
Center for Turbulence Research

Annual Research Briefs 199£  gb2E D 269N 4"i2 04

Probability density distribution of velocity
differences at high Reynolds numbers

By Alexander A. Praskovsky 1

1. Motivation and objectives

Recent understanding of fine-scale turbulence structure in high Reynolds number
flows is mostly based on Kolmogorov's original (1941) and revised (1962) models.

The main finding of these models is that intrinsic characteristics of fine-scale fluc-

tuations are universal ones at high Reynolds numbers, i.e., the functional behavior

of any small-scale parameter is the same in all flows if the Reynolds number is high

enough. The only large-scale quantity that directly affects small-scale fluctuations

is the energy flux through a cascade (see remarks by Kraichnan 1974). In dynamical

equilibrium between large- and smail-scale motions, this flux is equal to the mean

rate of energy dissipation e.

Kolmogorov obtained some general relations which are the foundation of almost
all recent models. In particular, he found that for distances r within the inertial

subrange, i.e., if r/ << r << L, the moments of velocity difference Au(r) = u(x) -

u(x + r) can be described as (see Monin & Yaglom 1967)

(1)< >= Cp P/3r (1)

Hereafter, x and u denote coordinate and velocity component in the mean flow

direction, L and 77denote the integral scale and Kolmogorov's viscous scale, Cp are

constants, and _p is some unknown function.
The main problem in a creation of the theory of fine-scale turbulence structure

is clearly seen in Equation (1). Indeed, this equation was derived from general

physical considerations and dimensional analysis. However, it is an incomplete

result because the function _p cannot be obtained by such a method, nor, at least
at the moment, can it be found directly from the Navier-Stokes equations. The

same is valid for the probability density distribution (pdd) P(Au) of Au which is

a more general function than _p. As a result, various heuristic models to describe

P(Au) have been proposed (for critical review and classification of the models see
She 1991).

We believe that further progress in development of more adequate models of

P(Au) is hindered by the lack of reliable experimental data. All known measure-

ments were analyzed by Gagne, Hopflnger _ Frisch (1988 hereinafter referred to as

G,H&F). Two novel results were obtained there: (i) the functional behavior of the
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. tails of the pdd can be represented by P(Au) 0¢ exp(-b(v)lAu/crA=l); (ii) the log-

arithmic decrement b(r) scales as b(r) o¢ r °15 when separation r lies in the inertial
J

subrange (symbol a_ denotes the rms value of any quantity _0).

The pdd of velocity difference is a very important characteristic' fl,r both the basic

: understanding of fully developed turbulence and engineering problems. Hence, it
is important to test the findings (i) and (ii) in high Reynolds number laboratory
shear flows.

...... -j

2. Accomplishments

2.1. Apparatus and measurement techniques

Velocity time series taken in two different high Reynolds number laboratory shear

flows were analyzed. The first one was obtained in the large wind tunnel of the
Central Aerohydrodynamic Institute (Moscow). The mixing layer between a jet

issuing from an elliptical nozzle (14 × 24m 2) and ambient air was studied. The wind
tunnel had an open 24m long working section. Measurements were performed on
the line which continued the nozzle wall at a distance x = 20m downstream of the

nozzle. The free jet velocity was equal to U0 = ll.8m/s.

The second time series was obtained in the return channel of the same wind

tunnel. The channel was 175m long and 22m wide. Its height rose linearly from

20m up to 32m. Measurements were done in the plane of symmetry from a tower
5m above floor level.

In both experiments, standard thermoanemometers were used. X-wire probes

with perpendicular wires were operated at an overheat ratio of 1.8. Wires were
made of platinum-plated tungsten with diameter of 2.5vm. Both the active length

and the distance between the wires were 0.5mm. Signals from both wires were

filtered to reduce noise level, digitized, and processed on a computer. The low-

pass filter cut-off frequency was equal to f_ = 1.7kHz. The sampling frequency f,
and one-channel time series length N were equal to 8kHz and 2000000 respectively.
These values were chosen to investigate the inertial subrange. To measure the

energy dissipation rate c, the values of fc, fs, and N were doubled.

Description of the experiments and analysis of measurement errors (temporal

and spatial resolution, statistical convergence, use of Taylor's hypothesis, non-

linearity of the hot-wire response, etc.) can be found in Karyakin, Kuznetsov &
Praskovsky (1991).

The main flow characteristics at the measurement points arc listed in Table 1 (ab-

breviations RC and ML stand for return channel and mixing layer). The longitudi-

nal velocity component u was processed at each point. Taylor's hypothesis was used

to convert the temporal into the spatial coordinate. The mean energy dissipation
rate was estimated using the local-isotropy relation: c = 15u < (Ou/Ox) 2 >. The

integral length scale L, Taylor's microscale )_, Kolmogorov's scale 71, and Reynolds
number Rx were estimated by standard formulas defined by
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L= <u>/a----_ < [u(t + r)- < u >][u(t)- < u >] > dr,
o

= , ,7= (v31e) '/4, Rx = m,
_Ou/Oz V

where t is time and r is a time delay.

TABLE 1.

Apparatus RC ML

(2)

< u >,m/s 10.8 7.87

au, m/s 1.03 1.67

¢,m2/s 3 0.11 1.9
)_,mm 46 18

Rx" 10 -3 3.2 2.0

L,m 4.8 1.3

"/, mm 0.41 0.21
(L/y). 10 -3 12 6.2

Table 1. Main turbulence characteristics at the measurement points.

It is seen from Table 1 that L/'/> 6000. This indicates that in both flows under

consideration, fairly large inertial subrange regions should exist.

_._. Results

It is necessary to determine the inertial subrange bounds for each measurement

point since Kolmogorov's definition 7/<< r << L is not exact. It was assumed that

the distance r belongs to the inertial subrange if 20,/ < r < L/5. The structure

functions < [Au(r)] p > for p = 2, 3, 4, 6 are presented in Figure 1, where the bounds
are indicated by vertical arrows. The chosen bounds appear plausible: "the two-

thirds law" and Kolmogorov's exact equation

4

< [Au(r)] 3 >= -_¢r (3)

are in agreement with experimental data within these bounds. (The absolute values

of the third-order structure functions are plotted.)

Typical pdd of velocity differences in the two measurement points are presented in

Figure 2. Results for three widely different values of r/,/within the inertial subrange
are presented for every point. All curves in Figure 2 are truncated just before the

first point at which P(Au) = 0 (no samples in the "bin" of width -I-0.2aau). Thus,

implausible values of P(Au) caused by insufficient samples are ignored. It is seen

in Figure 2 that, for sufficiently high amplitudes I_u/aa_l >_ h, the obtained pdd
may be approximated by the expression proposed by G,H&F
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FIGURE 1. Higher-order velocity structure functions (absolute values for p = 3).

(a), return channel; (b), mixing layer; o, p = 2; [], 3; o, 4; zx, 6.

Vertical arrows correspond to the inertial-range bounds.
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FIGURE 2. The pdd of velocity differences for distances r from the inertial range.

(a), return channel; (b), mixing layer.
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FIGURE 3. The tails of pdd premultiplied by exponentials with appropriate

decrements in the mixing layer.

t_

1

10"3

, m , I m , ;'m I I I I I I I ,1 I l s m

E i .c .o
I _ ML • Z_

I I I I Im,ml J l t , ,mm,l m m t

10-2 10 -1

r/rl

FIGURE 4. Scaling of the logarithmic decrements b+ and b-. Solid line corresponds

to equation (5) with/3 = 0.15.
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V(Au) cx exp (--b(r)[Au/aA,, [). (4)

The threshold level h was chosen to be h = 3 for all r at all points. Then the values

of logarithmic decrements b(r) were estimated for both positive (b +) and negative

(b-) tails of the pdd by the least-squares method. As an example, the tails of
the pdd in the mixing layer premultiplied by exponentials with the decrements so

obtained are presented in Figure 3. The scatter of experimental data with respect to

the horizontal looks random, i.e. no systematic trends are seen. Thus equation (4)

seems to be valid. The rms deviation of the data from the horizontal in Figure 3 (and

in plots of aA,P(Au).exp{b(r)[Au/atxu[} for other r and points) was treated as a
measurement error for decrements b+ and b-. Such errors are supposed to include

both deviations from assumed behavior, equation (4), and statistical scatter. The

measured values of these logarithmic decrements with appropriate error bars are

presented in Figure 4. In this figure, the solid line corresponds to the power-law
scaling

b(r) 0, r a (5)

with scaling exponent fl = 0.15, proposed by G,H&F. It has to be noted that
G,H&F verified equation (5) with fl = 0.15 in four different flows: in an atmospheric

boundary layer, RA = 3000 (Van Atta & Park 1971); in the return channel of the

Modane wind tunnel, RA = 2720 (Gagne 1987); in an axisymmetric jet, R_ = 852

and 536, and in a rectangular duct, RA = 515 (Anselmet e_ M. 1984). It is seen

in Figure 4 that our experimental results are in agreement with those analyzed by

G,H&F. Thus it can be assumed that equations (4) and (5) with/_ _ 0.15 describe

some universal behavior in high Reynolds number flows.
It has to be noted that no dependence of b(r) on Reynolds number is seen in

Figure 4. This result is opposite to that obtained by G,H&F.

3. Future plans

It is important to investigate two other relevant questions: (1) Within the inertial

subrange, is there any "measurable" dependence of b(r) on Reynolds number? and

(2) For the viscous subrange, how should equations (4) and (5) be changed?

We believe new experiments in a wide range of Reynolds numbers are desirable

to clarify these questions.
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