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The helical decomposition
and the instability assumption

By Fabian Waleffe

1. Motivations and objectives

Direct numerical simulations (Domaradzki & Rogallo, 1990, Yeung & Brasseur,

1991, Okhitani & Kids, 1992) show that the triadic transfer function T(k, p, q) peaks

sharply when q (or p) is much smaller than k. The triadic transfer function T(k, p, q)

gives the rate of energy input into wavenumber k from all interactions with modes

of wavenumber p and q, where k, p, q form a triangle. This observation was thought

to suggest that energy is cascaded downscale through non-local interactions with
local transfer and that there was a strong connection between large and small scales.

Both suggestions were in contradiction with the classical Kolmogorov picture of the

energy cascade.
In fact, the large peaks in T(k,p, q) have no direct physical significance. Their

origin lies in the Fourier representation of the differential advection (i.e. distortion)

of small scales by large scales. It is only the difference between the large peaks which

has a physical meaning. That difference represents an advection in Fourier space,

i.e. a O/Ok term (Waleffe, 1992). With regard to the energy cascade, the large local
transfers in non-local triads are not {Iae-primary downscale cascading interactions,

their net effect is actually a reverse cascade, in the inertial range. A worthy note on

this point is that the non-local interac-t]_ns with large local downscale transfer are

also present in 2D turbulence, and it is well-known that there the energy cascade is

reversed in a -5/3 range.
The helical decomposition has been found useful in distinguishing between kine-

matically independent interactlons. That analysis has gone beyond the question
of non-local interaction with local transfer. In particular, an assumption about

the statistical direction of triadic energy transfer in any kinematically independent

interaction was introduced (the instability assumption). That assumption is not nec-

essary for the conclusions about non-local interactions with local transfer recalled
above. In the case of turbulence under rapid rotation, the instability assumption

leads to the prediction that energy is transferred in spectral space from the poles of

the rotation axis toward the equator. The instability assumption is thought to be of

general validity for any type of triad interactions (e.g. internal waves). The helical
decomposition and the instability assumption offer detailed information about the

homogeneous statistical dynamics of the Navier-Stokes equations.
Th-_objective of this work was to explore the validity of the instability assumption

and to study the contributions of the various types of helical interactions to the

energy cascade and the subgrid-scale eddy-viscosity. This was done in the context

of spectral closures of the Direct Interaction or Quasi-Normal type.
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2. Accomplishments

2.1 Helical decomposition and non-local interactions

The helical decomposition of the velocity field shows that there are two distinct

classes of triad interactions. Only one of these classes is such that the energy transfer

is mostly between the two longest legs of the triad when the third leg is much smaller

than the other two (non-local triad). That class of helical interactions is then

wholly responsible for the large local transfers in non-local triads observed in DNS

(Domaradzki and Rogallo, 1990, Yeung and Brasseur, 1991, Okhitani and Kida,

1992). Somewhat surprisingly, however, the sum of all such helical interactions

gives a reverse cascade of energy, from large to small wavenumbers, even though

the large local transfers are from the medium to the largest leg of the triad. This is

an exact result for an extended inertial range. The meaning of that result is that the

peaks in the transfer function T(k,p, q), observed when q, say, is much smaller than

k and p, can not be interpreted as representing the downscale transfer of energy.

Interactions between wavevectors in Fourier space are triadic as a result of the

quadratic non-linearity of the Navier-Stokes equations. The incompressibility con-

straint requires that the velocity vector be perpendicular to the wavevector. That

leaves only two degrees of freedom per wavevector and eight kinematically inde-

pendent triad interactions. The helical decomposition is particularly appropriate

because the non-linear term and each triad interaction independently conserves

both energy and helicity. There are two helical modes per wavevector, a "+" mode

of maximum helicity and a "-" mode of minimum helicity. The triadic transfer

function is the sum of the eight kinematically independent helical triadic transfers,

8

T(k,p,q) = _ T(O(k,p,q).
i=1

Normalizing all wavenumbers in the triad by the middle one, let v, 1, w represent

the smallest, middle, and largest wavenumbers, respectively, (v _< 1 < w < 1 + v )

and sv,sl,sw the signs of the corresponding helical modes. A direct consequence

of energy and hellcity conservation is the following important relation,

T(i)(v, 1, w) T(i) (1, w, v) T(i)(w, v, 1)
- - (1)

SwW -- S 1 8vV -- 3wW 81 -- 8vy

One nice advantage of this decomposition is that it distinguishes clearly between

non-local interactions with non-local transfers and non-local interactions with local

transfers. Non-local interactions (i.e. v << 1 -,_ w) of the sl = s,_ type have local

energy transfer, while non-local sl = -Sw interactions have non-local transfer. This

can be deduced from (1). Hence, the non-local interactions with large local transfers

observed in the DNS are the result of sl = sw interactions.

2.2 The instability assumption

The analysis sketched above highlights some of the characteristics of the triadic

transfers but leaves open the question of statistical direction of the energy exchanges.
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These directions are determined by the Instability assumption: statistically, the

triadic energy transfer is from the mode whose coefficient in the triadic equations

(1) is opposite in sign to the other two coefficients. In other words, T(O(v, 1,w)

is negative if Sl = -sw (and thus T(0(1, w,v) and T(O(w, v, 1) are positive), and

T(0(1, w, v) is negative if Sl = s_, (with T(1)(v, 1, w) and T(i)(w, v, 1) positive). This

assumption was motivated by the stability characteristics of the triadic interactions

in (Waleffe, 1992). It amounts to an assumption about the triple correlations.
The instability assumption is in agreement with the numerical observations that

energy is transferred statistically from the medium to the largest wavenumber in
non-local triads. As mentioned above, the large local transfers in non-local triads

can only come from Sl = sw interactions, and thus the numerical observations im-

ply that the sum of all sl = s,,, interactions must extract energy from the medium
wavenumber and feed energy into the longest wavenumber. The instability assump-

tion leads to the same result through the stronger statement that this is so for each

interaction sl = s,,,.

Analyses of numerical simulation data have focused so far only on the total triadic

energy transfer T(k,p, q) = Y]_ T(0(k,p, q). The total triadic energy transfer is the

net result of 8 kinematically independent interactions. In a recent paper, Okhitani

and Kida (1992) have classified interactions according to the sign of the total triadic

transfer into each leg of the triad. They associate to each interaction a triplet of signs

defined as (sign[T(w, v, 1)], sign[T(1, w, v)], sign[T(v, 1, w)]). These triplets can a
priori take any of 6 different values ((+, +, +) and (-, -, -) are not allowed from

energy conservation). Their classification should not be confused with the helical
classification used in this and previous papers. They observe that statistically only

(+, +,-), (+,-, +) and (+,-,-) appear. The instability assumption is not only
consistent with this observation but also predicts it. The total energy transfer is
a combination of the two helical classes of transfers determined by the instability

assumption. These two helical classes are (+, +, -) when sl = -sw and (+, -, +)

when sl = sw. The only possible net sums of these two classes of helical interactions

are (+, +,-), (+,-, +) and (+,-,-), exactly as observed by Okhitani and Kida.
In other words, it is impossible to observe a net interaction in which the largest

wavenumber in a triad loses energy on average.

g.3 Comparison with the closures

The signs of the helical triadic transfers predicted by the instability assumption
have been compared to those obtained from the spectral closures (Quasi-Normal or

Direct Interaction type). All such closures prescribe the same following form for
the shell-averaged triadic transfer function T(1)(k,p, q) due to the i-th interaction

(for isotropic flow):

T( O( k, p, q) = 7r2kpq 99 * Okpq (Sqq - spp) x

[(sqq - spp)U(p)U(q) + (skk - Sqq)U(k)U(q) + (spp - skk)U(k)U(p)]

where U(k) = (u(k) • u*(k)), and gg* = (skk + spp + sqq)2Q2/(16k2p2q2), with

Q2 = 2k2p2 +2p2q2 +2q2k2 _ k 4 _p4 _q4 (9 differs by a factor of 2 from its definition
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in (Waleffe, 1992)). The sign coefficients (s_, sp,sq) denote the helical interaction

under consideration, i.e. sk mode for wavenumber k, etc. The parameter Okvq is a
relaxation time scale for the triple moments. The relaxation is due to both viscous

and non-linear effects. A simple prescription for O_pq, is Okpq = C[(k3E(k)) 1/2 +

(p3E(p))I/2 + (q3E(q))l/2]-_ where the constant C is chosen to fit the Kolmogorov
constant and E(k) is the energy spectrum.

All that is needed for the comparison with the instability assumption is that Okpq
be positive. It can be shown analytically (Waleffe, 1993) for a similarity range

E(k) = 2_rk2U(k) ¢x k n that the instability assumption and the closures give the
same direction for the triadic transfer if n < 2 when sl = -sw and if n < 1 when

sl = sw. These critical values of n correspond to equipartition of energy (n = 2)
and of helicity (n = 1), respectively. Combining both results, the closures agree

with the instability assumption whenever n < 1. The Kolmogorov spectrum has
n = -5/3.

The knowledge of the direction for the triadic energy transfer can then be used

to determine the cascade direction in a similarity range. The conclusions are that

the sl = -sw interactions always forward cascade energy to higher wavenumbers
but the sl = s_ interactions, which are responsible for the non-local interaction

with local transfer character of the total triadic transfer function, reverse cascade

whenever n > -7/3 (see Waleffe, 1993 for details).

A quantitative analysis with the EDQNM model was made for a -5/3 range.

The most interesting result is that 86% of the energy cascade is due to helical
interactions of the form sv --- -sl = Sw. Interactions with sl - sw nearly cancel

out, contributing only about -1% to the total cascade.

Decomposition of the subgrid-scale eddy-viscosity into the contributions from the

two classes of helical interactions, and also from the forward and reverse cascading
triads, shows that the cusp near the cut-off wavenumber arises from non-local reverse

cascading Sl = sw interactions. The subgrid viscosity due to forward cascading
interactions is approximately constant. One noteworthy observation is that the

closures also give a mild cusp as k _ 0, and thus the eddy-viscosity does not tend
to a constant as is usually believed.

3. Future plans

The instability assumption seems to be a solid and general assumption not limited
to isotropic turbulence. It could likely be used in other areas, in stratified flows for

instance. It would be nice to test the assumption more directly using DNS; only
indirect verifications have been made so far (e.g. total triadic transfer but not each

helical interaction independently). One would like to have a better theoretical

understanding of why the instability assumption works. Why would the stability

properties of a single triad determine the statistical dynamics of a large number of

interacting triads?

The helical decomposition is a very appropriate way of looking at the fundamental

kinematically independent triad interactions. The suggestion from the closures

that one type of helical interaction is responsible for 86% of the energy cascade is
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puzzling and worthy of further investigation. The physical interpretation of these
interactions and the link to some physical mechanism is desired. We still do not

have a dynamical mechanism which leads to a -5/3 turbulent spectrum. If the
cascade is due to a series of successive instabilities, which instability is it? The

simplest one, the inflexional Kelvin-Helmholtz instability, reverse cascades. I have

suggested before that the sl = -s,,, helical interactions, which forward cascade,
have some similarities with the elliptical instability (Waleffe, 1990, 1992), but no

work has been done to explore that any further.

Regarding the non-local interactions with local transfer, their importance is far

less than a look at T(k,p, q) suggests. This is because of all the subtle cancellations

taking place, whether one looks at the total cascade or the effect of large scales
on the small scales. The role of non-local interactions in turbulence still needs to

be determined. They are responsible for the cusp in the subgrid viscosity. They

could be linked to intermittency also. In fact, it is my opinion that the closures

do not deal with them correctly. All the closures treat triads as essentially inde-

pendent (through the Quasi-normal or Direct Interaction assumption) with all the
other triads acting as a decorrelating background noise. This seems valid for local
interactions. However non-local triads can not be treated as independent because

of the near-cancellations between several triads needed to represent distortion of

small scales by large ones.
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