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A normal stress subgrid-scale eddy
viscosity model in large eddy simulation

By K. Horiuti, 1 N. N. Mansour 2 AND J. Kim 2

1. Motivation and objectives

The---'Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly

used in large eddy simulations (LES) to represent the effects of the unresolved scales
on the resolved scales. This model is known to be limited because its constant must

be optimized in different flows, and it must be modified with a damping function to

account for near-wall effects. The recent dynamic model (Germano et al. 1991) is

designed to overcome these limitations but is compositionally intensive as compared
to the traditional SGS-EVM. In a recent study using direct numerical simulation

data, Horiuti (1993) has shown that these drawbacks are due mainly to the use
of an improper velocity scale in the SGS-EVM. He also proposed the use of the

subgrid-scale normal stress as a new velocity scale that was inspired by a high-order

anisotropic representation model (Horiuti 1990). The testing of Horiuti (1993),

however, was conducted using DNS data from a low Reynolds number channel flow

simulation. It was felt that further testing at higher Reynolds numbers and also

using different flows (other than wall-bounded shear flows) were necessary steps
needed to establish the validity of the new model. This is the primary motivation

of the present study. The objective is to test the new model using DNS databases
of high Reynolds number channel and fully developed turbulent mixing layer flows.

The use of both channel (wall-bounded) and mixing layer flows is important for

the development of accurate LES models because these two flows encompass many

characteristic features of complex turbulent flows.

2. Accomplishments

The subgrid-scale stress tensor, rij, that results from filtering the Navier-Stokes

equations consists of three terms (Bardina 1983):

rij = Lij + Cij + Rij, (1)

Lij uiuj -- uiuj, Cij -ffiu_ h- _-- _= : uiu j, Rij : uiu j

Iwhere overlineui denotes the filtered velocity component and u i = ui - _i denotes

the SGS component of ui. Lij is the Leonard term, Cij is the cross term, and Ri3

is the SGS Reynolds stress. The indices i = 1,2,3 correspond to the directions
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x, Y, and z, respectively, with x the streamwise (ul = u), Y the "major-gradient"

(wall-normal or cross-stream) (u2 = v), and z the spanwise (us = w) directions.
The Leonard term in eq. (1) is not modeled but is treated explicitly by applying

the filter, while the other two terms (Cij and Rij) need to be modeled. A successful
model for the cross term is a model suggested by Bardina (1983) where

_w w--

Cij = u_i_j + _iutj

This model has been tested by Bardina (1983) for homogeneous flows and by Horiuti

(1989) for the channel flow and was found to be a good model for the cross terms.
This model will not be tested further in this work.

For the Rij terms, the eddy viscosity model by Smagorinsky (Smagorinsky 1963):

2- ve(0 , 0 i.
R,i ~ _Ec_i - 0xj + 3-_-_)' (2)

v. = (csa)2[ si_s,j] 1/_, s_, = ox--_+ ox---7'

and the Bardina model
nit _ C(:_i - _i)(-_j - _j). (3)

are two of several models which are used in LES computations. In these models,

Cs and C are model constants, and Ec = u_u_/2 and ve are, respectively, the SGS

turbulent kinetic energy and SGS eddy viscosity coefficient. A is the characteristic

SGS length scale whose value is defined as (AxAyAz)l/s; Ax, Ay, and Az are the

grid intervals in the x, y, and z directions, respectively. The Smagorinski model

is a "Prandtl-type" mixing length model that can be derived by starting with the

eddy viscosity approximation to the subgrid-scale Reynolds stresses and assuming

production and dissipation are in balance. In an eddy viscosity approximation, v,
is written as the product of a characteristic time scale r and a velocity scale E I/2,

v,=C_rE (4)

where C_ is a model constant, r is then expressed as (Horiuti 1993)

-EG Ou_ Ou_ -#3/2_a
r = _ e (5)

e ' =UOzlOx_=C_ _ ,

where e is the dissipation rate of Ea and C, is a model constant. The Smagorinsky

model assumes that E = Ea in (4).

In the present study, we make use of the direct numerical simulation flow fields
available at CTR to directly test the various approximations. The fields we con-

sider are homogeneous in two-directions. To compute the large-eddy flow fields, we

filter the DNS fields by applying a two-dimensional Gaussian filter in the i = 1,3

directions. In the inhomogeneous direction (i = 2), a top-hat filter is applied to the
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FIGURE 1. y-distribution of the SGS-Reynolds shear stress in turbulent channel at

Re,. = 790. (Model with E = EG/u_.)
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FIGURE 2. y-distribution of the SGS-Reynolds shear stress in turbulent channel at

= u2u2/u,.)Re,. = 790. (Model with E , , 2

channel flow fields. No filter was applied in this direction (i = 2) to the mixing layer

flow field. This is due to the fact that occasionally the doubly filtered (_) grid-scale

variables were larger than the singly filtered ones (i]), owing to the inaccuracy of a

top-hat filter in regions where grid spacing is coarse.

The DNS databases we used were the fully developed incompressible channel flows

at Re_ (Reynolds number based on the wall-friction velocity, u,., and the channel

height, 26)= 360 (Kim et aL 1987) and 790 (Kim 1990), and the incompressible

mixing layer at Reo (the Reynolds number based on the momentum thickness, 6m,
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and the velocity difference, AU)= 2400 (Moser and Rogers 1992). We started with

the low Reynolds number channel flow data as a confidence test. We found that
the results obtained in this case are consistent with the previous work of Horiuti

(1993), who used a different set of DNS data but at the same Reynolds number.

The details of this testing are not shown in the present report.

The high Reynolds number channel flow field (with 256 x 193 × 192 grid points) was
filtered to 64 × 97 × 48 grid points. The mixing layer flow field (with 512 x 210 × 192

grid points) was filtered to 64 x 210 x 48 grid points. These LES grid point numbers
were chosen so that the turbulent kinetic energy retained in the SGS components

is large. This is needed to make a fair assessment of the SGS models. SGS model
evaluations were conducted by comparing the y-distribution of the mean values

averaged in the x - z plane (denoted by < 0 >), and also by comparing the

y-distribution of the root-mean-square (rms) values of the exact terms with the

model predictions. Only the y-distribution of the mean values are shown in the

present report because the rms values were found to give similar results.

2.1 A proper eddy viscosity velocity scale

2.1.1 Channel flow

The y-distribution of the SGS Reynolds shear stress < u_u_ > obtained with

E = Ec and Cv = 0.1 in (4) is compared with the DNS data in Fig. 1. While
the agreement between the model and the term is good in the central portion of

the channel, the agreement deteriorates near the wall where the model predicts

a very large peak compared to the actual data. This overprediction of the shear
stress near the wall when Ec is used for E in (4) implies that a damping function

is needed to account for the presence of the wall. This near-wall overprediction of
the stress is similar to the near-wall behavior of one-point closure models (see Rodi

& Mansour 1991). This behavior of one-point closure models is attributed to the

rapid reduction of the Reynolds shear stress (as the wall is approached) due to the

preferential damping of the normal stress (Launder 1987, and Durbin 1992). Horiuti

(1993) reasoned that the same wall damping effects should hold true for the SGS
field. Indeed, when the SGS normal stress t tu2u 2 is used for E (with C_ = 0.23, see

Fig. 2), the model agrees well with SGS Reynolds shear stress near the wall without
an additional damping function. The model is, however, less effective as compared

to using the total energy in the core region of the channel. The main deficiency in

the core region is attributed to excessive grid stretching in the y-direction because

of the mapping used in conjunction with Chebyshev expansions. In an actual LES

computation, finite differences with a more uniform grid are used in the y direction
and, therefore, a more isotropic energy distribution can be expected in this case.

The effects of the anisotropic grid can be evidenced by the y-distribution profile

of the 'flatness parameter' A (Lumley 1978) averaged in the x-z plane. In this case
A is defined as

A=[1 -9 _{A2 - A3}], .42 = aijaij, A3 = ai.iajkaki, (6)
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FIGURE 3. y-distribution of the flatness parameter A and the Van Driest function

(channel at Rer = 790).
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aij = {u_u_ - = _UkUk
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We find (see Fig. 3) that in the core region of the channel, A -_ 0.35, which is much
smaller than the expected A = 1 when the small scale turbulence is isotropic. In

the region around y ,,_ 0.1, A peaks around A -,, 0.5, and then gradually decreases
to 0.35 at the channel center. The y-distribution of A for the unfiltered DNS data
does not show this overshoot and is close to A = 1 around the centerline. The

grid spacing in the central region of channel seems to be too coarse; therefore, a

considerable anisotropy exists in the SGS turbulence fluctuations. In fact, when

the SGS-EVM model with E = u2u2' ' in (4) was used in an actual LES channel

flow calculations using a more uniform grid at high Reynolds number (Rer = 1280)

(Horiuti 1993), a good agreement with experimental data was found. The present
comparisons for the high Re channel flow confirm the conclusions of Horiuti (1993)
based on the low Re channel flow fields.

For the record, the y-distribution of the conventional Van Driest damping func-

tion ((1 - exp(-y+/26.0)) (normalized with value of A at the channel center) is
included in Fig. 3. It should be noted that the 'flatness parameter' A has a similar

distribution across the channel as the Van Driest function, suggesting that A may

be used as an alternative method to damp the eddy viscosity near the wall (Horiuti

1992).

2.1.2 Mizing layer

The y-distribution of uxu2' ' obtained using E = EG (C_ = 0.20) and E = u2u2,r

(C_ = 0.26) in (4) are compared with the DNS data in Fig. 4 and 5, respectively.
Both cases show a good agreement of the model with the DNS data, indicating that

the two models are equivalent in this case. It should be noted that the optimized C_
values obtained for the ' 'u2u 2 model in the clmnnel flow at lower Re (0.22), at high Re
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FIGURE 4. y-distribution of the SGS-Reynolds shear stress in turbulent mixing

layer. (Model with E = Ea//(AU)2.)
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FIGURE 5. y-distribution of the SGS-Reynolds shear stress in turbulent mixing

layer. (model with E = u_u_/(AV) 2 )

(0.23), and in the mixing layer (0.26) are very close to each other. This implies that
the model constant of the SGS normal stress model is rather universal independent

of the type of flow, whereas the optimized Cv values for the E = Ea model were

0.11, 0.10, 0.20, respectively. This is further indication of the potential strength of
the normal-stress model. It is interesting to note that, particularly in the outer edge

region of the mixing layer (y -_ 10 or ,,_ -10), the magnitude of normal component

was the largest among the three components of the SGS turbulence fluctuations. A

possible relationship of this phenomenon with the significant intermittency in these

regions will be investigated in future work.
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mal stress model (Channel at Rer = 790)
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mal stress model (Mixing layer)

P.._, Generalized SGS normal-stress model

Although it is shown that the SGS-EVM based on the 'major-gradient stress'

model (Eq. (4) with E = u'2u'2) shows a high correlation with the DNS data, this

model does not preserve the tensoral invariance of the SGS Reynolds stresses. This
drawback can be circumvented by generalizing this model as follows (Durbin 1991

and Horiuti 1993):

" 'uiu1'= 6,j( 3 EG + _ P) - v,,, --cgx,- v,j,
(7)
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where A ,, 0-_,,_

v_,i = Cv-_-i_uiuj, P = v_.._ Oxt "
EG

This model is not identical to the conventional eddy viscosity model. In this model,

the velocity scale is chosen as the component normal to the principal shear plane,
for example, for ' ' the most dominant term in the RHS becomes nu_O-ffa/x2.Ul_t 2,

The generalized normal stress model is tested in the same manner as in the last
section. The results for the high-Re channel flow (C_ = 0.23) and the mixing

layer (C_ = 0.26) are shown in Figs.6 and 7, respectively. It is evident that the

generalized normal stress model shows a high correlation with the previous normal
stress model.

It should be pointed out that the generalization of the normal stress model with-

out losing the tensorial invariance is not unique, e.g. terms such as

O-a_ 0-at

ax--S- v j' (8)

can be added to Eq. (7). When these terms are included, however, the term

u_ x O-o.1/Ox2 causes a large peak in the model for the U_lUt2 profile in the channel
flow. For this reason, the terms in Eq. (8) were excluded when generalizing the
normal stress model.

_.3 Approzima_ion method of the SGS _urbulent energy

To effectively use the model advocated in the previous sections, a model for the
normal stresses is needed. We can either carry equations for the normal stresses

or estimate the energy in the subgrid-scales from the energy in the large scales.

In testing the scale-similarity model of Bardina (1983), Horiuti (1993) found good
correlation between the model and the data. The model reads,

Ec = CK( t - - (9)

I ! 2u2 = CN( 2 - -

where a constant different from unity was needed. It was pointed out that the

optimized model constants Ch" and CN were not equal to unity because the scale-

similarity model provides a partial estimate of the whole SGS fluctuations which

resides in the vicinity of the cutoff-wave number (= r/A). The poor performance
of the model when these coefficients are set equal to unity can be evidenced by

the fact that in this case the SGS flatness parameter A becomes identically zero

(purely two-dimensional state). We have optimized CI,'/CN for the low-Re, the

high-Re channel, and the mixing layer flows and found 7.0/12.0, 7.0/9.0, and 9.0/
12.0 to be representative values for these flows. We note that they are slightly (but

tolerably) sensitive to the type of flow fiel, and that they are generally close to each
other. A representative comparison of the model prediction with the DNS data for

u_u_ is shown for the high-Re channel flow and the mixing layer in Figs. 8 and 9,
respectively. We find a good agreement with the DNS data for both flows.
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3. Future plans

An ultimate goal of the present study is to develop an SGS model which yields

good predictions of turbulent flows in a complex geometry. Of particular interest is
the flow over a backward-facing step. In this case, while the flow is bounded by the

walls, the internal mixing layer present in this flow plays a major role in setting the

turbulence levels. In this work, a proper velocity scale for the SGS-EVM viscosity

was determined for the fully developed channel and the mixing layer flows. In

the channel, a clear advantage over more conventional treatments was shown by

using the normal stress. It was also shown that the SGS normal stress is equally
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useful as the total SGS turbulent energy for modeling in mixing layers. The model
constant in the normal-stress model was found to be fairly independent of the type

of flow. It was demonstrated that a generalized normal stress model can be used
as an alternative method for the normal-stress model, and the tensorial invariance

which is violated in the normal-stress model can be recovered. This generalized

normal-stress model will be tested in a backward-facing step flow in both 'a priori'

and 'a posteriori' manner in the future. Although the Bardina model constants CK
and CN in Eq. (9) are rather consistent in three different flow fields, some variance

was noticed. An attempt to determine these coefficients more accurately using the

Dynamic scale model approach is currently underway.
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