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Application of incremi rital

unknowns to the Burgers equation

By Haecheon Choi and Roger Temam 1

In this article, we make a few remarks on the role that attractors and inertial

manifolds play in fluid mechanics problems. We then describe the role of incremental
unknowns for approximating attractors and inertial manifolds when finite difference

multigrid discretizations are used. The relation with direct numerical simulation

and large eddy simulation is also mentioned.

1. Motivations and objectives

At this time, there are two different methods for mathematically describing a

turbulent flow when the permanent regime is established. The first one, more tra-

ditional, is related to the concept of ensemble averages and the idea that turbulent

flows are statistically well defined and reproducible. The flow is described by a
measure in the infinite dimensional function space, the statistics being, of course,
that associated to the measure. Probabilities and statistical tools are essential in

this approach.
Another more recent approach to turbulence stems from dynamical system the-

ory in which the flow is described by an attractor which can be a complicated

(fractal) set (see e.g. Constantin, Foias 8z Temam 1985). Furthermore, this at-
tractor is expected to have in general a large dimension although some interesting
turbulent flows with a low dimensional attractor have been produced in special

cases. However, this low dimensional behavior is not likely to appear in general for

flows of industrial interest (see Keefe, Moin _z Kim 1992). Before making further

remarks on the attractor point of view, let us observe that the statistical and at-

tractor approaches are not inconsistent. A measure can be defined on the attractor.
Furthermore, it was one of the main results of Constantin, Foias & Temam (1985,

1988) to show that certain segments of the Kolmogorov and Kraichnan theories of

turbulence can be rigorously derived from the Navier-Stokes equations using the

attractor point of view.

It may not seem practically useful to state that a turbulent flow is represented

by a fractal attractor of large dimension. Fortunately, some useful information
can be derived from the study of the attractor which sheds some new light on the
numerical simulation of turbulence. The first information is that the attractor can

be embedded approximately, or perhaps exactly, in smooth manifolds called inertial

manifolds (Foias, Sell & Temam 1985, 1988; Foias, Manley & Temam 1987; see also

Temam 1991a). These manifolds yield a slaving of the high frequency component of
the flow by its low frequency component and reduce the number of modes needed
to monitor a flow.
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Incremental unknowns_ have been introduced in Temam (1990) as a means to

approximate attractors and inertial manifolds in the context of finite difference

multigrid approximations. Indeed, when spectral discretization is used, the separa-
tion between the small and large scale components of the flow occurs naturally in

the spectral space. When finite differences are used, all mesh points play the same

role however large is the number of mesh points, and there is no obvious way to

distinguish between the small scales which carry little energy and the large scales
which carry most of the energy. Incremental unknowns of various types have been

introduced which produce the separation of scale which is needed (Chen & Temam

1993). The utilization of incremental unknowns for large scale computations of tur-

bulent flows, for direct numerical simulation or large eddy simulation, remains to be

done. As a first step towards this important task, we describe hereafter in section
2 the utilization of incremental unknowns for the solution of the Burgers equation

with stochastic forces. Indeed, these equations are known to be a good model for

turbulent flows (see e.g. Chambers et al. 1988; Choiet al. 1992).

These computations support two important observations:
The small scale component of the flow as defined in the context of incremental

unknowns (iU) is indeed small. Its instantaneous variation is very fast while its

averaged variation is very slow.
The IU method is numerically efficient. It produces an improvement of the

CFL stability condition which has not been analytically fully explained, although

there are already some partial theoretical justifications (Temam 1990, 1991b). Con-

sequently, the same accuracy can be recovered with less calculations, the gain in

computing time in the cases that we consider being a factor of 7.

2. Accomplishments

In this section, we describe the procedure for applying the IU method to the

stochastic Burgers equation. This equation contains nonlinear convection and dif-

fusion terms, and its solution exhibits a chaotic nature; these qualities make it a

natural model for the more complicated Navier-Stokcs equations. Section 2.1 de-

scribes the governing equation and boundary conditions. The mathematical and

numerical procedures of applying the IU method to the stochastic Burgers equation
are described in section 2.2. Numerical results are presented in section 2.3. Ap-

plication of the IU method to the Navier-Stokes equations is considered in section
2.4.

2.1 The Burger_ equation with random forcing

Consider the randomly forced non-dimensionalized Burgers equation with no-slip

boundary conditions

Ou 0 u 2 1 02u

Ot + Ox 2 Re Ox _ + x(z't)' 0<x <1,

u(x = O,t) = u(x = 1,t) = O,
(2.1)

u(x,t = O)=uo,
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where u is the velocity, X is the random forcing, and Re is the Reynolds number.

The initial data uo is an instantaneous solution of the Burgers equation with random

forcing X rather than an arbitrary function. The forcing function X is a white noise

random process in x with zero mean (see Chambers et al. 1988; Choiet aI. 1992):

<X>x =0, <X 2 >x=l.

Here < • >= denotes the average value over space. In the absence of forcing (X = 0),

the solutions of equation (2.1) decay to zero from any bounded initial data.

2._ Description of the IU method for the Burgers solution

The discretized equations for the stochastic Burgers equation with no-slip bound-
ary conditions are obtained using a sem!-implicit method in time (Adams-Bashforth
for the convection term and Crank-Nicholson for the diffusion term) and a second-

order centered difference method in space:

-fl i-1 gi, i 1,..,21 1, (2.2)- u" ....

UO = U2I = O,

where

At

a = 1 + ReAxZ,

At

fl = 2ReAx 2 ,

gi = tt_ -1 ,/_t (2U__ ] __ U_q 1 __ U___ll )
2ReAx 2

At _ ,,-.}

(2.3)

where At is the computational time step and Ax = 1/(2I) is the grid spacing.

The incremental unknowns for the present problem consist of the numbers ¢2i

and ¢2i+1 (see figure 1):

¢2i : U2i, i : 0," " ", I,

1
¢ i+1 = -2i+1 - + u2 +2), i = 0,...,I- 1,

(2.4)

where ¢0 and ¢21 correspond to the velocities at the boundary points. Thus ¢2i+I

is the increment of u to the average of the values at the neighboring points, 2i and

2i + 2; hence by Taylor's formula, ¢2i+1 is small, of order Ax 2.

At points 2i + 1, equation (2.2) becomes

U B _ nc_ 2i+] -- flu2i+2 -- flu2i --"g2i+l.
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1_2i+1
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2i 2i+1 2i+2

FIGURE 1. Incremental unknowns.

Using equation (2.4) gives

,, - (2.5)

where i = 0,..., I - 1. Similarly, at points 2i, equation (2.2) becomes

n 71 l,t

o_u2i -- flu2i+l -- flu2i-1 = g2i.

Substituting equations (2.4) and (2.5) into the above equation gives

,. /32 . 5 = ,,, 5
1 (.2 _ 2a2) 02i -- 7¢2i+2 -- 7q)2i-2 = g2i Jr- -- (g2i+l "_ g2i-11, (2.6)

where i = 1,. •., I - 1. The system consisting of equation (2.6) is similar to the

system consisting of equation (2.2), but involves half as many unknowns.

We can, of course, repeat the procedure. If we start with Ax = 1/(2tI), then

after l steps, we reduce the initial system involving 2tI unknowns to a similar one

involving I unknowns. Following the same procedure described above, one can get

the discretized equations for multi-steps l:

,,t n,,,, ,. n,m m .,m ,,, 2/-,hi" q_2i -- /_ _2i+2 -- fl _2i--2 = Y2i' i ---- 1,'"., - 1, (2.7)

.,m _1 [ ,. -- (_-- ) )1 : • 2t--mI--a, (2.8),/,_+, - ,,,, g_,+, _" (¢_im + ¢'_i_-'_ , i o,..,

_,,,_ 1 (.,,,-,_ _ 2/3,,,-,_)
.m-I

_m-1 2
(2.9)

/_m .m--I '

]_m-I
m--I / m--1 .t--1 ,2g-m+l

_S_" = g2i -t- _ t g2i+l + 92i-i ) , i = 1," • • I - 1,
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where m = 1,..., l denotes the level of grids and m = 1 and l correspond to the

finest and coarsest grids, respectively;

a ° = a, fl0 = j5 and gO = gi, i = 1,..., 21I - 1 (equation (2.3)).

Numerical procedure

The numerical procedure of applying the IU method to the stochastic Burgers

equation can be written as follows:

U_ l-1Step 1: Start from an initial velocity field uo, = Uoi.

Step 2: Get _,n, tim, and g_ from equation (2.9) for m = 1,. •., I.

Step 3: Solve equation (2.7) for the coarsest grid (m = l) to obtain ¢_t.

Step 4: Obtain n,m _2i "¢2i+1 from equation (2.8) with n,_
njlTl ntlT_ Irl 1Flrl lrl 1lr_l tl _llriStep 5: Obtain un'm; uzi = ¢2, andu2i+l = ¢2i+1 + { (¢_'_"_ + ¢2i+2)"

rhrl,m--I rl,mStep 6: Obtain ",2i = ui
Step 7: Repeat Steps 4 and 6 until u n'l is obtained.

_.3 Numerical results using the IU method

In this section, we apply the numerical procedure described in the previous section

to the Burgers equation. A uniform computational mesh of 2049 points is used in

x (Ax = 1/2048) and l = 4 (number of the grid levels); therefore, the coarsest grid

has 257 points.

_.3.1 Properties of the incremental unknowns

An initial velocity field Uo is obtained for Re = 1500 and Atr = 0.01, where Atr is

the time scale of the random forcing (for more details see Choi et aI. 1992). Figure

2 (a) shows the root-mean-square values of ¢ and Cm as a function of t, where

m = 1,2,3; m = 1,2, and 3 correspond to the grid points of 2049, 1025, and 513,

respectively. It can be seen that the Cm's are several orders of magnitude smaller
than ¢. Also, note that the incremental unknowns ¢ at the coarser grid level have

larger magnitude as compared to those at the denser grid level.
The root-mean-square values of at/Or and a¢'n/0f as a function of t are shown

in figure 2 (b). Contrary to the results of ¢ and Cm (figure 2 (a)), the magnitude of

0¢ rnlot is comparable to that of 0c/Or, indicating that 0¢"1/0t cannot be neglected

pointwise as compared to 0¢/0t when there is a stochastic motion in flow. In
case there is no small-scale motion in flow, however, the magnitude of 0¢'*/0t is

several orders of magnitude smaller than that of O_b/Ot: we have tested an initial

velocity field, sin (21rx), without random forcing, and the result showed this is indeed

the case. When a small-scale motion exists in the flow, we expect the derivatives

0¢m/0t to be small in average as evidenced in figure 3. This point will be discussed
elsewhere.

Figure 4 shows 0¢1/0t at x = 0.5 as a function of t and 0¢l/0t at t = 2 as a

function of x; 0¢ 1lOt(t) shows an intermittent behavior while a chaotic behavior is

shown in 0_, 1lOt(x). The power spectra of these 0¢ 1/Ot's show that the incremental

unknowns have nearly same power at all wavenumbers (a white noise) while they
have higher power at the highest frequency.
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2.3.2 Efficiency of the IU method

In this section, we investigate the effect of the IU method on the nunlerical

stability. A classical semi-iml)licit method has a limit of the computational time step
due to the explicit treatment of the nonlinear term. The maximmn CFL (Courant-

Friedrichs-Lewy) number is restricted to one with the present semi-implicit method

(equation (2.2)). Hence, the maxinmm time step without the IU method is restricted
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Case 1= 1 1=2 I=3 I=4

Atmaz 0.0051 0.017 0.054 0.054

Total CPU (see) 0.232 0.088 0.032 0.034

Table 1. Maximum computational time step and total CPU time using the IU
method.

as

Az
At < -- (2.10)

u

Maximum computational time steps Atmax using the IU method have been ob-

tained for the initial value problem (2.1): uo = sin (27rx), Re = 100, and X = 0 (no

random forcing). Table 1 shows the maximum computational time step and total

CPU time using the IU method, where I denotes the level of the coarsest grid. Note
that the IU method is not used when I = 1. A maximum computational time step

is clearly increased when l > 1, indicating that the numerical stability is enhanced
using the IU method. However, there seems to exist a limit of level l of increasing

Atm_z; for the present problem, l = 3 (see table 1).

The CPU time to advance one time step with the IU method is larger than

that without the IU method due to the calculation procedure of (_m, tim, and gin,

although the matrix size to be inverted is reduced from 21I to I. Total CPU times

to reach t = 1 are shown in table 1. Computational cost is significantly reduced

by a factor of 7 using the IU method. The mathematical analysis of the stability

enhancement using the IU method for the Burgers equation is very complex and will

be investigated in the future. Theoretical indications that the IU method produces
stability enhancement appear in Temam (1990, 1991).

_._ Application of the IU method to the unsteady Navier-Stokes equations

The IU method can be applied to the unsteady three-dimensional Navier-Stokes
equations as follows: Firstly, the first step of the fractional-step method (Kim &

Moin 1985) provides a second-order-accurate approximation of the three-dimensional
Navier-Stokes equations with pressure term excluded. Secondly, an approximate

factorizatlon technique (Beam & Warming 1978) splits three-dimensional equations
to three one-dimensional equations. Finally, the IU method as presented above is

applied to each one-dimensional equation. This case will be addressed in the future.
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