
N94-11425
IMPACTS OF OBJECT-ORIENTED TECHNOLOGIES:

SEVEN YEARS OF SEL STUDIES

Mike Stark

SOFTWARE ENGINEER/NG BRANCH

Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

001) 286-5048

ABSTRACT

This paper examines the premise that object-oriented technology (0013 is the most

signif'zant technology ever examined by the Software Engineering Laboratory. The
evolution of the use of OOT in the Software Engineering Laboratory (SKI.) "Experience

Factory" is described in terms of the SEL's original expectations, focusing on how

successive generations of projects have used 001. General conclusions are drawn on how

the usage of the technology has evolved in this environment.

INTRODUCTION

The Software Engineering Laboratory (SEt.) has

examined many technologies, some of which have

major effects on how software is developed in the

SEL production environment, where ground-

support software is produced for the Flight

Dynamics Divisiun (FDD) at Goddard Spaceflight

Center (GSFC). One technology, Object-Oriented

Technology (OOT), has attracted special notice in

recent years, causing Frank McGan'y, head of

Goddard's Software Engineering Branch, to remark

a year ago that "Object-Oriented Technology may
be the most influential method studied by the SEL

to date" (Reference 1).

The SEL, sponsored by the National Aeronautics

and Space Administration/Goddard Space Flight

Center (NASA/GSFC), has three primary orga-
nizational members: the Software Engineering

Branch of NASA/GSFC, the Department of

Computer Science of the University of Maryland,
and the Systems Development Operation of Com-

puter Sciences Corporation. R was created in 1976

to investigate the effectiveness of software engi-

neering technologies applied to the development of

applications software. As it seeks to understand the
software development process in the GSFC envi-

ronment, the SHL measures the effects of various

methodologies, tools, and models against a baseline
derived fi'om ctm'ent development practices.

In the SEL production environment, the language

usage is approximately 70 percent FORTRAN,

15 percent Ada, and 15 percent C. This is in contrast
to the almost 100-percent FORTRAN e_avironment

in 1985. Projects typically last between two and

four years, and they range in size from 100,000 to
300,000 source lines of code (SLOC). A typical

project consists of between 20 percent and 30 per-
cent code reused from previous projects.

SEL-92-004 page 74

THE EXPECTATIONS AND
REALITY OF OOT

The development of highly reusable software is one

of the promises of OOT. The initial expectations for
OOT were that this increased reuse would yield

benefits in the costand the reliability of software

prmiucts. In addition, it was expected that OOT
would be more intuitive than the muctured devel-

opment traditionally used in this environment,

making the development process more efficient.

Therefore, the SEL expected that, in addition to the

reuse benefits, the cost of developing new code
would also decrease.

The specific measures applied to assess the effect of
OOT include cost in hours per thousand source lines

of code (KSLOC), reliability by measming errors

per KSLOC, and the duration of the project in

months. To date, OOT has been appfied on eleven

projects in the SEL. These projects can be grouped

intothree f_milies of completed projects and an

ongoing effort to develop generalized flight dynam-

ics application software.

The completed projects (Figure 1) include three

early Ada simulators built between 1985 and 1988,
as well as three FORTRAN ground-support sys-

tems developed fi'om the Multimission Three-Axis

Attitude Support System (MTASS) and four telem-

elry simulators developed from mullimission simu-
lator code, all of which multimission applications

were developed between 1988 and 1991.

During the seven years the SEL has been experi-

menling with OOT, developers have gained more

tmdemtanding of which object-oriented concepts are

most applicable in the FDD environment. The most

important part of the evolution is the appfication of

object-oriented concepts to a greater portion of the

development life cycle over time. The knowledge

gained during the development of these three

families of systems is being applied in the develop-

ment of generalized flight dynamics applications.

Despite its later appearance chronologically, the

MTASS family of systems (Figure 2) should be

examined first because it represents a modest
infusion of OOT.

MTASS started with a ground-support system that

was developed as a common system for two

GRODY

GOADA

GOESIM

UARSAGS$

UARSTELS

EUVEAGSS
i

EUVETELS

EUVEDSIM

SAMPEXAGSS

SAMPEXTS

POWlI"S

msl_.

urtl

m'tl

_e't I

mOl

Imo I

,carol

maoL

110/00

Im

I I i I I

| 1_;m

ImO

ImO

jme

I--'_'--]. :1,'111

reel I_

I I I I

0 10 20 30 40 50 60 70 80 90
DURATION-MONTHS

100

Figure L Projects Using Object-Oriented Technology

11 2
SEL-92-004 page 75

High level design

Tmmeu_

... I I m

Figure 2. MTASS Design

different satellites, the Upper Atmosphere Research

Satellite (UARS) and the Extreme UltraViolet

Explorer (EUVE) satellite. It was then reused for
the Solar, Anomalous, and Magnetosphere Particle

Explorer (SAMPEX).

All ground-support systems read in telemetry and

produce ardmde (spacecraft orientation) estimates.
The difference is that, where previous systems had

stored all sensor data in one file specifically

designed for the mission, MTASS developed

separate interface routines and file formats for each
kind of sensor. Only a mission-spec_c front-end

telemetry processor had to be developed for new
missions.

This basic grouping of data and operations on the

data is the most important object-oriented concept
in the FDD environment. This change alone

enabled an increase in code reuse from the baseline

20 percent to 30 percent to around 75 percent or

80 percent.

It should be emphasized that the use of OOT on

these projects was modest. The implementation

language is FORTRAN, and the standard structured

design notation was used to document the system.

The object-orientation of the sensor model design

was recognized during coding, rather than con-

sciously planned during design. Nonetheless, this

one simple concept has had uemendous benefit in

developing ground-support software faster and at a
lower cost.

The earliest purposeful use of object-orientation in
the SEL environment was associated with the

introduction of Ada in 1985. The first Ada project,

the Gamma Ray Observatory (GRO) Dynamics

Simulator in Ada (GRODY), was developed as an

experiment in parallel with an operational FOR-
TRAN simulator. Previous Ada experiments (Ref-

erence 2) had produced designs and code that
looked like Ada versions of FORTRAN systems.

To avoid this, the GRODY team was trained in a

variety of design methods, including Booch's

Object-Oriented Design (OOD) method (Refer-

ence 3), stepwise refinement, and process abstrac-
tion. In addition, one of the team members had an

academic background in OOD.

OOD emerged as a clear favorite, but in early 1985
Booch's method was not mature enough to support

large production projects. Stark and Seidewitz

developed the General Object-Oriented Design
(GOOD) method during the GRODY project to

meet these needs (Reference 4). Its first application

was on the Geostationary Operational Environ-

mental Satellite (GOES) Dynamics Simulator in

Ada (GOADA), a project started in 1987.

The goal of the early Ada simulation projects was to

learn the appropriate use of the Ada language, with
a view towards increasing software reuse. Other

goals were considered less important. The GRODY
team, for example, was specifically instructed not

to wont about the real-time requirement being

imposed on the FORTRAN simulator, and in fact
GOADA was able to achieve higher than usual

reuse from GRODY code. However, the lack of

attention to performance led to systems with

disappointing performance.

11

SEL-92-004 page 76

The SEL responded to this issue by stadying the

performance of the GOADA simulator in detail to
determine if the performance problems were caused

by the Ada language, the OOD concept, or by the

GOADA design itself. The studies estimated the

effect of various improvements on the execution

speed of a simulation. The key improvements were
as follows:

• Removing repeated inversions of the same ma-
trix from the integrator's derivative function

Modifying the storage of arrays of variant re-
cords to arrays of pointers to variant records;

this reduced the amount of memory used to

storeprograminputparameters

other generics that provide common functionality

such as modeling sensor failures or digitizing simu-

lated smsor data. One of the interesting comequences

of the extensive use of generics is that the system size

decreased. The igevious generation of Ada telemelry
simulator contained 92 KSLOC, but this multimis-

sion simulator c_ains only 69 KSI.DC.

This architecune was the first simulator designed to

facilitate reuse from mission to mission. Unlike the

MTASS system, this simulator does not need a

mission-specific subsystem to handle telemetry;
the telemeU'y formats can be set by run-time

parameters. When this strategy is used appropriate-

1%the reuse levels approach 90 percent verbatim
code reuse, with the remaining part undergoing

minor modifications.

• Changing package state from dynamically allo-
cated parameters to static variables While this 90..percent reuse level has helped reduce

Optimizing utilities for three-dimensional lin-

ear algebra to use couslrained types for vectors
and matrices*

• Removing a string conversion from the main

simulation loop

• Replacing a schedule queue with hard-coded

fixed time step-simulation loop

• Compiling debug code conditionally by using
dead-code e"hmination in "if" blocks

None of these changes fundamentally altered the

object-oriented nattwe of the design. Figure 3 shows

that making all these changes to the full simulator

would improve performance to the levels attained

by similar FORTRAN simulators.

The next generation of projects is a multimission

telemetry simulation architeclm, e, built around Ada

generic packages. Figure 4 shows how two sensor

models use a generic se_or package for common

functions such as writing reports and simulated data

files.

Here, each sensor has its own specific modeling

procedme that is used to instanem the gexeric.In
addi en, these model precedmes are beilt aronnd

* Most vectors and ma_iccs in flight dynan_s ate
dimensional. Using this c_t allowed hand

op_za6en of all me operations.

software costs and shorten development schedules,

it has only done so on a limited class of systems.
When the telemetry simulator was reused for a new

class of systems (spin-stabilized spacecraft), the

system complexity increased, reuse decreased, and

run-time performance suffered. MTASS had a

similar problem when it was applied to a spacecraft
that didn't have a sensor on which the original

MTASS design depended. In addition to variations

between spacecraft, simulators and ground systems
contain many common models. However, the

current practice is to create separate systems from

separate specifications. The way to account for
variations between satellites and to exploit com-

mortality between software systems is to perform

domain analysis, rather than aUempting to general-

ize the specification of a single satellite's simulator

and ground-support system.

In the FDD, this domain analysis is being done as

part of a generalized system development initiative.
The attempt to develop generalized software to

support multiple fright dynamics applications was
based on the experiences of the projects described

above. The mul_mi.qsion simulators demonstrated

the feasibility of generic architectures, and it had

been demonstrated that applying the object-

oriented concepts of abstraction and encapsulation
was sufficient to increase reuse dramatically.

Finally, the existing designs were highly reusable,
but had severe limitations in the areas of adapt-

ability and run-time efficiency.

4
_oooeoael. SEL-92-004 page 77

It

10

&

5"

4-

3-

2"

1-

0

11:oo

CPU time for 20-minute
simulation (GOADA)
(VAX 8820 CPU minutes)

Estimates

FORTRAN examples

1:4S

Figure 3. Impact of Performance Goals

Genedc i
Gym ' Sensor ' SensorModel , t Model

Figure 4. Multimission Telemetry Simulator Design

1000_mNL

SEL-92-(X)4 page 78

5

Thekey concepts selected for generalized system

development in the FDD are to perform object-ori-

ented domain analysis, and to have a standard

implementation approach for the generalized mod-

els. Figure 5 shows a typical diagram from the

generalized specifications.

The boxes are generalized st_rclasses with their

subclasses listed inside; Gym, Sun Sensor, and Star

Camera, for example, are subclasses of Sensor. The

arrows between categories represent dependencies

between classes. For example, estimators depend

on Sensor for measurements and Dynamics for state

propagation. These dependencies are rrmtched in

the implementation with Ada generic formal pa-
rameters. The classes themselves are implemented

as abstract data types in Ada packages. With this

generalized development effort, object-oriented

domain analysis and standard implementation, as

well as other features of the object-oriented

paradigm, are now being applied to the entire

software life cycle.

With the successive generations of object-oriented

development efforts defined, the next step is to

examine how the SHL's approach has changed
between 1985 and 1992. The approach has evolved

in what concepts are used, when they are used in the

life cycle, and how they are taught.

The concepts of data abstraction and encapsulation,

used from the beginning, have themselves enabled

the high reuse observed on the MTASS system;

even the secondAda simulator attainedhigberreuse

than is typical for similar FORTRAN simulatcn.

The multimission telemetry simulator introduced

the idea of inheritance by taking a general model for

sensors and tailoring this model for each type of

sensor. It also introduced the idea of parameterizing

dependencies with Ada generic formal parameters.

The generalized application work added the use of

abswact data types, where previous systems had

implemented objects as state machines. The gen-

eralized systems also have a superclass/subclass

hierarchy limited to superclasses (called "Catego-

ties") and one level of subclasses for each super-
class.

Dynamic binding is coded using Ada case state-

ments, not an object-oriented programming lan-

gnage feature. Having support for object-oriented

programming in Ada would remove the need to
write this code, but the cost reduction from using

dam absn_ion is much greater.

The other notable change is in how OOT affected

the development process. In the MTASS system, it

had _ impact, as the design approach was

stngtured, with the object on'_tation being recog-

nized during coding. Both generations of simula-

tors used object-oriented design and object-based

coding based on Ada packages; the generalized

system project added an object-oriented approach

to defining specifications. It is anticipated that

having an object-oriented view throughout the life

cycle will make the use of the technology easier by

removing the need to recastfunctionalspecifica-

tions into an object-oriented design.

The SEL provided training in Ada and design

techniques for the early Ada simulator experiments,
but the not the later mulfimission simulators. The

MTASS FORTRAN system involved no training in

m

[mtea trust m

mmtta

Figure 5. Generalized System Specifications

10o01mgel. 6
SEL-92-004 page 79

OOT, as the project did not set out to use a new

language or design technology. The subjective

experience of the SEL has been that the application
of OOT was not so intuitive as expected, as

functional decomposition has been successfully

applied for over 15 years. The SEL, recognizing
that transition to a new technology must factor in

time to learn the new way of thinking, is creating a

new training program that captures the lessons

learned on previous projects and describes the

overall object-oriented software development pro-
cess as well as specific language and design

concepts.

The use of OOT also affected software reuse, which

in turn affected how software specifications are

written. FOR'I]7,AN ground-support systems have

always retied on libraries of software components,
and MTASS continued that tradition. The early Ada

simulators also developed utility packages that

played a role analogous to FORTILAN reuse
libraries. Both MTASS and the early Ada simula-

tors pioneered idea of reusable subsystems; the
simulators contain a reusable collection of orbit

packages and MTASS contains major capabilities
(such as attitude estimation) that are implemented
as a reusable cofiection of subroutines. The multi-

mission simulators added the idea of ganeric,

tsilorable models; instead of reusing single subrou-

tines or entire subsystems, Ada generics were used

to design generic packages to implement reusable

objects from common templates. The ganeralized

system work added the concept of parameterizing

the dependencies between objects, easing the

configm'ation of multiple systems that include

different models from the same goneral categories.

The evolving reuse concepts affected the specifica-
tions for missions. The early simulator work

focused on specifying simulators to support single
missions. When reusable subsystems were first

applied on Ada simulators, specifications were

written for multiple missions. However, separate

specifications were written for simulation and

ground-support systems, and the focus was on two
missions supported simultaneously, rather than on a

generalized domain analysis. The generalized sys-

tents project identified common elements among

application areas by means of domain analysis and

wrote specifications that accounted for variations

between missions by parameterizing the dependen-
cies between classes. The current approach, in

contrast, calls for both reconfigurable specifica-

tious and a standard, reusable system architecture.

The goal of bringing new technology into the SEL
is to measurably improve the software development

process. Figure 6 shows the project characteristics
of the three mulfimlssion simulator projects.

The project labeled UARSTEI._ was developed to
be reused for future simulators, and the projects

labeled EUVEI'EI_ and SAMPEXTS represent

the first two projects to reuse this architecture.

Costs were reduced by a factor of 3, change and

error rates were reduced by a factor of 10, and

project cycle time was cut roughly in half. However,
we have already shown that when an attempt was
made to reuse this architecture for a different class

of projects there were difficulties adapting the code,

and rim-time performance was unsatisfactory.

The generalized system effort is attempting to gain
the benefits shown for this single family of projects

over a wider variety of flight dynamics applica-

tions. This will allow the FDD to support more

missions simultaneously, and will fTee resources to

concentrate on improving existing capabilities or

defining new ones.

THE ANSWER

This paper addresses the question, "Is Object-
Oriented Technology, then, truly the most influen-

lial method studied by the SEL to date?" The

conclusion of the SEL is that OOT does promote

reuse, sometimes even neglecting other important

issues like rim-time efficiency. When coupled with

domain analysis, OOT enables high reuse across a

range of applications in a given environment. While

the reuse expectations were met, the use of OOT

was not so intuitive as expected, partly because the

technique was new to an organization with a mature

structured development process. The other factor

affecting the ease of transition is the inherent and

growing complexity of flight-dynamics problems;

OOT may be a better process but, in addition to

software techniques, skilled designers are still

needed to solve difficult problems.

Still, few (if any) of the other technologies studied

here have effects so widespread or so profound as

10ooeagel.

SEL-92-004 page 80

7

2O0
180
160
140

HOURS/ 12o

KSLOC 1:
6O
4O
2O
0

EFFORT

fi
OF CRF'S/ S.0

v. .oc
1J
1.0
_s

CHANGE AND ERROR RATES

10o
9O
8o
10
6o

WEEKS e0
4O
_10
2O
10
0

PROJECT DURATION

I

Figure 6. Project Characteristics, Multimission Simulators

OOT. In fact, OOT is the first technology that

covers the entire development life cycle in the FDD.

It is an enlirely new problem-solving paradigm, not

simply a new way of performing familiar tasks in a
traditional life cycle. It has been demonstrated to

expand the reusability and reconfigurability of

software, with resultant improvements in produc-

tivity and development cycle time. In this sense,
001" is arguably the most infium_d teclmology
studied by the SEL.

REFERENCES

"Rece_ Experiments in the SEI,," Proceed/ngs

of the Sixteenth Annual Software Engineering

Workshop, _lt, MD, December 1991,

pp. 77--85.

2. Basili, Victor g., and Kalz, Elizabeth E.,

"Software Development in Ada," Proceedings

of the Ninth Annual Software Engineering

Workshop, Greenbelt, MD, November 1984,

pp. 65--85.

3. Booch, Grady, Software Engineering With

Ada (First Fzlifion), Benjamin/Ctmm_gs,

Menlo Park, CA, 1983.

4. Seidewitz, E., and Stark, M., General

Object-Oriented Software Development,

SEL-86-002, August 1986.

10oo_ 8
SEL-92-O04 page 81

Object-Oriented Technology

IMPACTS OF OBJECT-ORIENTED TECHNOLOGIES:

SEVEN YEARS OF SEL STUDIES

Mike Stark
December 2, 1992

-SEL Software Engineering Laboratory 10006934G

Object-Oriented Technology

"OBJECT-ORIENTED TECHNOLOGY MAY BE
THE MOST INFLUENTIAL METHOD

STUDIED BY THE SEL TO DATE"

Frank McGarry at the 16th Annual
Software Engineering Workshop

December 4, 1991

_- SEL Software Engineering Laboratory 1000e934G

SEL-92-004 page 82

Object-Oriented Technology

AGENDA

• Background

• Evolution of Object-Oriented Technology

• Observations and Recommendations

• Conclusions

_- SEL Software Engineering Laboratory 10006934G

Object-Oriented Technology

OBJECT-ORIENTED TECHNOLOGY
EXPECTATIONS

Common
Software

Engineering
Measures

I Measures
Expectations

Soltwam Process Shift of effort towards
Measures design phase

Cost of new More efficient
line of code development

Overall cos1 of Lower project

software projects development costs

Reliability Lower error rates
(Errors per KSLOC) during development

Maimainability

Lower maintenance
costs

Reasons to expect Improvements

Substantial increase

High muse petentJal in muse

Improved software Object concept more

develol_'nent process intuitive

Studies compare

new technology
(OOD) to
well-measured

baseline (FORTRAN

structured design)

Must apply specific measures to assess
new technology against current practice

/_SEL Software Engineering Laboratory 10006934G

SEL-92-O04 page 83

Object-Oriented Technology

SEL PRODUCTION
ENVIRONMENT

SOFTWARE CHARACTERISTICS

• SCIENTIFIC (FLIGHT DYNAMICS)

• GROUND BASED (NON-EMBEDDED)

• INTERACTIVE

LANGUAGES

• 75% FORTRAN

• 15% ADA

• 10% OTHER (C, PASCAL, LISP, ...)

PROJECT CHARACTERISTICS

• DURATION (MONTHS) 24-40

• EFFORT (STAFF YEARS) 30-45

• SIZE (KSLOC) 100-300

• STAFF (FTE) 5-15

• REUSE 20-30%

*SEVERAL PROJECTS EXCEED 200 STAFF YEARS, SEVERAL
LESS THAN 3 STAFF YEARS

)_-- SEL Software Engineering Laboratory

*HOMOGENEOUS CLASS OF
SOFTWARE

*CONSISTENT SU PPORT
ENVIRONMENT

*CONTROLLED PROCESS

*EVERY PROJECT ANALYZED
WITHIN EXPERIENCE
FACTORY

10006934G

Object-Oriented Technology

PROJECTS USING OBJECT-ORIENTED
TECHNOLOGY

GRODY _ I
m

GOADA

GOESIM

UARSAGSS

UARSTELS

EUVEAGSS

EUVETELS

EUVEDSIM
m

SAMPEXAGSS

SAMPEXTS

Powrrs

I

o lO

eel

11_ I

I I I I

2O 3O 40 50

i lO/88

14_o

lT_e

Jg_o

I _Jm

lo_1 I Me

lo_1 I_o

10 r-'- 3/91

1 ,1

I I I I

60 70 80 90 100

DURATION - MONTHS

_-SEL Software Engineering Laboratory 10006934G

SEL-92-004 page 84

Object-Oriented Technology

EVOLUTION OF OBJECT-ORIENTED
TECHNOLOGY

Evolution

• Use of concepts

• Life cycle coverage

• Tools and Training

Systems Studied

3 Early Ada simulators (1985-1988)

3 Ground Systems built from Multimission Three-Axis
Attitude Support System (MTASS) (1988-1991)

4 Telemetry simulators built from multimission simulator
code (1988-1991)

Generalized System Development (1991-)

_-SEL Software Engineering Laboratory
1000Sg34G

Object-Oriented Technology

MTASS CHARACTERISTICS

High level design

Tekmmtry

General Characteristics

Concept development: New view of sensor data

Language: FORTRAN

Requires new code for mission unique telemetry processing

Object-orientation recognized during coding

_-SEL Software Engineering Laboratory
1000eg34G

SEL-92-004 page 85

Object-Oriented Technology

EARLY SIMULATOR CHARACTERISTICS

Hioh-Level

I User Simulation

Interface - |

Database

General Characteristics

Language: Ads

Training: 1at project (GRO) : Ads language, design techniques (Booch, Cherry)
2rid project (GOES) : Ads, GOOD, DEC tools

Concepte Developed: General Object-Orlented Development (GOOD)

I Early Ada simulators used object-oriented design

_-- SEL Software Engineering Laboratory 1oO_4G

Object-Oriented Technology

IMPACT OF PERFORMANCE GOALS
11:o0

11-

10-

9-

8-

?-

6"-

5"-

4"-

3"-

2"-

1"-

0 o_

CPU time for 20-minute
simulation (GOADA)
(VAX 8820 CPU minutes)

[] Estimates

[] FORTRAN examples

4:3S

",'o

3.10

uocmy mm_Wy_ m Fmdlnm Cm_Uorm 9gf_E_.lMJSD_BI
Pmmmer OblmcmUm_eo Sutng _mp Co_plb

Startle SmeOe,- Convmdon Scheduler c_e_xqi FOAllRANSmULATORS
gromLoop

I
_-SEL Software Engineering Laboratory

No trade-off between object-odentetion and performance I

1000S_O4G

SEL-92-(X)4 page 86

Object-Oriented Technology

MULTIMISSION TELEMETRY SIMULATOR
CHARACTERISTICS

s sunGym Sensor

Gym I i Generic a
Model i Sensor 0 r

I I

General Characteristics

Language: Ada

Concept Development: Usoof Ada generics

Tailoring of generalized hardware package

Telemetry formats set by run-time parameters

3/4 of the code needed by early telemetry simulators

I First reusable architecture in SELI

_-- SEL Software Engineering Laboratory 10006934G

Object-Oriented Technology

DOMAIN ANALYSIS

• Single-system designs don't account for variations between
missions.

Examples

1. MTASS didn't consider spacecraft without gyros.
SAMPEX ground system needed to create pseudo-gym data to feed into
reusable code - instead of estimating directly from sensor data.

2. Generic telemetry simulator didn't consider spinning spacecraft.
Reuse of three-axis design for spinning spacecraft led to

u

higher complexity
slower execution

• lower reuse

Commonality between simulation and estimation is ignored (duplicated
code)

_-SEL Software Engineering Laboratory

Domain Analysis is needed to account I
for variations between systems. I

10006934G

SEL-92-0(O page 87

Object-Oriented Technology

GENERALIZED SYSTEM DEVELOPMENT

I-= IGym
Sun 94nlor
9Wr Camom

Estimates

Balch least ICplams

Kainm fln_

I Force ImegrxUon

General Chsracteristics

Concept Development: Configurable object-oriented domain analysis
Standard design approach for classes specified

Language: Ada

Training: SEL Training Courses (Ada, OOD, development process and tools, flight dynamics)

Generalized system concepts

Ade efficiency

,I Object-oriented technology is extended to specifications I

_- SEL Software Engineering Laboratory 1OO06934(3

Object-Oriented Technology

EVOLUTION OF OBJECT ORIENTED
TECHNOLOGY

U:mJCgBBmat:

-c- IAbstract Oala Type

pmwm_rund Oelxmdone_

Inl_mRnco (Spoc_umuoe)

ANtracUon (eooch, GO00)
Early IdultUllllHdoa Omwrllllznd

M'rASS S_nulators S_llnors Applk:aUons

__n i_ W
Early launlmllmlon Ge_

MTASS Smulawrl Slmumtorl ApCacal_ms

- t w NLanguageand Tools

Sommm Eng. Coccepls m

F.any Munlm_ Gommllzo4
Slmutntore Sm_uwora AppllcaUo_MTASS

_-SEL Software Engineering Laboratory _0006_4G

SEL-92-004 page 88

Object-Oriented Technology

IMPACT OF EVOLVING TECHNOLOGY

Reuse ConceDts

Parameterized Dependencies

Generic Models

Reusable Subsystems

Component Libraries II
Early

MTASS Simulators

MWtlmlsslon Generalized

Simulators Applications

Specifications

Configurable Specifications

Multiple Missions and Applications

Multimission Application

Single Mission and Application

Early Multlmlssion Generalized
MTASS Simulators Simulators Applications

I
Object-oriented technology has evolved to

recontigurable specifications and reusable architectures I
_//-SEL Software Engineering Laboratory

t(X)O6934G

Object-Oriented Technology

PROJECT CHARACTERISTICS - MULTIMISSION
SIMULATORS

EFFORT

UARSTELS EUVETELS SAMPtEXTS

J_ 'rlECHNIC_M._ _ TOTALHOUR_ J

PROJECT DURATION

200
180
160
140

HOURS/ 12o

KSLOC 1_

6O

2O
0

5.O

4.5
4.O

3,5

OF CRF'S/ 3.O

KSLOC 2._

1.5
1.0
O.5

CHANGEANDERRORRATES

UARSTELS EUVE'tl£LS SaMPEXlrs

t-- ERRORIUllES --I- CI4M/GE RATES I

100
gO
8O
7O

WEEKS _S_

40
30
20
10
0

UARSTELS EUVETELS SAMPEXTS

)- SEL Software Engineering Laboratory

• Decreased cost

• Shortened cycle time

• Increased reliability

10006934G

SEL-92-004 page 89

Object-Oriented Technology

OBSERVATIONS AND RECOMMENDATIONS

Observations

• Domain analysis is necessary to gain full reuse benefits

• OO technology promotes reuse over other considerations

• Transition to new technology takes time and effort

• OO technology is not a silver bullet (skilled designers are still

needed)

• OO is first technology to cover full lifecycle in FDD

Recommendations

• Tailor usage as needed for environment (FDD didn't use OOP

language)

• Start with smaller pilot projects

• Don't reuse an architecture until it meets other design goals

_-SEL Software Engineering Laboratory 10006_O4G

Object-Oriented Technology

CONCLUSIONS

Object-oriented technology is the most influential
technology studied by the SEL because it

• Is a new problem-solving paradigm

• Is applied to all life-cycle phases

• Expands reusability and reconfigurability of software

• Improves productivity and cycle time

_-SEL Software Engineering Laboratory 1000G934G

SEL-92-004 page 90

Session 2: Process Measurement

Rose Pajerski, NASA/Goddard, Discussant

John O. Jenkins, City University, London

Anthony J. Verducci, Jr., AT&T Bell Laboratories, USA

Charles B. Daniels, Paramax Space Systems Operation

SEL-92-004 page 91

SEL-92-004 page 92

