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Numerical simulation using

vorticity-vector potential formulation

By H. Tokunaga

1. Motivation and objectives

An accurate and efficient computational method is needed for three-dimensional

incompressible viscous flows in engineering applications. On solving the turbulent
shear flows directly or using the subgrid scale model, it is indispensable to resolve the

small scale fluid motions as well as the large scale motions. From this point of view,

the pseudo-spectral method is used so far as the computational method. However,
the finite difference or the finite element methods are widely applied for computing

the flow with practical importance since these methods are easily applied to the
flows with complex geometric configurations. However, there exist several problems

on applying the finite difference method to direct and large eddy simulations.
Accuracy is one of most important problems. This point has been already ad-

dressed by the present author on the direct simulations on the instability of the

plane Poiseuille flow and also on the transition to turbulence (Tokunaga, Ichinose

& Satofuka, 1991a, b). In order to obtain high efffciency, the multi-grid Poisson
solver is combined with the higher order accurate finite difference method (Toku-

naga, Satofuka & Miyagawa, 1986).
The formulation method is also one of the most important problems in apply-

ing the finite difference method to the incompressible turbulent flows. The three-
dimensional Navier-Stokes equations have been solved so far in the primitive vari-

ables formulation. One of the major difficulties of this method is the rigorous sat-

isfaction of the equation of continuity. In general, the staggered grid is used for the
satisfaction of the solenoidal condition for the velocity field at the wall boundary.

However, the velocity field satisfies the equation of continuity automatically in the

vorticity-vector potential formulation. From this point of view, the vorticity-vector

potential method was extended to the generalized coordinate system (Tokunaga,

Yoyeda & Satofuka, 1991). In the present article, we adopt the vorticity-vector po-
tential formulation, the generalized coordinate system, and the 4th-order accurate
difference method as the computational method. At first, we present the computa-

tional method and apply the present method to computations of flows in a square

cavity at large Reynolds number in order to investigate its effectiveness.
As is well known, the major drawback of the vorticity vector potential formulation

is in the difficulty of specifying the boundary condition in the multiply connected

domain. In applying the vorticity vector potential formulation to the flow with

the complex geometric configuration, for example the flow along the multi-airfoil,
we have to clear this hurdle. As the next step, therefore, we extend the present

computational method to calculate the flow in a multiply connected domain. Lastly,
the formulation of LES is dealt with in the framework of the present computational

method.
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2. Accomplishments

_.1 Vorticity vector potential formulation

Three-dimensional motions of fluid are governed by the Navier-Stokes equations
and the equation of continuity

Ou, 1
--_ + (u * V)ui = - V P + _ /k ui,(i = x,y, z) (1)

V • u = o. (2)

where u = (u_, up, uz) denotes the velocity, p the pressure, Re the Reynolds number,
_7 the gradient operator, and /x the Laplacian operator. Now we introduce the

vorticity w, the vector potential ¢, and the scalar potential ¢ as

u= v × ¢+v¢ (3)

w = V × u (4)

Then, the Laplace equation for the scalar potential, the vorticity transport equa-

tions, and the Poisson equations for the vector potential are derived:

/_¢ = 0 (5)

o--i- + (uw_)
Oui 1 02wi

= ,oi- + (6)
Oxj Re Ox_

Z_¢i _ --03 i

We introduce the generalized coordinate as

(7)

= .(4, .),,s = u(_, 7), z = z(O

The partial differentiation operator is then transformed into

(8)

0

Ox s E. a4 a_ E0

a z(axa ax a)au - J a4a,7 a,7_ (9)

Ox Oy Ox Oy
J-

o4 _ 0,7a4

In order to specify the wall boundary condition, we define the the normal and

the tangential component of ¢ as

I
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_b.= n. _b,_br,= rl• _b,¢r2= r2._b (10)

where n, 7"1,and r2 denote the normal and the tangentialunitvectoron the wall.

Then, the wallboundary conditionsforthe vectorpotentialare given as

O_,b,,= ¢,'1 = _',-2 = 0 (11)

On the other hand, the boundary vorticity is calculated from its definition

w = V × u (12)

_._ Computational method

The explicit method of lines is adopted as the computational method. In this

method, spatial discretizations and the time integration are treated separately. For

spatial discretization, the 2rid- and 4th-order accurate modified differential quadra-

ture (MDQ) method is used. Partial derivatives of w, for example, are approximated
as

OuJ ] ___ _ ai,lo_i+|,j, k (13)
-_ i,j,t I=-L

L L

02w[ = Z bi,twi+Lj,k, bi,, = E ai,ma,,,!
i,j,k I=-L m=-L

(14)

The 2nd-order accuracy is obtained by L = 1 and the 4th-order accuracy by L = 2.

Derivatives in the 77-and _-direction are approximated in the same manner. After

the above spatial discretization, the vorticity transport equations are reduced to a

set of ordinary differential equations (ODEs)

do3
= ff(_3) (15)

d--t"

f
J

1
]

C_ ---_ (t.gz,2,2,2,C0x,3,2,2,... ,(WPz,I-I,J-1,K-1) T (16)

where I, J, and K represent the grid number in the _-, r/-, and _-direction, respec-

tively. As a time integration scheme of a set of ODEs, we apply the Runge-Kutta-
Gill method.

_.5 Computation of flows in a square cavity

In order to confirm effectivity of the present computational method, we first carry

out simulations of flows in a square cavity at Reynolds numbers Re = 10 3 and 10 4.

Figure 1 shows the velocity distribution on centerlines of the cavity. It is shown
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FIGURE 1. Velocity distribution of the flow in a square cavity at Re = 103 and
104. Chain dot and chain dash line depict the result by the 4th- and 2nd-order

method at Re = 103 respectively; solid and dash line represent the result by the

4th- and 2nd-order method at Re = 104 respectively. Triangle and circle depict the
results by Ghia et al.

that the result of the 4th-order accurate method with the less grid points (65 × 65
at Re = 103) is in good agreement with that of Ghia et a1.(1982).

In computation of the cavity flow at Re = 104, we need the grid points 129 × 129

in order to make the grid sufficiently dense in the vicinity of the wall. Figure 2 shows
the convergence history of these computations with 2nd- and 4th-order accuracy.

We needed 75000 time steps with At = 1/125 in order to obtain the converged
solution when we used the 2rid-order accurate method. It is shown that the residual

\
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oscillates drastically in time, and a great number of time steps are needed to attain

the converged solution even for the 2nd-order method. However, the result with the
4th-order accuracy shows that the L2 residual preserves the constant level even at

t = 900, and, therefore, it is concluded that the flow is unsteady.

10 3

10 2

101

10 0

10 "_

10 -2

10 -3

10 -4

i
1

time step

FIGURE 2. Convergence history of the cavity flow at Re = 10 4.

In order to investigate the temporal behavior of the flow, we show the vorticity

contours at the early stage t = 50, 60, and 70, the middle stage t = 140, 150,

and 160, and the later stage t = 240, 250, and 260. Since the present result has
a fourth-order accuracy not only for the spatial discretization but also for time

discretization, we can see the actual development of the cavity flow from the initial

state in which the fluid is at rest.

At an early stage, we find that there exists a number of vortices and that they are
stretched in the course of time. The main vortex grows near the center of the cavity,

and the other vortices are moved by rotation of the main flow. The stretching is

caused by this main flow. However, the center of the main vortex is displaced by
the mutual interaction of vortices.

In the middle stage, we find that the main vortex is enclosed by the additional

elongated vortex with the same sign. It is well known that a pair of vortices with the
same sign rotate around each other along the weighting center of the pair. Thus, the

unsteady motion of fluid is sustained. The center of the main vortex moves rapidly.
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t = 40 t = 50 t = 60

FIGURE 3. Vorticity contours of the cavity flow at Re -- 104 at early time stage.

t= 140 t= 150 t = 160

FIGURE 4. Vorticity contours of the cavity flow at Re = 104 at middle time stage.

The Biot-Savart velocity induced by the vortex is long-range, so the structure of

small vortices in the corners of the cavity changes significantly in the course of time.

The pair of vortices persist even at the later stage. However, at t = 260, the

neighboring vortex is absorbed by the main vortex. Figure 6 shows the vorticity

contours at t = 840 and 850. The vortex sheets are extremely stretched, and one of

them is cut. The vortex generated by this mechanism interacts with other vortices,

which explains the unsteadiness of the_flow in a cavity at high Reynolds number.

_._ Computation o/flows in a multiply connected domain

In general, the stream function value on the multiply connected domain is not

known a priori. In order to resolve this problem, we apply the constraint proposed

by Girault and Rivart (1979)

B
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t= 240 t= 250 t= 260

FIGURE 5. Vorticity contours of the cavity flow at Re = 104 at later time stage.

t = 840

_.

t = 850

FIGURE 6. Vorticity contours of the cavity flow at Re = 10 4 at the latest time

stage.

i

/ _nn dS 0 (17)
F

where F denotes the surface of the body placed in the flow. In the present compu-

tation, the integral constraint is applied when the Poisson equation on the stream

function is solved. We depict the stream line in Figure 7. The stream function value

is specified to 1 on the upper wall and 0 on the lower wall. We ultimately obtained
the stream function value -0.11375 on the square, which shows a good agreement

with the result of Lippke and Wagner (1991).
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FIGURE 7. Streamline lines of the flow in a multiply connected domain at Re = 20.

2.5 Computation of transition of channel flow using LES

For the subgrid-scale model, we choose the dynamical model proposed by Ger-

mano et al. (1991). Then, the basic equation of LES is obtained in the vorticity

vector potential formulation as

1 (Out 02/i:} Out 02fi2'_ 1 at.,, o&t 1 1 )0_1
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t
|



Numerical simulation using vorticity-vector potential formulation 183

Y

+ (_,i_) = a,i_-_i + \ox3ox_ 9,_ oxl--oxi°3') +

1 [ o_, o2_,1 &,, 02a3) I out _2 1 1 . 02_,

(18)

0co3 0 _ Oa3 [ 0_ut _ 02vt _ "_
& + _(a_a,3) = ,oi-5-__ + ---- -o2j-- Ox2Oxj J +_ OxlOxj -- ".'11

l(OutO2fi2 OvtO2fil_ lOvtO(oa 1 1 )02_a
2 I + i + (fir, +

where ut denotes the dynamical subgrid scale turbulent viscosity and Si,i the strain

tensor. The generalized coordinate transformation is applied to this equation.

At first we will carry out LES of a transition of plane channel flow in order to

investigate the validity of the present method. The initial condition is created by

using the result of the direct simulation of 2-D and 3-D linear instability (Tokunaga,

Satofuka & Miyagawa, 1986)

3. Summary and future plans

An accurate and efficient computational method is presented for incompressible

viscous flows. It is shown that the present method well predicts the flow in multiply

connected domain. The 4th-order accurate method shows that the square cavity

flow can be calculated accurately by less grid points in comparison with the 2nd-

order method at Re = 103. Further, it is shown that the cavity flow is unsteady

at Re = 104, and actual process of the flow development is cleared by using the

4th-order accurate method.

The next step in this work will be to test the large eddy simulation of transition

in a plane channel dealt with by Germano et al. (1991), and this study is under

way. The ultimate goal of this work is direct and large eddy simulation of the flows

in a multiply connected domain, which is of practical importance in aerodynamics.
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