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1. Motivations and objectives

The dynamic subgrid-seale (SGS) model (Germano et aI., 1991; Lilly, 1992) has

proven successful in the large-eddy simulation (LES) of several simple turbulent
flows, e.g., in homogeneous, incompressible flow with passive scalars and homo-

geneous, compressible flow (Moin et al., 1991); in transitional and steady plane-

Pouiseille channel flow (Germano et al., 1991); and in passive scalar transport in

channel flow (Cabot, 1991; Cabot &: Moin, 1991). The dynamic SGS model, using

eddy viscosity and diffusivity models as a basis, determines the spatially and tem-
porally varying coefficients by effectively extrapolating the SGS stress and heat flux

from the small, resolved scale structure, thus allowing the SGS model to adapt to

temporally varying flow conditions and solid boundaries. In contrast, standard SGS

models require tuning of model constants and ad hoc damping functions at walls.

In order to apply the dynamic SGS model to more complicated turbulent flows that

arise in geophysical and astrophysical situations, one needs to determine if the dy-
namic SGS model can accurately model the effects of subgrid scales in flows with,

e.g., thermal convection, compressibility, and rapid uniform or differential rotation.

- Th-_pr_mary goal of this work has been to assess the performance of the dynamic

SGS model in the LES of channel flows in a variety of situations, viz., in temporal
i development of channel flow turned by a transverse pressure gradient and especially

in buoyancy-drlven turbulent flows such as Rayleigh-B&lard and internally heated
channel convection. For buoyancy-driven flows, there are additional buoyant terms

that are possible in the base models, and one objective has been to determine if

the dynamic SGS model results are sensitive to such terms. The ultimate goal is
to determine the minimal base model needed in the dynamic SGS model to provide

accurate results in flows with more complicated physical features. In addition, a

program of direct numerical simulation (DNS) of fidly compressible channel con-

vection has been undertaken to determine stratification and compressibility effects.

These simulations are intended to provide a comparative base for performing the

LES of compressible (or highly stratified, pseudo-compressible) convection at high
Reynolds number in the future.

2. Accomplishments

, 2.1 Large eddy simulation of time-dependent channel flow

The dynamic SGS model was used in the LES of fully turbulent channel flow
driven by a uniform streamwise (x) pressure gradient that is suddenly turned by

a transverse (z) pressure gradient 10 times larger. The DNS of this case was per-

formed by Moin et al. (1990). They found, counterintuitively but consistent with



46 W. Cabot

experimental results of three dimensional boundary layers, that the turbulence ki-
netic energy and shear production rate initially decrease and later recover. Until

Durbin (1992, and in this volume), no Reynolds averaged type model had been able

to reproduce this behavior.

The LES was performed with a spectral-Chebyshev code (Kim et al., 1987) on a
32 × 65 x 32 mesh in a 47r x 2 × 47r/3 box (in units of channel half-width 6). The

dynamic SGS model used a ratio of test to grid filter widths of 2 in the horizontal

directions (using a sharp spectral-cutofffilter) and 1 in the normal (y) direction (i.e.,
no explicit filtering in y). Defining the effective filter width as A = (A,AyAz) _/3

gives a test to grid effective filter width ratio _x/A = 22/3. A Smagorinsky (1963)

eddy viscosity base model was used whose coefficient, assumed to be a function of y
and time, was calculated at each time step by averaging over horizontal planes (see

Cabot, 1991). An ensemble of temporally developing flows was approximated by

initially generating 15 fully developed turbulent channel flow fields separated in time

by a sufficient amount to make them statistically independent. The initial channel
flow fields were developed for a friction Reynolds number (Rer = U,.o6/U, where U,-o

is the initial friction speed and u is the molecular viscosity) of 180. The 15 fields
were simultaneously advanced in time from t = 0 to 1.2 (in units of 6/U,-o), and

statistics were generated for each field every At of 0.15 and averaged together. The

statistics from this LES were in good qualitative and quantitative agreement with

those from the DNS (Moin et al., 1990), although the recovery in the turbulence

kinetic energy in the LES occurred at a slightly later time than in the DNS.

To test if it was the SGS model that was responsible for these good results in the

LES or if it was due merely to an accurate portrayal of tile large-scale interactions,

a DNS was computed on the same coarse grid. The initial fields for the time-

dependent calculation were first run to statistical equilibrium on the coarse grid,

rather than simply turning off the SGS model in the LES initial fields, in order to

avoid spurious transients due to the sudden drop in effective viscosity. The initial
statistics for the coarse DNS and LES cases are thus not the same. The results of

the coarse DNS were for the most part found to be in qualitative agreement with

the well resolved DNS results of Moin et al. (1990), but the quantitative agreement

was substantially poorer than was found using the dynamic SGS model. Thus much

of the "three-dimensional" response of the turned channel flow is contained in the

large-scale interactions, but the finer details require the SGS model. The greatest
disagreement was found in the temporal behavior of the total (resolved and SGS)

dissipation rate (Figure 1), which is to be expected since it depends to a larger
extent on the different treatment of the small scales. In the DNS of Moin et al.

(1990) and the LES, the dissipation rate has a complicated behavior near the wall,
initially decreasing at the wall but increasing farther out in the near-wall region;

thc wall dissipation eventually begins to recover at t -- 1.2. In the coarse DNS,

however, the dissipation rate (which begins at a substantially higher level at the
wall than in the LES) decreases both at the wall and in the near-wall region with

no sign of recovery at t = 1.2. Such inaccuracies in the energy rates likely lead to

the quantitative discrepancies in the velocity statistics.
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FIGURE 1. Total dissipation rates near the wall (plotted as the distance from the
wall in units of 6) for channel flow turned by a transverse pressure gradient. (a)

LES using the dynamic SGS model; (b) coarse DNS computed on the same grid.

2.g Large eddy simulation of thermal convection

_.2.1 Base models

Simple eddy viscosity and diffusivity SGS models, with some near-wall correc-

tions, are commonly used in the LES of thermal convection (see Nieuwstadt, 1990,

for a recent review). Some modelers employ additional buoyancy corrections (e.g.,
Eidson, 1985; Mason, 1989; Schumann, 1991). The eddy viscosity and diffusivity
models that I have used to date as the basis for the dynamic SGS procedure can be

generalized in a form similar to Schumann's (1991) "first-order" SGS model, which

is a vast simplification of more general, second-order, Reynolds-stress-like equations.
The model for the residual SGS Reynolds strcss at an arbitrary filter level is

T -- -_Wr(7")I = - 2u, S = - 2C_A 2aS, (1)

where I is the identity tensor, C_ is the coefficient of the eddy viscosity ut, A is the

effective filter width, and S is the strain rate tensor; a is a scale rate defined below.

The residual heat (or scalar) flux is modeled by

h = -C_A2aB • VO, 13= I + c2flVO/(a 2 - c2N2_), (2)

where Ca is the eddy diffusivity coefficient, 0 is the potential temperature,/3 is the

buoyancy vector (gravity times thermal expansion coefficient), and Nc2 = /3 • V0.

The scale rate a is given, from SGS energy production = dissipation arguments, by

: = ½[: + (_l+ _)g_] + [: + (_ - _)g_] _+ c,_N_ , (a)
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where S _ = 2S: S and N_ = (fl-fl)(V0. V0). The constant or coefficient c, is,

in principle, C_/C_, = 1/Prt; c2 is, in principle, related to the ratio of turbulent
time scales of the velocity and potential temperature. Notice that (3) reduces to

the normal Smagorinsky model scaling (a = S) for no buoyancy (fi = 0) and
that a 2 and a 2 c 2- 2N c are positive semi-definlte if clc2 > 0. Also notice that the
residual heat flux in (2) is anisotropic with respect to V0 for finite c2 and fi, being
enhanced in the direction of buoyancy forces. (Analogous anisotropic terms could

be included in (1) by replacing S by B. S; but Schumann (1991) found that they led

to reatizability problems in his LES and so advocates dropping them.) For c2 = 0,
we can identify h with -at_70, where c_t is the eddy diffusivity.

The differenccs in the base models arise from different treatments of cl and c2:

A. The "scalar" model has Cl = c2 = 0. C, and C,_ are determined as functions of y

and t by the dynamic test-filtering procedure. This is the model for the dynamic

SGS model employed by Moin et al. (1991) and Cabot & Moin (1991). I have

applied it to Rayleigh-B_nard convection.
B. The "buoyancy" model has cl as a coefficient equated consistently with C_/C, =

1/Prt and c_ = 0 (isotropic eddy diffusivity). This requires an iterative solution

of the eddy coefficients (Cabot, 1991) with a Newton's (secant) method. It has
been applied to Rayleigh-B_nard convection and low-Pr internally heated channel
convection.

C. The "Eidson" model, after Eidson's (1985) SGS model, is the same as B but

with cl taken as a constant (2.5) corresponding to his best value of Prt = 0.4 for
the LES of Rayleigh-B_nard convection. Cv and C_ are determined, as in model

A, with the dynamic procedure. I have applied this model to internally heated
channel convection.

D. The "Schumann" model has cl and c2 taken as constants (2.5 and 3.0, respectively,

which are near Schumann's (1991) best values for the LES of planetary boundary

layers). C,. and Ca are determined, as in model A, with the dynamic procedure.
This model has been applied to high-Pr internally heated channel convection.

2.2.2 LES of Raylcigh-Bdnard convection

Large eddy simulations of Rayleigh-B_nard convection were performed with a

spectral-finite difference code (Piomelli et al., 1987) with the dynamic SGS model

using base models A and B, the same filters as described in §2.1, and a mesh
of 32 × 63 × 32. The molecular Prandtl number Pr was taken as 0.71 (air), and

Rayleigh numbers Ra = 8[flA@]63/uc_ (where AO is the wall-to-wall mean potential

temperature difference) of 6.25 × 10_, 2.5 × 106, and 1 × 10v were considered with
horizontal-to-vertical aspect ratios of 5, 6, and 7, respectively.

The buoyant (B) base model was found to give very similar results to the scalar

(A) base model without buoyancy production terms. This probably happened be-
cause the buoyancy term is generally less than, or at best comparable, to the strain

term in (3) for this flow and because even with a different scaling the dynamic
eddy viscosities and diffusivities tend to adjust to a similar level. The dynamic

SGS model with the buoyant base model typically required only 2 or 3 iterations

to determine the eddy coefficients consistently; this still doubled the computational



Large eddy simulations of channel flows 49

2.5

2.0-

1.5- :
1

!
B

i

1.0- ,

0.5-

0.O

-0.5
-1.0

;" "-''"" Ott/Ott " '

I

Vt / b'

• s"

-6.5 o:o o:5 1.o
y/6

FmURE 2. SGS eddy coefficients and Prandtl number from the LES of Rayleigh-
B_nard convection with Ra = 1 × 107 and Pr = 0.71 using the dynamic SGS model.

cost of the SGS model and, considering the little difference it made to the results, is

probably not warranted. Occasionally the iteration scheme failed to find solutions

at some planes, perhaps indicating that no real solutions existed. The scheme gave
up after 10 iterations; but converged solutions were always found a few time steps

later as flow conditions changed.

The SGS eddy viscosity and diffusivity using base model B are shown in Figure 2
with respect to their molecular values for the Ra = 1 × 10 r case. Their fairly

low values (of order 1 in the core) are a result of trying to resolve a reasonable
amount of horizontal small scales near the wall. The dissipation due to the SGS

model is comparable to that from the large scales in the core of the flow but becomes

negligible near the wall. In fact, the eddy viscosity usually has small negative values

in the viscous boundary layer though this has virtually no effect on the convective

flow; it is not known if this is a real physical feature or an artifact of the poor
horizontal resolution there. In contrast, the heat flux carried by the SGS model

terms is negligible in the core of the flow but typically 20-30% of the total near the

wails, which will affect the heat flux statistics. A concern is that the test filtering in

the dynamic SGS model may not give accurate results near the wall since it usually

samples in the energy-bearing part of the energy spectra there. The SGS Prandtl
number is also shown in Figure 2. It is less than the standard value of about 0.4

(Eidson, 1985) in the core, where I find values of 0.20-0.25, but it becomes larger

near the walls, reaching 0.6. Sullivan & Moeng (1992) found qualitatively similar

results for Prt in an a priori test of a DNS field but at levels 3-4 times higher. They

used, however, an effective filter width ratio of 4 (versus my 22/3) and Pr = 1; they

also revamped the dynamic procedure in a way that gives only positive values of vt,
so a direct comparison is difficult.
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Large-scale statistics (such as rms velocity and potential temperature fluctuation
intensities and velocity-temperature correlations) were found to bc in good agree-

ment with experimental measurements in air by Deardorff & Willis (1967) and

Fitzjarrald (1976) and with previous LES results by Eidson (1985). The Nusselt
numbers (Nu = 2_IVOIw/AO ) of 7.7, 12.0, and 18.0 found for Ra = 6.25 x l0 s,

2.5 × 106, and 1 × 10 r using the scalar (A) base model are about 5-10% higher than
the experimental values reported by Fitzjarrald (1976) (Nu _ 0.13Ra °'3° in air) and

Threlfall (1975) (Nu _ 0.178Ra °28° in gaseous helium). A DNS for Ra = 6.25 x 105

with the same code gave Nu = 7.2. A coarse DNS needs to be performed for one or
more of these cases to determine the actual extent to which the SGS model improves

the results.

2.2.3 LES of internally heated channel convection

Turbulent channel convection in water (Pr _ 6) with uniform volumetric heat

sources and cooled, no-slip walls has been examined experimentally by Kulaeki &

Goldstein (1972) and numerically by Grbtzbach (1982). This flow is asymmetric
about the midchannel: the upper part of the channel is convectively unstable and
the lower part is stable. The convective heat flux in the fully developed flow is

typically downgradient in the exterior regions and countergradient in the interior.

Because of this inherent asymmetry, the LES of this flow is expected to be more
sensitive to the SGS model; it also allows us to test the behavior of the dynamic

SGS model in transition from unstable to stable regions.

Large eddy simulations were performed with a spectral-Chebyshev code (Kim

et at., 1987) for Pr = 0.2 at Ra = 1.25 × 105 on a 32 × 65 × 32 mesh and at
Ra = 1.25 × 106 on a 32 × 129 × 32 mesh, and for Pr = 6.0 at Ra = 1.25 x 105 on

a 32 x 65 x 32 mesh. Here Ra = 1fl[(t_5/a2v, where _ is the thermometric heating

rate. All simulations used a horizontal-to-vertical aspect ratio of 4.

For the low-Pr runs, I used both the scalar (A) and buoyant (B) base models in

the dynamic SGS model. Although there were some differences in the ut and at

profiles for the low-Ra runs using different base models, the large-scale statistics
were not particularly distinguishable. They shared the traits of having negative

values of vt and/or at near the walls; and Prt had values of 0.1-0.2 in the upper

convective region, growing to values near unity near the unstable upper wall and the
lower, stable region. Nusselt numbers at the upper wall were found to be about 5%

greater than in DNS results (O. Hubickyj & W. Cabot, unpublished). The profiles
of vt and at with respect to molecular values and Prt are shown for the high-Ra

ease in Figure 3 using the buoyant (B) base model in the SGS model. Except in
the narrow viscous boundary layers, vt and st are positive. In the core convective

region (y/6 = -0.25 to 0.75), Prt is about a constant 0.2 but grows to values of 1-2

in the near-upper-wall region and the stable lower channel. The eddy diffusivity

remains positive throughout the center of the channel where the large-scale heat

flux is countergradient; this means that the SGS heat flux is downgradient in this
region, counter to the large-scale flow, and that o_t acts rather to dissipate thermal

fluctuations. Since the vertical temperature gradient is small in the central region,

however, the SGS heat flux is negligible there and only becomes sigafificant in the
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FIGURE 3. SGS eddy coefficients and Prandtl number from the LES of internally

heated channel convection with Ra = 1.25 × 106 and Pr = 0.2 using the dynamic

SGS model with the buoyancy base model. -- ut/u, ---- e_t/_, ----- Prt.

near-upper-wall region, attaining 20-30% of the total heat flux as in the LES of

Rayleigh-B_nard convection. The Nusselt numbers for this case are found to be
about 10% higher than DNS results. (The large-scale statistics were again found to

be fairly insensitive to the base model used.)

The LES with the buoyancy base model experienced significant iteration prob-

lems, most noticeable in the low-Pr, high-Ra run. Not only were there instances of

failure to converge to a solution at some planes, more disturbingly there were clear
instances when more than one solution existed and the values to which Prt con-

verged depended on the initial guess. (I needed to average the initial guesses over

adjacent planes to get reasonable answers.) On the other hand, the LES with the
scalar base model gave a broad drop in ut in the upper convective region, in poor

agreement with the previous model (see Figure 4). Better agreement was found

using the Eidson (C) base model, which includes the buoyancy production term in

a less consistent but cheaper way than the buoyancy base model. The choppiness

in ut in Figure 4 may be due in part to some numerical instability from advancing
the SGS terms explicitly in the code at too large a time step, but it may also stem

from filtering only in planes and not in the vertical direction, which would probably
smooth the results considerably.

For direct comparison with laboratory experiments, simulations with Pr = 6

have been recently undertaken. The eddy diffusivities from the Ra = 1.25 x l0 s run

using the Eidson (C) base model are shown in Figure 5a. The eddy viscosity and
Prt are found to be negligible everywhere since the velocity in this case is almost

completely resolved. However, near the upper wall I find Prt _ 5-7 (comparable

to Pr). The eddy diffusivlty in this case does have negative values in part of the
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FIGURE 4. SGS eddy viscosity from the LES of internally heated channel convec-
tion with Ra = 1.25 x 106 and Pr -- 0.2 using the dynamic SGS model with base

model .... g (scalar), -- B (buoyancy), and ........ C (Eidson).

central, countergradient region. Results using the Schumann (D) base model are

also shown in Figure 5; at in this case is defined as -h. V0/V0. V0. Some minor
differences in the central, countergradient region are noticeable. The residual heat

flux resulting from these two models are shown in Figure 5b. It is seen that the

Eidson base model only contributes to the heat flux in the upper convective region

where the temperature gradient is appreciable while the Schumann base model
contributes to the heat flux farther into the central region and gives comparatively

more heat flux in the upper convective region due to the additional buoyancy term

in Equation (2). Note that the SGS terms virtually vanish in the lower wall region
where the flow becomes nearly laminar and that the dynamic SGS model allows

a smooth transition between the turbulent and laminar regions. The LES results

again tend to overestimate the Nusselt numbers by about 5% compared to DNS

results; preliminary results indicate that coarse DNS computed on the same grid
as LES overestimates Nu by more than twice as much. There is some discrepancy

between experimental results (Kulacki &: Goldstein, 1972) and numerical results

(see Gr5tzbach, 1982), the former tending to give smaller Nusselt numbers and
larger mean potential temperatures, the latter shown in Figure 6. The two different

DNS results agree well but lie well below the experimental results; the LES results

lie slightly below the DNS results (which make a fairer comparison).

2.2._ Conclusions from LES results

The dynamic SGS model has been used in the LES of a number of buoyancy-
driven flows with different eddy viscosity/diffusivity base models that do or do not

include buoyancy terms. I tentatively conclude from the results so far that the
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FIGURE 5. SGS (a) eddy diEuslvity and (b) vertical heat flux from the LESof

internally heated channel convection with Ra = 1.25 x l0 s and Pr = 6 using the

dynamic SGS model with base model _ C (Eidson) and .... D (Schumann).

buoyancy base model, which requires the consistent (iterative) determination of

Prt, is too computationally expensive and sometimes has eithcr no rcal solution or

multiple solutions. The "Eidson" base model, which simply sets Prt to a constant in
the model scaling, seems to provide a cheaper alternative that generally reproduces

the buoyancy model better than the scalar model. It is not clear yet that the

"Schumann" base model confers any real advantage over the others although it can

accommodate, in principle, the countergradient heat flux that occurs in intcrnally
heated channel convection.
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FIGURE 6. Mean potential temperature for internally heated channel convection

with Ra = 1.25 x 105 and Pr = 6. • experimental data (Kulaeki & Goldstein, 1972),

o DNS (GrStzbach, 1982), _ DNS (O. ttubickyj & W. Cabot, unpublished),
.... LES with base model C, and ........ LES with base model D.

_.3 DNS of fully compressible convection

Direct numerical simulations of fully compressible, internally heated channel con-

vection were performed using a fourth-order, explicit, finite-difference code (Thomp-

son, 1990, 1992a,b). Simulations were performed for several different density and

temperature stratifications at Ra = 1.23 × 105 (defined at midchannel) and Pr = 0.2

in a linearly varying gravity. Fixed temperature, no-stress (free-slip) boundary con-
ditions are used at the walls. The no-stress, impermeable walls are meant to ap-

proximate free boundary conditions. For uniform volumetric heating rates, a mesh
of 96 × 33 x 96 and horizontal-to-vertical aspect ratios of 4 or 5 are used; for uniform

specific heating rates, a mesh of 64 x 65 × 64 and horizontal-to-vertical aspect ratios
of 3 or 4 are used.

The mean potential temperature profile from a low stratification, low Mach num-

ber run was found to agree very well with the Boussinesq results of Cabot et al.

(1990) for nearly the same values of Ra and Pr. For moderate to large density

stratifications (central to wall ratios of a few to greater than 10) and moderate tem-

perature stratification, the convection was found to be weaker due to the increase in

viscosity and diffusivity (with inverse density) toward the wails; the Nusselt number

was found to vary approximately as Nu - 1 oc (Ra 1/4 -- Ralc/4)(p,,./pc) 314, where

Rac "_ 1000 is the critical Rayleigh number for the onset of convection. The in-
terior rms Mach number was found to be typically 0.20-0.25, increasing to about

0.4 at the free-slip walls. Peak Mach numbers were found to be about 2.5 times

the rms, and Mach numbers slightly in excess of unity were observed at the walls
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in agreement with previous simulations by Malagoli et al. (1990). The compress-
ible code did not require an additional hlgh-order artificial damping built into it

to compute these runs. Only weak shock features appeared to form because the

high speed flows that form as the hot, rising interiors of convective cells expand

horizontally along the walls tend to impinge on neighboring cells obliquely as the

convergent flows plunge downward in cool, narrow downdrafts. Even a simulation

with high temperature stratification (with central to wall ratio of ,-, 30) with peak
Mach numbers at the walls of 3.8 and occasional strong shock fronts was able to

run a fair length of time without the artificial dissipation to damp two-delta waves,

although it was eventually needed in this case.

The levels of fluctuations in thermodynamic quantities relative to their mean

values are found to be consistent with those of Chan & Sofia (1989) for simulations

of deep stellar convection. As in their work, the rms pressure fluctuations were found

to be almost equal to the turbulence kinetic energy everywhere in the convective

region so that the relative pressure fluctuations scale as rms Mach number squared.
An examination of the terms in the equation governing the potential energy P =

p'2/27" _ shows that they typically satisfy some of Zeman's (1991) assumptions for

a compressible boundary layer. The steady-state equation for P gives

- (_. VP + 2"yPV. _ + P_. vp)-p'V . u '_ lp,u-----v.V_
P 7P

Y

1 2 3

(4)
l_(p,,,. Vp,+ "yp' V.u')+ - 1)H'p'_= O.

_P 7P

4 5

Here H is the net heating rate for the internal energy. As shown in Figure 7, term

3 is a production term due to the pressure flux, which is very nearly balanced by

the pressure dilatation in term 2. The remaining terms are higher order in Mach

number squared and are negligible in moderate Mach number flows. Even in the
high Mach number case cited previously, term 2 cancelled 60% of term 3. The pro-

duction in term 3 is controlled here primarily by buoyancy terms since the pressure

flux is proportional to the convective heat (enthalpy) flux and the pressure gradient

is proportional to gravity from hydrostatic equilibrium. For convection then, un-
like Zeman's compressible boundary layer, the pressure flux should be modeled in

terms of a thermal convection model, perhaps using the superadiabatic temperature

gradient, rather than in terms of the normal density gradient.

Compressional effects only appear to be significant at the (artificial) walls in

the fully convective channels. Simulations with uniform specific heating rates are
currently under way that feature convectively stable exterior regions bounding a

convective interior. These should provide a better basis for determining compres-

sional effects in the freely bounded convection; it is likely that acoustic effects are

more important in the convectively stable exterior. We are also currently explor-

ing whether the use of soundproofed, pseudo-compressible governing equations (like
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FIGURE 7. Potential energy rates from equation (4) in fully compressible channel
convection with high density stratification: -- pressure dilatation (term 2) and

.... pressure flux production (term 3).

Durran, 1989) in the simulations of highly stratified convection would be acceptably
accurate and more efficient than the fully compressible simulations.

3. Future plans

3.1 "One.equation" local dynamic subgrid-scale model3 in channel flow

Using locally defined coefficients from the dynamic SGS model has generally led
to numerical instability due to persistent negative values of the SGS eddy viscosity.

Ghosal, Lund & Moin in this volume (also see Wong, 1992) have proposed scaling

the eddy viscosity with half of the trace of SGS residual stress (k = rkj2), which
is evolved along with the flow. If the local k is driven to zero by negative eddy

viscosities, the local eddy viscosity vanishes until k is replenished. This limits the

duration of negative eddy viscosities and has been shown to stabilize calculations of

homogeneous turbulence with local dynamic SGS modeling. We plan to implement

this approach in channel flow. We also plan to implement Ghosal et al.'s variational

approach to determine the local dynamic coefficients consistently.
An immediate problem arises in how to cast the k-equation to give proper be-

havior near and at the walls. Ghosal et al. use the form of a standard one-equation

k-model with a SGS production term to evolve k at the grid-filter (-) level:

Dk/Dt = v,'S 2 + V-[(v + VD)Vk] - CEk3/2/A , (5)

where vt = C Akl/2 is determined by the dynamic test-filtering procedure (in which

C is determined locally) and vo = CDAk 1/2 is the diffusive eddy viscosity. The
constants or coefficients CD and CE remain to be specified; they could be preset
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constants or be themselves determined by a dynamic fitting procedure. First, k

properly goes to zero at a no-slip wall as y_ (where yw is the distance from the wall).

Since (5) is a second-order equation, only two boundary conditions are needed,
namely k = 0 at either wall, but this generally results in k _ yw at the walls.

Second, the vV2k term is generally finite at the wall, but it is difficult to make

any other term in (5) balance it for plausible definitions of A, Co, and CE. (Note

that ut in (5) always goes as y_ from the dynamic model.) Both of these problems

can be addressed (but not necessarily solved) if we consider evolving the equation

for q (where k = q2/2) and understand the last term in (5) to be the model for
the reduced dissipation rate ¢" = ¢ - t, Vq • Vq, which goes as y_ at the wall. The

additional term uVq. Vq must then be subtracted from vV2k in (5) to give uqV2q,

and the q-equation conveniently becomes

Dq/Dt = cA'S 2 + V. [(u -4-cdAq)Vq] -4-cdAVq" Vq -- ceq2/A. (6)

The lower case constants/coefficients in (6) differ from their upper case counterparts

in (5) by various powers of v/2. Note that there is an additional source term in (6)
from the diffusion term in (5). But now the term uV2q is generally finite and

unbalanced at the walls (unless, e.g., cdA in the diffusive terms is made finite at

the wails). However, even if this term is not balanced at the wall (in which case the
numerical solution gives q = 02q/Oy 2 = 0), one obtains the correct second-order

asymptotic behavior for k at the wall (k = Ok/Oy = 0).

Tests of the sensitivity of the results to different treatments of the k- or q-equation
will need to be made for the LES of channel flow. A further modification that has

been made to the channel flow code is to use top-hat (real space averaging) filters
in the horizontal directions to assure that the trace of the residual SGS stress at

the test-filter level is positive definite (which is not necessarily the case for spectral-

cutoff filters). Also, top-hat filtering will also eventually be implemented in the
direction normal to the walls for consistency with simulations of homogeneous flows,

albeit not strictly commutative with normal derivatives on the stretched grid used.

It also appears that a scheme must be developed for treating points with vanishing

or negative q since equation (6) may have realizability problems.

3.2 Further testing of the dynamic SGS model in thermal convection problems

More large eddy simulations of Rayleigh-Bdnard and internally heated channel
convection are needed to determine the optimal values of Cl and c2 in equations

(1)-(3) for the base models of thedynamic SOg model with plane averaging. The

computational expense of computing them consistently at each time step with the

dynamic test-filtering procedure is prohibitive (and ill-defined at some points), but
sample calculations might be :used to establish rcasonable constant or functional

values. For example, the value of Prt = 1/cl is found to about a constant 0.2 in

the core of several convective flows when c2 = 0 (although this may be a function

of filter sizes and the molecular Prandtl number). Some corresponding coarse-grid

direct numerical simulations are also needed to gauge the effect of the SGS models.

Filtering in the vertical direction, not explicitly done heretofore in the channel codes,
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will also be implemented. Results from these volume-filtered channel simulations

will be compared with previous DNS and plane-filtered LES results. The effect of
including Leonard stress terms, similar to the mixed Smagorinsky-Bardina model

(Piomelli et al., 1987), will also be tested; these terms are generally non-dissipative
but provide a fairly realistic level of local forward and backward scatter.

More general base models for the subgrid scales are possible, especially in more
complicated flows (e.g., with both buoyancy and rotation). Such models are being

considered based on the governing equations for the residual Reynolds stress and

heat flux, which closely resemble Reynolds stress equations for large-scale modeling

(cf. Schumann, 1991). Dropping material derivative and diffusion terms, the gov-
erning equations for residual stress (r), heat flux (h), and temperature intensity

squared (ks) are

A. r + r-A _ +/3h + h_ = II- 2e, (7)

r . VO + A. h+ flko = II0- 2e0, (8)

h. V0 = -_0o, (9)

where ,4 comprises the velocity gradient tensor and the mean rotation tensor (Aij =

ui,i - 2_teijt) and .At is its transpose. The right-hand sides of (7)-(9) involve
pressure-strain terms (II) and dissipation terms (e) that must be modeled. A

Smagorinsky model-like equation (1), for example, is recovered from (7) for stan-

dard return-to-isotropy models of YI and approximating the trace-free part of the

left-hand side by 2rkkS/3. The importance of the more general terms will be tested
in a priori tests of DNS data. The need for explicit rotational terms in the dynamic
SGS base model will be tested with the LES of some rotating flows. A base model

with rotational effects might be based on the above equations with rotation entering

through .4 and/or through the models for H and _.
The net amount of energy and dissipation that the dynamic SGS model can

represent in channel flow has been limited due to the reduction of both normal

and horizontal length scales near the no-slip walls, which causes the test filter to

eliminate scales with a significant fraction of energy. Large eddy simulations for

channel convection with no-stress walls will be performed in an attempt to improve

on this situation. However, only flows with smaller scale disparity (freely bounded

or with matching to near-wall solutions) will probably be able to use the dynamic
SGS model efficiently at very high Reynolds numbers. Finally, we plan to implement

the dynamic SGS model in our compressible convection simulations, starting with

the form used in the LES of homogeneous compressible flow by Moin et al. (1991).

The simulations now in progress with convectively stable exterior regions freely

bounding the interior convective region should be more suitable for the dynamic

SGS model by eliminating (or at least severely reducing) the amount of turbulence

at the impermeable walls.
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