
Center for Turbulence Research

Annual Research Briefs 199_

145

N94-i2295

Direct numerical simulation of hot jets

By M. C. Jacob 1

1. Motivation and objectives

1.1 Background

The ultimate motivation of this work is to investigate the stability of two dimen-

sional heated jets and its implications on aerodynamic sound generation from data

obtained with direct numerical simulations (DNS). As pointed out in our last report,

these flows undergo two types of instabilities, convective or absolute, depending on

their temperature. We also described the limits of earlier experimental and theo-

retical studies (e.g Yu 8_ Monkewitz (1989) and Huerre & Monkewitz (1990)) and

explained why a numerical investigation could give us new insight into the physics
of these instabilities. The aeroacoustical interest of these flows was also underlined.

In order to reach this goal, we first need to succeed in the DNS of heated jets. Our

past efforts have been focused on this issue which encountered several difficulties.
Our numerical difficulties are directly related to the physical problem we want

to investigate since these absolutely or almost absolutely unstable flows are by

definition very sensitive to the smallest disturbances and are very likely to reach

non-linear saturation through a numerical feed-back mechanism. As a result, it is

very difficult to compute a steady laminar solution using a spatial DNS. A steady
state was reached only for strongly co-flowed jets (Jacob (1991)), but these flows

are almost equivalent to two independent mixing layers. Thus they are far from
absolute instability and have much lower growth rates.

1._ Preliminary simulations

Nevertheless, DNS of convectively and absolutely unstable jets show some inter-

esting features which qualitatively indicatc that these two types of flows respond

differently to the transient waves generated at the beginning of the simulations.

Two cases were initially computed with the Poinsot-Lele code (Lele (1992), Poinsot

& Lele (1992)): for both cases, the inflow jet-diameter D = 10di_, where 6,_ is
the vorticity thickness, the inlet U-velocity uses a top-hat profile given by Yu &

Monkewitz (1989) to which a co-flow U2 = 0.05U1 has been added, the inlet V-
velocity is zero, and the inlet temperature profile is given by the Crocco-Buseman

relation (Sandham & Reynolds (1989)). For numerical reasons, the computation is
carried out at a low Reynolds number (ReD = 2000), which is still high enough to

avoid significant viscous effects. The dimensions of the computational domain are:

L_ = 60/f_ and Ly = 40_i_. Time is scaled by if,,/c, c being the speed of sound
outside the flow. The centerline Mach number has been set to M1 = 0.4 in order to

1 Currently at Ecole Centrale de Lyon, France
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FIGURE 1. Vorticity contours. (a): Convectively unstable jet (S = 1.0) at time=

288 with 10 contours levels : min= -0.3799, max= 0.3799; (b): Absolutely unstable

jet (S = 0.5) at time= 314 with 10 contour levels : min= -0.3772 max= 0.3772.

Dashed lines are used for negative values in both plots.
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FIGURE 2. Density contours of the absolutely unstable jet (S -- 0.5) at Time= 314

with 10 contour levels : min= 0.9697 , max= 2.0624 :the two shear layers are

interacting.

6O

limit compressibility effects. The two cases differ only by their temperature profiles:

one is a cold (convectively unstable) jet, and the other is a heated absolutely un-

stable jet which has a temperature ratio S = 0.5 between the external temperature

(T2) and the centerline temperature (T1). In both cases, the transient generates

a pair of vortices on each shear layer. Figure 1 shows a typical vorticity field for

each case. The snapshots are taken just after the first vortex leaves the domain

and shortly before the largest structure of the transient reaches the outflow. It is

clear that the vortices of the two mixing layers interact for the absolutely unstable

case, whereas they seem to evolve independently in the cold jet. The corresponding

density contour plot of the hot jet shows how the two shear layers interact in the

transient perturbation (see Figure 2).

A theoretical explanation of this may be given in terms of vorticity dynamics: in

the cold jet, pressure and density gradients are primarily created by the vortices.

They are both predominately radial and, therefore, parallel. Thus the baroclinic

term of the vorticity equation is negligible for a cold jet, and the evolution of

the instability depends mainly on the velocity shear. In the hot jet, however, the

baroclinic term is no longer negligible because the temperature stratification results

in a cross-stream density gradient which combines with streamwise components of

the pressure gradient and redistributes vorticity. According to this interpretation,

vorticity should be decreased on the downstream side of a vortex and increased

on the upstream side. This would explain qualitatively the difference between the

vortical structures of Figures l(a) and l(b) which correspond to the upstream end of
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FIGURE 3. Flow history of the absolutely unstable jet (S -- 0.5). (a): Prcssure

outside the jet at different x-locations; (b):Vorticity thickness history at x= 30.
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the initial (vortical) disturbances for each case. Near the outflow the corresponding
boundary conditions generate a strong pressure perturbation (see Figure 3(a)) which
further modifies the baroclinic term.

In both cases, the disturbances are so strong that they reflect strong waves at

the outflow which generate new, stronger perturbations at the inflow. Hints to this
numerical feedback mechanism can be seen for the hot jet in Figure 3(a), although

the upstream traveling waves are interfering with the continuously generated down-

stream traveling waves. This mechanism appears more strikingly in more stable
flows in which fewer waves are propagating simultaneously (mixing layers, strongly

co-flowed jets etc.).
We choose not to report this case since this feedback is already well documented

elsewhere(e.g. Poinsot & Lele (1992)). The amplitude of the disturbances eventually

saturates, and the flow reaches a pseudo-periodic state as shown in Figure 3(b).
Furthermore, by comparing the two jets, we found that the pseudo-period (_ 60

normalized time units) is roughly the same for both flows. It is also invariant to
doubling the domain length which means that it is not due to a resonance of the

computational domain. The low-frequency amplitude modulation is related to the

biggest structures (as the one shown in Figure 1).

1.3 Objectives of the current research

Several questions arise from these results:

What other physical conclusions can be drawn from these preliminary calcula-
tions?

Does the observed pseudo-frequency correspond to a jet mode which is excited

by ambient (numerical) noise or to a purely numerical artifact?

- Is there any possibility of controlling this frequency?

- Is there any hope of controlling the transient and thus the resulting feedback?

- Could the transient be reduced in order to reach a steady state, or are the self-

sustained instabilities inherent to the jet dynamics?

In order to answer these questions, we have carried out various tests concerning

both the numerics (boundary conditions, initial conditions) and the physics (stabil-

ity analysis, forcing at eigen-frequencies, co-flow). In the following section, we shall

give a summary of this investigation which was performed between November 1991
and June 1992.

2. Accomplishments and current work

2.1 Co-flowed jets

As previously mentioned, a steady laminar solution has been found for jets with

a significant co-flow (see Figure 4). Figure 4(b) shows slight disturbances at the
inlet which are due to an unrealistic V-velocity estimate (V = 0) at the inflow.

In §2.4.1, we will see how this can be improved. For such a strongly co-flowed
jet, several codes available at CTR (the Poinsot-Lele code with one dimensional

boundary conditions and tile Colonius code with obliquely non-reflecting first order
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FIGURE 4. Co-flowed cold jet (U2 = 0.5U1; Lx = 30). Contour plots of: (a):

U-veloclty at time= 308 10 contour levels : min= 0.18 : max= 0.4; (b): V-velocity

at time= 308. 10 contour levels : min= -0.001019 ; max= 0.001019; Dashed lines

are used for negative values in (b) only.
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Giles boundary conditions (Colonius et al. (1991), Giles (1990)) converge with a

comparable accuracy to the steady-state. This is not surprising since the co-flow

reduces the relative shear with respect to the convection velocity and thus stabilizes

the jet. Therefore, the transient is less amplified by the flow and possibly less intense

initially. We found that the minimal co-flow required to reach a steady laminar state
is at least U2 = 0.25U1 for cold jets and increases significantly along with the jet

temperature. It is therefore legitimate to examine if absolute instabilities might

still be observed given such constraints.

2.2 Linear Inviscid Incompressible Stability Analysis(LIISA)

In order to determine the specific impact of co-flows on the instability, a LIISA was
carried out for 2D heated co-flowed jets. The restriction to inviscid incompressible

flows is justified by the fact that the mechanism of the Kelvin-Helmholtz instability
is inviscid and that compressibility effects are not significant for low Mach numbers.

(We have verified that the results of our DNS code remain of the same type at lower

Mach numbers and for inviscid flows.)

2.2.1 Absolute instability limit

The (complex) absolute frequency _0 (this is a freqency for which there exists
a complex wavenumber k0 such that : [Owo/Ok](ko) = 0) has been determined by

solving the complex dispersion relation D(k0, w0) = 0 of the linear stability problem.

The dispersion relation is solved numerically via the Rayleigh equation for stratified

flows using a finite difference scheme along with a minimization technique (Trouvd

(1988)). The strategy for determining the zero group-velocity solution is described
by Monkewitz & Sohn (1986). The values of w0 for various co-flows (U2) and

temperature ratios (S = T2/T1) are plotted in the (wr, w,) plane in Figure 5.

According to the linear stability theory, the absolutely unstable flows correspond
0 of w0 is positive. It is also interestingto the cases where the imaginary part w i

to point out the shape of the spatial amplification in the vicinity of the absolute
frequency for the case S = 0.5 (see Figure 6). According to Bets (1983), this might

be due to an interchange between the two branches of the dispersion relation.

The important conclusion from this study is that absolute instability occurs only

if the co-flow remains less than 1/10 of the centerline velocity. Thus the cases for

which a steady laminar solution can be obtained via DNS correspond precisely to
flows which are not likely to become absolutely unstable even by strong heating.

Hence we must look for another way to reach a steady state or at least to control

the transient generated when the DNS is started.

2.2.2 Forcing

One possible way to control the transient in the DNS of convectively unstable

jets is to force the flow at its most unstable frequency; indeed, if the forcing level

is comparable to the ambient noise, the flow will lock on the forcing frequency.

This can, of course, only be achieved if the transient is not so intense that the

non-linear saturation of the jet is reached. The LIISA is used to determine the

spatial amplification curves: -ai = f(wr) for different co-flows (see Figure 6) and
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to specify the incompressible eigenfunctions which are used as forcing functions.
These are:

where:

u(y, t) = A(t){U,(y) cos(w_t) + U,(y) sin(w_t)}

v(y, t) = A(t){V¢(y) cos(w_t) + V,(y) sin(w_t)}

A(t) = A0(1 - e -(*/*)3)

r=10

and wr is the forcing frequency: 2r/w_ ,,_ 35

The functions Uc, U,, Vc, V, which are given by the LIISA are normalized in order

to obtain: Ao = urms/U1, and u_,,, is evaluated by averaging over both the cross
stream direction and time. These forcing functions are added to the steady inflow

profiles. The results of the LIISA and the forcing provide useful information about

the simulations which were described in §1.2:

1. The frequency which is observed in the DNS is slightly more than half the most

amplified frequency, which means that it lies in the amplified part of the eigen-
value spectrum of the cold jet (see Figure 6). This result supports the idea that

the simulated flows amplify physically the numerical noise generated at inflow in

a similar way than jets amplify ambient noise in experimental facilities.

2. Forcing the jet at the most unstable frequency does not have any significant ef-

fect on the jet if the co-flow is small since the frequency which has been observed

without forcing seems to reappear in the downstream half of the box. Further-
more, this tendency remains even at high forcing levels (A0 = 5% and 10%) (see

Figure 7(a)). Moreover, the level of the perturbations is only controlled in the

vicinity of the inflow. If the co-flow is significant (U2 = 0.5U1 ), the frequency can

be controlled in the whole domain (see Figure 7(b)) even with small forcing levels

(A0 = 1%). This improvement is due to the fact that the stability increases along
with the co-flow: thus the flow is not so sensitive to numerical disturbances. Nev-

ertheless, these results prove that the feedback mechanism generates such strong

perturbations that there is little hope of controlling them by forcing the inflow in

the absolutely and almost absolutely unstable jets. Non-linear saturation occurs
less than two diameters downstream.

2.3 Initial conditions

Another natural approach to control the transient is to reduce it by improving the

initial conditions (the default initial conditions are obtained by translating the inflow

profile through the computational domain). This seems to be a promising idea since

we have no possibility of determining the jet entrainment velocity (Voo = V(y_))

without knowing a priori the streamwise evolution of the axial velocity Ul(x) (so

far, the initial flows fields have no streamwise evolution). Thus a better estimate
of the entrainment velocity than T_ = 0 could indeed be obtained from an initial

flow field which would estimate the evolution of Ul(x). We have examined several

ways to achieve this goal.
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_.3.1 Analytical or self-similar steady state solution

In the case of mixing layers, transients can be significantly reduced by com-

puting numerically the self-similar steady state which is the solution of the Bla-
sius boundary-layer equation. This has been done successfully for compressible

unity-Prandtl number viscous flows by Sandham & Reynolds (1989) and Colonius

(1992). For incompressible 2D-jets, a well-known analytic solution has been found

by Schlichting (1933), but its validity is restricted to the region where the jet is fully
developed. This solution can easily be generalized to compressible jets by using the

Howarth (or Illingworth-Stewartson) transform of the cross stream variable:

fo T dyYH = _--

in a similar manner as Sandham & Reynolds (1989) proceeded for 2D compressible

mixing layers. Unfortunately, this solution can not be extended to the regions with

strong shear (top-hat U-velocity profiles) because the dynamics are governed by
two independent spatial scales, the jet diameter and the shear layer thickness. The

resulting profile can't be self-similar unless the two spatial scales are identical (this

is precisely the case of a fully developed jet which has a Gaussian U-velocity profile)

or one of them is disappearing (this is the case of a no co-flowed mixing layer). For
similar reasons, the analytic solution can not be extended to co-flowed jets for which

U1 and U2 are two conflicting velocity scales unless they reduce to a single one. This

happens for very small co-flows where the flow differs only slightly from the non-
co-flowed case and also for U2 _ U1 where the solution should be wake-like. This is

in contradiction with Abramovich (1963), who found self-similarity in experimental
results.

At any rate, there is neither an analytical nor a self-similar solution for the jet

flows which meet the requirements of both the instability issue (top-hat profiles and

small co-flows) and the DNS codes (U2 > 0).

_.3._ Numerical steady-state solution

Since analytical and semi-analytical tools fall to provide the desired steady-state

solution, we drew our attention towards purely numerical solutions obtained from a
less accurate but more robust code than the ones used so far for DNS. The feasibility

of this approach for generation of initial conditions was tested by computing the

steady state of strongly co-flowed jets with the Colonius code and zeroth order Giles

boundary conditions. Once the steady state was reached, we switched to the more

accurate first order boundary conditions. Figure 8 shows that even with a co-flow
U_ = 0.5 U1, the simple switch to first order boundary conditions generates a new

transient which is as intense as the first one. By comparing this figure to Figure

2(a) of our previous report (Jacob (1991)), it turns out that this new transient is
as strong as if the first order boundary conditions had been applied directly to the
default initial condition.

Since the two codes differ only by their boundary conditions, the steady states

reached with each of them are almost identical inside the computational domain.
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This means that the initial condition is unimportant inside the domain (with respect

to the transient) and that the only really important feature is the initial field at

the boundaries. This conclusion is consistent with the evolution plots of the field

variables (e.g. see Figure 3 or 7) because these figures show that the transient

originates from the inflow boundary. The switch of boundary conditions has been

tested for various co-flows and temperature ratios and always leads to the same
conclusions.

2.4 Towards DNS of a two dimensional jet

From the last section, it can be seen that a necessary condition to reduce the

transient is to find a better formulation for the inflow boundary condition.

2.4.1 Improved one dimensional inflow boundary conditions

We started with the initial inflow boundary condition from the Poinsot-Lele code.

It consists of enforcing the profiles of U(y), V(y) and T(y) only in order to determine

the transverse gradients and computing the density from the mass conservation

equation via the interior variables. The remaining terms (normal gradients) are

obtained by the one dimensional boundary conditions on the characteristic variables.

They are equivalent to setting:

o_/0_ = 0

0_/_ = 0

0_/0t = o
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where : U, Vd, and T are one-dimensional variables which are locally tangent to
the inflow field. With this formulation, the fields at the boundary differ from the

Navier-Stokes solution to which the interior fields tend. Thus strong gradients are

generated at the inflow.
In order to smooth the transient, we sought a softer formulation in the spirit of

that developed for the outflow in earlier studies (Poinsot & Lele (1992)). Instead of

imposing the field variables and setting the time derivatives of their one-dimensional

approximation to zero, these quantities are determined by a system of first order

differential equations:
= -

o /0t = -

=

This is equivalent to enforcing the profiles of U,V,T upstream of the inflow at

a typical distance L(y) -,, U(y)/a and letting them evolve exponentially to the
interior fields. Thus the fields at the inflow boundary are less constrained and allow

for more continuity in the inflow. A typical magnitude of a is 1/4 ,_ l0 time

steps. The implementation of these boundary conditions gave promising results

(particularly for strongly co-flowed cases, the noise was reduced in the converged

state) but would not remove the switch-on transient.

2._._ Variable co-flow

Since with these improved boundary conditions the code gives very "clean" so-

lutions for strong co-flows but does not converge to a steady state if the co-flow

is small (giving the same type of results as those shown in Figure 1), it seems

straightforward to start from a steady strongly co-flowed jet and to gradually re-
duce the co-flow down to a small value. Thus, the transient leaves the domain

when the co-flow is still strong, and the small co-flow is reached with a quiet flow.

Such a strategy is possible with our new boundary conditions since they allow for
a time-fluctuating inlet profile. First tests indicate that steady states are likely to

be reached if the time variation of the co-flow U2(t) is slow enough (ten to fifteen

flow-trough times are necessary) to reduce the co-flow by a factor 2 and if U2(t)

is smooth enough. Even though slight fluctuations remain in the flow, they now

appear as perturbations of the mean flow whereas they dominated the flow in earlier
simulations. Although they show the flow at different times Figure 9 and Figure 1

may be compared because the magnitude of the perturbations shown on Figure 1

does not change significantly over time as discussed in section 1.2. These tests have
to be continued with smaller co-flows in order to determine whether this approach

is suitable for the study of jets near the absolute instability limit.

_._.3 Sponge outflow

In addition to the previously described efforts, we also tried a new version of the

Colonius code: the outflow has been considerably improved by inserting between

the physical domain and the outflow all exit zone or "sponge" in which disturbances
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FIGURE 9. Laminar state with reduced co-flow : U2 = 0.25U]. Contour plots at

time= 3000. (a): V-veloclty : 10 contour levels : min= -0.00153 , max= 0.00153;

(b) : vorticity : 10 contour levels : mln= -0.242 , max= 0.0242. Dashed lines are
used for negative values in both plots.
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are attenuated by grid stretching and filtering (Colonius et al (1992)) (as we pointed

out in our last year's report the initial two-dimensional first-order Giles boundary
conditions were not suited for DNS of slightly co-flowed jets). We tested the case of a

cold jet with a co-flow: U2 = 0.05U1. Even though we extended the domain laterally
to a total width of fourteen diameters, the code still blows up as the transient leaves

the physical domain since the V-velocity changes its sign on the lateral boundaries
when the transient grows. This change from inflow to outflow is not tolerated by the

lateral boundary conditions although the amplitude of the disturbance at the lateral

boundaries remains small (< 1% of U1). In this computation, we started directly
with the small co-flow and the default initial conditions for which no entrainment

velocity is computed at the lateral boundaries. These remarks already suggest some

possible improvements of this simulation.

3. Conclusions

At the present state of this work, there seem to be several ways to obtain a

steady state with small co-flows. The first one is to further reduce the co-flow in the
Poinsot-Lele code with improved boundary conditions. This might eventually lead

to the desired steady state and allow us to examine the issue of absolute instability.

However, accurate acoustic fields will not be obtained with that formulation of the

boundary conditions. The second choice is to combine some advantages of the two

codes: for instance, one could apply the method of co-flow variation to the Colonius
code in order to reduce the transient and its effects on the lateral boundaries. One

could also reset the reference field for the linearization of the boundary equations

once the strongly-coflowcd jet has reached its steady state; thus the reference normal
V-velocity at the lateral boundaries would be non zero and make these boundary

conditions more stable (an increase of the domain width seems not to be a promising

approach since this lateral dimension was already considerabely increased in the
simulation described in section 2.4.3). The combination of these techniques in the

Colonius code seems to be the most promising approach for both an aerodynamical

and an aeroacoustical investigation of heated jets (this code already provides good

hydrodynamical and aeroacoustical results for spatial mixing layers).

Acknowledgement

I wish to thank Profs. S. K. Lele and P. Moin for their comments and suggestions

throughout this work. I am also indebted to Dr. A. Trouv6 for the time he spent
on this study providing interesting ideas and the LIISA codes which helped me in

the ongoing research. Finally I would like to thank Mr. T. Colonius for helping me

to test his new code on the jet flow.

REFERENCES

ABRAMOVICH, G. N. 1963 The theory of turbulent jets. MIT Press Cambridge
Massachusetts.



160 M. C. Jacob

BERS, A. 1983 Space-time evolution of plasma instabilities - absolute and con-
vective. In Handbook of Plasrna Physics, ed. M. N. Rosenbluth, R. g. Sagdeev,

Amsterdam: North Holland. 1,451-517.

COLONIUS, T., LELE, S. K. & MOIN, P. 1991 Scattering of sound waves by a

compressible vortex. AIAA Paper 91-0494.

COLONIES, T., LELE, S. K. & MOIN, P. 1992 Boundary conditions for direct com-

putation of aerodynamic sound. Presented at DGLR/AIAA 14th aeroacoustic

conference, may 11-14, 1992, Aachen, Germany; also to appear in AIAA Jour-
nal 1993.

GILES, M. B. 1990 Non reflecting boundary conditions for Euler equation calcula-
tions. AIAA J. 12, 2050-2058.

JACOn, M. C. 1991 Direct numerical simulation of instability and noise genera-

tion of hot jets Annl Res. Briefs, Center for Turbulence Research, Stanford

Univ/NASA Ames.

HUERRE, P., & MONREWITZ, P. A. 1990 Local and global instabilities in spatially

developing flows. Ann. Rev. Fluid Mech. 22, 473-537.

LELE, S. K. 1992 Compact finite difference schemes with spectral-like resolution.

J. Corap. Phys. 103, 16-42.

MONKEWITZ, P. A. & SOnN, K. D. 1986 Absolute instability in hot jets and

their control. AIAA Paper 86-1882.

POINSOT, T. J. & LELE, S. K. 1992 Boundary conditions for direct simulations

of compressible viscous reacting flows. J. Comp. Phys. 101,104.

SANDHAM N. D. & REYNOLDS, W. C. 1989 A numerical investigation of the com-

pressible mixing layer. Report TF-45, Thermosciences Division, Department of
Mechanical Engineering, Stanford University.

SCHLICHTING,H. 1933 Laminar spread of a jet. g. Angew. Math. Mech. 13, 260-
263.

THOMPSON, K. W. 1989 Time dependant boundary conditions for hyperbolic sys-

tems. :7. Comp. Phys. 68, 1-24.

Taovv_, A. 1988 Instabilit_s hydrodynamiques et instabilit_s de combustion de

flammes turbulentes, Th_se de Docteur-ingdnieur, Ecole Centrale de Paris.

Yu, M. H. & MONKEWITZ, P. A. 1989 Local and global resonances in heated 2-D

jets. Report for AFOSR grant No. 87-0329.


