
NASA Technical Memorandum 106166

ICOMP-93-15

Marangoni Instability in a Liquid

Layer With Two Free Surfaces

Robert J. Deissler

Institute for Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio

Alexander Oron

Technion-lsrael Institute of Tehnology

Haifa, Israel

and

J.C. Duh

Sverdrup Technology, Inc.

Lewis Research Center Group

Brook Park, Ohio

July 1993

I%I/ A

,.0
p...

rCh

!

o',
Z

"r"
@...

21 Z3.

LuN

Oj,-_

OCZ_Z

17,--.4

,O od

O>-Z_

I
_E ...I ta_l
t-.- t.-_ I.LJ

I O2_

t,n I--.
,_ CO C3
Z73[

O
4"

.O
I".-

O

4"





MARANGONI INSTABILITY IN A LIQUID LAYER WITH TWO FREE SURFACES

Robert J. Deissler

Institute for Computational Mechanics in Propulsion
Lewis Research Center

Cleveland, Ohio 44135

Alexander Oron

Faculty of Mechanical Engineering

Technion-Israel Institute of Technology

Haifa 32000 Israel

and

J.C. Duh

Sverdrup Technology, Inc.

Lewis Research Center Group

Brook Park, Ohio 44142

ABSTRACT

We study the onset of the Marangoni instability in a liquid layer with two free nearly

insulating surfaces heated from below. Linear stability analysis yields a condition for the

emergence of a longwave or a finite wavelength instability from the quiescent equilibrium

state. Using the method of asymptotic expansions we derive a weakly nonlinear evolution

equation describing the spatiotempora] behavior of the velocity and temperature fields

at the onset of the longwave instability. The latter is given by AM - 24, AM being

the difference between the upper and the lower Marangoni numbers. It is shown that in

some parametric range one convective cell forms across the layer, while in other parametric

domains two convective cells emerge between the two free surfaces.
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I. INTRODUCTION

A quiescent liquid layer exposed to a thermal gradient can exhibit a sudden onset of

fluid motion under certain conditions. When the liquid layer has one or two free surface(s)

and the thermal gradient is perpendicular to the free surface(s), one of the instability

sources is the surface tension dependency on temperature, also know as the Marangoni ef-

fect. Since Pearson 1 first theoretically investigated the Marangoni instability phenomenon

in 1958, a great deal of attention has been given to this subject due to its important im-

plications in various industrial processes, such as the containerless processing of crystals 2 ,

the welding pool technologies 3, and fluid dynamics in a low-gravity environment 4. Various

different aspects of the Marangoni instability have been studied in the literature 1,s-14.

However, the great majority of these analyses deal with liquid layers with a bottom rigid

surface and a top free surface (hereafter referred as the rigid-free case), while little research

exists on the Marangoni instability in layers with a top and a bottom free surface (hereafter

referred as the free-free case).

This physical problem of the free-free case is of significance for understanding the

Marangoni instability in multilayer liquid systems lsJs and liquid sheets held between

two gas phases 17. In addition, it would enhance the fundamental understanding of the

Marangoni phenomena. It should be noted that Rayleigh, in his classical work is, solved

the buoyancy-induced thermal instability in an infinite liquid layer for three different top-

bottom surfaces, i.e., the rigid-rigid, the rigid-free, and the free-free case. The influence of

the top and bottom surfaces can be clearly seen in the different critical Rayleigh numbers

for the onset of convection, a rigid boundary having a stabilizing effect. In addition to this

effect, another factor affecting the surface tension-induced instability in the free-free case

is that as the liquid layer is differentially heated, the free surface on the cold end becomes

thermally destabilized while the free surface on the warm end actually provides thermal

stabilization, if the case of surface tension decreasing with temperature at both surfaces

is considered. It is the objective of this work to investigate the Marangoni instability in

the free-free case, to establish the critical threshold for its onset, and to study the steady

convection pattern slightly above the onset under certain limiting conditions.

Georis et alas studied the Marangoni instability of a tri-layer in microgravity analyti-

cally in the linear regime and numerically in the nonlinear one under the assumption that

the values of the Marangoni numbers at both free nondeformable boundaries are equal.

They showed that the convection is driven by one destabilized surface while the other one

is stabilizing. Funada a7 investigated the Marangoni instability in a liquid sheet for both
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the casesof nondeformableand deformablefreesurfaces,assumingthat the Marangoni and

Blot numbers are the sameat both surfaces.The critical value of the Marangoni number

was found. In particular, he showed that in the case of nondeformable free boundaries

the instability is to perturbations of a finite wavelength, small wavenumber (longwave)

perturbations being stable, and the critical Marangoni number depends on the Blot num-

ber. It was also found that another type of instability may emerge if the boundaries are

deformable.

In this paper we study the more general problem in which the ambient phase can

be different at the two surfaces. We find that under certain conditions (i.e. for small

Blot number at both surfaces and for a certain range of ratio of the Marangoni numbers

at the two surfaces) there is a Iongwave instability at onset. Therefore, just as in the

rigid-free case for small Biot number s'9'11, asymptotic methods are applied to study the

weakly nonlinear effects and an evolution equation describing the spatiotemporal behavior

of the convection is developed. It is found that in some parametric range, one convective

cell forms across the layer like in the rigid-free case, while in other parametric domains,

two convective cells emerge between the two free surfaces (which does not occur in the

rigid-free case).

The plan of the paper is as follows. Section II is devoted to the problem statement.

Section III deals with a linear stability analysis of the phenomenon. In Section IV we

derive the evolution equation describing the spatiotemporal behavior of the film undergoing

Marangoni convection. Section V presents some further results of the study and discussion.

II. PROBLEM STATEMENT

A two-dimensional incompressible liquid layer of density p, viscosity /_ and thermal

conductivity )_ is considered in this paper. It is assumed that this liquid layer is bounded

vertically by two free surfaces with a thickness d between them and is of infinite extent in

the horizontal direction. The ambient temperature of the air above the upper free surface

and below the lower free surface is kept constant at T2 and T1, respectively. We assume,

without loss of generality since there is no gravity, that T2 < T1. The layer of interest,

therefore, is exposed to a vertical temperature gradient -7 (7 > 0). Surface tension, _z,

acting at the interfaces is assumed to be temperature-dependent

0ae

o'l = ae0 + --_(Tt - Tlo)

Oa=(T_, - T_,o)
_, = o,,o + -_



where Tl0 and T,,0 are the reference temperatures and the subscripts £, = correspond re-

spectively to the lower and upper free surfaces of the layer. We note that, as is well-known,

for most liquid-gas and liquid- liquid systems surface tension decreases with temperature,

i.e. 0_r/0T < 0, although this is not assumed in the following analysis. The ambient

environment is considered to be passive. In what follows we focus on the case of a fluid

layer with nondeformable static free boundaries.

The governing equations describing the flow in the layer are:

p(u,+ ,_==+ w,) = -p_ + g(,_==+ _,,,)

uz q- v_ =0

Tt + uT= + vT, = _(T_= + T,,) (la, b,c,d)

where (u, v,p_ T) are respectively the velocity field components_ pressure and temperature,

and t¢ is the thermal diffusivity of the fluid of interest. In what follows we consider the

onset of Marangoui instability from the quiescent equilibrium state. Therefore u, v can be

viewed as the velocity perturbations and T can be represented as

T= Tt -'7(y- ht) + e(z,y,t)

wherein e(z, y, t) is a perturbation of the temperature field. Eq.(ld) then can be rewritten

as

o_+ u0_+ _o, -_v = ,_(o==+ o,,) (2)

The boundary conditions at the lower, y = ht, and the upper, y = h_,, free surfaces (both

nondeformable) are:

y=ht:

y-_- hu :

v = 0 (3a, b, c)

g(uy + v=) + al,= = 0

)_eu -- qtO = 0
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.XO_+ q_,8 = 0 (4a, b, c)

Introducing d, d2/t¢, to�d, ptc2/d2,'Td as scales for length, time, velocity, pressure and tem-

perature, respectively, one rewrites eqs.(1)-(4) in the dimensionless form:

ut + uu= + vuv = -p= + P(u== + uvv)

y=ht:

vt + uv= + vv_ = -p_ + P(v== + v_)

u= + v_ =0

Ot + uO_ + roy - v = 0== + O_n, (5a, b,c,d)

v_--O

u_ + v_ - MtO_ = 0

8_ - BtO = 0 (6, a,b,c)

v=O

up + v: + M,.,O_: = 0

Oy + B=8 = 0 (7a, b, c)

Here and from now on, the variables x,y,t,u,v,O are respectively dimensionless spatial

coordinates ( longitudinal and transverse), time, velocity perturbations (longitudinal and

transverse) and temperature deviation from the conductive equilibrium state.

The dimensionless parameters of the problem are:

the Prandtl number P = "

the "lower" Marangoni number Ml =

the "upper" Marangoni number M= =

the "lower" Blot number Bt =

Otrt x .2
-- _ )3'a

pt., _

the "upper" Biot number B,, = q,,d



wherein qt,q,_ are the rates of heat transfer by convection at the lower and upper free

surfaces, respectively.

III. LINEAR STABILITY ANALYSIS

In this section we study the stability limit of the quiescent state subject to infinitesimal

perturbations, under the conditions that both free surfaces of the liquid layer are nearly

insulating with regard to the temperature perturbations. An analytic expression of the

critical values of the lower and upper Marangoni numbers at the onset of instability is

derived. It is shown that, under certain conditions, the first unstable mode, i.e. the

mode which is first amplified as the critical threshold is crossed, corresponds to a zero

wavenumber, k=0. This behavior is similar to that of a rigid- free liquid layer with nearly

insulating boundaries and indicates that the first instability is a longwave one. This fact

will be used in the weakly nonlinear analysis in the next section.

Our linear analysis follows in general the analysis made by Pearson 1. Therefore, where

possible, we will not go into full details. Linearizing the problem given by eqs. (5)-(7) one

obtains:

u, = -p. + P(u::. + u_)

vt = -p_ + P(v_ + v_)

u_ + v_ =0

Ot--v =-O:x-4-O_ (8a, b, c, d)

with the boundary conditions

1
at y -- 2

1
at y=-_

v=O

up +v_ -- MlS_ = 0

0 N = 0

v=O

u_ + v_ + M_,O_, = 0

(9a, b, c)
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G = 0 (10a, b, c)

Here we have assumed the boundaries of the fluid layer to be non-deformable, located at

1 and nearly insulating (i.e. BI,B,, _ 0), which corresponds to they _ a and y =2

"insulating case" considered by Pearson 1.

Eqs. (8a,b,c) can be reduced to

(11)

Introducing into eqs. (11),(8d),(9),(10)

v(z,v,t) = F(z)62(u)e

o(z,v,t) = F(z)x(v)e" (12)

one obtains

p(62'"' - 2k262 '' + k462) = w(62" - k262) (13)

" = (14)x -( k2 +_')x -62

and F" + k2F = 0, where k is the wavenumber of the perturbation in the z-direction. The

boundary conditions corresponding to eqs. (9)-(10) are

at y-- :t2

1
at y=-_

62 =0 , 62" - k2Mlx = O , X'=0 (15a, b,c)

= 62" X' 0 (16a, b, c)62 0 , + k2M,_x = 0 , =

Looking for the conditions to be held at the neutral stability surface (w = 0) one obtains

the following solutions for eqs.(13),(14), (15a) and (16a) :

2s
62 = a_[sinh(ky) - --y cosh(ky)] + a2[ -s cosh(ky)+ 2y sinh(ky)]

c C

(17)

s

aa [y cosh(ky) + --k_c(ycosh(ky) - ky 2 sinh(ky))]+X = as sinh(ky) + cosh(ky) - _ k

a2 ,_ . y22 [k-c yslnh(ky) + (ysinh(ky) - ky 2 cosh(ky))]
(18)
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where s(k) - sinh(k/2) and c(k) - cosh(k/2). Eqs. (15b), (15c), (16c) are now used

simultaneously with eqs. (17), (18) to determine the three unknowns al, a2, as. These are

substituted into eq. (16b) to find the neutral stability criterion:

bl Mz + b2

M_, - bsMz + bl (19)

where

bl = -8csk 4 + 32cS sSk 2

b2 = 256cS sSk 4

b3 = (d + d)k 3 - cs(k 4 + 3k 2) + 4c _ss

(20)

Figure 1 displays the behavior of M,, as a function of Mt and k at criticality as

expressed by eqs.(19)-(20). Typically in an experiment one would change both Marangoni

numbers, such as by varying the temperature gradient 3' (see eq. (32)), the ratio of the

lower and upper Marangoni numbers remaining nearly constant (since O_r/i)T will remain

nearly constant at both the top and bottom surfaces). Therefore it is useful to plot the

critical curves M_, = M,,(k; a), where

ML O_t/OT

a- M,, - &r_,/OT' (21)

which result from intersections of the surface given by eq. (19) (see fig. 1) with the planes

Mt/M,_ = a for various values of a. Substituting Me = aM,_ in eq. (19) and solving for

M_, gives

2bsa 1-4- l+b_(l_a)2 ] (22)

where b_, b2, and bs are given by eq. (20). (The functions b_(k),b2(k) and bs(k) are found

to be positive and monotonically increasing as a function of k for k > 0 and vanish at

k = 0.) We note that for a = 0, M_, = b2/b_; and that for a = 1, M_, = +V/_/b3.

Figure 2 shows some of these curves for various a. As can be seen from these curves,

at onset the instability will be either to a finite wavenurnber or to zero wavenumber. So

an important question is: As M_, and Mt are changed while keeping a constant, such as

by increasing the temperature gradient 7, under what conditions will the first instability

be to a finite wavenumber and under what conditions will it be to zero wavenumber? To



find this condition, it is useful to look at the longwavelimit (k _ 0) of eq. (22) which is

found to be (for- sign in eq. (22) and a # 1)

24 + 8(3- 7a + 3,* 2) k2 (23)
M=- 1-a 5(1-a) 3

The other root corresponding to the plus sign diverges as 360(1 - 1/a)k -2 for k _ 0. Since

we are mainly interested in the zero wavenumber instability, we will focus our attention

on the root given by eq. (23). There are two primary cases to consider: a < 1 which at

the onset of the longwave instability corresponds to M_ > 0; and a > 1 which corresponds

there to M_, < 0.

Case a < 1: If the coefficient of k 2 is negative in eq. (23), the critical curve M_,(k;a)

will initially decrease as k is increased from zero. It will then eventually increase as

k is increased further, as given by eq. (22) and seen in fig. 2a. Therefore, as M,_ is

gradually increased toward the critical curve from below, the first instability will be to

finite wavenumber, since the minimum of the curve is at finite k. However, if the coefficient

of k 2 is nonnegative, the critical curve M=(k, a) will increase as k is increased from zero.

It then continues to increase monotonically as k is further increased as seen in figs. 2a,c.

Therefore, as M= is gradually increased toward the critical curve from below, the first

instability will be to zero wavenumber, since the minimum of the curve is at k = 0.

Case a > 1: If the coefficient of k 2 is positive in eq. (23), the critical curve M=(k;a)

will initially increase as k is increased from zero. It will then eventually decrease as

k is increased further, as given by eq. (22) and seen in fig. 2b. Therefore, as M= is

gradually decreased toward the critical curve from above, the first instability will be to

finite wavenumber, since the maximum of the curve is at finite k. However, if the coefficient

of k 2 is nonpositive, the critical curve M=(k; a) will decrease as k is increased from zero.

It then continues to decrease monotonically as k is further increased as seen in fig. 2b.

Therefore, as M_, is gradually decreased toward the critical curve from above, the first

instability will be to zero wavenumber, since the maximum of the curve is at k = 0.

Examining the coefficient of k 2 in eq. (23) we thus find that the first instability will

be to zero wavenumber if

7-v 7+v 
a < -- 0.56574 or a > -- 1.76759 (24)

- 6 - 6

in which case the onset of instability will occur at

M= - Ml = 24 (25)
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where ct is defined in eq. (21). Eq. (25) was found from taking k = 0 in eq. (23) and

replacing a by M,/M,,. zFrom eq. (23) for k = 0 and eq. (24) we see that the limits on

M_, at a zero wavenumber instability are

-31.2666 -_ 12(1 - v_) _< M_, _< 12(1 + v/_) --- 55.2666 (26)

In contrast, the first instability will be to finite wavenumber when

7- vS- 7+v 
< < (27)6 6

We note that when Oa/OT is the same for the upper and lower surfaces, which corresponds

to a = 1, M_, diverges as 24v/_ k -1 as k _ 0 and has a minimum at finite k, corresponding

to a finite wavenumber instability, 17 which is included in condition (27). We also note that

the root corresponding to the plus sign in eq. (22), which as noted above diverges as k =_ 0,

corresponds to a finite wavenumber instability.

In the limit k =_ oo all neutral curves from eq. (22) are found to be given by

M,_ _-, 8k 2 or M,_ ,,. ___8 k2 (28)
O_

the former giving the limiting behavior of the curves for which M,, > 0 and the latter

giving the limiting behavior of the curves for which M,_ < 0. The former is similar to the

behavior found by Pearson for rigid-free boundary conditions)

Figures 3a and 3b give the critical values of the Marangoni number and wavenumber,

M,,,c and kc, respectively, at which instability first sets in as a function of a. These values

correspond to the minimum or maximum (depending on whether M,, > 0 or M_, < 0)

of the curves given in Fig.2. For the case a < 0, as seen in Fig. 2c, only the lower of

the two curves for a given value of a is relevant, instability occurring when M_, is above

the minimum of the curve. M,, being above the minimum of the upper of the two curves

for a given _x < 0 simply corresponds to there being a band of stable wavenumbers, the

system as a whole still being unstable. The critical value of the upper Marangoni number,

M,,,,, exists for all values of a, when M_, > 0. In contrast, M_,,, exists only for positive

a increasing indefinitely for a --+ 0 when M_, < 0. Let us reiterate that as follows from

our previous analysis and also from inspection of Fig. 3b, the first instability given by the

M_, > 0 branch is to zero wavenumber for a < 0.56574 and to finite wavenumber otherwise.

For the M_, < 0 branch the first instability is to zero wavenumber for a > 1.76759 and to

finite wavenumber otherwise.
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A particular caseof interest is the one when surfacetension at the lower free surface

is temperature independent: Mt = 0 (a = 0). Then the critical condition for the longwave

instability is M_, = 24. The corresponding critical Marangoni number for the case of the

upper free surface and the lower rigid plane was found by Pearson1: M = 48. In our case

(free-free) the critical Marangoni number is lower than in the Pearson's (rigid-free) case.

The reason is that a rigid boundary provides a certain damping for the emerging instability

although generated at the opposite boundary.

IV. WEAKLY NONLINEAR ANALYSIS.

We turn now to the weakly nonlinear analysis of stability of a quiescent state of a

fluid layer of uniform thickness (we neglect the deformability of the free surfaces in what

follows) which is heated from below and is subject to surface tractions due to surface tension

gradients. As stated before, we will focus on the case of nearly insulating free surfaces.

The equilibrium temperature distribution corresponding to the quiescent conductive state

in the fluid layer is

Bty + 1 (31)
T = T1 - B,,(TI - T2) B_ + B_(1 + B,)

Here we assumed the liquid layer to be contained between y = 0 and y = 1, for convenience.

The equilibrium temperature gradient across the layer, 7 = (Tl - T_)/d, is therefore

B,,Bt(T1 - T2) (32)
"7 = d[Bl + B_(1 + B,)]

Introduce the stretched spatial and temporal variables by

= zV'e , 71=y , r = e2t (33)

where e is a small perturbation parameter measuring the distance above onset [see eq.

(36c,d)]. Note that the variable z is stretched, whereas the variable y is not stretched,

which is consistent with a longwave instability slightly above onset [also see discussion

following eq. (58)]. The Biot numbers of the system are assumed to be small and of order

_2 as

B_, = e2t3,, , Bt = e2fll (34)

11



The appropriate scalings for the streamfunction of the perturbation flow, 9, and for the

deviation of the temperature from the equilibrium, eq.(31) are 11

¢ = (35)

O=O

The scaled variables, then, qJ and 8 are expanded in powers of e:

= 90 + e91 + e292 +-..

0 = Oo +_01 + e202 +...

= _0+e_l+...

M,_ = M,.,o + eM,.,z + ... (36a, b, c, d)

wherein Meo, M,,o represent respectively the values of the lower and the upper Marangoni

number at criticality. There is still an arbitrariness in the definition of e which can be

removed by assuming a value for M_,z or Mr1 (or some linear combination of them). For

example, taking M_,I = M=0 gives e = (M,, - M_,o)/M,_o.

Eliminating the pressure terms from eqs.(5)-(7) and introducing the scaling (35) yields:

77=0:

77=1:

(37a, b)

9=0

*_C¢) + MtOc = 0

- e2/3zO = 0 (38a, b,c)

9=0

- eq_CC) + M,,O c = 0

O, 7 + e2fl,_O = 0

12
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Introducing the expansions (36) into eqs. (37)-(39) yiads in the leading order

_0_ = 0

0o,.7 = 0

77=0:

_7=1:

_o=0

- MloOo_ = 0

0o,1 = 0

(40a, b)

(41a, b, c)

1 1 M , = 1 •
A1 : --_Mlo + -_ ,,o A2 1Me°2 ' A3 = --6(Mto + M_o)

and prime denotes differentiation with respect to _.

The velocity field, therefore, at this order of approximation is

uo = _on = (3A3r/2 + 2Aer/+ A1)ff

vo = -t_o< = (Asq s + A2rl 2 + Aln)f"

Along the free boundaries the velocities are

_=0 : uo=Alf' , v0=0

13

(45a, b)

(46)

where

_o :0

_0n_ + M_0®0_ = 0

O07 : 0 (42a, b, c)

A solution of eqs. (405), (41c), (42c)is given by

O0 : f(_, r) (43)

where this function is as yet unknown. Further, an evolution equation in terms of f(_, 7-),

describing the spatiotemporal behavior of the flow and the temperature fields, will be

derived. A solution for the leading order of the stream_function, @0, is given by

g2o = (A3rl z + A2rl 2 + Alrl)f' (44)



_7=1 : uo=(3Aa+2A2+A1)f' , v0=0 (47)

Integrating eq.(37b) at the leading order between the free surfaces with respect to 7/ and

using eqs. (43), (44) one obtains the condition to be held at criticality:

M,,0 - Ml0 = 24 (48)

which coincides with the relation found using linear stability analysis in the previous

section, eq.(25).

At the first order of approximation one obtains

1 (¢0,_0C,, - ¢0¢¢_0,,,)_1,,., = -2q%¢c.. + -_

(_)1..

with the boundary conditions

r/=0:

_=1:

= -Ooc_ + q%.Ooc + q_o(

_1 =0

--ql.. 27 MelOoc + Meo01¢ + qo¢c = 0

017 = 0

_1 =0

_1.. + M_,lOoc + M._o01c - qocc = 0

(49a, b)

(50a, b, c)

1

+ 3Aar/4) + lf"(-30r/2 + 10Av/3 + 5A2y 4 + 3AsrlS)+q(C,r)O_ = 1-2/'2(6A17/2 + 4A2_? a

(52)

where q(_, r) is an arbitrary function. The streamfunction #1 is determined via

A2Aa f,f,,rls ( A 2 f,f,, A 3 f.,)r]5+t_l -- A 2 f,f,,rl7 + -- + - __
70P 30P " 30P 10

2

(_f fAlA2, ,, A26f'")rl4 + gart3 + (Mill' + Mzoq')-_ + girl (53)

14
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O17 = 0 (51a, b, c)



where

and

g3 =

ga = (M_I - 2Mtl)--_ + (M_,0 - 2Mr0) +

Aa A2 7A_ 2A2 As
3A_ _f, f,, ,

( + 12P + 90--P + 15P + 35P'"- ±

[ A16 A23 2A85 +M_°(-12+--_ +--_ +-1_1A1 A2 A3)]f,,,

AaA2 A_ A2A3 AiMll+M_,lf,_ Mlo+M_oq,_( + 6______+..9_.+ 6______+1__ )y,f,,
6 6

(54)

__ A2 __ M_,o. A1 A2 A3 )]f,,, (55)+[ +-_-+ +-_(1--3 6 10

To simplify eqs. (54), (55); eq. (48) and the ensuing identity A1/2 + A2/3 + A3/4 = 1 was

used.

The evolution equation for the temperature disturbance f(_, _-) is derived by integrat-

ing eq.(37b) at the order e2 with respect to 7? across the layer:

1
A + drl(:'_l n + _on®l; - _2o(®1_ + k_lC - 01¢;) + (fl= +fle)f = 0 (56)

Introducing eqs.(44), (52), (53) into eq.(56) yields the key result of the work

A + _lf'"' + _f" + _/- _3(f'_) ' + _,(:'_)" = o (57)

where the coefficients are given by

=_+_

1 M,_o M_o

7rl = -_ + 360 8640

M,_I - Mll
71-2 ___

24

1 (128 M_,0 M_20_ - 105 3 + _)

11. 1 1 M_0

_' : -i-6(-_ + -_)( 12 1)

(58)

It is readily shown that the coefficient 7r1 is positive in the range 12(1 - v/_) < M_0 <

12(1 + x/_) which constitutes the range of validity of the present nonlinear theory and

15



which coincideswith eq.(26) for the range of M_, for which onset is to zero wavenumber.

Moreover, 1r3 is always positive. On the other hand, the lr2-term provides instability to

the considered system, if 7r2 > 0, i.e. M_.I - Mr1 > 0. In this case, the difference between

the upper and the lower Marangoni numbers, AM, is

AM = M_, - Mt = M,,o - Mlo + e( M_l - Mll ) > 24

and the layer of interest is unstable with respect to longwave perturbations, in the specified

range of M_,0 as also follows from the linear stability analysis brought in the previous

section.

Also, as follows from eqs. (57), (58) and independently from the linear analysis, the

linear stage of the evolution of an infinitesimal temperature disturbance is not affected by

the value of the Prandtl number, P, which appears only in the nonlinear _r4- term.

Eq. (57) and its various particular cases have recently appeared in the literature

s,11,14,19-22 Ref.14 is particularly devoted to a study of eq. (57). By rescaling the spatial,

temporal and dependent variables, _, r, f respectively,

. 1/2 -1/2 _ 1/2 -1/2
---} ¢,7r1 7r2 , "r ---} rlrl_r_ -2 , f ---} .rTr1 _r3

one obtains the equation

f_- + f'"' -+ f" + sf -(f'3) ' + w(f'2) '' =0 (59)

in the domain 0 < ( < L wherein

= 2 , = 2 4-i-1/2 r -1/2

We note that eq. (59) can be recast into the form

f_- + [(1 - f,2)f,], + f,,,, + sf + w(f'2) '' = 0 (60)

The cubic term f,3 in eq. (59) is shown to ensure the emergence of bounded amplitude

patterns. Moreover, in the case ofw = 0 corresponding to M=0 = 12, eq. (59) is symmetric

under the transformation f _ -f and has a Lyapunov functional bounded from below (if

s > 0) such that eq. (59) can be rewritten in the form:

_F

fT - _f (61)
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with a free energyfunctional given by

F= [-_ +

and A being either the periodic or infinite domain.

V. FURTHER RESULTS AND DISCUSSION

Turning back to the leading order of the streamfunction 90, eq.(44), one finds that

the polynomial A3r/3 + A2r/2 + Air/has three roots:

ql =0,_2=l,ya=
2Me0 - M_,0 M_,0 - 48

D

M,,o + Meo 2M,_o - 24
(63)

For M_,0 > 48 or M_0 < -24, _73 lies in the domain 0 < 7/ < 1, and therefore, two

different cells across the layer are expected to form, one below the other. This can be

also understood from the fact, that for M_,0 > 48 both the velocities at the free surfaces,

u0(r/= 1) and u0(r/= 0), given by eqs. (46), (47) are negative when f' > 0, and positive

otherwise. For M_,0 < -24 both u0(r t = 0) and u0(77 = 1) are positive for positive f' > 0,

and negative otherwise.

In contrast, for -24 < M_0 < 48 the velocities at the free boundaries have different

signs, leading to formation of a single convective cell across the layer between the adjacent

extrema of f(_, T). The effect of the emergence of two convective cells across the layer is

novel and is not observed in the "rigid- free" case s .

It also readily follows from eq.(63) that for M_0 > 48 the lower cell is smaller than the

upper one. If M_0 < -24 the upper cell is smaller that the lower one. These considerations

are observed in our numerical study of eq.(57) as well.

Equation (57) is solved numerically using a time-splitting method together with the

periodic boundary conditions in the domain 0 < _ < L = 57r. The value of the Prandtl

number is chosen as P = 5 which corresponds to water. The distance from the criticality

expressed by the difference M,_1 -Mr1 is taken as 6. Equation (57) is amended with the

initial condition related to the fundamental mode f0(_) = 0.01 sin(27r_/L).

Figure 4a presents the solution for eq.(57), f, the leading order of the temperature

disturbance, for M_,0 = 54, Me0 = 30, fl = 0. The corresponding flow field is displayed in

Fig.4b. [The streamlines shown in Figs. 4b, 5b, and 6b were calculated using eq. (44).] As

explained above, two convective cells emerge across the layer, the lower cell being smaller
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than the upper one. The latter can be understood from the fact that the strength of

surface tractions at the upper surface is Mgher than that at the lower one, IM=01> IMp0l-

The direction of the flow at both surfaces (see eqs. (46,47)) is from the hottest spot at the

surfaces corresponding to the maximum of f (see fig. 4a) to the coldest one corresponding

to the minimum of f, in agreement with the direction of the surface shear stress arising

from the local variation of surface tension. Note that the temperature of the fluid is given to

the leading order by T(y)+.[(_, r), where the first term is the linear equilibrium state, (eq.

(31)) and the second one is obtained from solving eq. (57). At this order of approximation,

therefore, the temperature varies coherently along the free boundaries and the hottest and

the coldest spots on each of them are located at the same vertical cross-section.

Figure 5a shows the solution for eq. (57) with M=0 = -30, Mr0 = -54, _ = 0. The

corresponding flow field is displayed in Fig. 5b. In this case, [Me0t > [M=0[, and the lower

cell is larger than the upper one. The direction of the flow at both surfaces is from the

coldest spot at the surfaces corresponding to the minimum of f toward the hottest one

corresponding to the maximum of f (see fig. 5a).

A third type of flow is presented in Figs. 6a and 6b. The parameter values taken here

are Ml0 = --12, M,,0 = 12,fl = 0. This set of parameters corresponds to 1r4 = 0, therefore

the solution obtained is symmetric with respect to the midplane. The steady pattern for

the temperature disturbance is displayed in the first and the flow field which consists of

one convective cell across the layer is displayed in the second. The direction of the flow

along the lower free surface is from the coldest spot to the hottest one (due to the negative

Marangoni number) and the flow along the upper free surface is from the hottest spot to

the coldest one.

In this paper we have studied the onset of the Marangoni instability in a liquid layer

vertically bounded by two free nearly insulating surfaces with arbitrary interfacial prop-

erties. Using the linear stability analysis, we found the stability (instability) domains

in the parametric space including the disturbance wavenumber and the both Marangoni

numbers. In particular we derived the criterion for the first instability being to zero or

to finite wavenumber. The critical threshold for the onset of the longwave instability is

found to be given by the relationship between the upper and lower Marangoai numbers

: M= -Mt = 24. A weakly nonlinear analysis is applied to study the spatiotemporal

evolution of the flow and temperature fields at the onset of the longwave instability. It

was shown that in some parametric range one convective cell forms across the layer while

in other parametric domains two convective cells emerge between the two free surfaces.
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APPENDIX: THE CASE OF ARBITRARY BIOT NUMBERS Bt, B_

When the Biot numbers at the free surfaces, Bl and B,,, are not both small the critical

threshold for the instability is given by [compare eq. (19)]

bl M1 + b2
Mu-

b3 Mz + b4

where

bl = -8csk 4 - 8B,,(c 2 + s2) k3 + 8cs(B,, + 4c_s2)k 2 + 16B,_cZs_(c 2 + s2)k

b2 = 256casak 4 + 128(Bt + B,,)c2s2(c 2 + s2)k _ + 256BtB_, cs._3k2

= (c + ,:)k - c,(k' + 3k + 4c

b4 =-8cska-8B,(c 2 + s2)k 3 +8cs(Bt + 4c:s2)k 2 + 16Bec_s2(c 2 + s2) k

Again solving for M_(k; a) and expanding about k = 0 we find that there is a root

that is finite at k = 0 only if Bt + B,, + BtB_, = 0 or if Be = B_, = 0. Therefore, there is no

longwave instability for any combination of Biot numbers and a weakly nonlinear stability

analysis of the type derived in this paper is not relevant (except for Bt _ 0 and B_ _ 0,

as studied in the main body of the paper).
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Figure1.--The neutralsurface Mu= Mu(MI,k) as givenby

eq. (19).In thecase of Iongwaveperturbations,k = O,the
cross-sectionof thesurfaceis the straightline givenby
Mu- MI = 24, eq. (25).The instabilitydomainis above
thesurface.
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Figure 4.raThe steady-state solution: (a) the temperature

deviation from the equilibrium state; (b) the streamlines

of the fluid flow, for eq. (57) with periodic boundary

conditions, the initial condition f0(O = 0.01 sin(2c_L),

arid P = 5,/3 = 0, Mul - Mrl = 6, L = 517, Muo = 54,

M/O = 30. The direction of the flow in the cells at the free

surfaces is from the hottest spot to the coldest one.

The streamlines in the lower cell are not displayed due

to its thinness. The two convective cells are counter-

rotating.
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deviation from the equilibrium state and (b) the streamlines

of the fluid flow, for eq. (57) with periodic boundary

conditions, the initial condition fo(_) = 0.01 sin(2_/L), and

P=5,.B=O, Mul-Mrl =6, L = 5_,MuO =-30, M/o =-54.

The direction of the flow in the cells at the free surfaces is

from the coldest spot to the hottest one. The streamlines
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Figure 6.--The steady-state solution: (a) the temperature

deviation from the equilibrium state; (b) the streamlines

of the fluid flow, for eq. (57) with periodic boundary cond-

itions, the initial condition f0 (_) = 0.01 sin(2-_L), and P = 5,

/_=O, Mul -Mrl =6, L=5, Muo = 12,M/0 =-12. The

direction of the flow in the cells at the upper free surface is

from the hottest spot to the coldest one, and st the lower

free surface from the coldest spot to the hottest one. The

streamlines of the flow are symmetric with respect to the

midplane of the layer.
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