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The 'ideal' Kolmogorov inertial range and constant

By Ye Zhou 1

The energy transfer statistics measured in numerically simulated flows are found

to be nearly self-similar for wavenumbers in the inertial range. Using the measured

self-similar form, we were able to deduce an 'ideal' energy transfer function and the

corresponding energy flux rate. From this flux rate, we calculate the Kolmogorov
f constant to be 1.5, in excellent agreement with experiments.
f ._

1. Motivation and objectives

Last year, an entire volume of the Proceedings of the Royal Society (434 Com-

piled and edited by Hunt et al. 1991) was devoted to Kolmogorov's ideas about

turbulence. Indeed, Kolmogorov's inertial range theory (Kolmogorov, 1941, Monin

and Yaglom, 1975) has formed a foundation for turbulence research for the last

fifty years even though the existence of an inertial range requires high Reynolds
numbers (Re) normally encountered only in geophysical flows (Monin and Yaglom,

1975, Chapman, 1971).

It is essential to obtain a simulated flow field as close to the Kolmogorov inertial
range as possible in order to obtain accurate measurements of tile energy transfer

process. In this report, the inertial range is represented by statistically stationary

flow fields generated using a Fourier spectral code (Rogallo, 1981) in which the k -s/3

spectrum is maintained explicitly. The method follows the spirit of Kraichnan's

constrained decimation theory (Kraichnan, 1975) and is essentially that of She and
Jackson (1992) who reported a simulation at 1283 resolution. Basically, at each time

step, the Fourier modes in each spherical shell are multiplied by the real constant

that returns the shell energy to the Kolmogorov k -5/3 spectrum. This method

can be thought of as a constrained dynamical system. For an N 3 problem, one has

placed N/2 constraints on the 2N 3 degrees of freedom. The method is equivalent to

the use of forcing at the small wavenumber (via a linear instability) and a spectral

eddy viscosity at high wavenumber. To validate the method, we have repeated our

analysis using the forced LES dataset of Chasnov (1991)at 1283 resolution, which

was generated using a traditional spectral eddy viscosity (Kraichnan, 1976), and
we also performed simulations at 643 , 1283 , and 2563 to investigate the effect of

mesh size. We analyzed several independent fields at each resolution and found no

variation in the statistics. The results reported in this paper were measured in a

stationary velocity field on a 2563 mesh size after 3200 time steps of evolution. The

energy spectrum for the inertial range LES is k -5/3 over the entire spectral range of

the simulation. She and Jackson (1992) found that the measured scaling exponents
for flatness factors are in good agreement with experiment (Anselmet et al., 1984).
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As in all nume_ica! simulations, our inertial-range data.set is restricted by the

finite computational domain, and separating physics from numerics becomes an
important concern. It is necessary to identify and eliminate the numerical artifacts
in the measurements. This effort leads to the construction of an 'ideal' Kolmogorov

inertial range and a determination of the Kolmogorov constant.

2. Self-similarity of the energy transfer in the inertial range

We found that the fractional contributions from interactions between relative

scales to the energy flux are essentially independent of k as would be expected
in a scale-similar inertial range (Zhou, 1992a,b). This strongly suggests that the

transfer process is self-similar, but it is important to confirm this directly.
Kraichnan (1971) pointed out that similarity within a Kolmogorov k -5/3 inertial

range implies the scaling

T(k,p, q) = a3T(ak, ap, aq) (1)

if all six wave-numbers are in the inertial range. If we take a = q-l, (1) reduces to

T(k,p, q) = q-aT(k/q,p/q, 1) = q-aF(k/q,p/q), (2)

and the number of dependent variables is reduced from three to two. In figure 1, we

have plotted T(k,p, q) against k/q for several representative values of p/q. While
there is a good collapse of the curves for the various bands, a failure of self-similarity
is observed for interactions involving bands near the spectral boundaries of the

computation.
The transfer function

T(k,p) = Z T(k,p,q) (3)
q

gives the transfer of energy into k resulting from all interactions involving band p.

Analogous to (1), the self-similar scaling law for T(k,p) in the inertial range is

T(k,p) = a2T(ak, ap). (4)

We can further reduce (4) to

T(k,p) = p-2T(k/p, 1) = p-2H(k/p). (5)

This self-similar law is also well satisfied except for p near the computational

boundaries, as shown in figure 2.

In both figures 1 and 2, self-similar profiles can be found by averaging over the

collapsed curves, and such averaged T(k,p) values have been marked in figure 2.

Note that the question of the locality of dominant interactions can be answered in

terms of figure 2. When s = max(k, p, q)/min(k,p, q) is large, the three wavenum-
bers in a triad effectively reduce to two scales. T(k, p) provides a direct measurement

of the locality since self-similarity further reduces the variables to one, implying an
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FIGURE 1. Direct verification of self-similarity (1) of the transfer T(k,p, q) in the

inertial range. (a) p/q = 1/8; (b) p/q = 1/4; (c) p/q = 1.
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FIGURE 2. Self similarity of the transfer function T(k,p) in an inertial range. The

curves are for the various p bands of the inertial range LES. The points ', are the

average values of H(k/p) used to represent the "ideal" inertial range.
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FIGURE 3. The self-similar transfer flmction T(k,p): " , s = k/p; +, s = p/k.
The line indicates a s -4/3 behavior. The scatter at large s is due to numerical error.

equivalence between s and the ratios kip or p/k when they are large. While an in-

teraction range of s = 50 as seen in figure 2 may seem rather "non-local", the basic

question really is whether the interaction range is large enough to contain both the

energetic and dissipation scales at large Reynolds number. The rapid s -4/3 decay

shown in figure 3 would seem to rule that out.

From the detailed balance, one expects that T(k,p) is antisymmetric at large s,

that is H(s) = -H(1/s). Figure 3 shows that this is indeed the case. The deviation

at very large s is due to numerical error. =
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FIGURE 4.
2563 mesh.
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The 'ideal' self-similar transfer T(k): _" , 643 mesh; +, 1283 mesh; ×,

3. The 'ideal' Kolmogorov energy transfer and inertial range

The failure of self-similarity near the computational boundaries is a numerical

artifact of the forcing and eddy viscosity used in the LES. This suggests that the

numerical artifacts can be eliminated, or at least reduced, by using the self-similar

scaling to filter the raw data. Essentially, the data redundancy implied by the scaling
law's reduction of three variables to two allows us to reduce the error associated

with end-effects of the computational domain. To obtain the corrected data, we

have simply removed the curves associated with bands near the boundaries that did

not collapse and averaged the remaining ones. Such an operation reduces the data
to a single curve that can be viewed as the 'ideal' one, that is, the one that would

be obtained in an infinitely long inertial range. As a result, we are able to construct

the 'ideal' energy transfer function T(k) in an infinite inertial range by integrating

the self-similar T(k,p) over a finite range of p.

A suitable analogy for such an infinitely long inertial range is an infinitely long

'pipe' without leaks. To illustrate the interaction of scales, we 'cut' a finite section
from this 'pipe' and view its inflow and outflow. The finite section of pipe corre-

sponds to the finite range of the integral over p mentioned above. The "ideal" T(k)
constructed from simulations of size 643 , 1283 , and 2563 are shown in figure 4. The

negative and positive peaks correspond to inflow and outflow. Since the flow is sta-

tistically steady and f dkT(k) = 0, we have shifted the peaks so that the three mesh
sizes overlap. Because the 'ideal' pipe does not leak, its length is not important.
This is a direct visualization of the Kolmogorov energy transfer process in a finite

section of the 'ideal' inertial range, and the 'ideal' inflow and outflow profiles are

quite different from actual measured transfer spectra (figure 5). Indeed, the 'pipe'

concept is suggested by the long range of scales in figure 5 in which the net transfer

is very small.
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FIGURE 5.
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Transfer spectrum of the simulations: inertial-range LES at one instant.

4. A determination of the Kolmogorov constant

Experiments at high Reynolds number give values of the Kolmogorov constant

in the range of Ca" "_ 1.5 (Monin and Yaglom, 1975), but values determined di-

rectly from spectra in numerical simulations are usually around 2. (Vincent and

Meneguzzi,1991; Sanada, 1992; Chasnov, 1991).
For the inertial range LES data, the dissipation rate estimated from the maximum

resolved energy flux is .45, giving a value of the Kolmogorov constant of 1.7 (Zhou,

1992b). (Recall that the energy spectrum was held constant at E(k) = k -_/3 so

that Cl_.e2/3 = 1).
We can also measure the energy flux as the integral of the inflow or outflow of

the 'ideal' pipe (figure 4). This gives a flux value of about .64 and a corresponding
Kolmogorov constant Ch" "_ 1.5. This 'ideal' energy dissipation rate, evaluated using

the self-similar law, has hopefully eliminated most of the computational artifacts

resulting from the limited computational domain. She and Jackson (1992) estimated

the Kolmogorov constant using the calculated eddy viscosity, which they showed to
be self-similar, and also found CI,." "-" 1.5.

5. Summary

The measured energy transfer is reasonably self-similar for wavenumbers in the

inertial range. Artifacts of the finite computational domain, the LES models, can be
identified and to some extent eliminated by constructing an 'ideal' energy transfer

function. The energy flux, corrected for the loss due to the finite computation
domain, was used to calculate the Kolmogorov constant 1.5, in excellent agreement

with experiments (Monin and Yaglom, 1975).

Acknowledgments

The author gratefully acknowledges stimulating discussions with Dr. R. S. Ro-

gallo and Dr. R. H. Kralchnan. The author is also indebted to Dr. R. S. Rogallo for

l

1

1



Kolmogorov inertial range and constant 283

his assistance with the computations. Time on the Intel Hypercube was furnished

by the NAS division at NASA Ames Research Center.

REFERENCES

ANSELMET, F., GAGNE, Y., HOPFINGER, E. J., & ANTONIA, R. A. 1984 High-

order velocity structure functions in turbulent shear flows. Y. Fluid Mech. 140,
63.

CHAPMAN, D. 1979 Computational aerodynamics development and outlook.

AIAA J. 17, 1293.

CHASNOV, J.R. 1991 Simulation of the Kolmogorov inertial subrange using an

improved subgrid model. Phys. Fluids A. 1,945

KRAICHNAN, R.H. 1971 Inertial-range transfer in two- and three- dimensional

turbulence. J. Fluid Mech. 47, 525.

KRAICHNAN, R. H. 1976 Eddy viscosity in two and three dimensions. Y. Atmos.

Sci. 33, 1521.

KRAICHNAN, R. H. 1985 in 'Theoretical approaches to turbulence', edited by D.

L. Dwoyer, M. Y. Hussaini and R. G. Voight (Springer)

ROGALLO, R. S 1981 Numerical experiments in homogeneous turbulence. NASA
TM-81315.

SANADA, T. 1991 Cluster statistics of homogeneous fluid turbulence. Phys. Rev.

A. 44, 6480.

SHE, Z.-S. AND JACKSON, E. 1992 A constrained Euler system for Navier-Stokes

turbulence (Princeton Univ. preprint).

VINCENT, A. AND MEGEGUZZI, M. 1991 The spatial structure and statistical

properties of homogeneous turbulence. J. Fluid Mech. 225, 1.

ZHOO, Y. 1992a Degrees of locality of energy transfer in the inertial range (to be

published in Phys. Fluids A ).

ZHou, Y. 1992b Interacting scales and energy transfer in isotropic turbulence (sub-

mitted for publication).

z



m

m

D


