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ABSTRACT

The instability of an incompressible three-dimensional boundary layer (that is, one

with cross-flow) is considered theoretically and computationally in the context of vor-

tex/wave interactions. Specifically the work centres on two low-amplitude,lower-branch

Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex

flow; the vortex motion,in turn,gives rise to significant wave-modulation via wall-shear

forcing. The characteristic Reynolds number is taken as a large parameter and,as a con-

sequence, the waves' and the vortex motion are governed primarily by triple-deck theory.

The nonlinear interaction is captured by a viscous partial-differential system for the vortex

coupled with a pair of amplitude equations for each wave pressure. Three distinct possibil-

ities were found to emerge for the nonlinear behaviour of the flow solution downstream -

an algebraic finite-distance singularity,far-downstream saturation or far-downstream wave-

decay (leaving pure vortex flow) - depending on the input conditions,the wave angles and

the size of the cross-flow.

1. INTRODUCTION

Our primary concern in this paper on transition is to extend the recently developed

ideas on nonlinear disturbances in otherwise two-dimensional boundary layers to the more

general and practical case of three-dimensional boundary layers, i.e. with cross-flow. Al-

though some linear theory has been written where cross- flow effects have been incorporated

(such as Stuart 1963, Hall 1986 on predominantly inviscid modes and Stewart and Smith

1987 on viscous-inviscid modes) little research has been performed in a nonlinear context

as far as we are aware. Yet the influences of cross-flow are of particular importance in

numerous aerodynamical configurations,for example on swept wings or near wing-body

junctions.

Concerning flows without significant cross-flow_initially at least,in recent years evi-

dence has accumulated that persistent streamwise vortices can play a key role as an early
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stage in transition to turbulence of boundary layers and duct flows. In the boundary-layer

context,the evidence is mainly from experimental observations (Aihara et al. 1965,1969,

1981,1985, Tani and Sakagami 1962, Klebanoff, Tidstom and Sargent 1962, Bippes and

Gortler 1972 ),but also from supporting computational work (Wray and Hussaini 1984,

Spalart and Yang 1987 ).

The observations have provided the stimulus for recent theoretical studies in this field

notably for boundary layers (Hall and Smith 1989,1991, Smith and Walton 1989 ) and

channel flows (Hall and Smith 1988, Bennett,Hall and Smith 1991, Smith and Blennerhas-

sett 1992 ). The studies are based on the ideas of vortex/wave interactions: this is the

situation where two or more wave-like disturbances mutually interact under inertial forces

in such a way as to induce a longitudinal vortex flow component. This component gen-

erally has slower streamwise and temporal variations, given that each wave has common

frequency and streamwise wavenumber. If the vortex also has a significant back-influence

on the waves,i.e, contributes to their growth or decay,then we have full interaction and

the waves' and vortex solutions must be solved together. The interaction may be weak

or strong depending on whether the oncoming mean flow is altered by a small amount or

a significant amount respectively. Quite recently,the weakly nonlinear interactions arising

between a pair of three-dimensional(3D) Tollmien-Schlichting (TS) waves and their in-

duced streamwise vortices have been studied theoretically for a two-dimensional boundary

layer over a flat surface by Hall and Smith (1989). The present work extends the above

ideas to 3D boundary-layer profiles. Hence our main concern is with the effects of cross-

flow and the role it plays,if any,in determining the ultimate nonlinear behaviour of the flow

solution downstream from the input station. This is felt to be a significant problem to

study mainly because,as mentioned previously,3D flows are more commonly encountered

in practice.

It should be emphasized that nonlinear interactions between vortices and viscous-

inviscid waves are addressed here with cross-flow present,starting from the interaction with

zero cross-flow considered in Hall and Smith (1989),Smith and Blennerhassett (1992) and

then gradually increasing the cross-flow. Interactions involving vortices and predominantly

inviscid,Rayleigh,waves have still to be extended fully in this way,leading on eventually

to the study of nonlinear interactions between mean-flow vortices and inviscid cross-flow

modes. Starts on the latter extension have been made however by Davis (1992) and Brown

and Smith (1992), based again on the flow structure holding for zero cross-flow as de-

scribed by Davis (1992),Brown,Brown and Smith (1992),Smith,Brown and Brown (1992).

One of the main findings,both in the last two works for vortex interactions with inviscid

waves and in Smith and Blennerhassett (1992) for viscous-inviscid waves,is the existence

of persistent vortices that emerge downstream of regions of full vortex-wave interaction in

certain parameter ranges,i.e, pure vortex flow with decayed waves dominates downstream.

Again,the above is mostly for vortex-wave interactions in the incompressible regime,as in

the present work. The compressible boundary layer with vortex-wave interaction is treated

by Bowles,Elliott and Smith (1992),concerning the effects of surface distortions,and again



they find persistentvortices to be formed quite commonly asa downstreamproduct of non-
linear interaction. When that happens, the vortex-wave interaction (upstream) has served

to alter the mean flow (downstream) to a stable one containing longitudinal vortices.

An intriguing issue is whether flow properties such as persistent downstream vortices

continue when cross-flow is added,and,if so,how the parameter ranges are affected. Our

particular concern is with the effects of cross-flow on vortex/TS interactions. There are

several kinds of interaction in fact,even within the context of vortices with viscous-inviscid

(TS) modes. One related kind is discussed by Stewart and Smith (1992),Bowles and

Smith (1992),regarding flow responses at relatively high frequencies. These are sigificant

because,among other things,they provide the first theoretical explanation for the Klebanoff

and Tidstrom (1959) classic path of transition. Indeed,quantitative comparisons between

the theory and experiments of Klebanoff and Tidstrom (see also Klebanoff,Tidstrom and

Sargent 1962) in boundary layers and Nishioka et al (1979) in channel flows yield very en-

couraging agreement,as Stewart and Smith and Smith and Bowles show. The last reference

also makes comparisons with the strongly nonlinear break-up theory of Smith (1988),for

a later stage of transition,and again the theoretical-experimental agreement is good in

quantitative terms.

As in Hall and Smith(1989),then,we address nonlinear disturbances sufficiently close

to the first,lower-branch,neutral station. There the TS waves are governed mainly by the

triple-deck structure,given that the typical Reynolds number,which is defined below,is large

(Smith 1979). The structure stays intact even with cross-flow present (Stewart and Smith

1987). Moreover,if the coordinate scales controlling the vortex are taken first to be com-

parable with those for the wave,the above structure additionally incorporates the induced-

vortex motion,as we shall see. The nonlinear evolution process is principally contained

within the lower deck of the triple-deck structure wherein the velocities uoo(u,v,w),the

Cartesian coordinates Ioo(z,y,z),the pressure pool_p and the time Iocu_¢lt are scaled in

the form

[u, v, w,p, z - z0, y, z - z0, t] = [Re-1/s_t, Re-3/s_, Re-1/scv, Re-1/4p,

Re-Z/S x, Re-S/Sy, Re-Z/S z, Re-1/4T]
(1.1a - h)

near a typical O(1) station z = zo,Z = Zo .Here lo_,uo_,poo,vo, represent,in turn,the

typical streamwise length such as the airfoil chord, the flow speed in the outer stream(in

the z-direction),the fluid density and the kinematic fluid viscosity. The global Reynolds

number Re = uoolo_v_o 1 is taken to be a large parameter. The oblique TS waves are

represented by

E1,2 - ezp[i(aX + _1,2Z/2- _T)], (1.2a, b)

where a,j31,_2 and _ are real constants. We note that the spanwise wavenumbers j31,j32

depend essentially on the crossflow evaluated at the edge of the boundary layer. This is

due to the dispersion relation which stems from the dominant wave motion,as analysed in



Section 3. The waves interact nonlinearly to induce streamwise-vortex flow,in the manner

E1E_ -1 = E3,where

E3 =- ezp[i(fll - f12)Z/2]. (1.2c)

represents the vortex component. Equally we note the properties E1E_ 1 = E2, E2E3 = E1

which correspond to the vortex combining with the first wave to provoke the second wave

and combining with the second wave to provoke the first wave respectively.

The governing equations are the unsteady,interactive 3D boundary-layer (triple- deck)

equations,written down in Section 2,and as shown in the analysis that follows that sec-

tion,these equations cover both the waves' and the vortex motion,in (1.2a-c), in effect,

despite the slower scales associated with the vortex. The scales and the flow structure for

the TS/vortex interaction in a full 3D boundary layer are examined in Sections 3.1 to 3.5

below,for which a partial- differential system for the vortex flow coupled with an ordinary

differential equation for each wave pressure is derived. These interaction equations are

written down in Section 3.6 and special attention is paid to the case of zero starting vortex

flow,i.e, where the input consists of only the two waves (1.2a,b) superimposed on the 3D

boundary layer,since then it is possible to deduce an integral form for the downstream

evolution of the vortex-streamwise wall shear. The interaction equations are addressed

numerically and analytically in Section 4,and comparisons are noted therein. Three main

types of nonlinear behaviour are found to occur: an algebraic finite-distance break up; far-

downstream saturation of the waves' and the vortex motion; and far-downstream decay of

the waves' and the vortex motion. Significantly in the last option it is found that the waves

die out rapidly in an exponential manner but the vortex decays in a slow algebraic fashion

and so in a sense we are left with pure vortex motion. The above options depend on the

input conditions,the wave angles and the magnitude of the cross-flow. It is interesting that

the numerical results reflect that the first option occurs in the majority of cases. Finally,in

Section 5,the results obtained in the previous sections are discussed.

2. THE GOVERNING EQUATIONS

Substituting the expansions (1.1a-h) into the Navier-Stokes equations shows that the

scaled variables are governed by the unsteady,interactive 3D boundary-layer equations

WT + _tlT)X + VWy + 17;173Z -_ --PZ -4- 7f)yy,

"_X + 7_y + ZVz "-- O,

(2.1a)

(2.15)

(2.1c)

with the boundary conditions

fi=fi=ff_=0 at Y=O,

_,_Y+A, _,.,,y-1 as Y _ oo.

(2.1d)
(2.1e)
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Here the pressure i5 and the displacement decrement A are unknown functions of X, Z and

T ,linked via the expression

= 2-7 oo oo [(x - + (z
(2.1/)

arising from the main- and upper-deck analyses,where (ue,0, we) denotes the basic flow

outside the boundary layer. Bars on the integral signs denote the principal value or the

finite part. We observe that the cross-flow influence on the above system comes exclusively

from its value at the "upper edge" of the boundary layer and is felt through the pressure-

displacement law (2.1f). No other cross-flow effect is felt within the lower deck because

the Cartesian coordinates have been chosen in such a way that the direction of maximum

basic-flow wall shear is in the "x-direction",implying that the basic flow has no spanwise

wall shear.

3. THE ANALYSIS

3.1 The main scales

It is well known that lower-branch TS waves (linear or nonlinear) in a 3D boundary

layer are governed by the triple-deck equations (2.1a-f) cited above (Smith 1979). Here,the

waves have characteristically small amplitudes in comparison to their fully nonlinear size; in

particular,if the relative magnitude is h,where h >> Re -m (for any m > 0 ),then a vortex

flow of O(h 2) is induced through nonlinear wave-coupling. It is found that the vortex-

spanwise velocity grows logarithmically far from the plate's surface due to the algebraic

decay (of O(Y -2) ) of the wave-inertial forcing effects there. The singularity is eventually

damped out in a buffer deck,lying between the main and lower decks, where the shear-

inertial effects (essentially proportional to Yli:gX. [ ,where -_v is the modulated streamwise

length scale over which the vortex and wave-amplitude variations take place) come into

play. If the relative thickness of the buffer deck is 6(>> 1) then convective-diffusive balances

yield [0jr. I "_ _-_ • There fi_ _ ]_2_3 in _,zSv -._ ]_2 In _ ,where fi_,_ denote the vortex-

streamwise and -spanwise velocities,and continuity has been used. In Hall and Smith

(1989) it was assumed (and subsequently confirmed) that sensitive nonlinear interactions

would happen if the amplitude variations of the wave over the longer scale were controlled

to some extent by the vortex shear from the buffer deck. Proceeding in a similar vein

yields the second _- __ balance [0%[ .-- _2_2 In _, whereupon combining with the first

such balance gives

.._ h-2/s,f(, ... h-6/_

where
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Unlike the related work in Hall and Smith (1989) for zero crossflow,we have not in-

cluded nonparallellsm here,although it is relatively easy to incorporate these additional

effects as described in Appendix A.

3.'2 The lower deck

In the lower deck,where y = Re-S/sY ,viscous forces play a prominent role: this is

readily observed from the unsteady, interactive 3D boundary-layer equations which hold

here,namely

_X "4-_)y + Z_)Z "- O,

with # independent of Y,

and the no-slip condition : _ = _ = t5 = 0 at Y = 0.

(3.1a)

(3.1b)

(3.1c)
(3.1d)
(3.1e)

We refrain from applying the outer constraint (2.1e) here because,in effect,the original

lower deck has split into two separate decks,characterised by the current regime and the

thicker buffer deck; it is in the latter region where application of (2.1e) takes place. Here

we express the flow solution in the form

fi = ,XY + hL_ 0) + h6/S.ka(Z)Y + h2L2fi(a) + h_/SL_tO) +..., (3.2a)

•5 = hL_ 0) + h2L2fi (3) + hll/S/_ 0) + ..., (3.2b)

ffJ = hLff '0) + h2L2ff '(a) + hll/SLfffll) + ..., (3.2c)

"p = hL_ (') + h_/SL_O) +... + h_S/s_ Ca) +..., (3.2d)

where L - In h and _Y is the basic-flow shear arising from the main deck.

The terms superscripted (1) are TS contributions,with the quantities subscripted by 'a'

denoting the second order effects. The induced-vortex contributions have the superscript

(3) whilst the quantity ha (Z)Y is the vortex-streamwise shear that arises through feedback

from the buffer deck. We note that two streamwise length scales are active: the triple-deck

scale X, and the modulated scale X = h-6/sf(, responsible for wave growth or decay

and vortex variations. Hence Ox _ Ox + h6/SO:_, effectively. Finally,we expand _ as

1 + h¢/S)_l +..., where X1 is real; this is possible provided the lower deck quantities adjust

to accommodate the local variation of the skin-friction (Smith and Burggraf 1985).

We now substitute the above expansions into (3.1a-e) to obtain

i(aY - _)ul,_ + _'1,_ = -ia_l,_ + _InYY,

i _
i(aY - _)ff,_= = -_3,_P_,_ + ffhnYY,

(3.3a)

(3.3b)
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i

ia_,,_ + _l,_y + _fl_zbl,_ = 0; (3.3c)

)t33V12 q- (ill -- /32) : --iO_Paln -- PlnX "_ _alnYY, (3.4a)
+ea=:Xl + _;36aa _ __3_11

i(aY f_)ff,.a,_+Yzba,<t+icDuYgvl,_+{ )_a3ff'12 } i _- . - + W=a, yr,(a.4b)
--)_33Wll

i

i

7_33Y q- 2(51 -- 52)W33 "- O;

(3.5a)

(3.5b)

(3.5c)

for the main TS,forced TS and vortex flow,respectively,where the associated pressures

iSa,_,/Saa,_,iSa3 are independent of Y, and zero speed is observed at the wall. Here we have

employed the TS- and vortex- properties described in the Introduction,that is

¢z(_)= fiaa(X,Y)Ea + _2(._,Y)E= + c.c.,

_(') = f_.,,(ff,Y)Ea + _,_(f(,Y)E_ + c.c.,

fi(3) = *i3a(J(, Y)E3 + c.c.,

(3.6a)

(3.6b)

(3.6c)

etc.,and equated coefficients of Ea, E= for the TS equations and the coefficients of Ea for

the vortex equations. We return to these equations later after we have established some

necessary results from the buffer,main and upper decks. For now we observe the far-field

properties

(3.Ta-d)

(3.8a-d)

(3.9a-d)

as Y _ oo. The logarithmic results in (3.9a-d) rely on neutrality of the waves and on

imposing a vortex-spanwise-shear constraint at the wall,namely



fo °
_3zy(O) = F(Y)dY, (3.10)

where F is the wave-forcing on the left-hand side of (3.5b).

3.3 The buffer deck

This region is needed to adjust the vortex flow to the outer constraint in (2.1e) above.

We write the velocity and pressure as

fi = h -2/5_) + h4/S(fi(3) + )_ly) +..- + hLu(1) +.-. + h 11/5Lfi(1) +...,

_, = ha�SLy(1) + ... + hS/5._(a) + ... + hg/SLO 0) + ...,

= hT/SL_v (1) + ... + h2_ (3) + h13/SLzb O) + ...,

= hL_(1) + ... + hn/SLD 0) + ... + h16/515(3) +...,

(3.11a)

(3.11b)

(3.11c)
(3.11d)

where (fi,_,_,iS) satisfy (3.1a-d),but with Y = h-2/s_, where _ is O(1).

Thus we generate the sets of equations

_fi_) + _5(1) = 0,

_()) + _(/) = 0;
y

(3.12a)

(3.125)

(3.12c)

_t_ox"'(1)+ _)) + (¢3)+ _,_)_) + _(_)(_3)+ _1)+ _(2)= 0,

Y(Wax + + =

_(1) _) l) (1) ---- 0;_X + _ + ,_

(3.13a)

(3.13b)

(3.13c)

_) + _(a) = _(z)_,

ZT_ ) _.(3)= w_ ,

+ + 0;
y

(3.14a)

(3.14b)

(3.14c)

for the main TS,the forced TS and the vortex flows,in turn,where again the corresponding

pressures are independent of the normal scale. Each set of equations is to be solved subject

to the external displacement condition (2.1e) where,for each of the above systems,this

reduces to



(_(1),_),_(3)) __ (i(1)(2),i(1)(yc),A(3)(2)),
(¢(_), ¢(_), ¢(_)) ~ 9-_,

as 9 --_ oo. Here the displacement decrement A has the expansion

A = h4/Si(S) + hLA (1) +.-- + hll/SA(_ 1) +'".

For the main TS part we find simple slip-effect solutions hold:

_(1) = i('), _(1) = _9i(_),

_(1)={ /31'11E1+ }+c.c., ,(1
2a9 2a9

where

i (_) - in(fC)E_ +/in(X)E2 + c.c.

Consistent lower-deck matching is required as 9 --* 0 +, suggesting that

_(1) __¢ I/{(1) as Y _ oo

in the lower deck.

Next,(3.13a-c),solved in conjunction with (3.15b,e),yields in particular

_(2 :(3)i°) + i(__)

](_) _ fi(3)l(_)_(1)= _9(_,_)+ -_oxJ -

(3.15a-c)

(3.15d-f)

(3.16)

(3.17a,b)

(3.17c,d)

(3.18)

(3.19)

(3.20a)

(3.20b)

where

/iO) - i_(2)E_ + i_n(J()E2 + c.c.

Compatible matching with the lower deck solution will be guaranteed so long as

(3.21)

_0) _ A3i(1) + i0) as Y _ oo (3.22)

in the lower deck.

The equations for the vortex,(3.14a-c),are partial-differential being dependent on

and )_. They are insoluble at present since they depend on the unknown wave-pressure

terms/_n,/Sn, via a slip condition on zb(3) at the buffer-deck wall. Therefore,we must

determine the dominant wave variations over the longer scale X, and this requires us to

solve the pressure-displacement law (2.1f) for both the leading and forced TS waves,and

subsequently coupling the results with each corresponding problem in the lower deck. Since

the vortex pressure is mainly passive here,we need not concern ourselves with the vortex

motion beyond this layer.
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3.._ Pressure-displacement relations

An alternative to solving the Cauchy-Hilbert integral (2.1f) directly is to consider

the Laplacian equation and associated boundary conditions from which the integral was

derived,namely

with

02 02 ,

/"

= 0, (3.23a)

p' --+ 0 as y' _ oo, (3.23b)

tp' _ _, p_, _ (u_Ox + w_Oz)2 fi, as y' _ 0 + (3.23c,d)

Here y'(= Re3/Sy) is the scaled upper deck transverse coordinate, and the pressure p' has

the splitting

p' = hLp '(1) + ... + hll/SLp_l) + ... (3.24)

where

with

p,(1) _ p_l ( f(, y,)E 1 "4- p_2(.X , y')E2 "4- c.c.,

! ! --
p_a) = pla(._,y,)E ' + p12(X,y,)E 2 + c.c.

Insertion of (3.24)into (3.23a-d) gives

02p'1, 

Oy _2

2 !(a 2 + 13,.,/4)p,_ = 0,

t
Pln --+ 0 aS yt ___ 00,

' ' --(aUe "4- flnwe/2)ZftlnPln "-> Pln, Plny'

for n ----1, 2 to leading order. This yields

(a2 + Z_/4)l/2pa_()_ ) = (a + _w,/2)22a,(R),

for n = 1, 2 where,without loss of generality, ue -- 1.

The second level equations are

2 t
0 Paln 2 t

Oy, 2 ( a2 + ]3,.,�4)pain = -2iap'an._ ,

as yl __, 0 +,

(3.25a)

(3.25b)

(3.25c,d)

(3.26a, b)

(3.27a)

10



with

!
Paln -"+ 0 as yt _ ¢x_,

P'al_ _ _al_ as y' _ 0 +,

pol_,' --*-(,_ + _we/2)2_1_ + 2i(_ + _,_,e/2)_,_x, as y' --_ 0 +,

(3.27b)

(3.27c)

(3.27d)

for n = 1,2 which we note is absent of any vortex forcing and therefore linear. In fact only

the slow streamwise modulation of the main waves serves to drive the secondary waves.

The solution of (3.27a-d) is

(a 2 + f_2=/4)a/2iS_a,_(2) = (a + _,_w,/2)2fi_=()_)- 2i(a + _,_w¢/2)A_,_x

+ i.(. + _=w_/2):
(_ + Z_/4) _ii=x,

(3.28a, b)

forn= 1,2.

3.5 Neutral eigenrelations and pressure-amplitude equations

Having established the necessary upper-deck displacement laws,we now return to the

lower deck and solve the leading TS and forced TS systems of equations therein, together

with (3.26a,b),(3.28a,b) above. So for the leading waves we have

i(aY - _)fil,_ + vl,_ = -ia_l,_ + UlnYY,

i _

i(aY - f_)ffh,_ = -_j31,pl,-, + @a=YY,

i

"Z

(3.29a)

(3.29b)

(3.29c)

with

"/_ln = "01n = "tOlrt = 0 (3.29d)

(3.29e)

and
2 112 -(_2 +_,/4) pa= = (_ +_=_,/2)_A_=,

for n = 1,2. From this we can deduce the dispersion relations

cx2 Ai'(_o) _ (ia)al3(a2 + _I4)'/2(o_ + 3,,_,/2) _,
t_

(3.29f)

(3.30a, b)

for n = 1,2, where

11



iI13_a213' / 013°°_o = _ - Ai(s)ds,

and Ai is the Airy function. The neutrality of the waves implies the values

_o = -dai lla, Ai'({o) _ dl ills
d2 '

where dl _ 2.3, d2 ._ 2.3, (Lin 1955,Smith 1979,Drazin and Reid 1981), so that (3.30a,b)
become

aslS(dl/d2) = (a2 + fl_/4)l/2(a + fl,_w,/2) 2, (3.31a, b)

for n = 1,2. Notably the presence of cross-flow precludes any symmetry in the a -

plane,i.e. _1 = -_2 is impossible for any streamwise wavenumber unlike the instance of

zero cross-flow where perfect symmetry occurs in the a- axis.

For the forced TS waves the governing equations are

i(aY-_)fial"+Y_tl'_x+iaA1Y_ta'*+ia{ )_ssfia2 } -

+ Assvll + (_1-fl2) As3_12* ~ ___3,_i I -- --Zc'rPalrt -- PlrtJ_ + UalnYY,

i(ay_ fl)zS,_l,_ + yffh,_x + ia)_ayffh,., + { )tssffh2 } i--)_33Wll

i

iaCtal,., + fix,.,Sc + _)alnY + -_flrt'l_aln = O,

(3.32a)

(3.32b)

(3.32c)

with

?._a 1 rt

'ual,-, = 'v,,l= = w,_l,-, = 0 at Y = O,

-"_ '_3All + A_a,_, _,_1,_ "" as Y _ oo,

(3.32d)

(3.32e)

and

(a 2 + fl_/4)'/2/L_,,., = (o_ + fl,_w,/2)2._,_,,.,()_) - 2i(a + fl,_we/2)fia,_x

+

for n = 1,2. After much working,we deduce the pressure-amplitude equations

(3.32f)

12



, d_ll

al --_--

, d_12

+ b_.Xl_511 + cl.Xaaifm = O,

I 8 -
+ b_)q_m + c2),z3pll = O,

(3.33a)

(3.33b)

hold,where

! 3_ 5

2B=_'_0 rl D 5B_/2

b" = 3aAS/Z 3a '

(3.34a)

(3.34b)

2(B_B2)a/2"r_rl a,_'_3132r2

( 5T_(B_ B: )1/_ 3Crn313:

(3.34c)

for n = 1,2. Here Bn = (a S + 3_/4),_',_ = (a + flnWc/2),a,_ = (1 - 31f12/3_),D =

1 + a_o/Ai(_o),A = ia, rl = Ai(_o)/Ai'(_o),r2 = tc/Ai(_o) and _0,g are as defined above.

The pressure-amplitude equations illustrate that the growth rate of each wave is af-

fected by the basic-flow shear correction (A1) and the buffer-deck vortex- streamwise shear

()_a3); the cross-flow influence is reflected by the interaction coefficients an,' b,_,_cn.' We

are prevented from solving the amplitude equations as they stand because the vortex (and

hence A3a ) has implicit dependence on the wave pressures pll ,/312, as mentioned in Section

3.3 above. Instead we must solve the wave- and vortex-equations interactively,although

firstly we need to ascertain the boundary conditions for the vortex at the buffer-deck wall.

We know from above that,in the lower deck,wave-inertial forcing provokes logarithmic

growth in the vortex-spanwise velocity component. A more detailed evaluation comes from

substituting the asymptotic properties

/ /_2 \

fi,n = -41n + ( _'n _Y -1 + "'" (3.35a)
\4a 2 ]

n 4c_2 ]

('_fin_
z51,., , (3.35c)

\ZO_ /

of the leading waves into the lower-deck spanwise-vortex equation (3.5b) above. It is found

that

ffJa3 "" -ig_la_2 In ]I, for Y >> 1, (3.36)

where

(3.37)

13



The logarithmic growth in @ss is known to induce the other properties 7233 -,, ys In y, bss "_

Yln Y as Y _ oo, in the lower deck. Therefore,the inner constraints for the vortex in the

buffer deck are

_33 "--)' 0, 'P33 "--)' 0, "/_33 _ --iKpzlp_2 as _ --_ 0 +. (3.38a - c)

3.6 The interaction equations

In summary, the nonlinear vortex/TS interaction is embodied in the equations

_ux + v = u_,

_wx = w_,

ux + v_ + _(_1 - _2)w = o,

(3.39a)

(3.39b)

(3.39c)

with

and

u(x,_) = A, W(._,_) = o,
U(._, 0)=o, W(X, 0) = -iKPl_P;_,

dPll
dff

dP12

dr(

(3.39d)

(3.39e)

-- + biAzPlz + caA33P12 = O, (3.39f)

-- + b2.klP12 + c25_3Pll = 0, (3.39g)

where fi,33, _33,'t.033, "4.33,,Pll ,P12 have,in turn,been replaced by U, V, W, A, Plz, P12, and

b,, = b'/a',c,_ = c'/a'(n = 1,2). Defining r = U s (so that v(X,0) = ksz(-_) ),(3.39a-c)

simplify to

i

w_ - #wx = o,

(3.40a)

(3.40b)

with

_(._, _)= w(x, _)=o,
_-_(f(,O) = O, W(f(,O) = -iKPI_P_2.

(3.40c)

(3.40d)

In principle,we may solve (3.40a-d) collectively with (3.39f,g),given some prescribed input

conditions in X. Analogous equations to (3.39a-g),(3.40a-d) were obtained by Smith and

Blennerhassett (1992) for zero cross-flow,where the authors corrected the original zero

cross-flow "interaction equations" in Hall and Smith (1989) . In both papers,a partial-

differential finite-scheme was applied directly to the vortex-wave equations.

14



It is possible to reduce the r - W system above to an integral equation for $s3,

however,if we consider the special case of zero-input vortex flow, i.e. W = _- = 0 at )_ = 0

(without loss fo generality). We apply the Laplace transform in ._ to (3.40a-d) and obtain

iKP Ai(sl/3_)) ' (3.41a)

and

where

KP
(3.41b)

OO
-sx dye, = W(X,ij)e -sx dR,

P(s) = -'x d2

are the Laplacian transforms of %W,P_P;2 respectively. Hence, (3.41b) evaluated at

= 0 and inverted gives

$33(.X) = MK_ L Pl,(u)P_2(u)(f( - u)-I/3du, (3.42)

where _ = (fl,- _2)/2, M _ 0.54. Then unifying (3.42) and (3.39f,g),and prescribing

values for Pn,P12 at )( = 0, we can determine the flow solution for X > 0. Numerically,

our task is much easier, since we have eliminated one variable (_)) entirely and we do

not therefore need to resort to the potentially difficult and computationally expensive

two-variable finite-difference schemes. On the other hand,for non-zero vortex input the

same Laplace transform scheme for (3.40a-d) would yield additional terms,generally triple

integrals,on the right-hand-side of (3.42),and in this case the finite-difference scheme would

possibly be the better choice.

For all the ensuing weakly nonlinear analysis,we concentrate on the case of zero-

input vortices. Computations have been performed for a full 3D boundary layer, i.e.

we = O(1),and these are presented in the next section.

4. COMPUTATIONAL SOLUTIONS

We applied a predictor-corrector scheme of second-order accuracy to advance the wave

pressures in distance and a trapezoidal rule to calculate the vortex-shear integral at each

station. This procedure proved to be stable and accurate for suitably small step lengths.

Interaction results were obtained for sample values of a and we and all starting at )( = 0

upstream of the neutral TS point. The input value for each wave pressure was fixed at

0.1. The basic-flow correction _1 was taken as positive and therefore normalised to +1.

15



Three main types of nonlinear behaviour are found to occur downstream and,in light

of the numerical findings,we now address these analytically. Firstly,there is the situation

(figures 2,5,8 and 9) where the flow solution develops an algebraic singularity at a finite

position downsream,say as -2 --, -2°; the orders of magnitude suggest the scalings

,.. I+...,
~ I+...,

_33 _ (_-aei[¢1(_)-¢2(_)],_33 "4- "'',

(4.1a)
(4.1b)
(4.1c)

where _ = (-2s - -2), and 0 < ( << 1. Here the real-valued phase factors ¢1,¢2 expand as

¢1 "_ ¢1oln_ + ¢11 + ¢12_ +'",

¢2 "_ ¢2oln_ + ¢21 + ¢22_ +'",

(4.2a)

(4.25)

where ¢a0, ell, ¢12, ¢20, ¢21, ¢22,-" are unknown constants. The analysis produces the

solvability conditions

K(ca.-6oCli) <0,

K(c2_-6oC2_) <0,

(4.3a)

(4.3b)

where cl,., cli denote the real and imaginary parts of cl in turn and likewise for the other

interaction coefficients. Also go( = Ca0 - ¢20), the dominant phase difference of the pres-

sures,satisfies the cubic equation

as603+ a2602+ aa_0 + a0 = 0, (4.4)

where

a3 = 6caic2i, a2 = 11(caic2r -- clrc2i),

aa = -2(8ca,.c2,. + caic2i), ao = 5(c,,c2i - click,).

(4.5a,b)

(4.5c,d)

Secondly,there is the option of saturation where the nonlinear quantities develop the
form

Pi, ~ IPaal _°'x, Pa2 ~ IPa2l _°_x, (4.6a, b)

as .2 _ _ (see figures 6 and 7). The analysis yields the criteria

K _[e_i,_l 3c1] < O, L_[e i'_/3c2] < O, (4.7a, b)
bar b2r

and

ar_'_l]l ] b2r'_ (bli--b21)) > 0 ,_[e_'q3 c2]
(4.7c)
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wh.ere_o(---0a - 02) is the wave-pressure phase difference at the point of saturation,and

_, _ denote the real and imaginary parts of their enclosed quantities,respectively.

Finally,there is the possibility that both waves will decay far downstream in an expo-

nential manner under linear forces, i.e. acquire the form

Pll IP,ll e-blx, IPl Ie-b'x (4.8a, b)

as __ --, oo. This is clearly valid so long as

bar > O, b2,. > O. (4.9a, b)

The vortex-shear decays in a much slower (algebraic) fashion because of its dependence on

the history of the flow solution. Figures 3 and 4 illustrate this option.

The values of the wave angles and the cross-flow upon which the interaction coemcients

depend generally determine which option will come into play downstream but no explicit

constraints on these parameters have been deduced due to the complexity of the analysis.

The numerical results do indicate however that an algebraic singularity only occurs if one

of the modes is the "lower" branch cross- flow mode. (See Appendix B for a description

of the modes and a summary of the linear neutral stability in the presence of cross-flow.)

5. FINAL COMMENTS

It has been shown in the preceding sections that significant interactions between two

TS waves and an induced or incident vortex in a cross-flow boundary layer can lead to three

types of behaviour downstream. An interesting point is that the results are very much in

line with the related work on channel flows and boundary layers for zero cross-flow by Smith

and Blennerhassett (1992). Firstly,the flow solution breaks down in an algebraic fashion at

some finite position downstream. This points to the entry of a stronger and probably fully

nonlinear stage more locally. Secondly,the flow solution may saturate far downstream, i.e.

the flow quantities may asymptote to finite values as the streamwise coordinate becomes

large. The computations show however that this second option is fairly infrequent and only

seems to occur in a relatively small range of angles for each given cross-flow. This is consid-

erably different from the Smith and Blennerhassett results,where most of the wave angles

considered lead to the saturation case. Moreover,in their case the wave pressures decay

to zero during saturation whereas the wave pressures in our case asymptote to non-zero

values. Thirdly,the TS waves may decay exponentially at downstream infinity, essentially

under linear forces,leaving pure vortex flow. (We note,however,that the magnitude of the

vortex flow is smaller than in the previous region of full vortex/wave interaction,because in

that region it decayed algebraically.) The numerical results tend to indicate that this third

option happens only when both of the TS wave angles are greater than -arctan(w_ -1)

to the z-direction (which we recall is the direction of the surface shear stress) . This,in

turn,is possible only when the four-mode criterion, i.e. we < 0.20 approx.,as discussed in

17



Appendix B,is in effect,and neither mode is the "lower" branch cross-flow mode,whose an-

gle is always less than -arctan(w_ -1) to the z-direction. In contrast,the first and second

options seem to occur only when one of the modes is the "lower" branch cross-flow mode.

The neutral stability curve that stems from linear TS theory has been iUustrated for

the casesw,=0, 0<w,<<l and w,=O(1) in Appendix B. It can be seen that for

all non zero cross-flow values the curve is open and unbounded, reflecting the property that

the chosen wavenumber scales are not sufficiently large to capture the complete neutral

curve, i.e. the "dosure" of the curve. There the relevant streamwise scale in particular is

O(Re -3p) instead of the triple-deck scale O(Re-3/s), and corresponds to having signifi-

cant vertical wave-acceleration entering the boundary layer and inducing a wave-pressure

"jump" across the extremes of the boundary layer: If the jump is too large then the bound-

ary layer cannot support neutral solutions (see Davis 1992). It is hoped that the weakly

nonlinear theory will be extended to that regime in the future.

The current regime of triple-deck wavenumbers is of further interest because it enables

comparisons to be made between the linear natures of the two cross-flow modes and the

two regular 2D-type modes. More importantly,for cross-flow values less than 0.20,these

modes co-exist,enabling us to consider the influence of each of the six possible pairs of

modes on the weakly nonlinear interaction. In addition to the O(1) computations pre-

sented above,some computations were also performed for the instance where the cross-flow

parameter we is asymptotically small,based on the corresponding analysis in Davis (1992).

In that analysis,it was shown that the two cross-flow modes expand in the form

~ + + o(1) as o+, (5.1a,b)

where

81 = 2(dl/d2)l/_a 1/_, (5.2)

illustrating that these modes are nearly normal to the z-direction. Also it can be seen

that the cross-flow influence remains despite the smallness of the cross-flow magnitude;

this contrasts with the two regular modes which have the approximate 2D- boundary-layer
forms

Here/_0(> 0) is the "zero cross-flow" mode of Hall and Smith (1989) which satisfies the

neutral equation

= ' (5.4)
and

= -- + • (5.5)
a 4]

The computations for small cross-flow showed that the option of exponential decay would

occur in the weakly nonlinear interactions unless one of the modes was the "lower" branch

cross-flow mode. In the latter case the flow solution would blow up algebraically. These

results are also largely consistent with the computations for O(1) cross-flows.
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We conclude therefore that for cross-flow values less than 0.20 the nonlinear TS/vortex

interaction either undergoes an algebraic finite-distance blow-up or else the exponential-

wave-decay/algebraic-vortex-decay option comes into play,depending entirely on whether

or not the "lower" branch cross-flow mode is one of the two modes involved in the interac-

tion,as discussed previously. For cross-flow values exceeding 0.20 however,the flow solution

breaks up algebraically in all cases,except possibly in a small angle range where saturation

occurs.

On a final matter,it is clear that this and probably the other vortex/TS-wave in-

teraction structures possible (see also Section 1) tend to stay essentially unaltered by the

additional presence of O(1) cross-flows, i.e. where the edge velocities ue, we are comparable.

By contrast,recent work by Davis (1992),Brown and Smith (1992) on the vortex/inviscid-

wave interactions shows that even small amounts of cross-flow can substantially alter the

original flow structures set up by Hall and Smith (1991) (for long scales),Smith,Brown and

Brown (1992) (for short scales) for such interactions with zero cross-flow. There appears
to be much to be clarified there.
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APPENDIX A. EFFECTS OF NONPARALLELISM

ON THE TS/VORTEX STRUCTURE

The global basic-flow velocity (u, Re-a/2v, w) has the expansion

u = _(_)+ (_ - s0)Ub(_)+'",
v = _b(_)+''',
w = _(_) + (_ -- _0)_b(_)+''',

(A1)

(A2)

(A3)

as z --+ z + in the main deck. Nonparallelism becomes significant when the second terms

in u, w and the first in v, start to drive the vortex-induced waves over the longer scale X'.

Hence,we seek the balance

Re-3/Sh -e/s h s/s i.e. h _ Re -s/32
_'J , °

The subsequent alteration to the interaction equations is the insertion of additional terms

(blAbf()Pll and (b2)tbf()P_2 in (3.39f, g) respectively,where Ab = "_b_(0). This may possi-

bly lead to a substantial change in the development of the flow solution,especially if the

nonlinear structure avoids breaking up after a finite distance downstream,but on the other

hand nonparallelism may be passive. Much depends on the wave angles,the size of the

cross-flow and the input conditions.

We observe that for h >> Re -s/32 , nonparallelism is negligible. Thus with hind-

sight,the analysis of Section 3 is seen to be valid in the regime

Re -5/32 << h << 1.
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APPENDIX B. EFFECTS OF CROSS-FLOW

ON THE LINEAR TS STABILITY

The neutral stability curve that corresponds to the linear 3D dispersion relation

is illustrated in Figure 1 for the cases we = O(1),0 < we << 1,w_ = 0.

In particular,there are some striking differences between the last two curves: firstly

the zero cross-flow curve is symmetric and extends across the entire fl-range, whereas

the small cross-flow curve remains asymmetric and has a finite cut-off value for some

# > 0, above which no neutral solutions exist; secondly there is a vast difference between

the respective maximum a-values. When we = 0 this value is (dl/d2) z/_ _ 1 and occurs

when # = 0 (i.e. for 2D waves) but for all non- zero values of the cross-flow it is removed,in

effect,to # = -oo and becomes infinite (pointing to the existence of important long-scale

instabilities). Obviously the curves do not match uniformly (even though the regular

"upper" branches coalesce) and an intermediate matching regime exists. Another feature

of the small cross-flow curve distinct from the 2D curve is the presence of two "extra"

modes,these being purely cross-flow generated. This points to the possibility of having

six pairs of interactions for any given a lying inside the critical interval (0,1),(where we

have given (dl/d2) the appromixate value of 1). This interval becomes thinner as cross-

flow increases until eventually it vanishes for a critical cross-flow value,above which only

the cross-flow modes exist. (This critical value has been determined to be (x/_)-l(_

0.20),where the "upper" branch has no maxima or minima.) Asymptotic solutions have

been obtained for the weakly nonlinear interactions in the limit of small cross-flow (Davis

1992).
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Figure 1 .---Sketch of the linear TS neutral stability curves depicting

the real part of a versus I3 for the cases (i) coe = O; (ii) 0 < ¢oe << 1;

and (iii) oJe = 0(1).
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(b) Vortex shear modulus iX331 versus X.

Figure 2.--Nonlinear-interaction computed results. Wave angles at

86.42 °, -89.59 °. Cross-flow at 0.01, gricl _ = 10 -5. Initial TS

pressure moduli both 0.1, zero-input vortex flow.
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Figure 3.---Nonlinear-interaction computed results. Wave angles

01 = 65.56 °, 82 = -67.80 °. Cross-flow is 0.01, grid _13_= 5 X 10 -3.

Initial IP11],IP121both 0.1, Ix331= o.
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Figure 4.--Computational solutions of the nonlinear interaction.

Wave angles 81 = 37.72 °, 82 = -65.36 °. Cross-flow is 0.1, grid

= 6x 10-3. StartIP111,IP121both0.1,Ix331=0.
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Figure 5.---Computational results of the nonlinear interaction.

Wave angles at 01 = -76.31 °, 82 = -85.70 °. Cross-flow is 0.1,

grid _ = 10 -4. Initial IP111,lP121both 0.1, Ix_l = 0.
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Figure 6.--Computational results, Wave angles 01 = 20.14% 82 =

-71.85 °. Cross-flow is 1, grid _= 1.25 X 10 -2. Start IP111,1P121
both0.1,1x331=O.
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Figure 7.--Computational results. Wave angles 81 = 28.07 °,

02 = -53,47 °. Cross-flow is 2, grid _ = 0.05. Start

IPlll,IP121both0.1,1X_l=O.

26



80--

2O

15

10

0.60

0.40

0.20

(a)IPlll, IP121versusx.

IPlll

1_331

J
_..------ I I _1

5.0 10.0 15.0

(b)Ix331versus_.

Figure 8._Computational results. Wave angles 01 = --6.65 °,

62 = -39.81 °. Cross-flow is 2, grid _ = 4 xl 0-3. Start

IP111,1P12iboth0.1,iX331=O.
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Figure 9.--Computational results. Wave angles 61 = 16.70 °,

62 = -33.42 °. Cross-flow is 5, grid _= 0.06. Start

IP111,IP121both 0.1,1X331 = O.
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