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The three-dimensional evolution of a plane wake

By H. Maekawa, 1 R. D. Moser 2 AND N. N. Mansour 2

1. Introduction

In the past three decades, linear stability analysis has led to a comprehensive

understanding of the linear stages of transition in plane wakes. Our understanding

of the nonlinear and turbulent stages is less developed. Nonlinear theory developed

by Papageorgiou & Smith (1988) was used to study the long-wavelength regime in

wakes. The nonlinear and turbulent stages have been investigated experimentally,

and few numerical studies have examined the early nonlinear stages of forced wakes.

Experimental studies of the wake have been carried out extensively by Sato &

Kuriki (1961), Sato & Onda (1970), Sato & Saito (1975, 1978), and Gharib &

Williams-Stuber (1989). Sato & Onda (1970) reported that the wake responds

differently under different kinds of forced disturbances. Gharib & Williams-Stuber

(1989) investigated the enhancement and cancellation of perturbations in a plane

wake by the strip heater technique. They showed that the mean velocity profile

adjusts itself to become more receptive to the forced frequency.

In their numerical study, Maekawa, Mansour & Buell (1992, hereafter referred

to as MMB), simulated spatially developing plane wakes with inlet forcing using a

single frequency (fundamental mode), a fundamental mode with its subharmonics

and random perturbations. They found that phase jitter around the fundamental

frequency plays a critical role in generating vortices of random shape and spac-

ing. They also observed pairings and doublets in the wake. These observations

were similar to those reported by Comte, Lesieur & Chollet (1989) and by Aref

& Siggia (1981) for temporally developing layers. Furthermore, MMB found that

infinitesimal random disturbances generate clear alternate-signed vortex streets due

to selective amplification of the fundamental mode.

The formation of three-dimensional structures and turbulent breakdown are not

as well understood. Chen, Cantwell & Mansour (1990) showed that the phase

between a two-dimensional fundamental mode and oblique modes controls the for-

mation of three-dimensional structures in plane wakes. Depending on the phase,

loop-like structures were observed. These structures were similar to the flow visu-

alization experiments by Breidenthal (1980), Meiburg & Lasheras (1988), Antonia,

Brown & Bisset (1987), and Perry, Lim & Chong(1980). However, a detailed under-

standing of the underlying mechanism that initiates three-dimensional breakdown

in wakes and the resultant structure is still missing.

In what follows, the evolution of three dimensional disturbances in a incompress-

ible wake is investigated using direct numerical sinmlations. The instantaneous

three-dimensional structures and corresponding statistics are presented.
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2. Preliminaries

The time-developing mixing layer code used by Rogers & Moser (1992) was mod-
ified to accommodate wake profiles. The cases described in this study are initialized

with controlled initial conditions. We consider temporally evolving layers where the

flow is taken to be periodic in x- and z- (streamwise and spanwise) directions. The
cross-stream direction, y, is taken to be doubly infinite with boundary conditions

applied at x = +oo. The length of the computational domain in the streamwise
and spanwise directions, L_ and Lz, is set to be integer multiples of the perturba-

tion wavelength, Thus, in general, Lx = n_ and L_ = m_. n and m are one or

two for all cases reported here. The Reynolds number defined by the half-width

and the deficit velocity of the wake is 300. As was done in MMB, the flow struc-
ture and various flow statistics were examined for a range of Reynolds numbers,

100 < Re <_ 600. The observed variations with Re indicate that Re = 300 is large

enough to eliminate low-Reynolds number effects.

2.1 The governing equations and numerical considerations

The simulations reported here were performed by solving the vorticity equation

derived from the incompressible Navier-Stokes equations:

Ow 1 2
0--7+ V × (_ × U) = _0 v _, (1)

where Reo = Uobl/2/v (v is the kinematic viscosity) is the Reynolds number, hi�2
is the initial half-width of the wake, and U0 is the centerline deficit velocity. All

quantities are non-dimensionalized by the appropriate characteristics scale, U0 and

b112.
The spectral Galerkin method described by Spalart, Moser & Rogers (1991)

was used for spatial discretization. The equations were advanced in time using a

compact third-order Runge-Kutta scheme. A typical three-dimensional simulation

(n = 1, m = 1) required 48 × 64 × 48 Fourier/Jacobi modes.

2.2 Specification of initial conditions

The initial mean velocity used for all the simulations reported here is of the form

-- y

u = exp - ln(2) (2)

wMch has a half width of bl/2. In addition to the mean flow, simple perturbations
are included in the initial conditions.

To specify the initial conditions and facilitate discussion through this paper, it is

necessary to refer to specific wavenumbers; they will be referred to in ordered pairs

(3)(t_,fl)= \ _ , 2_r

where A, and )% are the x and z wavelengths from linear stability theory, k_ and

k_ are corresponding wavenumbers. The fimdmnental modes discussed here have

c_ and/or fl equal to one. The amplitude Ac, z of a Fourier mode (a,/_) is defined
to be the square root of the integrated (in y) energy in that mode, as described in

Rogers & Moser (1991).
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FIGURE 1. Spanwise vorticity structure of the two-dimensional wake (Case 2D-l)

at the first maximum of A10 (t = 48). Contour increments are 0.05 and tic marks

are at bl/2 intervals.
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FIGURE 2. Time development of the two-dimensional fundamental mode amplitude

for _ Case 2D-2 (high initial amplitude) and .... 2D-1 (low amplitude).

3. Accomplishments

S.i Two-dimensional 3imulations

To facilitate discussion of the three-dimensional evolution of the wake, we start by

briefly reexamining the behavior of two-dimensional wakes. The spatially developing
simulations of MMB showed that the growth of the fimdamental mode is responsible
for the formation of the vortcx street in wakes. We consider three different initial

conditions for the current two-dimensional simulations. Case 2D-1 starts with a
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single fundamental mode with small amplitude (Ax0 = 0.01), Case 2D-2 starts

with a single fundamental mode with large amplitude (A10 = 0.5), and Case 2D-3
starts with a fundamental mode and its first subharmonic with large amplitudes

(A,0 = A10 = 0.5).
_s in the spatially developing case, the amplitude of the fundamental grows

exponentially, then saturates. Contours of spanwise vorticity at the time when the

amplitude of the fundamental disturbance, A10, reaches its maximum are shown

in Figure 1 for Case 2D-1. The vortices evident in this figure have an oblong or

elliptical shape, with the major axis roughly vertical. Successive snapshots show
that the structures rotate by 90 ° so that the major axis is horizontal, consistent

with the observations of MMB. If we define the rollup time tr to be at the first

maximum of the fundamental disturbance amplitude, we find for this case, tr = 48.

When a larger initial amplitude is used (Case 2D-2), the fundamental mode sat-

urates sooner (t_ = 18). After saturation, the mode loses energy at a much faster
rate than in Case 2D-I, then starts growing again, and a second maximum appears

(see Figure 2). The orientation of the major axis of the vortical structure at the first
maximum of Al0 (tr = 18) is similar to the low-amplitude case. But as the structure

rotates its major axis toward the horizontal, a tall of weak vorticity is formed (see

Figure 3 at t = 32). Successive snapshots show that the vortices continue to rotate,

becoming vertical again when A10 reaches a second maximum. This is similar to
the observations by MMB of active structures at higher Reynolds number.

In Case 2D-3, we observe (see Figure 4) pairing of negative sign vorticity (in the

lower portion of the layer) and shredding of positive sign vorticity (in the upper

portion). The development time of the subharmonic is slow relative to the funda-
mental, and pairing occurs around the time when the amplitude of the subharmonic
reaches its maximum.

3.2 Three-dimen,_ional wake

To study the sensitivity of the two-dimensional wake to initial (or inlet) three-
dimensional disturbances, five cases were studied: two cases (Case 3D-l, and Case

3D-1-1) where a two-dimensional mode plus background random noise of different

amplitudes are used for initial conditions, and three cases with a two-dimensional

mode and a pair of oblique modes (Case 3D-2-1, Case 3D-2-2 and Case 3D-2-3) of

different amplitudes for initial disturbances. The relative phase between the two-
dimensional mode and the oblique modes was kept the same at rr/4 for all cases.

The intent in Case 3D-1 is to mimic the experiment of Sato &: Onda (1970)

where a fundamental mode is forced, but, as in all experiments, background noise

exists. Figure 5(a) shows the evolution of Al0 for Case 2D-1 and 3D-1. Clearly
the weak background noise in this case has little effect on the evolution of the two-

dimensional layer. The structure that dominates in this case is the two-dimensional

double roller. In this case, the fastest growing three-dimensional modes are those
whose wave-numbers are closest to that of the two-dimensional fundamental. Large

amplitude disturbances were used in Case 3D-l-1 (A10 = 0.1, average amplitude of
three-dimensional modes of 0.025). In this case, a band of wave nmnbers around

the fimdamental are enhanced after the roll-up. But, the energy in the subharmonic



Three- dimensional wake 329

\

x

FIGURE 3. Spanwise vorticity in Case 2D-2 at t = 32; contour increments are 0.09

and tic marks are at bx/2 intervals.
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FIGURE 4. Spanwise vorticity in Case 2D-3 during pairing/tearing. Contour incre-

ments are 0.05 and tic marks are at 2 × bi/2 intervals.
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FIGURE 5. Evolution of the two-dimensional fundamental mode amplitude in

3D-1 and .... 2D-1 (plots on top of 3D-1 case).

mode decreases after the rollup, suggesting that pairing in the wake is not as natural

as in the mixing layer. But as seen in our two-dimensional simulations, it will occur

when forced. The vortex structure in case 3D-l-1 is again dominated by the two-
dimensional vortices.

The results of the previous two cases suggest that low-wavenumber oblique modes

are not amplified during the rollup of the fundamental structure in the wake. We

thus use a relatively small spanwise wavelength (Az = 0.6Ax) for the forced oblique

modes as in Rogers _c Moser (1992). The three oblique cases; Case 3D-2-1, 3D-2-2

and 3D-2-3 have initial amplitudes such that Al0 > A_l, A10 < All, and A10 = A11

respectively.

In Case 3D-2-1, the evolutions of the mode amplitudes indicate that the two-

dimensional mode grows, saturates, and decreases while the energy in the oblique

modes reaches a first peak at the same time as the fundamental (t = 14) but later
continues to increase until a second maximum is reached at t = 30. At this time, the

oblique mode amplitude is at almost the same level as the flmdamental. Constant

spanwise vorticity surfaces for this case at t = 14 and t = 30 are shown in Figure 6.

In Figure 6(a), the core rolls are apparent but are surrounded by 'wisps' of vorticity
that form hoop-like structures. Later (t = 30) after the oblique modes grow (at

t = 30) we find that the strong spanwise vorticity is concentrated in compact regions

(Figure 6(b)). At this time, the streamwise and the cross-stream components of the
vorticity dominate the large scale structures. The counter-rotating vortices shown

in Figure 6(c) become the dominant feature of the flow. Of the three vorticity

components, wy is largest in magnitude, while w, is smallest. The vortex structures
are inclined at 40 to 50 degrees with respect to the streamwise direction. Those

streamwise vortex pairs are reminiscent of the rib vortices in the plane mixing

layer.
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FIGURE 6(a).
at t = 14:

intervals.

Three-dimensional structure of spanwise vortieity in Case 3D-2-1

Surfaces represent 50% of peak value (-t-2.6), and tic marks are bl/2

FIGURE 6(b). Three-dimensional structure of spanwise vorticity in Case 3D-2-1

at t = 30: Surfaces represent 50% of peak value (+1.6), and tic marks are bl/2
intervals.

When the oblique modes are initially dominant (Case 3D-2-2), it was found that

they grow rapidly and suppress the growth of the two-dimensional fundamental
mode. Since the oblique modes are larger than the two-dimensional mode, the

spanwise vorticity structure is not observed in the wake. When all the modes have

the same amplitude (Case 3D-2-3), the energy in the modes indicates that the
oblique modes and the fundamental mode grow together and that the oblique mode

saturates first, then the fundamental modes saturate.
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FIGURE 6(c). Three-dimensional structure of streamwise vorticity in Case 3D-2-1

at t = 30: Surfaces represent 50% of peak value (=kl.9), and tic marks are bl/2
intervals.

FIGURE 6(d). Three-dimensional structure ofwv in Case 3D-2-1 at t = 30: Surfaces

represent 50% of peak value (-t-2.6), and tic marks are bu2 intervals.

4. Conclusions

._Direct numerical simulations have been used to study the three-dimensional evo-
lution of a plane wake. The flow has been analyzed by visualizing the vortical

structures using vorticity contours and by tracking the modal energy in time. The
two-dimensional features are similar to the results obtained for a two-dimensional

spatially developing wake (MMB).
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The growth of fundamental mode generates characteristic alternating sign vor-

tices in the wake. When a two-dimensional fundamental mode is forced with high

amplitude, vortical structures with 'wisps' around the roller are generated. When
the wake is forced with a fundamental and a subharmonic asymmetric pairing and

shredding are observed.

When weak three-dimensional random disturbances are imposed in addition to a

two-dimensional fundamental mode, we find that the two-dimensional rollers appear

to be the dominant features of the wake. Analysis of the energy contained in each

mode reveals that three-dimensional modes with wavenumber close to that of the

two-dimensional fundamental mode grow after saturation of the fundamental mode.

In contrast, the energy in the low wavenumbers modes decreases.

When the wake is forced with oblique modes of various amplitudes, we find that

at large amplitudes the growth of the oblique mode leads to the breakdown of

the alternate-sign vortex structures in the wake, and counter-rotating streamwise

vortical structures are generated after the breakdown. These streamwise structures

are inclined at 40 to 50 degrees with respect to the streamwise direction. When the

amplitude of the initial oblique modes is higher than that of the fundamental, the

growth of the fimdamental mode is suppressed, and no spanwise coherent structures

were found in this case.
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