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Similarity states of homogeneous stably-stratified
turbulence at infinite Froude number

By Jeffrey R. Chasnov

1. Motivation and objectives

Turbulent flow in stably-stratified fluids is commonly encountered in geophysical

settings, and an improved understanding of these flows may result in better ocean
and environmental turbulence models. Much of the fundamental physics of stably-
stratified turbulence can be studied under the assumption of statistical homogeneity,

leading to a considerable simplification of the problem. A study of homogeneous

stably-stratified turbulence may also be useful as a vehicle for the more general

study of turbulence in the presence of additional sources and sinks of energy.
Our main purpose here is to report on recent progress in an ongoing study of

asymptotically long-time similarity states of stably-stratified homogeneous turbu-

lence which may develop at high Reynolds numbers. A similarity state is char-

acterized by the predictability of future flow statistics from current values by a

simple rescaling of the statistics. The rescaling is typically based on a dimensional
invariant of the flow. Knowledge of the existence of an asymptotic similarity state

allows a prediction of the ultimate statistical evolution of a turbulent flow with-

out detailed knowledge of the very complicated and not well-understood non-linear

transfer processes.

We present in this report evidence of similarity states which may develop in homo-

geneous stably-stratified flows if a dimensionless group in addition to the Reynolds
number, the so-called Froude number, is sufficiently large. Here, we define the
Froude number as the ratio of the internal wave time-scale to the turbulence time-

scale; its precise definition will be given below. In this report, we will examine three
different similarity states which may develop depending on the initial conditions of

the velocity and density fields. Theoretical arguments and results of large-eddy
simulations will be presented. We will conclude this report with some speculative

thoughts on similarity states which may develop in stably-stratified turbulence at
arbitrary Froude number as well as our future research plans in this area.

2. The governing equations

Choosing our co-ordinate system such that the z-axis is pointed vertically up-

wards, we assume a stable density distribution

p = p0 - flz + p',

where p0 is a constant, uniform reference density, fl > 0 is a constant, uniform

density gradient along z, and p' is the density deviation from the horizontal aver-

age. The kinematic viscosity u and molecular diffusivity D of the fluid are assumed
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constant and uniform. After application of the Boussinesq approximation, the gov-

erning equations for the fluid velocity u and the density fluctuation p' are

V.u=O, (2.1)

Ou p'g V(p + pogz) + vV2u ' (2.2)
_-+u. Vu= Po Po

Op'
q- u. Vp _ = flu3 + DV2p _, (2.3)

where g = -jg with g > 0, j is the vertical (upwards) unit vector, and p is the fluid

pressure.
We will consider three limiting flows which may occur in a stably-stratified fluid.

Firstly, we will consider decaying isotropic turbulence with an isotropic passive

scalar, whose governing equations are obtained from (2.1) - (2.3) when g, fl = 0.

Secondly, we will consider decaying isotropic turbulence in a mean passive scalar gra-

dient, obtained when g = 0 only, and; thirdly, we will consider buoyancy-generated

turbulence (Batchelor, Canuto & Chasnov, 1992), obtained when fl = 0 only. The

conditions under which these limiting flows may develop in a stably-stratified fluid

where both g and fl are nonzero are most easily determined after a transforma-

tion of the equations to dimensionless variables. First, to make the equations more

symmetric in the velocity and density fields, we define following Cambon (private

communication) a normalized density fluctuation 8 such that it has units of velocity,

(2.4)
V p0Z "

Use of 8 instead of p' in (2.2) - (2.3) modifies the terms proportional to g and fl

into terms proportional to N, where

(2.5)

is the Brunt-Vaisala frequency associated with the internal waves of the stably

(8) is the potentialstratified flow. Furthermore, ½(u 2) is the kinetic energy and 1 2

energy of the fluid per unit mass, and the equations of motion conserve the total

energy (kinetic + potential) in the absence of viscous and diffusive dissipation.

Now, defining dimensionless variables as

uo x u (p + pogZ)
T=t-_- ° X=-- U=--, P= O=_0, (2.5)' lO ' UO PoUo 2 '

where/0, u0, and _0, are as yet unspecified length, velocity, and normalized density

scales, the equations of motion become

v. u = 0, (2.6)
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0U . 10o ,-,0---T+ U. VU = -J_00 _00_ - VP + V2U, (2.7)

O0 1 Uo. _Ro+ u. vo = 0oU + v o, (2.8)

where
U 0 U0I 0 V

FO=Nl---- _, Ro- v , a=_. (2.9)

F0 and R0 can be regarded as an initial Froude number and Reynolds number

of the flow, respectively, although their precise definition is yet dependent on our

specification of 10, u0, and 00; a is the Schmidt (or Prandtl) number of the fluid.

2.1 Isotropic turbulence with an isotropic passive scalar

This limiting flow may be obtained by initializing the flow with an isotropic veloc-

ity and density field with given kinetic and potential energy spectrum of comparable

integral scales. The unspecified dimensional parameter l0 may be taken equal to

the initial integral scale of the flow, and u0 and 00 may be taken equal to the initial
root-mean-square values of the velocity and normalized density fluctuations. The

non-dimensional variables of (2.5) ensure that the maximum values of U and O
and the non-dimensional integral length scale of the flow is of order unity at the

initial instant, and, provided that u0 is of order 00, implying comparable amounts

of kinetic and potential energy in the initial flow field, and F0 >> 1, both of the

terms multiplied by lifo in (2.7) and (2.8) are small initially. Over times in which

these terms remain small, the resulting equations govern the evolution of a decaying

isotropic turbulence convecting a decaying isotropic passive scalar field.

2.2 Isotropic turbulence in a passive scalar gradient

Here, the flow is initialized with an isotropic velocity field with given kinetic en-

ergy spectrum and no initial density fluctuations. Again we take the dimensional

parameter 10 to be the initial integral scale of the flow and u0 equal to the initial

root-mean-square value of the velocity field. The maximum value of U and the

non-dimensional integral length scale of the flow are then of order unity. However,
the initial conditions introduce no intrinsic density scale, and such a scale needs to

be constructed from other dimensional parameters in the problem. If at some time
in the flow-evolution not too far from the initial instant the maximum of the dimen-

sionless density fluctuation O is also to be of order unity, then the dimensionless

group multiplying Ua in equation (2.8) must necessarily be of order unity. Setting

this group exactly equal to unity yields an equation for 00 with solution Oo = Nlo.

Thus defining 00, we find that the dimensionless group multiplying 19 in equation

(2.7) is equal to 1/F_ so that, in the limit of F0 >> 1, this term is small at the initial
instant and may be neglected for some as yet to be determined period of time. The

resulting equations then govern the evolution of decaying isotropic turbulence in

the presence of a mean passive scalar gradient over this period of time.
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g.$ Buoyancy-generated turbulence

Here, the flow is initialized with an isotropic density field with given potential

energy spectrum and no initial velocity fluctuations. Similarly as above, we take
the dimensional parameter l0 to be the initial integral scale of the density field and

00 to be equal to the initial root-mean-square value of the 0-field. The maximum
value of 0 and the dimensionless integral scale of the flow is then of order unity.

However, here the initial conditions introduce no intrinsic velocity scale. If at a time
in the flow-evolution not too far from the initial instant we wish the maximum of the

dimensionless velocity fluctuation U to also be of order unity, then the dimensionless

group multiplying O in equation (2.7) must necessarily be of order unity. Setting this
group exactly equal to unity yields a simple quadratic equation for u0, with solution

!
u0 = v/-NT_000,or equivalently, u0 = _/gloPo/Po, where p_ is the value of (p,2)1/2 at

the initial instant. We note that this is the same velocity scale chosen previously by

Batchelor et al. (1992) in their study of buoyancy-generated turbulence. Upon use

of the identity Oo = ug/Nlo, we find that the dimensionless group multiplying U3 in

(2.8) is exactly equal to 1/F 2 so that, in the limit of F0 >> 1, this term is small at the
initial instant. Using the definition of u0, the initial Froude number here is seen to

be equal to F0 = p_o/fllo. For times over which the term multiplied by Fo 2 may be

neglected, the resulting equations then govern the evolution of buoyancy-generated
turbulence.

3. Asymptotic similarity states

3.1. Final period of decay

Exact analytical treatment of (2.1) - (2.3) is rendered difficult because of the

quadratic terms. Under conditions of a final period of decay (Batchelor, 1948),

these terms may be neglected and an exact analytical solution of (2.1)- (2.3) may be

determined. Although most of the results concerning the final period are well-known

or easily found, we recall them here since the ideas which arise in a consideration
of the final period are relevant to our high Reynolds number analysis.

During tim final period, viscous and diffusive effects dissipate the high wavenum-
her components of the energy and scalar-variance spectra, and, at late times, the

only relevant part of the spectra are their forms at small wavenumbers at an earlier

time. Defining the kinetic energy spectrum E(k, t) and the density-variance spec-

trum G(k, t) to be the spherically-integrated three dimensional Fourier transform

of the co-variances ½(ui(x, t)ui(x + r, t)) and (p'(x, t)p_(x + r, t)), an expansion of

the spectra near k = 0 can be written as

E(k,t) = 27rk_(B0 + B2k 2 +...) (3.1)

e(k, t) = 4  2(c0 + 2+...), (3.2)

where B0, B2,..., and Co, C2,... are the Taylor series coefficients of the expansion.

In a consideration of isotropic turbulence, Batchelor and Proudman (1956) assumed

the spectral tensor of the velocity correlation (ui(x)uj(x + r)) to be analytic at
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k = 0 and determined that B0 = 0 and that non-linear interactions (which are

important during the initial period) necessarily result in a time-dependent non-
zero value of B2. Saffman (1967a) later showed that it is physically possible for

turbulence to be initially created with a non-zero value of B0 and that, for decaying

isotropic turbulence, B0 is invariant in time throughout the evolution of the flow. By

analogous arguments, it can be shown that the spectrum of the density correlation
is itself analytic at k = 0 when Co # 0, and, for an isotropic decaying density

(scalar) field, Co is invariant in time (Corrsin, 1951).
Here, rather than present an exact derivation of the final period results, we will

demonstrate how a simple dimensional analysis can recover the correct decay laws.

We consider separately the three different limiting flows envisioned above.

Isotropic turbulence with an isotropic passive scalar

The evolution of the mean-square veIocity may be found by dimensional analysis

assuming the only relevant dimensional quantities are the low wavenumber invari-
ant of the energy spectrum B0, if non-zero initially, viscosity v, and time t. The

equations of motion are assumed to be linear in the velocity field during the final

period so that (u 2> must linearly depend on B0, and we find

{u 2) o¢ Bov-]t-_, (3.3)

as determined by Saffman (1967a). If B0 is initially zero, then B2 is necessarily

non-zero and is also invariant during the final period when nonlinear interactions

are negligible. A corresponding dimensional analysis based on B2 instead of B0
yields

5 5

(u2>o(B2v-_t-_, (3.4)

as originallydetermined by Batchelor(1948). Analogous arguments applied to

the isotropicpassivedensity(scalar)field,which isseen to be uncoupled from the

velocityfieldduringthe finalperiod,impliesa dependence on Co, necessarilylinear,

the diffusivity D, and time t, yielding

(p,2) _ CoD-]t-], (3.5)

as originally determined by Corrsin (1951), and, if Co is initially zero,

(/2) (x C2D-}t-}. (3.6)

Isotropic turbulence with passive scalar gradient

The passive density (scalar) field for this flow is driven by velocity fluctuations,
and the low wavenumber coefficient of the density-variance spectrum is no longer

invariant in time. In fact, an exact relation, valid even when nonlinear terms are

non-negligible, holds between Co and B0 and is

Co(t) = l a_D ,2_. _o_ , (3.7)
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indicating that there is now only one invariant, namely B0, which is relevant to our
dimensional analysis. Making use of this invariant, we find in the final period the

decay law
(p,2)cx �32Boy-It½, (3.8)

which is most simply found by substitution of (3.7) directly into (3.5). If B0 is zero,

then B2 is invariant during the final period, and C2 is related to B2 (exact only

when nonlinear terms are negligible) by

Cz(t) = 1 oZn ,2
5_, --z_• (3.9)

The decay law in the final period is then

B t
(pa) cxt32Bzu-_t-_. (3.10)

We have thus found the interesting result that the density-variance may either

increase or decrease during the final period depending on the form of the low-

wavenumber energy spectrum. This result may be of use to researchers intercsted

in determining the form of the low wavenumber energy spectrum in homogeneous

turbulence under experimental conditions.

Buoyancy-driven flow

Here, it is the velocity field which is driven by density fluctuations, and the low
wavenumber coefficient B0 of the kinetic energy spectrum is no longer an invariant.

The relevant invariant here is the low wavenumber coefficient Co of the density-

variance spectrum. As before, an exact relation holds between B0 and Co, valid
even when nonlinear terms are non-negligible, and is

Bo(t) - 2 gZCo t2" (3.11)
3 p_

Making use of the invariant Co, we find another form for the mean-square velocity

fluctuation under an assumption of a final period in which non-linear terms are

negligible

g2Co. -_,½(u 2) c<_, _ . (3.12)
P0

The mean-square density fluctuations decay as for the isotropic passive scalar flow.

Clearly, an increase in (u2l during a "final period" contradicts the very existence of
a final period since the Reynolds number of the flow is increasing in time. If Co is

initially zero, then C2 is necessarily non-zero and is invariant when nonlinear terms

are negligible. B2 is now related to C2 by

B2(t) = 2 gZC_____£_t2 (3.13)
3 p_ '
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and the mean-square velocity follows

g2C2 I/-] t-_ (3.14)<u p-T

Although the mean-square velocity decays in this case, the integral scale grows
like t 1/_ so that the Reynolds number increases in time, again contradicting the

existence of a final period.

3._. Exact high Reynolds number similarity states

At high Reynolds numbers, direct effects of viscosity and diffusivity occur at much

larger wavenumber magnitudes than those scales which contain most of the energy
and density-variance so that the asymptotic forms of (u 2) and (/2) can be expected

to be independent of u and D. Viscous and diffusive smoothing of the energy
and density-variance containing components of the spectra are now replaced by

nonlinear transfer processes so that one can still reasonably expect the asymptotic

scaling of (u 2) and (p,2) to be on the form of the spectra at low wavenumbers. The
low wavenumber coefficient B0 is an invariant, even at high Reynolds numbers, for

decaying isotropic turbulence and so is Co for a decaying isotropic passive scalar.
If there is a mean passive scalar gradient, then Co is asymptotically related to B0

by (3.7). For buoyancy-driven flows, Co is an invariant and B0 is asymptotically
related to Co by (3.11).

Based on dimensional analysis, we can now determine the high Reynolds number,

long-time evolution of the energy and density-variance when B0 and Co are non-zero

for our three limiting flows.

Isotropic turbulence with an isotropic passive scalar

The low wavenumber coefficients B0 and Co are separately invariant and the

high-Reynolds number asymptotic results are the Saffman (1967b) decay law

(u2)_ B_ot-_, (3.15)

and its analogous law for the passive density-variance

<p,z)o<CoBo_t-_. (3.16)

The nonlinearity of the governing equations is reflected by the nonlinear dependence

of (u 2} and (/2) on B0, in contrast with the results of the final period. Note,
however, that the linearity of the density equation in p' results in a linear dependence

of </2) on C0.

Dimensional arguments can also determine the asymptotic behavior of the veloc-

ity and density integral scales, and one finds

l 2

L,,,Lo (x B_ t'. (3.17)
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lsotropic turbulence with passive scalar gradient

Here Co is no longer invariant, but depends on B0 asymptotically as (3.7) so that

the density-variance now evolves as

4

(p,2) (3.18)

when B0 is non-zero.

Buoyancy-driven flow

Here Co is invariant and B0 is not, and B0 depends on Co asymptotically as (3.11).

By dimensional arguments (Batchelor el al., 1992), the mean-square velocity and

density-variance evolve as

{u 2} cx (g2Co/P2o)_t-i , (3.19)

2 2 2 _t20, (g Colpo),t (3.20)

and the integral scales evolve as

L,, Lp, oc (g2Co/p2o)}t_. (3.21)

A computation of a Reynolds number based on the root-mean square velocity fluc-

tuation and the integral scale shows that Re oct _/s increases asymptotically, pre-

cluding the development of a final period in this flow.

3.3. Approzimatc high Reynolds number similarity states

When either B0 or Co are zero, there are no longer strictly invariant quantities

on which to base asymptotic similarity states. The coefficients B2 and C2 are

affected by nonlinear transfer processes, and exact results as found above become
unobtainable. Nevertheless, if we make an additional assumption, which needs to

be verified by numerical or experimental data, that the tlme-variation of B2 or C2

due to nonlinear processes are small compared to the rate of change of the energy or

density-variance, then approximate asymptotic similarity states may still be based
on the nearly-invariant low wavenumber coefficients. The analysis proceeds in exact

analogy to that above, and, for use in comparison to the numerical simulation data,
we state the results below.

Isotropic turbulence with an isotropic passive scalar

For B0 = 0, we have the Kolmogorov (1941) decay law

2 10
(u s} cx Bit -r. (3.22)

Three additional approximate similarity states exist for the decaying isotropic pas-

sive scalar depending on which of B0 or Co are zero (Lesieur, 1990):

(p,2} cx C2Bolt -_ (3.23)
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(p,2) o¢ CoBalt -} (3.24)

(p,2) o¢ C2B_} t -a_, (3.25)

Isotropic turbulence with passive scalar gradient

For B0 = 0, we assume that B2 is approximately invariant. The low wavenumber

scalar-variance spectrum coefficient C2 is approximately related to B2 by (3.9). The

density-variance is found to evolve as

o,Z'B oO. (3.26)

Buoyancy-driven flow

For Co = 0, we assume that C2 is approximately invariant. The low wavenumber

energy spectrum coefficient B2 is approximately related to C2 by (3.13). The mean-

square velocity and density-variance evolve approximately as

(u2)_ (g2Co/P2o)4t-_ , (3.27)

g2(p'2/p2o) (x (g2Co/p2o)_t-_ , (3.28)

and the integral scales evolve as

L_, Lp, o( (g2Co/P_o)_ta'. (3.29)

A computation of a Reynolds number based on the root-mean square velocity fluc-

tuation and the integral scale shows that Re again increases asymptotically, but
now as t 1/7.

4. Large-eddy simulations

The high Reynolds numbers required to test the asymptotic scaling determined

above may be obtained by a large-eddy simulation (LES) of Eqs. (2.1)- (2.3) using a

pseudo-spectral code for homogeneous turbulence (Rogallo, 1981). For the subgrid
scale model, we employ a spectral eddy-viscosity and eddy-diffusivity (Kraichnan

1976; Chollet and Lesieur 1981) parametrized by

[,e(klkn,,t)= O.145+5.01exp - [ km J ' (4.1)

and

D_(klkm,t) = u,(k]km,t), (4.2)
O"e

where km is the maximum wavenumber magnitude of the simulation and at is an

eddy Schmidt number, assumed here to be constant and equal to 0.6. We take the

initial energy spectrum to be

E(k,O) = A.k; a(k/kp)"exp (-(n/2)(k/kp)2) , (4.3)
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where n is equal to 2 or 4, An is chosen so that (u 2) = 1, and kp is the wavenumber

at which the initial energy spectrum is maximum. The case n = 2 corresponds to
B0 ¢ 0, and the case n = 4 corresponds to B0 = 0. In the 2563 numerical simula-

tions presented here, the minimum computational wavenumber is 1, the maximum

wavenumber is about 120, and we take kp = 100. The initial energy spectrum is set
to zero for wavenumbers greater than 118 to allow the subgrid scale eddy-viscosity

and eddy-diffusivity to build up from zero values. The relatively large value of kp
chosen here allows an attainment of an asymptotic similarity state before the inte-

gral scales of the flow become comparable to the periodicity length. A velocity field
with initial energy spectrum given by (4.3) is realized in the simulation by requir-

ing the spectral energy content at each wavenumber to satisfy (4.3) but randomly

generating the phase and velocity component distributions (Rogallo 1981).
In the simulations of decaying isotropic turbulence with a decaying isotropic pas-

sive scalar, the passive scalar-variance spectrum is also initialized with the spectrum

given by (4.3) with An chosen so that (p'2 / = 1. We present the results of two simu-
lations for this flow: the first with an initial energy spectrum with n = 2 convecting

two passive scalar fields with initial spectra with n = 2 and n = 4, and the second

with an energy spectrum with n = 4 convecting two passive scalar fields with n = 2
and n = 4. Computations of these two velocity fields and four scalar fields are

sufficient to test the theoretical scaling discussed in §3.

In the simulations of decaying isotropic turbulence in a passive scalar gradient,

the initial fluctuating passive density field is taken identically equal to zero, and two

simulations are presented with an initial energy spectrum with n = 2 and n = 4.
The exact value of/3 is inconsequential provided it is non-zero, and we choose/3 = 1.

In the simulations of buoyancy-generated turbulence, the initial fluctuating ve-

locity field is taken identically equal to zero, and two simulations are presented with

an initial density spectrum with n = 2 and n = 4. Here, the exact value of g is

inconsequential provided it is non-zero, and we choose units such that g/po = 1.

4.1. Results

In the interest of brevity, we present here only results from the large-eddy simula-

tions pertaining to the power-law predictions of §3. More detailed results concerning

decaying isotropic turbulence with and without a passive scalar gradient will be pub-
lished in Chasnov (1993) and Chasnov & Lesieur (1993) - slightly lower-resolution

simulations (1283 ) of buoyancy-generated turbulence have already been published

in Batehelor, Canuto & Chasnov (1992). In figures 1 and 2, we plot the instan-

taneous power-law exponents (logarithmic derivatives) versus time normalized by

the initial large-eddy turnover time T(0), of the mean-square velocity decay and

the passive density-variance decay when/3, g = 0 in (2.2) and (2.3), appropriate for

the study of decaying isotropic turbulence with a decaying isotropic passive scalar.

In figure 3, we plot the time-evolution of the power-law exponent of the passive
density-variance when /3 = 1 and g = 0, appropriate for the study of decaying

isotropic turbulence in the presence of a passive scalar gradient, and, in figures 4

and 5 we plot the time-evolution of the power-law exponent of the mean-square

velocity and density-variance when/3 = 0 and g/Po = 1, appropriate for the study
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FIGURE 1. Time-evolution of the power-law exponent of (u 2) for decaying isotropic

turbulence. The solid lines are the results of the large-eddy simulations and the

dashed lines are the exact and approximate anMytical results discussed in §3.
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FIGURE 2. Time-evolution of the power-law exponent of (p,2) for a decaying

isotropic passive density field.

of buoyancy-generated turbulence. The dashed lines in all of the figures correspond

to the exact and approximate asymptotic similarity state results discussed in §3.
The solid lines are the results of the large-eddy simulations and are labeled accord-

ing to the low-wavenumber spectral coefficient which is non-zero and invariant, or

postulated to be nearly-invariant.

Overall good agreement is observed between the analytical predictions and the

numerical results, lending support to our simple analytical arguments.
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FIGURE 4. Time-evolution of the power-law exponent of (u 2) for buoyancy-

generated turbulence.

Although the total evolution time of the simulations appears to be quite long, we

note that the number of large-eddy turnovcr times undergone by the flow at time t

is proportional to log(t) so that the approach to asymptotic behavior may be quite
slow. The small deviations from the analytical results which are thought to be exact

observed in the simulations could very well be due to an insufficient time-evolution.

Longer evolution times than presented here must await larger simulations.
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FIGURE 5. Time-evolution of the power-law exponent of (pa) for buoyancy-

generated turbulence.

5. Future plans

In this research brief, we have discussed results pertaining to three limiting flows

possible in a stably-stratified fluid if the initial Reynolds number and Froude number

is sufficiently large. The Froude number, measured at time t, can be shown to be

proportional to liNt in all of the above similarity states so that at times of order

1IN we expect the neglected terms in the equations of motion to become important.

In particular, an internal wave field associated with the stable stratification will be

generated. The main question which we are currently trying to answer is whether

some new and different similarity state is developed asymptotically as the Froude

number decreases. Here too, there is an invariant in the flow associated with the

low wavenumber spectral coefficients, namely

B0 + _p0 C0,

which is the low wavenumber coefficient of the total (kinetic + potential) energy

spectrum. We have tried to base a similarity state of the total energy on this

invariant according to

+ t, ; = (B0+  p---oC0),t ,

and to verify this power-law decay by large-eddy simulation. The results of the large-

eddy simulations do indicate a possible similarity state but with a decay power-law

exponent about a factor of two smaller than expected by (5.1). Another unusual fea-

ture of the simulation results was that the vertical integral scale associated with the

total energy in this flow approaches a near-constant wlue while the horizontal inte-

gral scale continues to grow indefinitely. In a similarity state such as those presented
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in this report, one would naively expect that all length scales would asymptotically

behave in the same fashion. The difficulty in theoretically determining the correct

similarity state (if one exists) which develops in the low Froude number flow lies

with the additional non-dimensional parameter relevant to this flow, namely Nt,

and a lack of intuition as to how this parameter should enter into the correct scaling

laws. Work on this problem proceeds.

There is also some current interest in stably-stratified flows with regards to the

formation of well-mixed layers separated by large density gradients. Such a flow is

not statistically homogeneous, and there is some theoretical speculations, as well

as experimental evidence, that under certain conditions an initially statistically

homogeneous flow may in fact become unstable and form these layers. We wish to

determine if such an effect may be observed and studied by numerical simulation.

While the physics behind the formation of these well-mixed layers requires fur-

ther study, it is also of interest to see how the mixing process may proceed in

each individual layer. To this end, it has been proposed (Batchelor, private com-

munication) to study stably-stratified plane Couette flow in order to observe the

competition between the generation of turbulence by the externally imposed shear

and the stabilization of the flow by the stratification. Stably-stratified Couette flow

can be simulated using a modified channel flow code (Lee & Kim, 1991). For high

Reynolds numbers, use of a subgrid scale model would be required, and utilization

of a modified version of the dynamic subgrid scale model (Cabot, this volume) might

be appropriate for this purpose.
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