
N94-11433

A RECENT CLEANROOM SUCCESS STORY:

THE REDWING PROJECT

Philip A. I-Iausl_"

IBM Corpo_tion
100 Lake Forest Blvd.

Gaithersburg, MD 20877

email: hausler_betasvm2.vnet._m.com
and

University of Maryland, Baltimore County

Department of Compoter Science
Baltimore, MD 21228

email: hansl_bcl.umbc.edu

ABSTRACT

Redwing is the largest completed Cleanroom software engineering project
in IBM, both in terms of lines of code and project staffing. The product

provides a decision-support facility that utilizes artificial intelligence (AI)

technology for predicting and preventing complex operating problems in an

MVS environment.

The project used the Cleanroom process for development, and realized a
defect rate of 2.6 errors/KLOC, measured from first execution. This

represents all errors ever found in all testing and installation at three field
test sites. Development productivity was 486 LOC/PM, which included all

development labor expended in design specification through completion of
incremental testing. In short, the Redwing team produced a complex systems

soflrware product with an extraordinarily low error rate, while maintaining
high productivity. All of this was accomplished by a project team using

Cleanroom for the first time.

An "introductory implementation" of Cloanroom was defined and used on
Redwing. This paper describes the quality and productivity results, the

Redwing project, and how Cleanmom was implemented.

From Proceedings of Seventeenth Annual Soflwmt Engitmmug Workshop, Dec., 1992

SEL-92-004 page 256

CLEANROOM AND THE REDWING PROJECT

In the past few years, with the thrust in IBM on Market-Driven Quality and process

improvement, the Cleanroom software engineering process has been broadly embraced.

Cleanroom teams in IBM laboratories are developing software that exhibits dramatic quality

results; consequently, they are meeting and often exceeding IBM's Market-Driven Quality

objectives and are setting new standards and expectations of performance [Linger 1992].

Cleanroom software engineering is a methodology for developing ultra-high quality software.

It defines a set of technical and management practices to be followed during software

development. In the Cleanroom process, correctness is built in by the development team through

formal specification, design and verification. Team correctness verification takes the place of

unit testing and debugging, and software enters system testing directly, with no prior execution

by the development team. All errors are tracked from first execution on, with no private unit

testing permitted. The certification (test) team is responsible for certifying the quality of software

through statistical usage testing that produces scientific estimates of product quality. Errors, if

any, found in testing are returned to the development team for correction. If quality is not

acceptable, the software is removed from testing and returned to the development team for

rework and reverification.

The process of Cleanroom development and certification is carried out incrementally. Integration

is top-down and continuous, with system functionality growing through addition of successive

increments. When the final increment is complete, the system is complete.

The Redwing product is the largest completed Cleanroom project in IBM, both in terms of lines

of code and project staffing. (Because the product has not yet reached the market, the internal

name "Redwing" will be used in this paper.) The Redwing team was able to produce a complex

systems software product with very high quality, while maintaining high productivity. Most

impressively, this was the first development effort by this project team, and more notably, the

first time the developers had used Cleanroom [Deck 1992]. How was this accomplished?

When the decision was first made to use Cleanroom, there were still many unanswered questions

and concerns regarding its use on Redwing. Questions about the ability to wain the personnel,

apply it to the product domain, etc., were common. The concerns really fell into three primary

areas: business, management and technical. The primary questions that needed to be addressed

were"

Business:

Could we introduce a new process and still maintain planned commitments for

schedule and budget?

2

SEL-92-004 page 257

How would we use Cleanroom with a previously-defined checkpoint process,

based on a sequential(waterfall)model?

Management:

How do we introduce a new methodology? Do performance and quality

expectationsdifferin a Cleanroom development environment? Will functional

management work?

Technical:

How do we traina new team? What consultationsupport will bc required?

How do we defme the incremental development plan?

Do we specifythe system up-front or in_ementaUy?

Can Cleanroom be extended to handle a rule-based system (AI expert system

shell) and real-_ne tasking software in MVS?

This paper presentsthe Clcanroom qualityand product results,describes the Redwing product

and environment, explains how Clcanroom technology transferand buy-in wcrc accomplished,

and defines Redwing's introductory implementation of Cleanroom. Finally, this paper

summarizes the Redwing projectwith respect to the questions posed above.

CLEANROOM QUALITY RESULTS

After studying the Cleanroom methodology and examining availabledata from priorClcanroom

projects,the testing department projected defect rates for both the pre-ship and post-ship

software. The projecteddefectratefor each incremental delivery was 4 defects/KLOC, plus 1

dcfect/KLOC for system testing,and 0.5 dcfects/KLOC afterthe product was shipped. Note that

these numbers were significantlylower than those customarilyused for comparable products,but

itwas feltthatsuch aggressivegoals should bc set,even for a first-timeCleanroom team. Table

1 summarizes the development historyof the product,with defectratesshown as measured from

firstexecution. As a comparison, a projecteddefectnumber isshown using an average industrial

defectrateof 30 dcfects/KLOC. The tearnproduced the complex systems software with a defect

rate an order of magnitude betterthan industry average, and a rate that even exceeded the

projected ratesof 4 and 1 dcfects/KLOC for incremental and system testing,respectively! At

the time of thiswriting no post-ship customer data was available,however, three beta test

installationsat customer siteshave rcportca no operationalerrorswhatsoever.

3

SEL-92-004 page 258

Defects Projected Actual soft- Defects/

Increment . KLOC @ 30/KLOC defects _ ware defects 2 KLOC

1 16 480 64 43 2.7

2 50 1500 200 41 0.8

3 41 1230 164 97 2.4

Subtotal 107 3210 428 181 1.7

System testing 3 107 93 0.9

Total 107 3210 535 274 2.6

1 Increment testing defects projected @ 4/KLOC and system testing @ 1/KLOC.

2 Measured from first-ever execution.

3 Includes system, performance and field testing.

Table 1. Defect rates measured from ftrst execution for Redwing.

The projected productivity was based on an assumption that it would improve with each
increment. The productivity rates were projected as 300 LOC/person month for increment 1,350

for increment 2, and 400 for the final increment. Table 2 shows the actual productivity rates for

the three increments. The productivity rates are based on the total LOC developed, divided by

the person months accumulated for design specification through testing of the final increment.

The person months only include development resource, not testing; thus, they do not include the
labor months incurred by the testers. Redwing development achieved very competitive

productivity rates, exceeding the projected rates by 36% overall.

This dramatic increase in productivity was a significant factor in enabling Redwing to meet its

schedule. The original code size estimate was 72 KLOC, but actual code size was significantly

larger (107 KLOC), primarily due to unexpected growth in the workstation software (from 10 to

42 KLOC). The growth resulted from an unfamiliarity with Presentation Manager development

4

SEL-92-004 page 259

and unanticipated requirements. Thus, while actual productivity was a 36% improvement over
the projected rate, actual code size was 49% larger than planned. The improved productivity

enabled the development team to stay on course during development.

Increment KLOC

Projected Actual I Delta
Productivity Productivity %

LOC/PM LOC/PM

1 16 300 400 +33

2 50 350 500 +43

3 41 400 513 +28

Average 358 486 +36

1 Productivity -- LOC/development person months from design specification through

incremental testing.

Table 2. Productivity rates for three increments.

AN OVERVIEW OF THE REDWING PRODUCT

Redwing provides a decision-support facility that utilizes Artificial Intelligence (AI) technology

for predicting and preventing complex operating problems in an MVS environment. Redwing

is primarily a host-based product that runs in a NetView environment on MVS with interfaces
to several other IBM program products. A workstation component runs on a PS/2 in the OS2

environment, providing the user interface needed for the management of business policy.

The architecture is designed to detect and handle problems through a series of independently

running tasks that

1. monitor the operating environment for potential problems,
2. determine the nature and severity of potential problems,
3. recommend the best course of action based on the original problem and customer

5

SEL-92-004 page 260

policy, and
4. take action based on the best recommendation to resolve the problem.

The development environment was very complex as it required expertise in MVS and its

subsystems, expert systems technology, real-time tasking, message passing, and windows-based

programming for the workstation. Redwing was implemented using PL/I, TIRS, PL/X (an

internal IBM system language), assembler, JCL and REXX for the host software, and C and

Presentation Manager for the workstation code. To further complicate the environment, two

major dependencies existed on IBM system management products that were developed by other

labs.

Table 3 contains a breakdown of the various languages for implementation and the relative size

of each.

Development % of Language

Language Total Type

Assembler & 2 Low-level

PL/X

C & Presentation 40 High-level

Manager

JCL & REXX 3 Controlcode

PL/I 50 High-level

TIRS 5 AI: rule-based

Table 3. ImplementationlanguagesforRedwing.

Project Organization and Skills

The project commenced in July, 1989, with the first year and a half spent gathering, validating

and documenting requirements for the product. A half-dozen customers participated in this

activity. During the initial stages of the project, staff'mg for the development teams took place.

6

SEL-92-004page 261

Redwing was a second-line organization with four first-line departments. The four departments
were defined as follows:

1. Architecture: responsible for defining and documenting requirements;
2. Structure software development: responsible for all platform and workstation software;

3. Application software development: responsible for two applications running on

platform; and
4. Testing: responsible for product testing.

In addition to this organization, there were several support organizations enlisted throughout

product development that provided market development, quality assurance, information

development, usability, business and legal services.

As this was a new project, the Redwing team had never developed software together. Experience
of team members spanned the full gamut, from programmer retrainees to senior level

programmers with twenty-five years of development experience. With respect to the product"
domain, there was considerable experience in application development and in AI, but very little

with MVS and system programming. As it turned out, AI skills were utilized about 10% of the
time during development, while lVIVS and system programming skills were needed 90% of the

time.

As mentioned earlier, this was the first use of Cleanroom for all participants, with the exception

of one development manager and two developers. The project had an average staff of fifty

people throughout development. Consequently, extensive education and training were required
to utilize the methodology. The overall project schedule, including an end-date, had been

established in late 1989, prior to the decision to use Cleanroom. Given the schedule and

amalgam of skills and experience levels, Cleanroom was first met with a fair share of raised

eyebrows and healthy skepticism. This team had to simultaneously grapple with three important

problems: unfamiliarity with team members since this was the first time they worked together,
lack of experience in the subject domain and the introduction of a new (Cleanroom)

methodology.

SELLING CLEANROOM TO THE REDWING PROJECT

In early 1990, a Quality Improvement Team (QIT) was formed on the project with the objective
to make a recommendation on a development process to Redwing management. The QIT was

comprised of members from all four first-line departments. It met weekly for about two months

and reviewed several different models, such as waterfall, spiral, checkpoint, and Cleanroom.

A final position paper was written and presented to management with the recommendation to use

Cleanroom. The reasons given for this choice were:

* The emphasis on spending more time up front in specification and design seemed

7

SEL-92-004 page 262

critical in the new domain of the Redwing product.

• Since one of the objectives of Redwing was to maintain high availability of an MVS

system, high reliability of Redwing was mandatory. Correctness verification was
needed to produce ultra-high quality software.

• The Cleanroom approach would foster strong teamwork and enable others to become

experts with each team member's code.
• Redwing personnel with prior Cleanroom experience could serve as project consultants.
• The incremental approach would allow for early testing, refinement of requirements, and

provide definitive management checkpoints for progress.
• There was a general belief that Cleanroom would be successful.

At the same time the QIT was formulating its proposal, I made two briefings to the Redwing

management team. The first was a general overview of Cleanroom, including the key
technologies, past results and related management practices. Redwing management seemed

generally interested and enthusiastic. Soon after, I gave a second presentation that outlined more
concretely how Cleanroom should be applied to Redwing and what changes and differences
management could expect over traditional development. In many ways, gaining management

support was the most important activity that got Cleanroom accepted. By the time the QIT
recommendation was made, both the management team and the technical team (as represented

by the QIT) were in step.

The next step was to roll out Cleanroom to the remaining project members. A series of half-day
Overview classes was scheduled, with attendance at one of the sessions mandatory. Following

the Overview, a three-day Design and Verification class was given, with mandatory attendance

for all project members, including management. Select technical personnel also participated in

three-day classes for Specification and Certification (testing).

The Process Working Group

To further define and document the use of Cleanroom in the development process, a Process

Working Group (PWG) was formed with the objective to define and document the Redwing
development process using Cleanroom, establish and maintain project procedures, standards and
conventions, establish and maintain a measurement and improvement subprocess, and provide a

formal mechanism to resolve process issues and make improvements. Each major project
functional area, such as architecture, host development, workstation development., test,

configuration management and quality assurance, had representation on the PWG. This

composition ensured each department had at least two members on the team.

The major achievement of the PWG was documenting the development process and standards,

in the Redwing Project Development Procedures book [Redwing 1990]. The PWG documented
a comprehensive set of procedures and standards for an integrated, Cleanroom-based software
development process. More specifically, the Project Development Procedures book defined how
Cleanroom would be used, software engineering standards and conventions, how to conduct

reviews and design verifications, and the formal change process. This document and its

8

SEL-92-004 page 263

subsequent use by the team was critical for employee ownership of the process and buy-in.

Changes to the process had to be approved by the PWG and management. During the

development of Redwing, several revisions to the process were the result of suggestions by

project members during meetings held to improve the development process.

The Redwing managers required that aU developers certify that they had read and would adhere

to the Project Development Procedures. Not only did the document define a baseline of the

process for team members, but it served as an effective guide for new employees as they were
added to the project and to outside support personnel, such as vendors and quality assurance.
Adherence to the process also was integrated into performance plans for everyone.

INTEGRATING "ITIE CLEANROOM PROCESS ON REDWING

The PWG, primarily through the Project Development Procedures document, served a key role

in integrating Cleanroom into the technical development process; however, using Cleanroom also

required integration with an established set of business and planning checkpoints. The
Cleanroom lifecycle, as depicted in figure 1, consists of a pipeline of accumulating functional
increments, where each increment consists of design, verification, implementation and testing for

a specific set of functions. As a result, in Clea_oom there are unique planning parameters and
technical and business checkpoints required for project management. Pre-established project

management guidelines existed in IBM based on the traditional waterfall model, where the

activities of specification, design, coding and testing occur sequentially.

A phased checkpoint process based on the waterfall approach was expected to be used for project

planning and accounting. Since Cleanroom development does not adhere to the traditional model,

changes to the checkpoint model were required. This was primarily accomplished by working
with the various groups responsible for the business planning and financial support teams. They

attended Overview classes first, followed by meetings with Redwing management that served to

explain what Cleanroom was and how it differed from the traditional model. The support groups,
such as financial planning, quality assurance and legal, were very impressed with this

methodology, and easily integrated the necessary changes into their pre-established processes.
Most commented favorably that Cleanroom, due to the incremental approach, would provide early

insight into project status. And, since this occurred early and frequently, would allow for

appropriate contingency planning to maintain schedules and budgets.

9

SEL-92-004 page 264

cumc_ Ii_q_lL_tm

_£££=.alr_Lon

vmz:L_Z:f.c4zC:i.on

sta_Ls_Lca-3.

Tos_LnG

and

Ce:r_L£1caar.ton

li, m,T_dom 'l'om t

ram o _nO_A'."i qOaO,

Ze::o-Do£occ 8o £ _=w8_o

wlr.h MTTF F.s_:lmato

Figure 1. The standard Cleanroom development process.

Defining An Introductory Implementation Of Cleanroom

Product requirements were developed and documented over a period of 15 months, from July,

1989 through October, 1990. The decision to use Cleanroom was made in the second quarter

of 1990, and the Process Working Group was launched in June, 1990, with the ftrst version of

the Project Development Procedures Document completed in October, 1990. The Design and
Verification class was held in October, 1990, and development commenced in late November,

1990.

lO

SEL-92-004 page 265

Due to the project schedules, size of the organization, prior Cleanroom experience, and the

amount of training time allotted, it was decided by the management and technical team to pursue
a phased implementation of Cleanroom Software Engineering. In a phased implementation,
increasing control over the software process can be achieved through stepwise introduction of

Cleanroom practices [Trammell 1992].

Cleanroom development traditionally starts with a rigorous (formal) specification of the intended

system behavior in all circumstances of use. It is recommended that the box swacture

specification technology be used for this. The decision to use Cleanroom was made fairly late
in the cycle, after requirements analysis and system specification had occurred. By the

third-quarter of 1990, the Product Functional Specification (PFS) document was almost

completed. This document is required in IBM for program products, but is not an adequate
replacement for a Cleanroom specification. Typically, it contains only a subset of the

information required in a Cleanroom specification. The Redwing team decided to complete the

PFS document, and modify the standard Cleanroom model in order to produce a more formal

specification, following the less formal PFS. Consequently, as part of the introductory

implementation, it was decided that Redwing would use the PFS document as the initial
specification, and would add a formal specification phase in each increment. Figure 1 showed
the recommended Cleanroom approach, where system specification occurs fwst, followed by the

incremental design, verification, coding and testing. Redwing defined a model, as seen in figure
2, that used informal specification first, followed by incremental (formal) design specification,

design, verification, coding and testing. The formal specification used crisp English descriptions
in conjunction with intended functions to specify the external behavior of the increments.

The Redwing testing manager and testing team leaders attended a three-day class on Cleam'oom
Certification in October, 1990. While it was agreed that statistical testing would be a very

effective way to test Redwing, it was not felt the test team could learn and apply the

methodology in time for the first increment. Of greatest concern was the test team's ability to

defme the usage specification, normally done early in development at functional specification
time. As it turned out, though statistical testing was not employed for the entire product, it was

conducted for a significant subset of the product, namely, the workstation component that

accounted for approximately 40% of the total product code.

In summary, the Redwing project team decided on an "introductory implementation" that included

incremental development based on function requirements, incremental specification, design with
intended functions, team verification of correctness, delivery of each increment to independent

testers for first execution, and a measurement of process control against pre-cstablished standards.

The key elements of Redwing's introductory implementation are listed in Table 4.

11

SEL-92-004 page 266

L9Z o_l ¢00-i_6-"I_S

•"qo_os_uom 31_q_ P_ oo_I_,(lo1_mIxo.tdd_oJo#,p_

ptm puooosoql pt_ 's_uotuJl_q_ pu_ o,_ pols_Iluotuo._uIIs_joq.L "_lu.t_po_l.io_pougop oio,_

s_uomo_u! oo.n_',_pu_nbosuoDIuoumo_.AUO_uomdolo^oppu_ sso:_md,_ouo_ _!_ pol,_tu.q:_:_

ouo_o^o lo[1 ol sopIo u! uo.n_un_ _S_Oloql .u_uo_ plno_ luomos_m, ls.nj oq,l. "uoge_np u! sqluotu

oOXtllol o,_ moq_ s_ lu_ma_ou! q_o _aq_ uqd _ pI!nq plno_ [luI_PO_I l_ql popi_p s_#, lI

•sqluom OAI0,_ ,_lol_m_osdd_ s_ '2u.nsol _tu_nI:_m.'pouod luotud01oAop II_O^o oq.L auotuo_u!
q_ _o:I uog_un_I pu_ 'uo.n!sodmo_ ttmol 'sauotuox_u! oql ffuimjop u! _l!I!.q_olt l_.ntwlsqns
IlgS s_, _tI1 '_o!IX_ poqsIIqmso uooq ,(iI_.nuosso p_q loo.fozd otp _o_ ol_p-pu_ oql q_tnotLL

-soo_noso_ pu_ olnpoqos _uotudOlOAOp o_,_jos 'sluomozouI _o zoqmnu p_ luomo:_ l_UO.nOun.jo_
pom..Iop l_q_ podolo^op s_, u_Id luomdolo^op I_UOmOx_u! u_ 'os_qd uo.n_o_j!oods oql ffui,_OlIO::I

NV"Id _AMO'EtAHCI "TV_I_tI_'dDNI _LL DNINI::I_ICI

•ssoomd moosu_ID po_Ipotu s,ilm._PO_l "Z_Jn_!..4

_kzT'T_O

UJSTgOG

J

f_'znzuTd :_uma4oT_

T'g_mmo:zou_

t:_ummozTrd_'K :emo_m_

m:jummoz_z'r O_T_Wl_m_

m

Cleanroom Used (Yes/

Technique No/Partial) Comment

Incremental planning

Formal specification

Yes

Yes

Formal design Yes

Verification Yes

Statistical Testing Partial

3 increments

PFS + formal incremental

specification

Used translatablePDL w/

intendedfunctions

Strict adherence to rules

Incrementaltestingw/

statisticaltestingfor

workstationonly

Table 4. An introductoryimplementationof Cleanroom for Redwing.

The project team reviewed historical productivity and defect rates for comparable commercial

applications,and adjustedthem for Cleanroom based on prior Cleanroom data,personal

experienceand confidence.The incrementaldevelopmentplan was primarilydevelopedby the

project'technicalleaderswith review and approvalby the technicalteam. When it was

completed,itwas presentedtomanagement and approvedwith only minor modifications.

Eightprincipalfunctionalcomponents were definedforRedwing, witheach component assigned
to a team of one to fivedevelopers.In addition,each team alsohad an architectand tester

assigned to it. Team membership remained stablethroughout development of all three
increments.This ensured continuityand grew the expertiseand capabilityof each team. A

functionalmanagement approachwas used fortheteams becauseeach team consistedofpeople

from differentdepartments. Since each team had a designatedteam leader,management

ownershipwas assignedbased on theteam leader.Thus,a manager was responsibleforallteams

led by one of his department members. This scheme worked nicely but requireddaily
communication between managers, usuallyin the form of morning statusmeetings in which

schedules,plans,resourcesand performancewere addressed.

13

SEL-92-004 page268

USING CLEANROOM ON REDWING

Following the incremental planning phase, development commenced for increment 1. It became

immediately obvious that the developers did not have a keen understanding of what the entry

criteria were for design verification. Most understood how to perform verification, but

underestimated the level of rigor and precision needed. Typical of most designs in increment l

was that intended behavior was specified precisely for "normal" or "steady-state" processing, but

failed to capture the intended function for error conditions, exception processing, and less likely

scenarios.

To ameliorate this problem, it was decided that a demonstration review of an actual increment

one design should be held as early as possible. A senior level programmer was asked to be the

"guinea pig." When his design was "ready," his review team conducted a formal verification
review with the rest of the Redwing organization in attondance as observers. Everyone in

attendance had a copy of the material and followed along with the review team. The first review

lasted about three hours, with the outcome that the design did not pass the verification review.

This proved to bc an invaluable teaching tool for the proj(_'t team. Most were surprised that the

design did not pass, and even more surprised at the changes required in order to make it
verifiable. This turned out to be the most effective means to teach the team what was actually

expected in a Cleanroom review, and certainly saved an immeasurable amount of time and

frustration for the others. Since increment 1 was relatively small and straightforward, the team

was able to learn how to correctly apply Cleanroom and still make the first delivery date.

Cleanroom Facilitators

The Redwing project did benefit from the project members with prior Cleanroom experience.

They served dual roles as project team members and as Cleanroom methodology consultants.

They were teachers and trainers of the methodology, providing guidance on how to write

verifiable designs and conduct effective verification reviews. Equally important was the

encouragement they gave and confidence they instilled in their peers through example and

coaching. During the increment 1 reviews, one of the experts was present at every single review

to ensure the methodology was being adhered to, especially with respect to the correctness

verification conditions. During increments 2 and 3, others stepped forward to be Cleanroom

experts as they learned the methodology. This core group of five to six facilitator served a key

role for acceptance, application and improvement of Cleanroom.

Cleanroom Reviews

In order to ensure that reviews were effecuve, that is, that entry criteria for reviews were met,

advance preparation was conducted and the correctness conditions of each control structure were

examined. The Redwing Project Development Procedures document outlined formal roles for

review team members. A moderator was assigned who was usually one of the Cleanroom

14

SEL-92-004 page 269

facilitator (experts) mentioned above. The moderator ensured that reviews were conducted

properly, all issues recorded and all changes reverified. The author (writer of the design being

verified) led the team through the review. Also present were a key reviewer, typically the

component team leader who had a broad understanding of the component function, and other

reviewers, typically other component team members or others whose code interfaced to that being

reviewed. It was required that review materials be distributed to all participants at least 48 hours

prior to the meeting; all reviewers were expected to have read the materials beforehand.

Early Results and Observations

Key to applying Cleanroom to an organization of this size was the small team approach used to

partition the workload. Also, with multiple departments and managers, reliance on formal means

of communication, especially for verification review results, status, schedules, etc., was essential.

Weekly project status meetings were held and attended by management and team leaders. In

addition, monthly project reviews were conducted with the project team, market development,

quality assurance and finance.

Redwing's aggressive schedules did not allow for a pilot development effort in which the team

could practice and polish their Cleanroom skills. As a result, it required one full increment for

most developers to become proficient in Cle, anroom.

At the beginning of the project until delivery and testing of increment 1, many developers and

testers were somewhat skeptical about the effectiveness of Cleanroom. The real turnaround

occurred after increment 1 was delivered and testing found so few errors. In fact, during

increment 1 testing, several testers were upset and worried when they could not find any errors

after running their test cases; ironically, so were the developers. But this soon changed for

everyone -- defects quickly became the exception, not the rule.

Several important benefits, primarily derived from the team concept and correcmess reviews,

were experienced by the Redwing development team [Drew 1992].

• The teamwork was very strong and, consequently, verification reviews were "extremely

positive experiences."
* Cleanroom reviews reduced the "lone eagle syndrome," where a programmer is hesitant

to ask for help.

• Cleam'oom helped produce "egoless code."
• No one on the team was indispensable; the entire team was familiar and capable with

each other's components.

• Maintenance was less dependent upon code author.

• Cleanroom reviews provided an excellent forum for learning.

15

SEI.,-92-004 page 270

LESSONS LEARNED

As stated earlier, the challenges of using a new team in an unfamiliar environment were great:

moreover, schedules and resources were extremely fight. Yet despite these odds, a new

methodology was introduced, taught and implemented with tremendous success.

The primary success factors in this implementation of Cleanroom were:

• strong management support throught test,
* technical team participation in methodology selection (QIT) and implementation (PWG),

• joint management and technical team development of incremental development plan,
• adherence to correctness verification rules,

• demonstration review during increment 1,

• management attendance at training classes,
• three "consultants" on Redwing with prior Cleanroom experience,

• functional management scheme for teams of teams, and
• use of an introductory (phased) implementation of Cleanroom.

Recall, at the start of the Redwing project, several important questions needed to be answered.

Business

Q:

A:

Could we introduce a new process and still maintain planned commitments for schedule

and budget?
Yes, a new process was introduced early during Redwing, and the team was able

to accommodate the required start-up costs and still build the product successfully.

Q:

A:

How would we use Cleam'oom with a previously-defined checkpoint process, based on

a sequential (waterfall) model?
It was necessary to modify the checkpoint process to account for the incremental
Cleanroom lifecycle, and to train the necessary groups that would be affected by the

changes.

Management

Q:

A:

How do we introduce a new methodology?

First, management understanding and support must be gained, followed by technical buy-in

and ownership. Also, the appropriate resources for education, training and consultation

must be provided.

Q:

A:

Do performance and quality expectations differ in a Cleanroom development environment?
Yes, zero-defect software is the performance goal, not the hope. Developers are expected

to produce zero- or near zero-defect software prior to first execution under test. All major
milestones are based on the incremental approach. Completion of correctness verification

16

SEL-92-004 page 271

is a major milestone during an increment.

Q: Will functional management work?
A: Most definitely. The key is strong technical management of the team (or teams of teams

for larger projects).

Technical

Q.

A:

How do we train a new team? What consultation support will be required?

Formal training in Cleanroom is essential. The entire project team should be trained

together, including management. An experienced practitioner of Cleanroom (consultant)

to support the project is essential.

Q-

A:

How do we def'me the incremental development plan?

The incremental plan should be built following software specification by the technical

leaders and management. Much care should be given in defining the number of
increments, the function and code of each increment, and the development teams.

Q-

A:
Do we specify the system up-front or incrementally?

Ideally, the system behavior should be specified up-front, but this is not always practical
or feasible. An incremental specification can be used but needs to be developed carefully.

Q.

A:

Can Cleanroom be extended to handle a rule-based system (AI expert system shell) and

real-time tasking software in MVS?
Extensions to Cleanroom were defined for both on Redwing. For the former, a rule-based

design language was defined with a modification for verification. In the latter, one tasking

design model was defined by the technical leaders and used by everyone on the project.
Certain simplifications and assumptions to the tasking model were made; this enabled

everyone to conduct design and verification with the same model.

REFERENCES

[Linger 1992] Linger, R.C. and Hausler, P.A., "The Journey to Zero Defects with Cleanroom

Software Engineering," Creativity!, Vol. II, No. 3, September 1992.

[Deck 1992] Deck, M.D., Hausler, P. and Linger, R.C., "Recent Experience with Cleanroom
Software Engineering," 2nd International IBM Conference on Software Engineering, May 1992.

[Redwing 1990] "Redwing Release 1 Version 1 Project Development Procedures," Document No.

Redwing-0032, November, 1990.

[Trammell 1992] Trarnmell, C.J., Hausler, P.A. and Galbraith, C.E., "Incremental Implementation
of Cleanroom Practices," Proceedings of the 25th Hawaii International Conference on System

17

SEL-92-004 page 272

Sciences, January 1992.

[Drew 1992] Drew, C.F. and Wade, G.P, "A Developer and Tester Report on Their Cleam'oom

Experiences," IBM Software Engineering ITL, March 1992.

18

SEL-92-004 page 273

|Ul, doqq_M OqbNqllugD O_lqdO0 IHI, 'Z ,,nocpaMnooQ

ldmu,,,n$ 4_

neooxl eq; 6ul_uetuoldWl

1; BUill •

qlnmu tuooJuuel: •

uo_,n_l •

epuoGv

_Ur doqmP°M IlupOqml6U| ,-oJ0Uo9

681, ' Joq"'o_eG

npo.=qwn" I_qwn_)Jelsneq :lleWO
9_r3 0W 'tuowmeg

_uno:) A,owNeg 'PUel_eW ;o _llUOAlUN
eOUOlOSaelndmoc) to ;uetupedeG

pub

tuo:.tuqlteUA'_tuA$_leq_olsnRq :lle'"e
OW 'l_nqsJoqtleO
uol;luo(bo3 WGI

JoNo3 IdSOlOUqOel eJeMUOS mooJueel3

JolsneH "V dlllqd

_o.lOJd §ulMPOU oqJ. :_Jo;$
ssooons tuooJueol3),uo:oU V

r--

4)

o_

_o

Introduclion

8ECTION 1.

IntroducUon

Dqmember L tN| _ |mllm_lml Weduh_ t1_

1.1 IntroducUon to Redwing 1.2

• Product

Redwing providem a cieclslon-4upport facility that utilizes
artificial Intelligence technology for predicting and

preventing complex operating problems in an MVS
environment.

Project organization

• 2rid-line organization w.h four lst41ne departments

1 Architecture

2 Development

1 Test

• Approximately SOpeople

2, lt112 _ F.nl_ee_t_ Wodmhop t99_

t_

t_
,-4
O_ Development Environment

• WorkMaUon Pollcy componeM under 082

• Host Outage Avoidance under MVS

• Interfaces to two System Management products
developed by other labs

• Real.time tasking

• Rule-based processing

1.3 Redwing Development Languages

DEVELOPMENT % OF
LANGUAGE TOTAL

Assembler & 2
PL/X

C & Presentation 40

Manager

JCL & REX)(3

PL/I SO

TIRS S

LANGUAGE
TYPE

Low-level

High-lavel

Control code

High-level

AI: rule-based

1.4

O•¢:m_mr 2,1fl112 8oflwere EnglmpcM_g Wodulhop 19112 Deeembar 2,1N| _ Englneednll WmtShol; 1992

8HL ck"lmpOM I_PeqPUlll_r'_ _ ZUl, °| .uequ_,=eO

NlnmU _lllUnb ollmu_nfl •

UOIW_iPOA OUlqSq OtUl_-InU *

uoIpnoUpOApub ufllsep IStlUL •

SOpOAO_llP tuooJUllqO MeN •

IJoge ;uetudoleAep eleoS-e_el _ ,-ooJUnlO to UOllr_tlddV •

.oooxi umoJueol:) peluomnoop-AIInd •

ZULdoqmPeMIl_uweee WML'lJquaeoeO

•(mooJueel3) f_5OlOpOtgew MeN '¢

'qlPlO 0UltUmm 6oxl

tuepz,(s puu SAW oJqsuNxo BuplnbeJ i:,npoJd MON "3

•wee; luoItldOlOAOp MeN "1,

t_
('4

9"1, qq611q§lH luomdoloAOQ S" _ u;)nsul luemdoleAOQ

_O

t,J
-,4
OO

Cleanroom Results

SECTION 2.

Cleanroom Results

2.1 Redwing Project Quality Results
2.2

DEFECTS PROJECIED ACTUAL
INCR KLOC @ 301KLOCDEFECTS{I) DEFECTS

ACTUAL
DEFECTS/
KLOC

1 18 480 64 43 2.7

2 SO 1500 2OO 4t 0.8

3 41 1230 164 g7 2.4

SuMot 107 32t0 428 t8t 1.7

Sys(2) 107 93 0.9
Test _ _

TOTAL 107 32t0 535 274 2.6

(1) Incr. testingdefectsprolectnd @ 41KLOC
and syltem testing @ 1/KLOC.

(2) Includessystem, performanceand field tes_ng.

tJ

Redwing Project Productivity Results

INCR KLOC

t 16

2 6O

3 4t

Avg.

PROJECTED ACTUAL(t) DELTA
PROD. LOC/PM PROD. LOCIPM %

i

30O 400 +33

_S0 600 +4_1

400 513 +28

338 488 +28

(1) Productivity= LOC I developmentlabor from epeo
through Incr testing.

t_n_w 2, tN| eeltwaro _ W_wlwp ttn

2.3 Selling Cleanroom

SECTION 3.

Selling Cleanroom

D_H:ombor _ 1_ _ E_lmN_rl_ Wo_rlwl_ tnZ

3.1

ZUl, qleqml_DMIk_e_qSu'4 lueJ4_ll 1041 '| Joquao=eO

'eAllOoJle eq plnoM wooJumol:) _ lOllOq lUUeue9 "9

•quetueulnbeJ jo lueLueumu Joj MOlle pue NeJl_d
i:olo, ld jo MO|A _lJeO Ol)JAOJdplnoM qoeoxlde imetuoJ_Ul "g

•quqlnsuoo sa OAJOS
pinoo OOUOptKIxoUiOO_Ueq;) _ qllA_ leUUolued _eJOJd "1_

"4JOMWeq 6UO4S JelsoJ pinoM wooJuuol3 "e

"SAM ,Io eOuiq)lOAg OOgTltO.lOJpepuqu I ,-eJUos
• _i/411unb q§lq ePlAO.ndplnoM UOIIUoUPeASSetq:e, uo3 "i:

•UlSlUp pu. UOltr-qlloods SOZlseqdtue ,-ocuueol3 "r

"'" gSNV3R8 AgOIO(IOHIRIAI WOOHNVR13 gSft

8"8 UOllepuaLutuo:_H 110

lUk do_qJeM Ik_peeuleu]l aUeAqJoo 8HI, •

.&aeqwow ;,oolcudlie Jol uoBg_UlPOOueOOJd "g

iuetueAOJdtUl sseooxl snonul_uo3 •

uoRquetunoop puu uogtuuep sse:x_d •

Jo! (_)Md) dnoJ9 6UlHIJOMsseo_d

,sdno_

poddns pue luetueGr-,mu BulPnlOUl 'UOlWOnpo tUUel

'iF

'8

•(_) OMOIAJOAO),UOUIOBIIUiqAi '_

.uonq)uotuuJoo_
ssoooxl luomdoIOAop JOJ(110) ,,,COL),uon"OAOJdtuI/,]llWnO

tuoodue;)13 BUllieS JoJ SOIIIAIIOV ,(OH
O
oo

o_

r_

t_

Project Education

1. Claanroomoverview* (112day)

2. PDLand PDL TranelatorClass (112day)

3. Designand VerificationClass* (3 days)

*A#ended by all managers

0ewnl_ I, tltZ e_ _InNdng Wed.d_p 4N|

3.4 Implementing Cleanroom

SECTION 4.

Implementing Cleanroom

O_end_r 2,1N| eo41twm.eEnoh_xtng Wodu_4p tN!

4.1

i_Ul, W/A IkqJe4mllkfll_ 1141. '1_hequ_mo

uolwlsqJoM
Joi Ougset IgOlisBuls

IM BuRsiq IqUemSnUl lei_ed 8ulisel "is'iS

Selm o; eoueJ,eqpe ;:tq8 sex uoBeolU.leA

suoll=_nJ pepUalUl IM
1Od olqqulsueR PeeN sex uBp_p le"'O=l

oede lelUeU4iJmUl
ImU,lOl + 9dd BOA OIKIB llrdi+lOd

IquemlmmUl G _k OUlUUeld .IOUl

1NgWIN03 (IqtmdlON :q'iOINH_)gl
/seA) O3SN INOOUNVg'I3

6UlMPaU uo UOlleluo,,,aldtUl f_olonpo_ul

11411,_M Ikq_eui_rd _ illl. '1 Jeqweoe4

'uoiProMPeApue uJSIsepJoj .iopom 5UlqSiq. uomwoo pouueQ "9

loe[oJd eJBue Jot SMelASl .uolpulsuotue(]. PleH "S

•MOIAW UO_OA fdOAOin 3,UOsoxl _ledxe eu O •

;qlSlA. pue .smoq eoIMo. Alqeom pieH •

'usiU_lllOq mooJueol:) pquloddv "_

tuemeSeumu leUOBOuntqllM qoeoJdde stule; io weal IlmU8 "G

'UWd luemdOleAeO

letuetueuoul io Nemdole^ep (qoe_ pue pulku) lUlOr "i:

"wooJueel3

to uol;g_LiOmeldml (pNmid)/_,npo_ul uu peuueo "1.

i_'_ tuooJueal3 ISullua,,,old'"l aoj soIIIAIIoV ,_e)l

+
o_

;lul, d_lq_OAp, g_e.ll que.Vl_e rMIL _

e_ _ou 'uo_ioodxo oq) otueoocl APiOlnbqoo_:_0doz 4_

'quouodmoo

le,io^n ul punoj wo,uo ou UOqM poq,Kbne tun) ISugsot 4,

"16UltUeOl

Joj mmoj ;Uelleoxe peplAoxl sMel^eu puo eunlmulS ,,,eel t

•osJpodxe meet q enp polNtCluqestemooueuoTulelN •

.'epoo eeoloeo, jo eeuos Ouc_ podolaAeO •

,;otuo,npuLo elfin OUOl,,Otl) poonpo,a OMOIAOH •

..seouelJedxo OAl;IsOd _lOWO4XO.
s8 SMOl^e.I uoglro_eA qllM _ _IOA q,iOMUigO.L •

ZUL _M I_1_ exJL_ U4L _ X_a

c_
oQ

4)

_'S sJoqtuolN ;oo[OJd mOJd SUOlleAJosqo L'S AJetutuns

ZNI, dot_O_OSA_ o_ _Ul, '_ ,ne_Q

"wooJueel3

p uo_queweldWl (peseqd)/_,o,po4u! ue jo em "e

•swue_io wRe__oj etueq_ luemelhumu ImJOli._md "L

.eouopedxetuo_ueq3 _ qHMOulMpeHuo Jqueunsuo3. "9

•seinJuo_o^ ssouF*,e_ooo; eomueqpe_ "g

"'" sJotoed sseoons _JewPd

|U; doqs_POMIkepeeulGu3 eJe_Uo9 _Ul. '3 J_luaeoeO

"1,luetusnul Bupnp SMOIAiUUOglUiSUOUJeO"IP

•Ueld),uotudoleAe(] IiqUeWer)Ul
jo),uetudOleAepwee; Ig31ULpe|pug),uowe(Suugw_ior "8

"(OMd)uol)queweldwl pue
(110) uogoeleS_5OlOpOtBemUl uol1_llOlpedwRq leOluqoel "g

"lJoddns_uewe_Seumu15uo4s '_

8"S suo),:ed sse:)ons _JeWPd oo

4)

0,

o_

What I Would Do Differently? 5.5

1. 8elect development process eedlor and begin b'alnlng at

mrtup.

2. Allow Ume for a emall demonstration project (1-2 mon_e) for
team balnlng end buy-in.

3. Have more, but smaller Increments.

4. Use a fulI-Ume, dedicated Cloanroom consultant.

S. Conduct stetlstlcai testing.

_o

t_
oo

December 2, ln2 sor_wlm Ilngmeed_l W_ IN2

