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Application of a Reynolds stress

model to separating boundary layers

By S. H. Ko

1. Motivation and objectives

Separating turbulent boundary layers occur in many practical engineering ap-

plications, yet the physics of separation/reattachment of the flows is poorly un-

derstood. During the past decade: various turbulence models have been proposed

and their ability to successfully predict some types of flows has been shown. How-

ever: prediction of separating/reattaching flows is still a formidable task for model

developers.

The present study is concerned with separation process from a smooth surface.

Features of turbulent separating boundary layers that are relevant to modeling

include: the occurrence of zero wall shear stress, which causes breakdown of the

boundary layer approximation; the law of the wall not being satisfied in the mean

backflow region; high turbulence levels in the separated region (Simpson et al. 1981);

a significant low-frequency motion in the separation bubble (Dianat _: Castro 1991);

and the turbulence structure of the separated shear layer being quite different from

that of either mixing layers or boundary layers (Dianat gz Castro 1991). These

special characteristics of separating boundary layers make it difficult for simple
turbulence models to correctly predict their behavior.

Some researchers (De Henau et al. 1990: Atkinson &: Castro 1991) have reported

poor performance of existing turbulence models when the models were applied to the

Simpson et aI. (1981) separated flow experiment. They have found that a Reynolds

stress model similar to Launder et ai. (1975) and the standard k-e model gave no

separation -- they could achieve separation only after an arbitrary increase of a

coefficient in the e equation. Menter (1991) evaluated various turbulence models

ranging from algebraic to two-equation turbulence models for the marginal sepa-

rated flow experiment of Driver (1991). He found that most mixing length models

performed poorly: except for the Johnson-King model: and that the k - w model

predicted too high Reynolds shear stress.

An elliptic relaxation model: the k - e- v model: was proposed by Durbin (1991)

to treat the strongly non-homogeneous and anisotropic near-wall layer. This model

eliminates the need for semi-empirical wall functions or ad hoc damping functions.

Those functions assume universality of the near-wall flow: which is unwarranted

in strongly adverse pressure gradients. After showing that the elliptic relaxation

approach was successful in simple flows such as channel flow and fiat plate; attached

boundary layers: the model was extended to a full Reynolds stress model (RSM)

(Durbin 1992) for more complicated near-wall problems. The primary objective of

the present study is to apply the k-e-v model and the full RSM to two-dimensional

turbulent separating boundary layers.
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2. Accomplishments

_.I Turbulence model

The governing equations of the k - e - v model can be found in last year's report

(Ko, 1991). This section concerns only the equations of the RSM. The major
difference between the k - e - v model and the RSM is that the k - e - v model uses

an algebraic eddy viscosity expression, whereas the RSM uses differential equations

for calculating Reynolds stresses in the time-averaged Navier-Stokes equations. It
also has to be noted that the k - e - v model can only be applied to thin shear

layers while the RSM can be used for any complex flows.

The Reynolds stress transport equation is

D_iuj _ Pij + Fij - _e + (u + (1)
Dt k _ _ _J

where

_,, = _t,,,,u__5__+ uj,,_._;x,j (2)

is the rate of turbulence production by mean velocity gradients. In Eq. (1), the

triple velocity correlation is modeled by the simple gradient-diffusion hypothesis of

Daly _z Harlow (1970):

o o

The tensorial eddy viscosity in Eq. (3) is

umt = C,u--A--dI T (4)

where the time-scale T is

T=max , CT -_ • (5)

The second term in Eq. (5) introduces the Komogorov time-scale as a lower bound.

The term F O in Eq. (1) includes the rest of the unclosed terms such as pressure

gradient-velocity correlations and anisotropic dissipation eij:

FO = --p k ox, + oz, ) _ + --T-_

The elliptic relaxation model (Durbin 1992) for Fij is

ru = kf, j

(6)

(7)
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2
L2V Ii - lij= (cl g T

where the length-scale L in Eq. (8) is expressed as

(8)

L --- CL max (----/-, C_
(9)

and P =_ _oii/2. The right side of Eq. (8) is simply the 'basic' model of Launder et

al. (1975). Any other quasi-homogeneous Reynolds stress model could be used as
the source term in this equation. Thus, the elliptic relaxation formulation primarily

provides a framework for extending a quasi-homogeneous model to a model for near-
wall turbulence.

The above RSM equations are coupled with transport equations for turbulent
kinetic energy k and its rate of dissipation e:

Dt = _ _ _x, u + ak /
production dissipation "_ •

advection di f ffusion

(10)

D---_=C_1 1+0.1 _-C,2_+_ u+ a_ /_x-_xl . (11)

The model coefficients in Eqs. (4-11) are as follows

C u CT C1 C2 CL CI? C_l C_2 ak a_

0.23 6.0 1.22 0.6 0.2 80.0 1.44 1.9 1.2 1.65

Detailed discussion of the RSM and its boundary conditions can be found in Durbin

(1992).

_.2 Computational method

The k - e - v model and the RSM were implemented into a finite difference

computer code developed for solving 2-D, incompressible, steady-state turbulent

flows. This program is based on finite difference procedures used in the TEACH
computer program of Gosman and Pun (1974). The primitive variable equations

are solved on a system of staggered grids. The discretization is based in all cases

on the control volume approach.

The convective derivatives are approximated by the QUICK differencing scheme

of Leonard (1979) in order to reduce the error due to the artificial viscosity. An

iterative method for solving the algebraic finlte-difference equations is employed.

The SIMPLER algorithm of Patankar (1980) is used to obtain the pressure field from
the continuity and momentum equations. The discretized equations are linear and

are solved llne-by-line using a tri-diagonal matrix algorithm applied in an alternating
direction implicit manner. The accuracy of the present numerical methods has

been tested by computing laminar flow in a driven cavity and laminar flow over a

backward-facing step (Ko 1991).
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_.3 Computation of separating boundary layer

The massive separating boundary layer of Simpson et al. (1981) was chosen as
a test case. This flow is a two-dimensional, airfoil-type flow which was accelerated
in a contraction and then decelerated until separation. It should be noted that

the experimental data ended well before reattaehment because the flow became

increasingly three-dimensional downstream of separation.
Computations will be compared with experimental data for turbulence quantities

as well as for the mean flow. The rectangular computational domain starts at the

throat (x = 1.6 m) of the wind tunnel where the flow is assumed to be a zero pressure

gradient boundary layer. Reynolds number based on the momentum thickness and
the free-stream velocity is 2800 at the inlet of the domain. A solution for a zero

pressure gradient boundary layer is utilized to specify inlet conditions. The exit of
the domain is located at x = 8.6 m which is sufficiently far downstream to permit

reattachment of the flow and to allow zero-normal-gradient outflow conditions for
all variables. In the vertical direction, the domain extends from the bottom wall to

y = 0.5m.
Along the top boundary, the normal velocity V was specified to produce appropri-

ate pressure gradients and the flow is assumed to be irrotational: OU/Oy = OV/Ox.
A zero normal-gradient condition was applied to the other variables. On the solid

wall, flow variables are specified as follows :

Z

|

U : V --- k _--//12 -- 1/2 2 : 111112 -_- fll = 0,

dul _ dk
= -- _ 0, U2 2 : O(_]4), Ul't'/2 _ O(Y 4)

dy dy

After grid independence testing, an 80 x 120 grid was selected for final compu-
tations. This had 80 uniformly-spaced lines in the streamwise direction and 120

uniformly-expanding lines in the transverse direction.

The prescribed V distribution at the top boundary is displayed in figure 1 along
with the computed surface pressure coefficient, Cp. The inlet free-stream velocity

U_0 (= 21.7 re�s) was used to normalize the V velocity. Since the V profile at the

top boundary could not be obtained from the experimental data, it was selected by
matching the U-velocity of the experiments at the 99% boundary layer thickness.

The experimental data only cover the region x < 4.34 m. The V distribution down-
stream of this was arbitrarily chosen to close the separation bubble. Regrettably,

this arbitrariness, stemming from the incompleteness of the data:, makes the present

comparison to experiment somewhat ambiguous. It should be mentioned that this

V-profile matching was done only for computations of the k - e - v model, and then
the same V profile was used for computations of the RSM without adjustment. This

adds additional ambiguity to the comparison of results of the RSM to experiment.

The computed Cp profiles show good agreement with experimental data until the

flow separates at x = 3.45 m. In the separated region, the RSM overpredicts Cp
whereas the k - e - v model underpredicts Cp. Since Cp is a measure of the mag-

nitude of mean velocity in the near-wall region, the Cp profiles in the figure could
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FIGURE 1. Prescribed V distribution at top of computational domain (-----)

and surface pressure coefficient Cp computed by the RSM (--) and the k - e - v

model (........ ). • data (Simpson et al. 1981).

be interpreted as follows: the separation predicted by the RSM is weaker than that

predicted by the k - e - v model.

Figure 2 shows the computed streamline patterns and the computational do-

main. As suggested by figure 1, the k - e - v model gives earlier separation and

larger separation bubble compared to the RSM for the same V profile along the top

boundary.

(a) the k-e-v model

(b) the RSM

FIGURE 2. Predicted streamline patterns, showing computational domain.

Computed skin friction coefficients C I are compared to measurements in figure 3.

The agreement between model calculations and experimental results is reasonable

in the region upstream of separation. In the separation region, the two models show

7_
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FIGURE 3. Skin friction coefficient Cf computed by the RSM (._

k - e - v model (........ ). • data (Simpson et at. 1981).
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) and the

E



Application of a Reynolds stress model to separating boundary layers 205

a substantial difference; this is expected from the previous figures. The computed

Cfs become negative at x = 3.72rn for the RSM and at x = 3.35m for the k -
e - v model, while the measured separation was at x = 3.45 m. However, this

discrepancy is not very significant because of the ambiguity in prescribing V, alluded
to previously. Celenligil & Mellor (1985) found that their results were very sensitive

to the prescribed external pressure gradient. Figure 4 shows a reasonable agreement
between the computed displacement thickness 6" and measurements. It should be

noted that as the flow separates, the 6* grows drastically due to the reverse flow in

the separated region. Once again, the k - e - v model shows stronger displacement

effects than the RSM in the separated region. Figures 5 - 9 show more detailed

results. In these figures, the z-coordinate is measured relative to the separation

point, which is equated to the experimental value of 3.45 m. In this way, comparison

at various positions will give fair insight on how the model solutions evolve in space
upstream and downstream of separation.
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FIGURE 5. Mean flow profiles upstream and in the separated region. • data
(Simpson et al. 1981).

Figure 5 shows the x-component of the mean velocity at various positions up-

stream and within the separated region. In the separated region, the k - e - v
model calculation shows closer agreement with measurements than the RSM cal-

culation. However, this is mainly because the V profile along the top boundary

was obtained for the k - e - v model. Generally, the models predict the U-velocity

profiles in the outer region reasonably well, but they underpredict mean backflow

in the separated region. This underprediction of backflow is probably due to the

Reynolds stress gradient being too large near the wall, hence transferring too much
forward momentum from the outer flow.
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FIGURE 6. Profiles of turbulent kinetic energy computed by the RSM (._

and the k - e - v model (........ ). • data (Simpson et al. 1981).
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Figures 6 and 7 show turbulent kinetic energy and Reynolds shear stress profiles
at various positions. The turbulent kinetic energy predictions by both the k - e - v

model and the RSM are significantly too low in the separated shear layer. Low

predictions of k were similarly found by De Henau et al. (1990) and Atkinson &

Castro (1991). In figure 7, the level of -_ is in general agreement with experiments,

but discrepancies exist in the shapes of the profiles. The models of Celenligil &
Mellor (1985) and Atkinson & Castro (1991) severely underpredicted the Reynolds
shear stress in the separated region.

In figure 8, profiles of Reynolds stresses computed by the RSM are plotted at

x = 3.01 m, and 3.97 m upstream and downstream of the separation, respectively.

As expected, Reynolds stresses at z = 3.01 m have profiles typical of an adverse-

pressure-gradient boundary layer.___At z = 3.97 m the maxima of Reynolds stresses

occur at y/6 _ 0.55. Profiles of w 2 can be deduced from the figure using the rela-

tionship w 2 =__2k - (u 2 + v2), which yields w 2 _ v _ over a wide range. Overall, one
can say that u 2 is the largest and h-v is the smallest of Reynolds stress components
everywhere.

Figure 9 shows balances of the turbulence kinetic energy equation. Terms in
Eq. (10) were normalized by the boundary layer thickness and local free-stream

velocity. The production is mainly balanced by the dissipation while the advection
and the diffusion are relatively small.

In conclusion, predictions of skin friction and displacement thickness for the

pressure-induced separating boundary layer are in agreement with experimental
measurements, but both the k - e - v model and the RSM show insufficient back-
flow in the separated region. The models also underestimate the turbulent kinetic

energy in the separated shear layer; the Reynolds shear stress is more accurately
predicted. Overall, the separated flow computation was a bit unsatisfactory be-
cause suction and blowing at the upper boundary had to be imposed to simulate

the experimental conditions. However, it is significant that the k - e - v model and

the RSM are able to produce a reasonable separated flow.

3. Future plans

Further assessment and improvement of the RSM for separated flows will continue

in the future. Due to the ambiguity of the imposed flow conditions for the pressure-

driven separated boundary layer computation, it is difficult to draw any conclusion

on the model performance. Therefore, it is necessary to have a well-defined test
case with clear-cut boundary conditions in order to isolate phenomena which are

directly related to the turbulence model. With this consideration, turbulent flow

over a backward-facing step is chosen as the next test case. The backward-facing
step flow is an excellent case not only for studying the flow physics of separated

and reattaching turbulent shear layers, but also for developing turbulence models.

Numerical results will be compared with DNS (Direct Numerical Simulation) as
well as experimental data.

As discussed in §2.1, a possible model improvement can be achieved simply by
substituting a new quasi-homogeneous Reynolds stress model for the source term
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in Eq. (8). The present RSM uses the basic version of the LRR model (Launder

et al. 1975) in which the modeled rapid pressure-strain correlation is linear in the

anisotropy tensor. Following the LRR model, many new ideas have been employed
to develop more elaborate models for the last decade. Recently, Speziale e¢ al.

(1991) introduced a new second-order closure model - the SSG model - which is
based on invariant dynamical systems analysis coupled with some additional con-

strains. This model is quadratically nonlinear in the anisotropy tensor and shows

improvement over the LRR model for a variety of homogeneous turbulent flows. Af-

ter investigating the performance of the RSM for the backward-facing step flow, the
feasibility of the SSG model as the source term for the elliptic relaxation formulation

will be studied.
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