type:

the members of the enumeration are inclusive and disjoint.

The function send captures the properties of sending values from one processor

to another. This function takes a value to be sent, a sender, and a receiver as

arguments; it returns the value that would be received if the receiver were a good

processor. The result actually received is irrelevant if the receiver is not a good
processor (because the values passed on by faulty receivers are not assumed to be

related to those received). We axiomatize the behavior of send according to the

2The theory filters also provides a similar function on lists, which is rather more complex.
aEnumeration constants are also overloaded as recognizer functions in PVS. Thus, if s is a

variable of type statuses, s = arbitrary and arbitrary(s) are equivalent formulas. The latter form
is used in this specification.
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status of the sender. The first axiom simply says that a good processor sends

correct values to all (good) receivers:

g(p) D send(t,p,q)= t.

Note that here, and in further formal definitions, free variables are universally bound

at the outermost level, and the types of all variables are omitted for brevity. See the

complete specification for subsidiary and variable declarations. The second axiom

says that a manifest-faulty processor always delivers values that are recognized as

erroneous by good receivers:

c(p) D send(t,p, q)= error.

The third axiom says that a symmetric-faulty processor sends the same value to all

good receivers, although that value is otherwise unconstrained (i.e., it may be any

possible value, including those that are recognized as erroneous)

s(p) 3 send(t,p,q)= send(t,p, z).

Nothing is specified for the behavior of arbitrary-faulty senders. A lemma (called

send5) is stated and proved that all good receivers obtain the same value when the

sender has any status but arbitrary-faulty:

--,a(p) D send(t,p,q)= send(t,p,z).

A deficiency of this specification is that, because send is a function, even ar-

bitrarily faulty processors are consistent from one round to the next: the value

send(t, p, q) is some fixed value, suggesting that a faulty processor p, given the same

value t, will always send the same (possibly bad) value to the processor q--even in

different rounds of the protocol. This fact is not exploited in the proof, but it is not

self-evident that this is so. In our verification of the OM algorithm [27], we added

the round number as an additional argument to send in order to lessen this concern.

However, the only way to allay such doubts absolutely is to specify send as a rela-

tion. Our colleague Shankar has axiomatized the OM algorithm using a relational

send, and has proven the corresponding correctness conditions. Unfortunately, the

relational send complicates and obscures the specification (since it forces other func-

tions to become relations also), so we have chosen to retain a functional send for

this exercise. It is probable that a relational version could be created without great

effort.

Our formal specification of OMH is based on our earlier specification of the

classical OM algorithm [27]. Rather than simply present the formal specification

of OMI-I as a fair accompli, we first reproduce some of the development of the
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specification for the OM algorithm from our earlier report, and then transform it

into the OMH algorithm.

We start by considering the Interactive-Consistency version of OM, which we

call OMIC. We specify OMIC as a function of three arguments: m the number

of rounds, v an fcuvector giving the private values of each processor, and caucus

the set of processors participating in (this round of) the algorithm. OMIC will

return a "vector" of fcuvectors: that is a function from .fcu to ]cuvector. Thus

OMIC(m, v, caucus)(p) will be the fcuvector of processor p following the OMIC

algorithm, and OMIC(ra, v, caucus)(p)(q) will be p's opinion of q's private value.

Notice that we are using higher-order functions here (i.e., functions whose values

are functions).

In preparation for formally specifying OMIC, we first state its behavior for the
case m -_-O.

OMIC(O, v, caucus)(p)(q) = send(v(q), q,p)

Our requirement on OMIC in the case m = 0 simply states that p's opinion of q's

private value v(q) following the algorithm should be send(v(q), q,p). It might seem

that we should require that both p and q should be members of the set caucus (as
we did in the specification in [27]), but this is unnecessary because the value of the

function is irrelevant p or q are not members of caucus.

For the case m = r, r > 0, we require that p's opinion of q's private value

should be send(v(q), q, q) if p = q,4 otherwise it should be the majority value in p's

.fcuvector, after performing OMIC with m = r - 1 on the current set of processors

with q excluded, and the values received from q as the private values. Now the value

received by an arbitrary processors z from q is send(v(q), q, z), so the fcuvector of
such values is

(Az: send(v(q),q,z)).

The inner round of OMIC is therefore described by

OMIC(r - 1, (Az: send(v(q), q, z)), caucus - {q}),

and the fcuvector received by p following this is

OMIC(r- 1,(Az : send(v(q),q,z)),caucus- {q))(p).

4We could specify v(q) in this case; we have chosen the weaker assumption that a faulty processor

may not even know its own value.
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Thus the required specification is:

> 0

OMIC(r, v, caucus)(p)(q)

= IFp = qTHEN send(v(q), q, q)

ELSE

Majority(caucus- {q},

OMIC(r - 1, (A z: send(v(q), q, z)), caucus - {q})(p))

ENDIF

The function Majority takes a set of processors (here caucus- {q}), and an fcuvector,

and computes the majority value (if any) in that vector over that set. 5

The two behaviors stated above (for the cases m = 0, and m > 0, respectively)

could be specified as axioms defining the function OMIC; we prefer, however, to spec-

ify the function definitionally and to deduce those properties as (straightforward)

lemmas. The advantage of the definitional specification is that the PVS typechecker

will guarantee its soundness (in the sense of not introducing inconsistencies). To do

this, we are required to exhibit a measure function that takes the same arguments as

OMIC and whose value is a natural number that can be proved to decrease across

recursive calls. In the present case, we use the function that returns the round

number as the measure function. The final specification for OMIC is given below.

OMIC(r, v, caucus) : RECURSIVE [fcu --* fcuvector] =

IF r = 0THEN (_p: (_ q: send(v(q),q,p)))
ELSE

(_q:

IF p = q THEN send(v(q), q,q)
ELSE

Majority(caucus- {q},
OMIC(r - 1,(A z: send(v(q),q,z)),

caucus- {q))(p))

ENDIr))
ENDIF

MEASURE (,_ r, v, caucus --* nat : r)

5Requiring this function to be implemented by a majority vote overspecifies the problem. All
that is really required is that if the good processors form a majority in caucus, and if all the good
processors have the same value in the vector, then that is the value of the Majority function. Taking
the median of the values of the members of caucus (assuming they come from an ordered set) would
also satisfy this specification (as was correctly noted by Lamport, Shostak and Pease [17, page 388]).
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The next step is to convert our specification of the basic Oral Messages algo-

rithm from the Interactive-Consistency to the Byzantine Generals formulation. We

specify the Byzantine Generals form by a function OMBG that is similar to OMIC,

but takes an additional (first) argument giving the identity of the Transmitter (or

Commanding General), and replaces the fcuvector of private values by a single pri-

vate value (that of the Transmitter). The result returned by OMBG is a simple

fcuvector:

OMBG(G, m, t, caucus)(p)

is processor p's opinion of the Transmitter G's private value t following an m-round

exchange. If we assume that OMIC is available, then the behavior required of

OMBG in the case r > 0 can be derived directly from that of OMIC:

r>O
D OMBG(G, r, t, caucus)(p)

= IF p = G THEN send(t,G,p)
ELSE

Majority(caucus - {q},

OMIC(r - 1, (A z: send(t, G, z)), caucus - {q})(p))
ENDIF

The next step is to replace the inner call to OMIC by one to OMBG. Now

OMIC(r - 1, (Az: send(t, G, z)), caucus - {q})(p)

is an fcuvector giving processor p's opinion of the values received by each processor

when G sends them t. Using OMBG, p's opinion of the value received by processor
z in this circumstance can be written

OMBG(z, r - 1, send(t, G, z), caucus - {q})(p)

(i.e., z takes the part of the Transmitter, distributing the value send(t, G, z) received

from the "real" Transmitter). Thus, the required fcuvector giving p's opinion of the

values received by all such processors z is given by:

(Az: OMBG(z,r- 1, send(t,G,z),caucus- {q})(p)).

In this way we arrive at the specification for OMBG shown below.
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OMBG(G, r,t,caucus): RECURSIVE fcuvector=

IF r = 0 THEN (A p : send(t,G,p))
ELSE

(Ap:
IF p = G THEN send(t, G, p)
ELSE

Majority(caucus - {G},
(A z: OMBG(z, r - 1, sendCt, G, z), caucus - {G})(p)))

ENDIF)

ENDIF

MEASURE (A G, r, t, caucus --_ nat : r)

The final step is to transform this specification into one for OMH. The only dif-
ferences between OMBG and OMH are that the latter uses HybridMajority instead

of the simple Majority function, and "wraps" and "unwraps" the values sent and
received in the recursive calls with the functions R and UnR, respectively. Thus the

specification for OMH given below is easily derived.

OMH(G, r,t,caucus): RECURSIVE fcuvector=
IFr =OTHEN (Ap: send(t,G,p))
ELSE

(_p:
IF p = G THEN send(t, G, p)
ELSE

UnR(HybridMajority(caucus - {G},
(A z: OMH(z, r - 1, n(send(t, G, z)), caucus - {G})(p)))l

ENDIF)

ENDIF

MEASURE (A G, r,t, caucus --* nat : r)

It remains to specify the properties required of the functions HybridMajority,

UnR, and R. The function HybridMajority is intended to be like the previous (stan-

dard) Majority function, except that all error values are excluded. Recall from our

earlier discussion that the Majority function does not actually need to be a majority

vote, so it is preferable to specify the properties required of it axiomatically. The

same is true of HybridMajority, which is axiomatized below. Although these two

properties are all that is required of an implementation of HybridMajority, we have

provided a concrete implementation of HybridMajority based on the Boyer-Moore

MJRTY algorithm [3], and proved that the axioms below are satisfied by this im-

plementation. Thus the following may be considered axioms, or may be considered

lemmas proven by appeal to the hybridmjrty theory described in Appendix A.



4.1. Formal Specification 29

tgs(caucus)l > las(caucus)l + Iss(caucus)l
A (Vp: g(p) A pEcaucus D v(p) = t)

^ t # error ^ (Vp: c(p) ^ p _ caucus _ v(p) = error)
D HybridMajority(caucus, v) = t

The antecedent to the implication in this specification is complicated, but can

be read as follows. The function HybridMajority takes two arguments, a set of pro-

cessors (i.e., an fcuset), which we call the caucus, and a vector mapping processors

to values (i.e., an fcuvector). If the vector records the same value for all good pro-

cessors in the caucus, and the vector records an error value for all manifest-faulty

processors in the caucus, and there are more good processors in the caucus than

the sum of arbitrary-faulty and symmetric-faulty processors in the caucus, then Hy-

bridMajority returns the same value as that recorded in the vector for the good

processors. Any implementation of HybridMajority that does in fact compute the

true majority after casting out error values would satisfy this axiom.

The second axiom states that the value returned depends only on the values

recorded in the vector for the processors in the caucus. Although HybridMajority

is a function, it could potentially be implemented in such a way that when there is

no majority (i.e., when the antecedent to the implication above is false), the output

depends on values of the vector corresponding to processors not in the caucus, or

other irrelevant information contained in the arguments. The second axiom prohibits

this kind of behavior.

(v p: p• caucus _ vl(p) = v_(p))
D HybridMajority(caucus,vl) = I-IybridMajority(caucus, v_)

The remainder of the specification consists of interesting properties of the OMH

algorithm. Many of the following theorems are first defined as predicates, then a

lemma asserting that this predicate is universal is proved by induction, and then a

theorem giving the result in the form desired is derived from the lemma. This style of

breaking a specification into a predicate and a separate lemma and theorem is quite

useful in formal systems. Many other large specifications use this technique [30,37].

Note that in the semiformal specification there was a notion of the value actually

sent by the transmitter. This is very close to the value of the function send(t,p,q),

although we have axiomatized send so that manifest-faulty processors "send" error.

Thus the formal specification of Validity uses send where the semiformal specifica-

tion uses case analysis and the notion of the value actually sent by symmetric-faulty

processors.



30 Chapter 4. The Formal Specification and Verification

The first big property is Validity, stating that if the transmitter is not arbitrary-

faulty, then this algorithm achieves the same result as send. This captures the

correct behavior when the transmitter is good (send delivers the correct value),

symmetric-fanlty (send delivers the same wrong value to all receivers, which then

agree on this value), and manifest-faulty (send effectively delivers the value (error

to all receivers which then agree on error as the transmitter's value).

-_ a(q)
A p E caucus

A q E caucus

A Icaucus I > 2 × (las(caucus)l + Iss(caucus)l) + Ics(caucus)l + r

D OMH(q, r, t, caucus)(p) = send(t, q.p)

The next property is Agreement, which states that if two receivers are both good

they will agree, whatever the status of the transmitter.

g(P)

^ g(q)
A p E caucus

A q E caucus
A z E caucus

A Icaucusl > 2 x (ta_(caucus)l + Iss(caucus)l) + Ics(eaucus)l + r
A r > las(caucus)l

D OMH(z, r,t, caucus)(p) = OMH(z, r,t, caucus)(q))

The next property, Validity_final, instantiates the inductive validity property

with the full set of processors. The property Validity_Corollary addresses the special

case when the transmitter is good. In this case the correct value is agreed upon by all

good receivers. The property Agreement_final instantiates the inductive agreement

property with the full set of processors.

The remainder of the specification addresses the special case when there are no

symmetric-faulty nor arbitrary-faulty processors. In this case a somewhat better

bound can be achieved with regard to manifest-fanlty processors. In particular, the

bounds given by the general versions of the theorems are not as good as can be

achieved with simple non-Byzantine resilient algorithms. However, as described in

Section 3.4, OMH does actually achieve optimal behavior in these cases, as shown

by the alternative analysis described below.

The same set of interesting properties described above is then repeated with the

added assumption that there are no arbitrary-faulty nor symmetric-faulty proces-

sors. The bounds proven in these cases deliver more resilience to manifest faults.
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Note that in these analyses, there is at least one good receiver, and the remainder of

the receivers are either good or manifest-faulty, so the good receivers will always win

the majority vote. A detail is the extra requirement that there be more processors

than rounds, since it is difficult to assert properties of the OMH algorithm run on

the empty set of processors.

Note that analogous "ArbitraryOnly" theorems also hold, giving optimal

bounds, 6 although these bounds are trivial consequences of the general theorem.

The analogous "SymmetricOnly" theorems would not give optimal bounds, as was

discussed in Section 3.4.

omh[m: nat, n: posnat, T: TYPE,error: T,R, UnR: [T---+ T]]:
THEORY

BEGIN

ASSUMING

act_ax: ASSUMPTION (V (i_: T): R(t) ¢ error)

unact_ax: ASSUMPTION (V (t: T): UnR(R(t)) = t)

ENDASSUMING

rounds:TYPE ---- upto[m]
t: VART

fcu: TYPE = below[n]

fcuset: TYPE = setof[fcu]

fcuvector : TYPE ---- [fcu ""* T]

G,p,q,z: PAR fcu

v, vl, v2 : PAR fcuvector
caucus : VAR fcuset

r : PAR rounds

IMPORTING

finite_cardinality[fcu, n, identity[fcu]],

filters[fcu],

card_set[fcu, n, identity[fcu]],

hybridmjrty[T, n, error]

Pease, Shostak and Lamport [25] proved that at least 3a+ 1 processors are required to withstand

a arbitrary faults. This result has been formally verified by Bevier and Young [2,1] using the Boyer-

Moore prover.
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statuses : TYPE : {arbitrary,symmetric, manifest, good}

status : [fcu---* statuses]

a(z): bool = arbitrary(status(z))

s(z): bool = symmetric(status(z))

c(z): bool = manifest(status(z))

g(z): bool = good(status(z))

as(caucus): fcuset = filter(caucus, a)

ss(caucus): fcuset -- filter(caucus, s)

cs(caucus) : fcuset = filter(caucus, c)

gs(caucus): fcuset -- filter(caucus, g)

fincard_all :

LEMMA

Icaucusl = I_(caucus)l + Iss(caucus)l + Ics(caucus)l + IgsCcaucus)l

send : [T, fcu, fcu --, 7']
sendl : AXIOM g(p) D send(t,p,q) = t

send2 : AXIOM c(p) D send(t,p,q) = error

send4 : AXIOM s(p) D send(t,p,q) = send(t,p,z)

send5 : LEMMA _ a(p) D send(t, p, q) = send(t,p, z)

HybridMajority(caucus, v) : T = proj_l(Hybrid_mjrty(caucus, v,n))

HybridMajority-axl :
LEMMA

Igs(caucus)l > las(caucus)l + I_(caucus)l
^ (Vp: 9(p) ^ pecaucus _ v(p) = t)

A t ¢ error A (Vp: c(p) A p•caucus D v(p) ---error)

D HybridMajority(caucus, v) = t

HybridMajority_ax2 :
LEMMA

(V p: V • caucus D vl(p) = v2(p))

D HybridMajority(caucus, vl) = HybridMajority(caucus, v2)
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OMH(G, r, t, caucus) : RECURSIVE fcuvector =

IF r = 0 THEN (A p : send(t, G, p))
ELSE

(,_p:
IF p = G THEN send(t,G,p)
ELSE

VnR(HybridMajority(caucus - {G},

(A q: OMtt(q, r - 1, R(send(t, G, q)), caucus - {G})(p))))
ENDIF)

ENDIF

MEASURE (A G, r, t, caucus _ nat : r)

Validity_Prop(r):
bool

(V p, q, caucus, t :

a(q)
A p E caucus

A q E caucus

^ Icaucusl
> 2 × (las(caucus)l + Iss(caucus)l) + Ics(caucus)l + r

D OMH(q, r,t, caucus)(p) = send(t, q,p))

Validity : LEMMA Validity_Prop(r)

Agreement..Prop(r):
bool

(V p, q, z, caucus, t :

(g(p)
^ g(q)

A p E caucus

A q E caucus
A z E caucus

^ Icaucusl

> 2 × (las(caucns)l + Iss(caucus)l) + Ics(caucus)l
+r

^ r _> la_(caucus)l)
D OMH(z, r, t, caucus)(p) = OMH(z, r,t, caucus)(q))

Agreement : LEMMA Agreement_Prop(r)
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Validity_Final :

THEOREM

9(p)
A -, a(G)

A lal < m
A2 x lal+ 2 x I_1+ I_I+ _ < _
OMI(C,m,t,funsetifcu])(p)= s_d(_,a,p)

Validity_Corollary :

THEOREM

g(p)
A 9(a)

A I_l <- m
A2 x IM + 2 x Isl+ I_I+ m <
OMH(O, m,t,funs_t[fcu])(p)= t

Agreement_Final:
THEOREM

g(p)
A g(q)

A I"l <- m
A 2 x lal + 2 x Isl+ Icl+ m < .

OMI(G, m, t, fullset[fcul)(p)= OMit(G, m, t, fullset[fcul)(q)

Crash_Only_Validity-Prop(r) :
bool

(V p, q, caucus, t :

g(p)
A p E caucus

A q E caucus
A l_(c_ucu_)l= 0 A Is_(caucus)l= 0 A lcaucu_l>
OMn(q,_,t,¢aucu_)(p)= _nd(t,q,p))

Crash_Only_Validity : LEMMA Crash_Only_Validity-Prop(r)
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Crash-Only_Agreement_Prop(r) :
bool

(V p, q, z, caucus, t :

g(P)

A g(q)

A p _ caucus

A q E caucus
A z E caucus

A las(caucus)l = 0 ^ Iss(caucus)l = 0 ^ Icaucusl > r
D OMH(z, r, t, caucus)(p) = OMH(z, r,t, caucus)(q))

Crash_Only_Agreement : LEMMA Crash-Only-Agreement_Prop(r)

Cr ash-Only_Validity_Final :
THEOREM

g(p) A lal = o A I,I = 0 ^ Ifullset[fcu][ > m
D OMI/(G, m, t, fullset[fcu])(p) = send(t, G,p)

Crash-Only_Validity_Corollary:
THEOREM

g(p) A g(G) A [al = 0 A Isl = 0 A [fullset[fcu][ > m
D OMH(G,m,t, fullset[fcu])(V ) = t

Crash-Only-Agreement_Final :
THEOREM

g(p) A g(q) A lal = 0 ^ Isl = o ^ [fullset[fcu][ > m

D OMH(G, m, t, fullset[fcu])(p) = OMH(G, m, t, fuilset[fcu])(q)

END ornh

4.2 Formal Verification

The formal verifications corresponding Lemma 1 and Theorems 1 and 2 are proved

by induction on the number of rounds, and follow the informal proofs quite closely.

The theorem prover of PVS with its built-in arithmetic decision procedures and

rewriting allowed the formal proof to be constructed at a relatively high level with-

out being mired in detail. The PVS system allows partial proofs to be replayed under

alternative assumptions, facilitating the exploration of generalizations and special

cases, such as that reported in Theorem 2, formally reflected in the Crash_Only vari-

ants of the theorems. Another example of this sort of exploration was the removal

of the assumption that error values are disjoint from good data values. The proof

of each lemma in the specification is described abstractly below.
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The first lemma, fincard_all, states that the cardinality of an entire set of proces-

sors is equal to the sum of the cardinalities of the processors in that set of each status.

This lemma follows from properties implicit in the definition of statuses: that they

are inclusive and disjoint. In detail, the formal proof requires 30 user-supplied steps

in PVS, seven of which are ground or assert, which invoke the ground decision

procedures of PVS.

The second lemma, sendS, states that all non-arbitrary-faulty processors exhibit

symmetric sending behavior. Informally, the proof of this property appeals to the
fact that the four statuses--arbitrary, symmetric, manifest, and good--are inclusive.

Case analysis and appeal to the send axioms sendl, send2, and send4 essentially

completes the proof. In two cases, such as that when the transmitter is manifest-

faulty, the relevant axiom must be applied twice. The entire formal proof comprises

14 user-supplied steps in the PVS interactive verification system.

The most complicated proof constructed for this specification is for Lemma 1

(called Validity in the formal specification), stating that if the transmitter is not

arbitrary-faulty then all good receivers end up with the value actually sent by the

transmitter. This proof contains 13 invocations of lemmas and axioms, most of them

basic lemmas from the prelude and axioms from the OMtI theory. The lemmas and

axioms cited in the proof are: induction; statuses_inclusive, and statuses_disjoint,

which are the automatically-generated assertions that the set of four statuses are

inclusive and disjoint; fincard_remove, a lemma giving the cardinality of a set after

an element has been removed (used often--thirteen times); fincard_filter, a lemma

asserting that the cardinality of a set is not less than the cardinality of that set
with some elements removed; fincard..all, described above; sendS, described above;

remove_comm, a lemma asserting that the order in which elements are removed from

a set is immaterial, used four times; and axioms (such as the definitional axioms

for send) brought into the proof explicitly six times. The entire proof consists of 80

user-suggested steps, 15 of which are PVS assert commands, which invoke rather

powerful decision procedures for ground arithmetic [31,32]. After some experimen-
tation with alternative specifications, including constructing partial failed proofs of

this lemma for alternative versions of the algorithm OMH, the first proof of Validity

was constructed from scratch in a few hours.

The proof of the crash-only variant of Validity is very similar in nature to the

general version of validity, although it contains one fewer user-supplied steps, 14 of

which are asserl;.

The proof of the Agreement property contains 10 invocations of lemmas and

axioms, and consists of 73 steps, including 13 calls to the ground decision procedures.

This proof was constructed from scratch in a few hours.

Table 4.1 summarizes some gross measures of the size and difficulty of construct-

ing proofs for the lemmas and theorems of this specification. The first column is
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formula name user-supplied number of uses of

steps inductions assert
fincard_all
send5

Validity

Agreement

Validity_final

Validity_Cot

Agreement_final

Crash_Only_ Validity

Crash_Only_Agreement

Crash_Only_ Valdity_final

Crash_Only_ Validity_Cot

Crash_Only_Agreement_final

Hybridmajority_ax l

Hybridmajority_ax2

30

14

80

73

36

14

51

79

41

29

8

21

78

20

1

0

1

1

0

0

0

1

1

0

0

0

2

1

7

1

15

13

4

2

4

14

6

0

1

0

16

3

Table 4.1: Statistics for the Proofs Performed

the name of the formula concerned. The second column is the total number of

user-suggested proof steps in the final proof. The third column counts the uses of

induction. The fourth column counts the uses of ground or assert, which invoke the

ground decision procedures; these roughly correspond to the number of significant
branches in a proof.

The critical measure, however, for specification and verification tasks is not the

size of individual proofs, but the total time taken from problem understanding
through complete formal proof. The effort reported here took less than a month

of part time work, including the exploration of flawed modifications to Algorithm

Z that seemed informally plausible, and a change in notation for expository pur-

poses. Producing this report took far more time than the formal specification and
verification combined.

Full machine-readable PVS specifications and PVS proofs of the entire proof
chain are available from the authors.
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4.2.1 Portion of PVS Proof of Validity

In order to give an idea of the formal proof as interactively developed using PVS, we

reproduce a prettyprinted version of such a proof (slightly edited for readability).

It begins with the theorem name, Validity, and the initial sequent. Sequents

are presented as a list of numbered hypotheses, a horizontal line, and a list of
numbered conclusions. One may read a sequent as stating that the conjunction

of the hypotheses implies the disjunction of the conclusions. Initially, there are

no hypotheses, and only one conclusion, stating that for any number of rounds,

the inductive validity property holds for that many rounds. The first step in the

proof is the application of induction on the number of rounds. This leads to two

subgoals, called Validity.1 and Validity.2. For Validity.l, the base case of
the induction, the definition of the inductive validity property is expanded and the

result is skolemized (fresh constants are introduced in place of universally quantified

variables). Then the definition of OMH is expanded and reduced. (Recall the

specification given earlier; zero-round OMH reduces to send.) This completes the
branch of the proof corresponding to the base case of the induction.

The remaining branch, called Validity. 2, is then proved. This branch requires
it to be shown that for any number of rounds r, if the inductive validity property

holds for r rounds, then it also holds for r ÷ 1 rounds. By skolemizing, expanding

definitions, and applying propositional simplification, we arrive at the crux of the

proof. Here we must show that if OMH behaves correctly at r rounds, then the
UnR of the HybridMajority of the result of all other receivers utilizing OMH to

broadcast R of the value they received from the transmitter is the same as the value

actually sent by the transmitter. This must be demonstrated under certain other

assumptions, such as that are enough nonfaulty processors, and that the transmitter

is not arbitrary faulty. The proof proceeds by utilizing a property of ttybridMajor-

ity, called ttybridMajority_axl. There are four hypotheses of this property, and one

conclusion. After quantifying appropriately, the proof is split into five cases, corre-

sponding to a proof of each hypothesis of tIybridMajority_axl and a proof from the
conclusion of IIybridMajority_axl to the conclusion of the actual property of inter-

est. The proof of the latter (Validlty. 2.1) proceeds by bringing in the assumption

unact_ax, hiding some irrelevant formulas, and invoking the decision procedures.
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Validity:

{1} (V (r: rounds): Validity..Prop(r))

Inducting on r yields 2 subgoals: Validity. 1 and Validity. 2

Validity. 1:

{ 1} Validity_Prop(0)

Expanding the definition of Validity_Prop

Validity. 1 :

{1} (V (p,q: fcu),(caucus: fcuset),(t: T):

-_ arbitrary(status(q))
A caucus(p)

A caucus(q)

i Icaucusl

> 2 x Ifilter(caucus, a)l + 2 x Ifilter(caucus, s)l
+ Ifilter(caucu ,
+0

D OMH(q, O,t, caucus)(p) = send(t, q,p))

For the top quantifier in 1, we introduce Skolem constants: (p', q', caucus', t') and

apply disjunctive simplification to flatten the sequent,

Validity. 1 :

{-1} caucus'(/)

{-2} caucus'(q')

{-3} C&UCUSPl

> 2 x Ifilter(caucus',a)l + 2 × ]filter(caucus',s)l
+ Ifilter(caucus', c)l
+0

{1} arbitrary(status(q'))

{2} OMtt(q', 0, if, caucus')(p') = send(if, q',p')

Expanding the definitionof OMH completes the proof of Validity. I.
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Validity.2:

{1} (V (r: upto[m]): r < m A Validity_Prop(r) D Validity_Prop(r + 1))

For the top quantifier in 1, we introduce Skolem constants: (r') and apply disjunctive

simplification to flatten the sequent,

Validity. 2:

{-i} r' < m

{-2} Validity_Prop(r')

{1} Validity_Prop(r' + 1)

Expanding the definition of Validity_Prop in formula 1

Validity. 2:

{-i} r' < m

{-2} Validity-Prop(d)

{1} (V (p, q: fcu), (caucus : fcuset), (t : T) :
-_ arbitrary(status(q))

A caucus(p)

A caucus(q)

A Icaucusl
>

2 × [filter(caucus,a)l + 2 × Ifilter(caucus, s)[
+ [filter(caucus, c)l
Jr r _

+ 1
D OMH(q,r' + 1, t, caucus)(p) = send(t, q, p))
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For the top quantifier in 1, we introduce Skolem constants: (p', q', caucus t, t') and

apply disjunctive simplification to flatten the sequent,

Validity. 2 :

{-1} r' < m

{-2} Validity__Prop(r')

{-3} caucus'@')

{--4} caucus'(q')

{-5} Icaucus'l
>

2 × Ifilter(caucus',a)l + 2 x Ifilter(caucus',s)l
+ Ifilter(caucus', c)l
-4- r _

+ 1

{1}

{2}

arbitrary(status(q'))

OMH(q', r' + 1,t', caucus')(p') = send(t', q',p')



42 Chapter 4. The Formal Specification and Verification

Expanding the definition of OMH

Validity .2:

{-1} r' < m

{-2} Validity_Prop(r')

{-3} caucus'(p')

{-4} caucus'(q')

{-5} Icau¢.s'l
>

2 x Ifilter(caucus',a)l + 2
+ ]filter(caucus', c)l
d- r'

+ 1

x Ifilter(caucus', s)[

{1}

{2}

arbit rary(status(q'))

IF p' = qt THEN send(t',q',p')

ELSE

UnR(HybridMajority(caucus' - {q'},
(A (q: fcu): OnH(q,r', R(send(t',q',q)),caucus'- {q'})(p'))))

ENDIF

= send(t',q',p')
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Lifting IF-conditions to the top level,

and by propositional simplification,

Validity. 2:

{-1} r' < m

{-2} Validity_Prop(r')

{-3} caucus'(v')

{-4} caucus'(q')

{-5} I_aucus'l
>

2 x Jfilter(caucus',a)[ + 2

+ [filter(caucus', c)l
+ r'

+ 1

x Ifilter(caucus', s)l

{1}

{2}

p/ = q/

UnR(I-IybridMajority(caucus' - {q'},

(A (q: fcu): OMH(q, r', R(send(t', q', q)), caucus' - {q'})(p'))))
= send(t',q',p')

{3} arbitrary(status(q'))
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Applying HybridMajority-a_l

Validity. 2 :

{-1} (V (caucus: fcuset),(t: T),(v: fcuvector):
Iss(caucus)l> I_(caucus)l+ I_(caucus)l

A (V(p: fcu): g(p) A pecaucus D v(p) = t)

^ t # error ^ (V(p: fcu): c(p) ^ V• caucus
D IlybridMajority(caucus,v) = t)

{-2} r' < m

{-3} Validity-Prop(#)

{-4} caucus'(p')

{-5} caucus'(q')

{-6} CRUCUS t ]

>

2 × Ifilter(caucus',a)l + 2 ×

+ Ifilter(caucus', c)l
-t- r'

+ 1

Ifilter(caucus', s)[

v(p) = error)

{3}

p/ _ ql

UnR(llybridMajority(caucus'- {q'},
(A (q: fcu): OMH(q, r', n(send(t', q', q)), caucus' - {q'})(p'))))

= send(t',q',pt)

arbitrary (status(q'))

Instantiating the top quantifier in -1 with the terms:

remove(q', caucus')

R(send(t',q',p'))

(A(q: fcu) : OMH(q, r', R(send(t', q', q)), remove(q', caucus'))(p'))
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Validity. 2 :

{-1} [gs(caucus' - {q'})l

> I_(caucus'-{¢})1 + I_(caucus'-{¢})1
A

(V (p: fcu) :
g(p) A p E caucus' - {q'}

D

(,_ (q : fcu):

OMH(q, r', R(send(t', q', q)), caucus' - {q'})(p'))(p)
= R(send(t', q',p')))

A R(send(t',q',p')) ¢ error
A

(V (p: fcu) :
c(p) A P E caucus' - {q'}

D

(_ (q: fcu):

OMit(q, r', R(send(t', q', q)),

caucus' - {q'})(p'))(p)
= error)

HybridMajority(caucus' - {q'},

(A (q : fcu):

OMH(q, r', R(send(t', q', q)),

caucus'- {q'})(p')))

= R(send(t', q',p'))

{-2} r' < m

{--3} Validity_Prop(r')

{-4} caucus'(p')

{-5} caucus'(q')

{-6} Icaucus' [

>

2 × Ifilter(caucus',a)l
+ Ifilter(caucus', c)[
+ r'

+ 1

+ 2 × Ifilter(caucus',s)[

{1}

{2}

p' __ q'

UnR(HybridMajority(caucus' - {q'},

(_ (q: fcu): OMH(q, r', R(send(/', q', q)), caucus' - {q'})(p'))))
= send(t',q',p')

{3} arbitrary(status(q'))
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Splitting conjunctions yields 5 subgoals:

Validity. 2.1 :

{-1} HybridMajority(caucus' - {q'},
(A (q: fcu):

OMit(q, r', R(send(t', q', q)),
caucus'- {q'})(p')))

= R(send(t',q',p'))

{-2} r' < m

{-3} Validity_Prop(r')

{-4} caucus'(p')

{-5} caucus' (q')

{-6} Icau_us'l
>

2 × Ifilter(caucus ',a)l

+ Ifilter(caucus', c)l
A- r J

+ 1

+ 2 x Ifilter(caucus',s)[

{1} p, = ql

{2} UnR(HybridMajority(caucus' - {q'},
(A (q: fcu): OMH(q, r', R(send(t', q', q)), caucus' - {q'})(p'))))

= send(t', q',p')

{3} arbitrary(status(q'))



4.3. PVS Proof Chain Analysis 47

Applying unact_ax and instantiating the top quantifier with the term: send(t', q', p')

and hiding some formulas,

Validity. 2.1 :

{-1} UnR(R(send(t',q',p'))) = send(if, q',p')

{-2} HybridMajority(caucus' - {q'},

(A (q: fcu):

OMH(q, r', R(send(t', q', q)),

caucus'- {q'})(p')))

= R(send(t',q',p'))

{i} UnR(HybridMajority(caucus' - {q'},

(A (q: fcu): OMH(q, r', R(send(ff, q', q)), caucus' - {q'})(p_))))

= send(t',q',p')

Invoking decision procedures completes the proof of Validity.2.1.

The remainder of the proof takes up over one hundred pages of printed text, and

is omitted here. Full machine-readable PVS specifications and PVS proofs of the

entire proof chain are available from the authors.

4.3 PVS Proof Chain Analysis

Here we reproduce a summary of the PVS analysis of the entire chain of proof for

the verification conducted. Following the summary is a detailed description of all

definitions, axioms, assumptions, lemmas, and theorems used implicitly or explicitly

in three example proofs.

Proof summary for theory omh

IMPORTINGI_TCCI ........................................ proved - complete

fincard_all ............................................ proved - complete

send5 .................................................. proved - complete

HybridMajority_TCCl .................................... proved - complete

HybridMajority_ax! ..................................... proved - complete

HybridMajority_ax2 ..................................... proved - complete

OMH_TCCI ............................................... proved - complete

OMH_TCC2 ............................................... proved - complete
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Validity_Prop_TCC1 ..................................... proved

Validity ............................................... proved

Agreement_Prop_TCC1 .................................... proved

Agreement .............................................. proved

Validity_Final ......................................... proved

Validity_Final_TCC1 .................................... proved

Validity_Final_TCC2 .................................... proved

Validity_Corollary ..................................... proved

Validity_Corollary_TCC1 ................................ proved

Validity_Corollary_TCC2 ................................ proved

Agreement_Final ........................................ proved

Crash_Only_Validity .................................... proved

Crash_Only_Agreement ................................... proved

Crash_Only_Validity_Final .............................. proved

Crash_Only_Validity_Final_TCC1 ......................... proved

Crash_Only_Validity_Final_TCC2 ......................... proved

Crash_Only_Validity_Corollary .......................... proved

Crash_Only_Agreement_Final ............................. proved

Theory totals: 26 formulas, 26 attempted, 26 succeeded.

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

The first example analyzed in detail is send5, which depends only on the axiom-

atization of send and sZazus.

sends has been PROVED.

The proof chain for send5 is COMPLETE.

send5 depends on the followin E axioms:

omh.statuses_inclusive

omh.send4

omh.send2

omh.sendl

send5 depends on the following definitions:

omh. s

omh. c

omh .g

omh. a

The second detailed analysis presented here is of the final validity theorem cor-

responding to Lemma 1 in the semiformal proof described earlier. This theorem is

essentially proved by appeal to the inductive version of validity, which has a long and

complicated proof whose beginning was presented in Section 4.2.1. By transitivity of

dependencies, this final version of validity depends on all the definitions and axioms

that the inductive version of validity depends on, plus a few more. Note that this
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proof also depends on several lemmas and definitions from the PVS prelude, such

as the definitions of fincard and filter. Lemmas and definitions from the prelude are

cited in these proof chain analyses, but the axioms of propositional logic, equality,

the lambda calculus, and linear arithmetic used implicitly by the ground decision

procedures are not identified in this way.

Validity_Final has been PROVED.

The proof chain for Validity_Final is COMPLETE.

Validity_Final depends on the following proved theorems:

bounded_induction.upto_induction

omh. Validity

finite_cardinality.fincard_TCC1

hybridmjr_y.Hybrid_mjrty_TCC1

omh.send5

hybridmjrty.Hybrid_mjrty_TCC3

omh.OMH_TCCl

finite_cardinality.fincardi_TCC3

card_set.fullset_fincard

hybridmjr_y.count_votes_TCC4

finite_cardinality.fincardi_TCC1

hybridmjr_y.count_votes_TCC3

hybridmjrty.Hinv_holds

omh.OMH_TCC2

hybridmjrty.Eybrid_mjrty_TCC2

omh.Validity_Final_TCC2

hybridmjrty.Hlosers

hybridmjrty.Hwinner

omh. IMPORTINGI_TCCI

hybridmjrty.count_votes_TCC5

omh.HybridMajority_axl

hybridmjrty.count_all_good_votes_TCC2

identity. I_TCC2

hybridmjrty.Hybrid_mjrty_TCC5

hybridmjrty.count_votes_TCC2

hybridmjrty.count_all_good_votes_TCC3

omh.Validity_Prop_TCC1

card_set.re_ove_comm

hybridmjrty.count_votes_TCC1

finite_cardinality.fincardi_TCC2

card_set.remove_prop

omh.Validity_Final_TCC1

card_set.fincard_remove

hybridmjrty.count_all_good_votes_TCC1

omh.fincard_all
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f in it e_ cardinal it y. f inc ard i_TCC4

omh. HybridMaj orit y_TCC 1

card_set, fincard_filter

hybridmjrty, count_all_good_vot es_TCC4

Validity_Final depends on the following axioms:

omh. send2

omh. statuses_disj oint

omh. send I

omh. statue es_ inclusive

omh. send4

Validity_Final depends on the following definitions:

identity. I

omh. c

finit e_cardinality, f incard

sets. fullset

omh. gs

filters.filter

omh. a

omh. Validity_Prop

identity, identity

hybr idmj rt y. Hinv

omh. cs

hybridmjrty. Hybrid_mjrty

omh. HybridMaj ority

set s. member

f init e_cardinality, f incardi

hybr idmj rty. count_vot es

omh. g

omh. as

hybr idmj rty. count_ all_good_rot es

omh. OMH

omh. ss

omh. s

sets. remove

Validity_Final depends on the following assumptions:

omh. unact_ax

omh. act_ax
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The third detailed analysis is that of the agreement property. The proof of this

theorem depends on the inductive version of agreement, which in turn depends on
the inductive validity property.

Agreement_Final has been PROVED.

The proof chain for Agreement_Final is COMPLETE.

Agreement_Final depends on the following proved theorems:

bounded_induction.upto_induction

omh. Yalidity

finite_cardinality.fincard_TCCl

hybridmjrty. Hybrid_mjrty_TCCl
omh.sendS

hybridmjrty.Hybrid_mjrty_TCC3

omh.OMH_TCC1

finite_cardinality.fincardi_TCC3

card_set.fullset fincard

hybridmjrty.count_votes_TCC4

finite_cardinality.fincardi_TCCl

hybridmjrty.count_votes_TCC3

hybridmjrty.count_votes_TCC1

omh.OMH_TCC2

hybridmjrty. Hybrid_mjr_y_TCC2

hybridmjrty.Hlosers

omh.Validity_Corollary_TCC1

hybridmjrty. Hwinner

omh. IMPORTINGI_TCCI

hybridmjrty.count_votes_TCC5

omh. HybridMajority_axl

hybridmjrty.count_all_good_votes_TCC2

omh. Agreement

identity. I_TCC2

omh.Agreement_Prop_TCC1

hybridmjrty.count_votes_TCC2

hybridmjrty.count_all_good_votes_TCC3

omh.Validity_Prop_TCCl

card_set.remove_comm

hybridmjrty. Hybrid_mjrty_TCC6

hybridmjrty. Hinv_holds

omh. HybridMajority_ax2

card_set.fincard_non_empty

omh.Validity_Corollary_TCC2

finite_cardinality.fincardi_TCC2

card_set.remove_prop

card_set.fincard_remove
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hybr idmj rty. c ount_all_good_vot • s_TCC 1

omh. f incard_all

f init e_cardinality, f incardi_TCC4

o_h. Hybrid/_aj ority_TCC1

card_s et. f incard_f ilt er

hybr idmj rty. ¢ount_all_good_vot es_TCC4

Agreement_Final depends on the following axioms:

omh. s end2

omh. statuses_dis joint

omh. sendl

omh. statuses_inclusive

omh. s end4

Agreement_Final depends on the following definitions:

identity. I

omh. c

f init e_cardinality, f incard

sets. fullset

omh. gs

omh. a

omh. Validity_Prop

identity, identity

hybridmjrty. Hinv

omh. cs

hybridmj rty. Hybrid_mj rty

omh. Hybr idKaj ority

set s. member

f init e_cardinalit y • f incardi

hybridmjrty • count_votes

omh. g

omh. Agreement_Prop

omh. as

filters, filter

hybridmjrty •count_all_good_rot es

omh. OMH

omh. ss

omh. s

sets. remove

Agreement_Final depends on the following assumptions:

omh. unact_ax

omh. act_ax

The complete detailed proof chain analysis of every lemma from the omh theory

is over 20 pages in length.
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Conclusions

Tools for formal verification have matured to the point where complex, practically
interesting aspects of systems can be economically verified. The human effort re-

quired to specify and prove in complete formal detail interesting theorems about

fault-tolerant architectures is quite modest. In this report we have presented the

formal verification of a new algorithm for Byzantine Agreement under a hybrid fault
model.

Tha.mbidurai and Park's hybrid fault model extends the design and analysis

of Byzantine fault-tolerant algorithms in an important and useful way. Hybrid

fault-tolerant algorithms can tolerate greater numbers of "simple" faults than clas-

sical Byzantine fault-tolerant algorithms, without sacrificing the ability to with-

stand Byzantine, or arbitrary, faults. We applied our formal verification tools to

this domain, discovering errors in published proofs and in a proposed algorithm for
Byzantine Agreement under this fault model.

A crucial tool in our detection of the flaw in Thambidurai and Park's algorithm,

and also in detecting flaws in our own early attempts to repair this algorithm, was

our use of mechanically-checked formal verification. The discipline of formal speci-

fication and verification was also instrumental in helping us to develop the correct

algorithm presented here. The rigor of a mechanically-checked proof enhances our

conviction that this algorithm is, indeed, correct, and also helped us develop the
informal, but detailed, proof given here in the style of a traditional mathematical

presentation.

It is worth repeating that no formal verification proves any program "correct."

At most, a model of the program is shown to satisfy a specification, and shown

to exhibit certain properties under a certain set of assumptions. The true benefit

of formal specification and verification is not in getting a theorem prover to say

proved, but rather in refining one's understanding through dialogue with a tireless
mechanical skeptic.

53
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The effort required to perform this formal verification was not particularly large

and did not seem to us to demand special skill. We attribute some of this ease in

performing formal verification of a relatively tricky algorithm to the effectiveness of

the tools employed [22]. These tools (and others that may be of similar effective-

ness) are freely available. In light of the flaws we discovered in Thambidurai and

Park's algorithm, and had previously found in the proofs for other fault-tolerant

algorithms [24,29, 30], we suggest that formal verification should become a routine

part of the social process of development and analysis of fault-tolerant algorithms

intended for practical application in safety-critical systems.

In future work, we hope to explore possible extensions to the OMH algorithm

and its analysis to include communication faults, and to see whether larger numbers

of symmetric faults can be tolerated. We also intend to study whether lower message

complexity can be achieved in cases of practical interest, and to examine alternative

architectures employing fewer processors (we have already formally specified and

verified a variant of OMH(1) for the asymmetric Draper FTP architecture [13]).

We also plan to formally verify a modified version of the Interactive-Convergence

Algorithm for clock synchronization using a hybrid fault model that includes com-

munication faults (we have already formally verified the standard algorithm [28],

and have an informal analysis of the modified version),

Also, although our experience indicates that formal verification is an effective

debugging technique, it is undeniably expensive one, and it is interesting to ask
whether other methods could have identified the flaws in Z and its derivatives more

simply or economically. Our previous experience with other mechanically-checked
verifications is consistent with the experience reported here: the effort spent discov-

ering and repairing flaws in a specification, algorithm, or proof is a large part of the

intellectual effort expended on formal verification projects.

An obvious alternative is testing: our specifications of these algorithms can be

easily translated into Lisp or other higher-order functional languages where they can

be run on a variety of test cases. (Obviously, controlled "fault-injections" will need

to be programmed into the executable algorithms.) Without specifying a particular

strategy for determining test cases, we cannot say whether specific flaws could have
been detected in this way or not. However, it is clear that with less than complete

test coverage, one cannot guarantee that all errors will be discovered.

Between testing and conventional verification lie the state-exploration methods.

These methods resemble testing in that they are automatic; they resemble veri-

fication in that they are formal verification methods. State-exploration methods

systematically enumerate all the states of a finite-state algorithm and test whether

certain predicates hold at those states. Recent techniques allow large numbers of
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statesto be handled in an efficient manner. 1 Several systems based on state ex-

ploration are available; some of these exploit the close connection between finite

state graphs and propositional temporal logic (when they are usually called "model

checkers" [8]), others provide a higher-level language (e.g., Mur¢ [10, 19] uses a

transition-rule language for concurrent systems that is loosely based on Chandy
and Misra's Unity model [7]).

As it stands, OMH is not amenable to state exploration: it has far too many

states. But for debugging, it could be sufficient to examine highly simplified versions

of the problem: for example, the case m = 1, n _< 6, and a very small set of data

values--E, R(E), and three distinct "good" values--seem sufficient to detect all the
errors that we discovered.

Whereas conventional testing probes selected test cases of the full algorithm,

state exploration provides complete coverage of simplified instances. We plan to

examine the effectiveness of state exploration in this domain by conducting some

experiments with OMH and related algorithms.

1These techniques include hashing [12], and symbolic methods using Binary Decision Dia-
grams [5, 6].
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Appendix A

Hybrid MJRTY

In the proofs performed to verify the correctness of OMH, only two properties about

ftybridMajority are assumed. Any implementation of HybridMajority that satisfies
these axioms would be acceptable for the purposes of OMH.

Igs(caucus)l > I_(caucus)l + I_(c_ucus)l
^ (v p: 9(p) ^ p e caucus • _(v) = 0

A _ _ error A (Vp: c(p) A pEcaucus
D HybridMajority(caucus, v) : t

D v(p) = error)

(v p: p e caucus _ vl(p) = v2(p))
D HybridMajority(caucus, vl) = HybridMajority(caucus,v2)

These properties were described and justified in detail in Section 4.1. Nonethe-

less, there is always a concern when properties are stated axiomatically that they

might be unrealizable. We allay this concern by exhibiting an efficient implementa-

tion for the HybridMajority function and proving that it satisfies the stated axioms.

This development is specified in the PVS theory hybridmjrty (shown on page 62),

which constructively specifies a function Hybrid_rajrty. and then shows that it can be

used to satisfy the axioms stated above. The function Hybrid_mjrty is very similar to

the Boyer-Moore MJRTY algorithm [3], except that it ignores error values. MJRTY

is a method for finding the absolute majority (if there is one) of a set of values in

linear time, using only equality comparison operations. (Other implementations of a

majority function require more than linear time, and/or more complex comparisons).

6O
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Theoriginal MJRTY algorithm has been formally specified and verified before [3,4].
The modified version below is based on a recent unpublished verification of MJRTY
by Natarajan Shankar.

MJRTY can be informally explained as a method to find the candidate, if there

is one, with the majority of votes at a political convention. Every voter on the

convention floor attempts to find someone who is voting for some other candidate.

If two voters voting for different candidates meet, they annihilate each other. At

the end of this process, all the remaining voters must support the same candidate.

The key property of this procedure is that if there is a majority for some candidate

in the beginning, then there will be some voters for that candidate left at the end.

If there is no candidate with a majority, then there may or may not be any voters
left at the end, and those left could be voting for any candidate, even the one with

the fewest total votes. Thus, a second (linear) pass is necessary to ensure that the

delegate supported by the voters remaining at the end does indeed have an overall
majority.

This violently parallel procedure can be sequentialized by ordering the voters,

and then moving down the line of voters forming a "bandwagon" of like-minded

voters. When this bandwagon finds that the next voter agrees with them, the

bandwagon simply increases in size by one. When it finds that the next voter

choses some other candidate, the bandwagon's size is decreased by one. If the

bandwagon becomes empty, then the next voter becomes a bandwagon of one, and

the process continues. This procedure can be implemented by storing the candidate

chosen by the current bandwagon, and a natural number representing the size of
the bandwagon.

It is straightforward to generalize this procedure to a version which respects

caucuses and ignores errors, as required by OMH. The input to the generalized

procedure is a set of votes possibly containing votes belonging to processors outside

the caucus, or in error, which should both be ignored in selecting the majority. It
would be possible to use the standard MJRTY function on a set of votes filtered to

remove error and noncaucus votes, although such a specification would be somewhat

farther from the most efficient implementation, requiring additional passes over the

set of votes. The generalized procedure must also specify the value to return in the
case that there are no nonerror votes in the caucus.

The sequential algorithm is represented in our specification as the function Hy-

brid_mjrty, which takes a caucus (a set of eligible voters), a poll (a function from all

voters to their chosen candidate), and i (the total number of votes) as arguments

and returns a pair consisting of the identity of a candidate, and a natu.ral number

standing for the size of the bandwagon of voters remaining at the end. In the base

case, the default value is chosen to be the error value. The function count_votes

counts the votes of a particular candidate, while count_all_good_votes counts the
total number of nonerror votes in a caucus.
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Hlosers is a lemma about Hybrid_mjrty stating that for all candidates A, if

A is not the first element of the pair returned by Hybrid_mjrty, then A does not

have a majority of good votes. Hwinner is closely related to Hlosers, stating that

if a candidate has a majority of votes, then that candidate will be selected by

Hybrid_mjrty.

The properties Hlosers and Hwinner follow directly from the inductive invariant

Hinv. The property I-Iinv compactly asserts two invariants at once. First, that

twice the total of the selected candidates votes is less than the size of the current

bandwagon plus the total number of good (nonerror, in caucus) votes. Second,

that twice the total of the selected candidates votes plus the size of the current

bandwagon is less than the total number of good votes. These invaria_ts are true

for all nonerror candidates. Hinv is proven by induction on the total number of

votes.

hybridmjrty[T: TYPE, n: posnat,error : T] : THEORY

BEGIN

poll: VAR [below[n] ----4T]

  ucus:VARsetof[below[ ]]
i: VAR upto[n]

A, cand : VAR T

P: VAR IT, below[n]]

Hybrid_mjrty(caucus,poll,i): RECURSIVE IT,nat] ---

(IF i = 0 THEN (error,0)
ELSE

(LET P -- Hybrid_mjrty(caucus, poll, i - 1) IN

(IF (9 caucus(/ -- 1)) V poll(/ - 1) = error THEN P
ELSIF poll(/ - 1) = proj_l(P)THEN (proj_l(P),proj-2(P) + 1)

ELSlF proj_2(P) > 0 THEN (proj_l(P),proj-2(P) - 1)

ELSE (poll(/ - 1), 1)

ENDIF))
ENDIF)

MEASURE ()t Caucus, poll,i : i)

count_votes(caucus,poll,cand,i): RECURSIVE nat =

(IF i > 0
THEN

(IF caucus(/ - 1) A poll(/ - 1) = cand THEN 1
+ count_votes(caucus, poll, cand, i - 1)

ELSE count_votes(caucus, poll, cand, i - 1)

ENDIF)

ELSE 0
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ENDIF)

MEASURE ()_ caucus, poll, cand, i : i)

count_all.good_votes(caucus, poll, i) : R.ECURSIVE nat =
(IF i > 0

THEN

(IF caucus(/ -- 1) A (-_ poll(/ - 1) = error)

THEN 1 + count_all_good_votes(caucus, poll, i - 1)

ELSE count_all_good_votes(caucus, poll, i - 1)
ENDIF)

ELSE 0

ENDIF)

MEASURE (A caucus, poll, i : i)

Hinv(caucus, poll, i) :
bool

(LET P = ttybrid_mjrty(caucus,poll, i) IN
(VA:

(--, A = error)
D2

×

(count_votes(caucus, poll, A, i)

+ (IF A = proj_l(P) THEN 0 ELSE proj_2(P) ENDIF))

< proj_2(P) + count_all.good_votes(caucus, poll, i)))

ttinv_holds : LEMMA Hinv(caucus, poll, i)

Hlosers :

LEMMA

A _t proj_l(Hybrid_mjrty(caucus,poll, i)) A (-_ A - error)

D 2 x count_votes(caucus,polI, A,i)

_< count_all_good_votes(caucus, poll, i)

Hwinner :

LEMMA

(V cand :

(2 x count_votes(caucus, poll, cand, i)

> count_all_good_votes(caucus, poll, i)

A -_ cand = error)

D proj_l(Hybrid_mjrty(caucus, poll, i)) = cand)

END hybridmjrty
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The proof of TCC's and lemmas from the hybridmjrty theory have been com-

pleted in PVS. Informally, there is only one significant lemma, Hinv_holds, which is

proved by induction on i. In the base case, this holds by definition of the functions.

In the inductive case, there are many cases, but each one is relatively straightforward

to analyze. The remaining two lemmas are immediately provable from Hinv_holds.

The following is the proof chain analysis from PVS.

Proof summary for theory hybridmjrty

Hybrid_mjrty_TCC5 ...................................... proved

Eybrid_mjrty_TCCl ...................................... proved

Hybrid_mjrty_TCC2 ...................................... proved

Hybrid_mjrty_TCC3 ...................................... proved

count_votes_TCCl ....................................... proved

count_votes_TCC2 ....................................... proved

count_votes_TCC3 ....................................... proved

count_votes_TCC4 ....................................... proved

count_votes_TCC5 ....................................... proved

count_all_good_votes_TCCl .............................. proved

count_all_good_votes_TCC2 .............................. proved

count all_good_votes_TCC3 .............................. proved

count_all_good_votes_TCC4 .............................. proved

Hinv_holds ............................................. proved

Hlosers ................................................ proved

Hwinner ................................................ proved

Theory totals: 16 formulas, 16 attempted, 16 succeeded.

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

- complete

Hinv_holds has been PROVED.

The proof chain for Hinv_holds is COMPLETE.

Hinv_holds depends on the following proved theorems:

hybridmjrty.Hybrid_mjrty_TCC3

hybridmjrty.count_all_good_votes_TCC1

hybridmjrty.count_votes_TCC4

hybridmjrty.count_all_good_votes_TCC2

hybridmjrty.countall_good_votes_TCC4

hybridmjrty.count_all_good_votes_TCC3

hybridmjrty.count_votes_TCC5

hybridmjrty.Hybrid_mjrty_TCC5

bounded_induction.upto_induction

hybridmjrty.count_votes_TCC3

hybridmjrty.count_votes_TCC1

hybridmjrty.Hybrid_mjrty_TCC1

hybridmjrty.count_votes_TCC2

hybridmjrty.Hybrid_mjrty_TCC2
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Hinv_holds depends on the following definitions:

hybridmjrty.count_votes

hybridmjrty.Hybrid_mjrty

hybridmjrty.count_all_good_votes

hybridmjrty.Hinv

Hlosers has been PROVED.

The proof chain for Hlosers is COMPLETE.

Hlosers depends on the following proved theorems:

hybridmjrty.Hybrid_mjrty_TCC3

hybridmjrtyscount_all_Eood_votes_TCC1

hybridmjrty.count_votes_TCC4

hybridmjrty.count_all_good_votes_TCC2

hybridmjrty.count_all_good_votes_TCC4

hybridmjrty.count_all_good_votes_TCC3

hybridmjrty.count_votes_TCC5

hybridmjrty.Hybrid_mjrty_TCC5

bounded_induction.upto_induction

hybridmjrty.count_votes_TCC3

hybridmjrty.Hinv_holds

hybridmjrty.count_votes_TCCl

hybridmjrty.Hybrid_mjrty_TCC1

hybridmjrty.count_votes_TCC2

hybridmjrty.Hybrid_mjrty_TCC2

Hlosers depends on the following definitions:

hybridmjrty.count_votes

hybridmjrty.Bybrid_mjrty

hybridmjrty.count_all_Eood_votes

hybridmjrty.Hinv

Hwinner has been PROVED.

The proof chain for Hwinner is COMPLETE.

Hwinner depends on the following proved theorems:

hybridmjrty.Bybrid_mjrty_TCC3

hybridmjrty.count_all_good_votes_TCC1

hybridmjrty.Hlosers

hybridmjrty.count_votes_TCC4

hybridmjrty.countall_good_votes_TCC2
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hybridmj rty. count all_good_vo¢ es_TCC4

hybr i4mj rty. count _all_good_vot es_TCC3

hybridmjrty, count_votes_TCC5

hybridmjr_y. Hybrid_mjrty_TCC5

bounded_induction, upto_induction

hybr i4mj rty.coun¢_vot es_TCC3

hybridmjrty. Hinv_holds

hybr idmj rty.coun__vo¢ es_TCC I

bybrid_j rty.Bybrid_mj rty_TCC 1

hybrid_j rty. coun¢_vot es_TCC2

hybridmj rty.Bybrid_mj rty_TCC2

Hwinner depends on the following definitions:

hybridmjrty.count_votes

hybridmjrty.Hybrid_mjrty

hybridmjrty.count_all_good_votes

hybridmjrty. Hinv

A.1 Using Hybrid_mjrty

Given hybrid_mjrty, the following definition is sufficient to satisfy the axioms for

HybridMajority stated earlier in the theory omh:

HybridMajority(caucus, v): T = proj_l(Hybrid_mjrty(caucus, v,n))

The proof of satisfaction of the second axiom given for Hybridmajority from

Hlosers and Hwinner is a relatively straightforward induction on the number of

votes. The proof of satisfaction of the first axiom from Hwinner is much more in-

tricate. The proof proceeds by effectively introducing two lemmas from which the

proof of the desired property is relatively straightforward. The lemmas are intro-

duced by the PVS proof command case, which splits the proof into two branches:

on one branch the lemma can be assumed, on the other it must be proved. The first

lemma states that if all good processors in a caucus agree on a candidate (value),

then count_votes returns a value at least as big as the number of good processors.

(v (v: fcu): g(p) ^ p e caucus _ v(v) = t)
Igs(caucus)l_<count_votes(caucus,v, t, n)
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The other lemma states that if all good processors vote for a nonerror value, and
all manifest-faulty processors vote for an error value, then the sum of the cardinalities

of good, arbitrary, and symmetric faulty processors is at least as large as the value
returned by count_all_good_votes.

(v (v: fcu): g(v) ^ v _ caucus _ v(v) = t)
A (V(p: fcu): c(p) A pEcaucus D v(p)=error)

D

Igs(caucus)[ + [as(caucus)[ + [ss(caucus)[ _>count_all_good_votes(caucus, v, n)
V t = error

Both lemmas are proven by induction on the number of votes. These lemmas do

not appear in the formal specification, since they are only used internally in proving
the property Hybridmajority_azl. In fact with subtle proof manipulation the use of

these lemmas could be eliminated from the proof, although doing so would lengthen

the proof. From these lemmas and Hwinner the property Hybridmajority_axl fol-
lows directly.
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