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Abstract

A k - • model is proposed for wall bounded turbu-

lent flows. In this model, the eddy viscosity is charac-

terised by a turbulent velocity scale and a turbulent
time scale. The time scale is bounded from below

by the Kolmogorov time scale. The dissipation rate
equation is reformulated using this time scale and

no singularity exists at the wall. A new parameter

R = s_ is introduced to char_terize the damping
function in the eddy viscosity. This parameter is de-

termined by local properties of both the mean and

the turbulent flow fields and is free from any geome-

try parameter. The proposed model is then Gallhan
and teusorial invariant. The model constants used axe

the same as in the high Reynolds number Standard

k-• Model. Thus, the proposed model win be also
suitable for flows far from the wall. Turbulent chan-

nel flows and turbulent boundary layer flows with and

without pressure gradients are calculated. Compar-
isons with the data from direct numerical simulations

and experiments show that the model predictions axe
excellent for turbulent channel flows and turbulent

boundary layers with favorable pressure gradients)

good for turbulent boundary layers with zero pres-

sure gradients, and fair for turbulent bo!mdary)ayer

with adverse pressure gradients.

1. Introduction

In tlLrbulence modeling, the k-_ model is the most

widely used model in engineering calculations. The

Standard k-• Model 1,2 was devised for high Reynolds

number turbulent flows and is traditionally used in

conjunction with wall functions when it is applied to
wall bounded turbulent flows. However universal wall

functions do not exist in complex flows and it is thus

necessary to develop a form of k - • model equations

which can be integrated down to the wall.

Jones and Launder s were the first to propose a low

Reynolds number k - • model for near walI turbu-

lence, which was then followed by a number of sinai-
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lax k - • models. A critical evaluation of the pre-1985

models was made by Patel et al.4. More recently

proposed models axe found in ShihS _nd Lung and
Sh;h0. Three major deficiencies can be pointed out

about existing k - ¢ models. (Some of the models

may have only one or two of the three deficiencies.)
First, a near wall pseudo-dissipation rate was intro-

duced to remove the singularity in the dissipation rate
equation at the wall. The definition of the near wall

pseudo-dissipation rate was quite arbitrary. Second,
the model constants were different from those of the

Standard k - • Model, making the near wall models

less capable of handling flows containing both high

Reynolds number turbulence and near wall turbu-

lence, which is often the case for a real flow situation.

Patti et nl.4 put as the first criterion the ability of

the near wall models to be able to predict turbulent

free shear flows. Third, the vaxlable V+ is used in the

damping function f, of the eddy viscosity formulae.
Since the definition of V+ involves _z_, the friction ve-

lodty, any model containing V+ can not be used in

flows with separation. In addition, V+ may not be

well defined for flows with complex geometry.

In an earlier paper by the authors 7 (referred as YS

here after), a time scale based k - • model for near

wall turbulence was proposed. In this model, k112

was chosen as the turbulent velocity scale. The time

scale was bounded from below by the Koimogorov
time scale. When this time scale is used to reformu-

late the dissipation rate equation, there is no singu-

larity at the wall and the introduction of a pseudo-

dissipation rate is avoided. The model constants were

exactly the same as those in the Standard k-• Model,

which ensures the correct performance of the model
fax from the wall. The damping function in YS was

proposed as a function of P_ = _ instead of 9 +
w

Thus, the model can be used for flows with separation
and reattachment.

However, the Ry dependence in the damping func-
tion makes the model coordinate dependent. It also

creates some ambiguity when the model is used for
complex geometries, for example, a corner flow. Sim-

ilar problem also exists in most existing k - _ models.



Theaimof the present paper is to remove this de-

ficiency while keeping the good performance of YS.

This is achieved by introducing a new parameter R,

to be defined and discussed in section 2, as the in-

dependent variable of the damping function in the

eddy viscosity. The introduction of R also makes

the proposed model Galilean and tensorial invaxiant.

The proposed model is then calculated for turbulent

channel flows at different Reynolds numbers and for
turbulent boundary layer flows at zero pressure gra-

dient, favorable pressure gradient, and adverse pres-

sure gradient. The numerical aspects of the compu-
tation are briefly discussed in section 3. The results

of the model calculations and the comparisons with

the data from experiments and direct numerical sim-

ulations axe shown in section 4. Section 5 concludes

the paper.

2. Near wall k - e model

In turbulence modeling, the instantaneous quanti-
ties of an incompressible flow axe decomposed into

the mean and the fluctuating parts, i.e., _ = Ui +z_,

i5 = P + p. The mean field Ui satisfies the following

continuity equation and Reynolds averaged Navier-

Stokes equation:

_, + vjv,,i = - 1-.r',+ _,u_,.- _'-'Ja (2)
p

where the Reynolds Stress term, -_--_, must be mod-
eled.

In an eddy viscosity model, one assumes that the

Reynolds stress is rdated to the mean field by

2

-'_,_--7= ,..,rCrh,_+ r-."i,_)- _ks_j, (3)

where _ is the eddy viscosity and k is the turbulent

kinetic energy.
In the near wall k - e model proposed by YS, the

eddy viscosity is written as

vr -- c.f./_ (4)

where

r, = k_+ (_)1. (5)Dr

e e

is the time scale for turbulent flows. The first term

on the right hand side of the above equation is the

conventionally used expression for the turbulent time
scale. The second term is the Kolmogorov time scale.

As the wall is approached, the conventionally used

expression for turbulent time scale, k/G approaches

to zero due to the boundary condition for k. How-

ever, as it was shown in YS based on a local Taylor

series expansion of the instantaneous velocity field,
the turbuhnt time scale should approach to the Kol-

mogorov time scale near the wall rather than zero.

The turbulent time scale given by equation (5) has
the properties that the turbulent time scale is given

by the Kolmogorov time scale near the wall and the
turbulent time scale is given by the conventionally

used expression (k/e) far away from the wall, where

Kolmogorov time scale is much smaller than k/e.

k and e are found from solutions of the following

modeled transport equations

= [(,.,+ )k,Aa- _--_vi,j - _ (6)
Dt

De [(_+ _ (-Cl,_-eTrr_.j - C2,e)
-- = _)_,A,i +Dt T_

+ C, vvTU_ds, Ui,9,. (7)

The turbulent time scale given by equation (5) is

used to reformulate the dissipation rate equation (7).
Since the turbulent time scale is always positive, the

dissipation rate equation does not have any singu-

larity as the wall is approached. The argument on
the time scale for near wall turbulence and the use of

the Kolmogorov time scale for near wall turbulence
modeling are also discussed by other researchers, see

Durbin s, for example.

f, in equation (4) is the damping function which
is introduced to account for the effect of the wall on

the eddy viscosity. In YS, f_ was given as a function

of Ry = kl/2y/v. The parameter R_ has the advan-

tage over the commonly used y+ = u_y/v in that it
could be used for flows with separation and reattach-

ment. However, the appearance of V in the damping
function makes the modal non-tensorial invariant. In

addition, in complicated geometry situations such as

corner flows, the meaning of V is ambiguous.
To overcome this deficiency, we introduce a new

parameter R, which is defined as

k
R = -- (8)

Sv

where S is the modulus of the strain rate tensor Sii
of the mean velocity field and is given by

s = (2&i&i)_z2. (9)

The parameter R defined above is expressed in
terms of the local variables of the field and is thus
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Figure 1: Variation of R for turbulent channel flow
at Rer = 180.

coordinate independent. The physical meaning of R

can be explained as follows,

k k2
/sk _(lo)

R- Sv -- (v

R is then the ratio of two important physical param-
eters: the turbulent Keynolds number and the time
scale ratio of the turbulence to the mean flow. The

variation of R with the wall distance y+ for the case
of turbulent channel flow at Rer "- 180 is shown in

figure 1. The gradual and monotonic increase of R

with y+ in the near wall region makes R an ideal

candidate for constructing the damping function.

In the present study, the form of the damping func-
tion is chosen as

f_, = [1 - ezp(-a,R - a;R = - asRS)] I/2 (11)

where al = 3xlO -4, a3 = 6xlO -s, as -- 2xlO -e.

These constants are obtained by calibrating the
model predictions for the turbulent channel flow at

Re¢ = 180 against the direct numerical simulation
date of Kim et al. °

Near the wall, the shear stress -_-_ should behave

as O(yS), according to the local Taylor series analy-

sis. Since k is O(y 2) and the time scale Tt is finite,

we would require the damping function to have a near

wall behavior of O(y). From equation (8) and equa-

tion (11), it is seen that as y _ 0, R .--+ 0 as O(y=),

which gives f_ _ 0 as O(y). Thus, the near wall
asymptotic behavior for the shear stress is satisfied.

Far from the wall, R is large and ft, -"* 1.

The other effect in the modeling of the near wall

turbulence is the effect of the inhomogeneity of the
mean field which introduces a secondary source term

in the dissipation rate equation. This is represented

by the last term on the right hand side of equa-

tion (7). A term of this form in the dissipation rate
equation was suggested by Jones and Launder s , and
Shih s. The effect of this term is confined to the near

wall region and is most prominent in the buffer layer.

Away from the wall, this term becomes much smaller

than the other terms in the dissipation rate equation.

Equations (4), (6), and (7) along with the eddy

viscosity given by equation (11) are the k - • equa-

tions proposed in the present paper. The model could
be used for complex flows, flows with separation and

reattachment, for example. Since all the quantities

are expressed in the local variables, the model can be

incorporated in a general purpose CFD code, partic-
ularly a code with unstructured grid.

The model constants, c_,, C1_, Cz_, o'k, o'E, are cho-
sen to be the same as those in the Stanford k - •

Model, i.e. c_, = 0.09, C1_ = 1.44, Cz_ -- 1.92,
or1, -- 1.0, o'E = 1.3. The value of C_ is chosen to

be equal to 1.0 based on the model performance for

turbulent channel flows. Away from the wall, the

present model reduces to the Standard k - • Model.
Thus, it is only necessary to assess the performance
of the model for wall bounded flows.

The boundary condition for • on the wall is deter-

mined by applying equation (6) at the wall, which

gives

• w "" I/k yy.

In this study, the following boundary condition for •,

which is mathematically equivalent to the above but

computational]y much more robust, is used.

dkll2 2

• = u,(-gf-v) (12)

3. Numerical aspects

Boundary layer approximation is used in the cal-

culations shown below. An implicit finite difference

scheme is used to solve the momentum equation and
the transport equations for k and ¢. The coefficients

for the convective terms are lagged one step in the

marching direction and the source terms in the k and

• equations are llnearized in such a way that numer-

ical stability is ensured.
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Figure 2: Computation of turbulent channel flow at

/_e_ = 395 with different number of grid points.

A variable grid spacing is used to resolve the sharp
gradient near the wall. The grid distribution is con-

trolled by 6W/by_-I = a. Both c_ and the total num-

ber of the grid, N, are varied to ensure the grid in-

dependence of the numerical results. The marching

step size, 5z, is also varied to ensure accuracy. In the
calculations shown in the next section, these parame-

ters are changed such that the solution has a less than

1.0% error. Typically, the grids used are specified by
N = 150 and a = 1.05. It is also found that the solu-

tion is not sensitive to the number of the grid points

as long as there are two points in V+ < 1. Figure
2 shows calculations for the turbulent channel flow

at Re_. = 395 with N varying from 50 to 150 and a

changes accordingly such that a N remains basically
the same. It is seen that the results for different N
are almost identical.

4. Results and discussions

Turbulent channel flows at different Reynolds num-

bers and turbulent boundary layers with zero pres-

sure gradient, favorable pressure gradient, and ad-

verse pressure gradient are calculated using the

present model, The following shows the computa-
tional results along with the available experimen-
tal data and data from direct numerical simulations.

For some cases, the predictions of the Jones-Launder
model and the Chien's model 1° are also shown. These

two models are chosen because the Jones-Launder

model is the first k - e model for near wall turbu-

lence while the Chien's model is known to perform

quite well for turbulent boundary layer flows.

Two dimensional fully developed channel flows

were calculated first. These flows are attractive for

model testing because they have self-slmilar solutions
so that the initial conditions do not have to be accu-

rately specified. These flows ate very simple and solu-

tions can be found very e_ciently; yet, the effects of
the wall on turbulent shear flow are still present. In

addition, DNS data providing detailed flow informa-

tion are available for comparisons. Computations are

carried out for 2D fully developed turbulent channel

flows at Re, = 180 and Re_ = 395, respectively. Fig-
ures 3-6 show the profiles of the mean velocity, shear

stress, turbulent kinetic energy, and the dissipation

rate, respectively, for the case ofRe_ = 180. Both the

dependent variable and the independent variables _e

represented in wall units by normalization through tL,
and v. The predictions of the Jones-Launder model

and the Chien's model are also shown. These predic-

tions are compared with the DNS data. It is found

that the present model gives the right location of the

maximum value of the dissipation rate. The center

line velocity, which corresponds to the skin friction

coemcient, is also well predicted. The corresponding

results for the case of Re,. = 395 are shown in figures
7-10.

Like the 2D fully developed channel flows, zero

pressure gradient (ZPG) turbulent boundary layer
flows over a flat plate also give a self-similar solu-

tion. Thus, arbitrary profiles could be used as the

initial conditions and the solution would develop into

its similarity form. In our case, constant values are

assigned to the velocity, turbulent energy and the dis-

sipation rate. The exact values for the initial profiles

are immaterial as long as the turbulent boundary gets

generated. The boundary conditions used are that,
at the free stream, the velocity reaches that of the

freestream and the gradients for the turbulent energy

and the dissipation rate are set to zero. Figures 11-14
show the predicted velocity profile, shear stress, tur-

bulent energy, and dissipation rate at Ree = 1410.

The DNS data of Spalart zz is also shown. AgMn, the

predictions from the Jones-Launder model and the

Chien's model are shown for comparisons.

The computations were also carried out for larger
Reynolds number up to Reo = i6000. The compar-

ison is made between the model predictions and the

experimental _esults of Wieghardt and Willmann z4

for zero pressure gradient turbulent boundary layers.

Figure 15 shows the resttlts of the skin friction coef-

ficient as a function of Ree. In figure 16, the velocity
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profile at Re0 = 8900 is presented. The predicted

value of C! is a few percent higher than that of the
experiment. The predicted velocity profile agrees well
with the experiment.

When the turbulent boundary layer is subject to
a pressure gradient, the similarity solution ceases to
exist. In this case, accurate description of the ini-
tial conditions for the velocity profile and the profiles

of turbulence quantities (turbulent energy and dissi-
pation rate) are very important. While experiment
could provide the velocity profile at the upstream lo-

cation, information on the turbulence quantities (es-
pecially the dissipation rate) is hardly available. In
this study, the issue of the initial condition is dealt
with in the following manner. We assume that the
turbulent boundary layer develops under zero pres-
sure gradient until it passes into the working section
of the wind tunnel, where the experimental measure-
ments are made. The connecting point between this
virtual fiat plate boundary layer and the real bound-
ary layer with the pressme gradient is determined by
the value of Ree which is found by the experiment.

The boundary conditions are specified in the same
way as in the case of a flat plate boundary layer. At

the wall, both the velocity and the turbulent energy
are equal to zero while the dissipation rate is given by

equation (12). At the free stream, zero gradients are

assigned to the turbulent energy and its dissipation
rate. The mean velocity approaches that of the free
stream, which is determined by the experiment and

is rdated to the pressure gradient of the flow.

The turbulent boundary layer studied by Herring
and Norbury is was chosen as a test case for the tur-
bulent boundary layer with a favorable pressure gra-
dient. At the first point of the working section of the
experiment, Ree = 3400. Thus, profiles of the mean
velocity and turbulent quantities (k and e) of a fiat
plate boundary layer at Ree = 3400 are used to pro-
vide the initial conditions. With the initial conditions

given, the calculation of the boundary layer is then
carried out downstream. The result for the skin fric-

tion coefficient is shown in figure 17, and the result
for the mean velocity at x = 4ft is shown in figure 18.
The distances, x and y, are in physical units while the
skin friction and the velocity are normalized by the
freestream velocity at the streamwise location under
consideration. It is seen that predictions for both the
velocity profile and the skin friction are excellent.

The turbulent boundary layer studied by Samuel
and Joubert t4 was chosen as a test case for the tur-

bulent boundary layer with an adverse pressure gra-
dient. In this flow, the initial conditions are specified
at x = 0.855m, where Reo = 5470. First, the pre-
dicted skin friction is shown in figure 19 along with
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the experimental values. The predicted skin friction

is higher than that from the experiment, especially

in the latter portion of the of the experimental test
section where the adverse pressure gradient is .fakly

strong. The predicted velocity profiles at two differ-

ent locations (X = 2.4m and X = 3.04m, respec-

tively.) are shown in figure 20, along with the exper-
imental data. It is seen that the velocity profiles are

in reasonable agreement with the experimental data.

5. Conclusions

By introducing the parameter R, we have success-

ful removed the y dependence of the damping func-

tion in YS. Now, the current model is bee from the

three deficiencies of other existing near wall k -

models mentioned in the introduction. First, the pro-

posed model uses the same set of model constants as
that used in the Standard k -e Model and away from

the wall the proposed model will reduce to the Stan-

dard k - e Model. Thus, the proposed model would

be applicable for both near wall turbulence and high

Reynolds number turbulence. Second, the proposed
model uses a time scale which has the Kolmogorov

time scale as its lower bound. By using this time

scale to reformulate the dissipation equation, the sin-

guiarity in the dissipation rate equation of the Stan-
dard k-e Model is removed as the wall is approached

and the equation can be integrated to the wall. This

renders the introduction of pseudo-dissipation unnec-

essary. Third, the proposed model uses R as its in-

dependent variable in the damping function. This al-
lows the model to be used in more complicated flow

situations, flows with separation, for example. In ad-

dition, this makes the proposed model Galilean and

tensorial invariant. Since all the quantities in the

proposed model are given in the local variables, the

proposal model is very suitable for general purposed

CFD code with unstructured grid.

Turbulent channel flows at different Reynolds num-

bers and turbulent boundary layers with/without

pressure gradient are calculated using the present

model. At low Reynolds number, the comparison be-

tween the DNS data and the present model is found

to be excellent. At higher Reynolds numbers, the

velocity profiles are well predicted in all cases. How-

ever, the predicted sldn friction does not respond ad-
equately with the pressure gradient. All the other

existing k - e models suffer from the same deficiency,
as pointed out by Wileom15. Currently, effort is be-

ing made to improve the model in this aspect.

It should be mentioned that the model is computa-

tionally robust. Arbitrary initial profiles can be used

for turbulent channel flows and flat plate boundary

layers when similarity solutions exist. The predicted
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solution is also found to be quite insensitive to the

number of grid points.
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