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Receptivity in parallel flows: an adjoint approach

By D. C. Hill

1. Motivation and objectives "

Linear receptivity studies in parallel flows are aimed at understanding how ex-

ternal forcing couples to the natural unstable motions which a flow can support.

The vibrating ribbon problem (Gaster (1965)) models the original Schubauer and

Skramstad (1947) boundary layer experiment and represents the classic bound-

ary layer receptivity problem. The process by which disturbances are initiated in

convectively-unstable jets and shear layers has also received attention (Balsa (1988),

Suerre and Monkewitz (1985), Tam (1978)).

Gaster (1965) was the first to handle the boundary layer analysis with the recog-

nition that spatial modes, rather than temporal modes, were relevant when studying
convectively-unstable flows that are driven by a time-harmonic source. The ampli-

tude of the least stable spatial mode, far downstream of the source, is related to

the source strength by a coupling coefficient. The determination of this coefficient

is at the heart of this type of linear receptivity study.

Traditionally, the Briggs method is applied to Fourier-inversion integrals to find

the asymptotic temporal and spatial behavior after a time-harmonic source has

been switched on. Ashpis and Reshotko (1990) give a detailed description of this

procedure for the vibrating ribbon problem. Unfortunately, the coupling coefficient,

which gives a measure of the amplitude of the asymptotic response relative to the
amplitude of the source, does not have a very convenient form, either from the point

of view of interpretation or of computation. The expression involves derivatives

with respect to wavenumber of either a flow quantity or the dispersion relation

(Ashpis and Reshotko (1990), Kozlov and Ryzhov (1990), Balsa (1988), Huerre and

Monkewitz (1985), Gaster (1965)).

Earlier work (Hill (1992)) indicates that adjoint eigensolutions for the global
temporal modes of a cylinder wake characterize rather simply how receptive the

wake is to control forces. Can this approach be adapted for the spatial instabilities

that occur in boundary layers, jets, and shear layers? The first objective of the

present study was to determine whether the various wavenumber derivative factors,

appearing in the coupling coefficients for linear receptivity problems, could be re-

expressed in a simpler form involving adjoint eigensolutions. Secondly, it was hoped

that the general nature of this simplification could be shown; indeed, a rather

elegant characterization of the receptivity properties of spatial instabilities does

emerge. The analysis is quite distinct from the usual Fourier-inversion procedures,

although a detailed knowledge of the spectrum of the Orr-Sommerfeld equation is
still required. Since the cylinder wake analysis proved very useful in addressing

control considerations, the final objective was to provide a foundation upon which

boundary layer control theory may be developed. '
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2. Background

2.1 The Lagrange identity

The cornerstone of this work is the Lagrange identity (Ince (1944)), from which

the adjoint equations are extracted. This remarkably powerful relation is implicit
in the work of Salwen and Grosch (1981) (here onwards referred to as SG), and Sal-

wen (1979), although it is never stated explicitly. As has already been intimated,

the origins of the adjoint analysis can be traced back to work of Lagrange in the

late 18th century (See Lagrange's collected works (1867)). Although Fuchs (1858)

wrote in German, Ince (1944) credits the use of the word 'adjoint' to him. Adjoint

eigensolutions play a key role in the imposition of solvability conditions (the Fred-
holm alternative) and as such are indispensable to researchers studying nonlinear

phenomena using bifurcation theory (Iooss and Joseph (1980)).

The Lagrange identity is developed with reference to the linearized Navier- Stokes
equations. If V(r_) is a steady incompressible viscous flow field, then linear velocity

disturbances v(r, t) and pressure disturbances p(r, t) upon this flow satisfy

0A + L(V; n)__+ Vp = 0, (1)
0_ -- __

v._ = 0, (2)

where the ith component of the linear operator L(V; R) is

Ovi OVi

(L(E; R)_,), = V,b-i-£ + v, axj
1 02 vi

(3)

For any pair of fields (v, p) and (_, i5), ((_v, p) does not have to satisfy (1) and (2)),

defined over the flow domain, the following Lagrange identity is satisfied:

0
= N(v.__)+ v..2((__,p), (_,_)), (4)

where _L(V; R) is the adjoint linearized Navier-Stokes operator with components

O_ OV_
(_L(_v;R) _), = vj _xj - '_ _ + ---

1 O2Oi
(5)

The vector J((_v, p), (__,15)) is the bilinear concomitant with components

(!((,,,p),(_,z_)))j ,_% + %_. (6)
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where

1 Ovi

= R Ozi + Viva, (7)
1 0_,

= + (s)

Examining the second term in square brackets on the left hand side of the La-

grange identity (4), we define the adjoint equations

_3
-:" + £(V; R)_ + V# = O, (9)

V.__ = O. (10)

2.2 Bi-orthogonality

A brief summary will be given in this section of the procedure by which bi-
orthogonal spatial-eigensolution sets can be constructed for the Orr-Sommerfeld

equation. This is essentially a review of the work of SG.

Schensted (1960), and Drazin and Reid (1981) show how general disturbances

in spanwise-bounded plane parallel flows can be expanded as a sum of temporal

eigensolutions of the Orr-Sommerfeld equation. These eigensolutions together with

a set of eigensolutions of the corresponding adjoint equation form a bi-orthogonal
set, under the action of an appropriate inner product. SG develop this further

and demonstrate how expansion of arbitrary disturbances as a sum of temporal

or spatial eigensolutions may be carried out in unbounded flows where, in fact, a
continuum of eigensolutions forms part of the spectrum.

Following SG, let V(r) = U(y)_ define a two-dimensional parallel flow in the
xy-plane, for yl < y < y2. For a boundary layer we may have yl - 0 and y2 = c_,

whereas for a shear layer yl = -c_, and Y2 - c_. Writing _v= V x (¢(x,y,t)£) for

some stream function ¢(x, y, t), _ being the unit vector normal to the plane of the

flow, the governing equation is given by the z-component of the curl of (1)

(O + U_x)V2¢ d2UO¢ RV4¢ = 0. (11)dy 20x

Similarly, writing _ = V x (¢(z, y, t)_), the adjoint equation is

-_y OxOy + R v4¢ = 0. (12)

No-slip boundary conditions

¢=_ =0, and¢=_=O (13)
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are imposed on any walls. As lYl _ c¢, disturbances are required to decay to zero.
As a direct consequence, the y-component of 3" approaches zero as y approaches the
limits of the flow domain.

With a, & being wavenumbers and w, _ being frequencies, let

¢(x, y, t) = ¢_,_(y)e i('_t+_'_), ¢(x, y, t) = dpe,_(y)e -i(_t+a_) (14)

be solutions of equation (11) and the adjoint (12), respectively (i.e. ¢_(y) satisfies
the Orr-Sommerfeld equation, and Ca_(y) an adjoint Orr- Sommerfeld equation).

An auxiliary problem can then be solved to obtain the pressure eigensolution and

the adjoint

p(x,y,t) = po_(y)e i(_t+otz), f(x,y,t) = f&Ca(y)e -i(_t+&x). (15)

Substituting these veloclty and pressure fields into the Lagrange identity (with

V_(E) = U(y)Sc), the entire left hand side is zero, from which it follows (SG, Salwen

(1979)) that
(_ _ _)<¢o_,_) + (_ - _)[¢o_,_] = 0, (16)

with

(¢_"¢6;;) = fy_2{0¢_'0_e*_,Oy Oy + a&¢_,_(be, a_}dy, (17)

Y2
_s_]= {(_ + _a)¢_¢_[¢o_,

1

When considering the spatial stability problem, w is chosen to be purely real,
and from the Orr-Sommerfeld equation, a set of characteristic values for e can then

be found. This set can consist of discrete and continuum modes. For the adjoint

problem, likewise selecting t_ = w, a set of possible values for & may be obtained.

From (16), we have
(_ - _)[¢_, ¢_] = 0, (19)

from which it follows that

if [¢_,¢_] # 0, then _ = &. (20)

With appropriate care taken in handling the continuum modes, SG proceed to con-
struct a bi-orthogonal eigensolution set in which for every solution ¢c_w(y)e i(_t+c'z)

to (11), there corresponds a normalized adjoint solution ¢_,_(y)e -i('_t+"_) to (12)

such that, for example, for discrete modes with wavenumbers c_i,

(21)

Z
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A similar result is quoted by SG for the case of temporal modes, based on the inner

product (., .).
For an arbitrary solution _s= (_v(x, y), p(x, y))e i'_f of the linearized equations, the

adjoint solutions can be used to decompose the disturbance field. For a chosen

eigenmode, if __= (__oto,(y),#_,_(y))e -i('a+a') is the adjoint eigenmode, the filtering

operation

_;' _.J_( s__,_)dy (22)

returns the modal amplitude.

3. Accomplishments

In this section I will give examples of how the adjoint problem provides a refor-

mulation of various aspects of the receptivity problem.

3.1 Failure of bi-orthogonality

It can be demonstrated that

= (23)

which I believe to be a previously-unknown form for the group velocity of Orr-

Sommerfeld eigenmodes. This form has implications for the formation of orthogo-

nal solution sets. In the event that the chosen eigensolution is at a branch point

singularity, for which dw/da = 0, then clearly

[Caw, Caw] = 0, (24)

(the denominator in (23) is always bounded). The normalization condition (21)

would require that the bilinear operation (24) take the value 1. The failure of (21)
is connected to degeneracy of the wavenumber eigenvalues as the branch point is

approached in the complex-w plane.

8._ The vibrating ribbon problem

The classical vibrating ribbon problem was discussed in some detail recently by

Ashpis and Reshotko (1990). A vibrating ribbon is placed at the wall beneath a

parallel boundary layer flow, and, after t = 0, it oscillates with velocity

t) = 6(X)e (25)

The classical result indicates that a long time after the initiation of the excitation

and far downstream of the ribbon, the y-velocity of disturbances is

v(x, y, t) = i v(y; c_,w) ei(Wt+_x), (26)
_rO.a,_)
Dot', '
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where a(w) is wavenumber of the fastest growing discrete spatial mode of the Orr-
Sommerfeld equation at frequency w. The field v(y; a,w) is the y- velocity field of
the mode. The factor Ov/Oa arises from contour integration around a pole in the

complex wavenumber plane.
Beginning with (26), by differentiating the linearized equations of motion with

respect to a and making use of the Lagrange identity, I have shown that

v(x, t) = v(y;., (27)

Details of the analysis are not given here. The adjoint pressure at the wall,/5_,(0),

gives the amplitude of the response to the ribbon oscillation.

S.3 Excitation of a free shear layer

Huerre and Monkewitz (1985) consider the response of an inviscid incompressible

free shear layer (U(y) defined for -c_ < y < oo) to excitation by a point vorticity

source positioned at x = 0, y = y0,

_(x, y, t) = _(x)_(y - y0)e _'. (28)

Z

Quoting their result, far downstream the stream function behaves as

¢o_(y0)¢_(y) ei(_t+_) (29)
OD¢(x,y,t) =

where ¢_(y) is the least stable spatial eigensolution of the Rayleigh equation, and

0_-/

D(y0; a,w) = _ff+ 0tt
0

-- - (30)

Here _+(y;a,w) and ¢-(y;a,w) are the upper (y > y0) and lower (y _< Y0) eigen-
solutions of the Rayleigh equation, which decay as ]y] ---*oo.

I have taken (29) and simplified it to obtain

¢(X, y, t) = _w(Y0) ¢(Y) ei(wt+_z)" (31)

In this case, the modal amplitude is simply the value of the adjoint stream function,

¢_(y0), at the source location.

3._ Response to a general harmonic source distribution

Consider a source distribution oscillating harmonically at real frequency _, in-

cluding sources of momenta of strength q(_r;w), and mass sources _(_r; w). To keep

the analysis as general as possible, we consider a boundary layer flow in the region

y > 0 so that boundary velocities Vb(X; w) can be specified at y = 0. The governing

equations are then

iwv_ + _L(V; R) _v+ Vp = q(r__;w), (32)

V._v = _(r__;w), (33)

L
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with

= _(_;_,)onu= o. (34)

The sourcesare assumed to be localizedin so far as they disappearfor Ix[larger

than some value,say X > 0.

Let the discretespatialmode of interesthave stream functionSaw(y)ei(_t+oz).

Typicallythe mode with largestvalueof -Im(a(w)) would be considered.We wish

todeterminetheamplitudeofthismode faxdownstream as a resultofthe excitation

by the varioussources.

For a convectively-unstablemode which istravelingdownstream, the stream func-
tionbehaves as

a ¢o_(y)ei('_t+c'') (35)

inthe regiondownstream of MI sources.The amplitude a isgiven explicitlyby

/2/0° //'/5. = _(__;_,)._o_,(y)e-_'dud_+ _(__;_,)_(u)e -'°z dyd_
! 1

(36)

+ v__b(x;w)._a_e-iC'zdx,
1

where xl < -X, x2 > X. Clearly, if there are no sources, then a = 0. The field

LAy) = _--_--u (37)

is the adjoint velocity field, iS_(y) is the corresponding adjoint pressure, and the
complex vector

10fic,w _]

is the adjoint stress.

The effect of some other types of sources can also be deduced.

vorticity, the term involving q(r_; w) is rewritten as

(38)

For sources of

, _q(_r;w).V × ((b_)dydx = _(r_;w)¢,,_(y)e-i°_dydx
1

(39)

where fl(£; w) = L(V x q(r_;w)) is the vorticity source distribution which would ap-
pear, for example, on the right-hand side of the Orr-Sommerfeld equation. Vorticity
sources in the flow are weighted by the adjoint stream function.

Rather than specify a velocity at the wall (i.e. at y = 0), suppose that the wall

is in motion, oscillating about its mean position with a small velocity _va(z;w ).

Linearizing this boundary condition, it follows that the boundary integral in (36)
can be re-expressed as

fz z2 ~ I --iaz
vd(x; w).S_o,_e dx (40)

1
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where

we will call the modified adjoint stress.
In each instance, the streamwise integration is weighted by e -i_x. Since, typically,

e i_z grows downstream, e -i_z will grow upstream. There is no surprise here since

sources further upstream will have a greater contribution to the far field disturbance

amplitude; the response to such sources has conveeted further and hence has grown

more.
The deductions made in sections 3.2 and 3.3 can now be reconfirmed. For the

vibrating ribbon problem, the response to boundary motion (25) (Xl < 0, x_ > 0)

predicted by (36) is

6(x)y.S,_,oe dx = 15_,,_(0). (42)
1

For excitation of a free shear layer by a vorticity source (28) with the y integration

in (39) now extending from -e¢ to oc, the amplitude of the response is

•]z J--1

The amplitude of a particular spatial eigensolution generated by an upstream
time-harmonic source distribution can be expressed as a weighted integral of the

sources whether they are within the flow or upon a flow boundary. The weighting

functions are simply different field quantities of the adjoint eigensolution corre-

sponding to the mode being considered. The field quantity which is appropriate
depends upon the nature of the source. The following table summarizes the cases
considered in this section.

Source type

r

description symbol

momentum q(r; to)

mass _(_.r; w)

vorticity f_(_v;w)

velocity at
boundary _Vb(X;w)

velocity of Vd(X; W)
boundary

Adjoint weighting factor

r

symbol description integrand

__ (- _e -i_r velocity q(r_;w).___.,(y)e -ia_aw,Y)

#.w(y)e -i"_ pressure _(r_; w)/5_w(y)e -i_

¢,,,o(y)e -i'_" stream function f_(r__;w)3a,o(y)e -iar

_,,,e -i"" adjoint stress Vb(X;_o).S__,_e '_

& _t e_ic_x,_1 -ic_z modified V_d(X; ).__,_
=_,.,e adjoint stress

For momentum, mass, and vorticity sources, the integration is made over th(' entire
flow domain in which sources are present. The resulting value gives the amplitude

of the mode far downstream. For boundary sources, the integration is ma(h. over

the boundary.

L
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4. Future plans

The next step in this work will be to obtain simple numerical solutions of the

adjoint fields in flows such as the Blasius boundary layer. A map of the receptivity
characteristics for these flows can then be found. This will supplement analytical

studies of boundary layer receptivity (Goldstein (1983), Goldstein et aI. (1983)).

The coupling of free stream disturbances to boundary layer motions as a con-

sequence of surface roughness is at/important receptivity path (Goldstein (1985)).

This has not yet been considered in the present work, and efforts will be made to

extend the analysis to handle this scenario.

In the area of control, a means of analyzing boundary layer control strategies
will be pursued. Suppression of a global (temporal) instability, such as occurs in a

cylinder wake, can be achieved by a small permanent alteration of the flow field. The

corresponding spatial problem is more complex since the control forces in practice

are localized in space (for example, a region of suction in a boundary layer (Saric

and Nayfeh (1977)), with their effect being felt both upstream and downstream.

Although reduction of the spatial growth rate of instabilities may be important,

consideration will also be given to the alteration in the receptivity characteristics
as a consequence of the presence of the control system. This can be quantified by

examining changes in the adjoint field as a result of the control.

The global instability problem for strongly non-parallel flow has already been

handled successfully (Hill (1992)). After the control of spatial instabilities in parallel

flows has been fully investigated here, it will remain to consider the spatial problem

in non-parallel flows.
It would seem inevitable that a connection will be established with the work of

Herbert and Bertolotti (1987) on the Parabolised Stability Equations. Their studies
on the evolution of a disturbance amplitude in a slowly evolving non-parallel flow

would appear to be intimately connected to the present work, though they do not

consider the receptivity problem explicitly.

In the longer term, a study will be carried out of the crossflow instability on an

infinite swept airfoil leading edge. This is a phenomenon of major technological

importance, and it is hoped that a systematic means of analyzing control possibili-

ties may be found. Providing the ability to analyze how secondary instabilities and

turbulent flows respond to control forces also remains a long term goal.
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