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PDF approach for turbulent scalar
field: some recent developments

By Feng Gao

1. Motivation and objectives

The probability density function (PDF) method has been proven a very useful

approach in turbulence research. It has been particularly effective in simulating
turbulent reacting flows and in studying some detailed statistical properties gener-

ated by a turbulent field (see, e.g., Monin & Yaglom 1975, Bilger 1989, Pope 1985

& 1990, Kraichnan 1990, Gao et al. 1992).

There are, however, some important questions that have yet to be answered in
PDF studies. Our efforts in the past year have been focused on two areas. First, a

simple mixing model suitable for Monte Carlo simulations has been developed based

on the mapping closure. Secondly, the mechanism of turbulent transport has been

analyzed in order to understand the recently observed abnormal PDF's of turbulent

temperature fields generated by linear heat sources (Gollub et al. 1991, Jayesh &

Warhaft 1991). --

1. I Needs for new mixing models in PDF approach

It is well known that the PDF approach provides a closed form representation

for the chemical reacting source terms, thus becoming a preferred choice among the
available closure models for turbulent reacting flows (O'Brien 1980, Pope 1985).

The general argument is that once the PDF of a reacting scalar, ¢, is known,
the mean reaction rate, which is the key quantity to be evaluated in reacting flow

simulations, can then be readily calculated by

(s) =fS(¢)P(¢)d¢.

Generally, two approaches have been commonly taken in applying the PDF method,

namely, presumed PDF and full PDF methods.

The presumed PDF method assumes a certain form for the PDF with some

adjustable parameters, which are supplied by other conventional models (Bray 1980,
Borghi 1988, Vervisch 1992). Restricted by the scope of the closure models used (for

example k - e model), the parameters to be adjusted are generally limited to the low
order statistics such as mean and variance, thus exposing an important shortcoming

of the presumed PDF. In fact, one can construct different PDF's P1 and P2 that
have the same mean and variance but totally different higher order statistics. If

the reaction source term is highly nonlinear (which is true in most cases), the mean
reaction rates obtained from P1 and P2 may be very different, depending on which

PDF form is chosen.
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The natural way for obtaining the PDF is the full PDF method which simulates

the PDF from its evolution equation. However, a major stumbling block in this

approach has been the la_k of a proper closure for the diffusion effect (O'Brien

1980, Pope 1985). In order for a model to be accepted in practical simulations,

it has to be physically reasonable and numerically easy to implement. Despite

the theoretical success the mapping closure enjoys in treating the mixing effect in
the PDF approach (Kraichnan 1990, Gao 1991, Pope 1991), it has been shown

difficult and computationally intense to implement this closure in simulations (Gao

& O'Brien 1991, Valifio & Gao 1992). The most commonly used model for diffusion

effect in practical Monte-Carlo simulations remains the LMSE model (Pope 1992)
which reads

de,
d--/-= (¢))" (1)

It is well known that this model does not relax a PDF. In fact, it can be easily
shown that applying this model leads to

F.(t)- (¢'")
(¢,2)./2 = F.(0),

where ¢_ = ¢ - (¢). Therefore, the PDF so obtained can be very erroneous. This

puts us in a rather awkward position. On one hand, we are attempting to use a
highly sophisticated approach whose main promise is to provide accurate estimates

for mean reaction rates. On the other hand, the PDF could be so contaminated

that it does not reflect the true evolution of the fields being considered.

It is, therefore, obvious that in order for the PDF method to live up to its

promises, better mixing models which are easy to implement should be developed.

1._ PDF generated by non-uniform _ourcc_

The experiments of Jayesh & Warhaft (1991) and Gollub et a/.(1991) indicate
that the scalar PDF generated by a linear source term exhibits exponential tails.

This result is rather surprising because it has generally been believed that the PDF

so generated is a Gaussian distribution (Venkataramani & Chevray 1978, Tavoularis

& Corrsin 1981). This situation certainly demands a theoretical investigation.
There are three basic processes that determine the distribution of a scalar PDF:

the shape of the non-uniform source, the turbulent convection, and the molecular

diffusion. A fluid particle leaving the source is convected by the turbulent velocity
field to a certain observation point. Because of the chaotic nature of the velocity

field, particles from different positions in the source all have certain possibilities

of reaching the observation point, thus generating the fluctuations that reflect the
characteristics of the source. In the absence of molecular diffusion, the PDF of the

scalar is determined by the interaction of the source and the convection.

There are a couple of reasons that justify the neglection of molecular diffusion

in search for the mechanism of generating exponential tails. First, it is supported
by theoretical arguments and numerical simulations that the molecular diffusion

tends to relax a PDF to a Gaussian distribution. Although it has been shown
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that the interaction between random turbulent advection and molecular diffusion

distorts a Gaussian PDF to generate mild non-Gaussian tails (Gao et al. 1992), the

clear exponential tails observed in these experiments cannot be explained within
the frame of this interaction. Secondly, for high Reynolds (P_clet) number flows,

the diffusive effect is very small in comparison with the turbulent transport (Taylor

1935) which is responsible for bring around the fluctuations generated by the non-
uniform source.

Based on these arguments, the experiments mentioned earlier can be analyzed

explicitly under some idealized conditions. This study suggests a mechanism which

seems to provide an explanation for the observed tails.

2. Accomplishments

_.1 A mizing model for PDF simulations

In dealing with turbulent reacting flow problems, it is generally accepted to sepa-

rate the effects of mixing and reaction by time-splitting schemes. Since the reaction
term is closed in PDF formulation, we will concentrate on proper modeling for the

mixing effect.
The mapping closure maps a known statistical field ¢ (generally chosen as a

multi-variate standard Gaussian field) to a surrogate field X(¢, t) whose statistics

resemble those of the true scalar field ¢ (Chen et al. 1989). Under homogeneous

and non-reacting conditions, the mapping relation is governed by

OX _*" cOX 02X.& = (2)

where w* is determined by the time scale of turbulent mixing. It has been shown

that this model provides an excellent representation for the mixing effect in the

PDF approach (Gao 1991a, Pope 1991).
In spite of its good physics, the mapping closure has posed great difficulties for

numerical implementation, as pointed out earlier. The problem stems from the

necessity that the fields be re-mapped at each time step, which is computationally

intense. This problem worsens drastically as the dimension (number of the scalar

quantities) involved increases.
In the model we are proposing, the PDF is represented by a group of represen-

tative "particles" which advance in time following certain laws, as is generally used
in Monte-Carlo simulations. In case of reaction acting alone, for example, each

particle is advanced by

d_b----A= S(¢i).
dt

The task is, therefore, to develop similar models to describe the mixing effect.

One way to generate such models is to use the mapping solution. It is well known

that the general solution for (2) is (Gao 1991a, 1991b)

X(¢,t) = E a,H,( )e -"_, (3)
n:0
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where r = fd w*dt and H. are Hermite functions. The expansion coefficients a.
can be determined as

an = v/'_2nn! ooX(¢,O)H.( )exp(- )de = _{ 0---_)t=0. (4)

Clearly, for reasonably well behaved mapping, a. tends to zero rapidly. Therefore,

we expect that a truncation of the right hand side of (3) at a relatively low order

171

x(c,t) = _ a.H.(_)_ -"_ (5)
rt=0

can approximate X(¢) to a satisfactory degree of accuracy.

A group of surrogate particles can be chosen according to (5) to represent the

PDF, and each of these particles evolves according to

m

IF[@ + _)(_- (_>)= o, (8)
i=l

where d/dr = d/(w*dt) and w* can be related to the scalar evolution time scale. In
fact, if w in

d(¢'_) _ -_<¢'_)
dt

can be provided by other models, such as the k - e model, it can be shown that

w _-._=1 2"n!p,_l

_* = 2 E._=I_. 2-.!_._i' (7)

where po = (a_+1/al)2e-2"_.Ifthe truncatedform (5)isused,allpa where a > m
should be settozero.

iu_ can be relatedto the certainorder moments of the fieldconsidered. For

example, ifrn= 3,itcan be shown that

and

x/2(1 + 4# 5 + 24p_) 3/2

Pl =-- 12 + 144#2 + 32#3 + 864p22F3

F4(1+ 4,_ + 24,1)_- 39(,,,,_)
#2 = 48(1 + 48p_ + 216p22)

Here F, are moment coefficients as defined earlier and

(8a)

(8b)

g(]-/1, _/2) = 1 31-40_/12"lt. 336#5 + 5952#_g] + 80g] + 17856/_.

These equations can be solved iteratively, and our tests seem to suggest that #,_ are

very small and

w* ._ w/2 (9)
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Evolution of scalar variance: DNS (dotted line); LMSE (solid line)

and current model (dashed line), tuff is the eddy-turn-over time.
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FIGURE 2. Evolution of scalar flatness: DNS (dotted line); LMSE (solid line) and

current model (dashed line), tuff is the eddy-turn-over time.

remains a good approximation. Taking the highly singular double-delta PDF as an

example, it can be shown that pza+] = 0 (because of symmetry) and p_ = 1/144,

p4 = 1/25600, etc.

It is noticed that if we choose m = 1, (6) recovers the equation in the LMSE

model (1) and (7) shows that w* = w/2.

It should be pointed out that in the current model, we are only interested in the



386 F. Gao

2.5"

2,0-

1.5"

1.0"

0.5"

0.(3-0.25 0.00 0. 5 0. 0 035 1.00 1.25

FIGURE 3A. Initial scalar PDF.
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FIGURE 3B. Scalar PDF at tlu/l = 0.178: DNS (dotted line); LMSE (solid line)
and current model (dashed line).

evolution of a group of surrogate particles whose statistics closely resemble those of
the true turbulent field. These particles are generally not the fluid particles.

Some tests have been conducted using the model with rn = 3 and compared

with the corresponding cases from DNS and the LMSE model. Figure 1 shows the

evolution of scalar variance with w matched from DNS data. It shows that (8) is

indeed a good approximation. Figure 2 exhibits the evolution of the scalar flatness
F4. While the LMSE model clearly does not relax the PDF, the current model
catches on the trend of DNS.
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FIGURE 3C. Scalar PDF at t2u/l = 0.685: DNS (dotted line); LMSE (solid line)

and current model (dashed line).
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FIGURE 4. Sketch of the system considered.

The plots of PDF evolution perhaps are more revealing. The initial PDF in the
model simulations are generated according to that in DNS and normalized in the

interval [0,1] (Figure 3(a)). The evolved PDF at two later moments are plotted in
Figures 3(b) and 3(c). The improvement achieved by the current model is obvious.

The accuracy of representing the PDF by a collection of surrogate particles de-

pends on the shape of the PDF. Models with better accuracies can be developed

along the same line by pushing m higher. However, it is expected that m = 3 should

suffice for practical simulations.
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IL,_ PDF of temperature fields generated by a linear heat nource

As discussed earlier, the abnormal tails of a scalar PDF are mainly caused by

the interaction between the non-uniform source and the random adveeting velocity.

Let vt and rd be the time scales of turbulent transport and molecular diffusion,

respectively, it is well known that Vd/Vt ,,_ Re (Tennekes & Lumley 1973). For

high Reynolds number flows, we simply assume that Vd _ oo and r, _ 0, namely,
neglecting the molecular diffusion and assuming the velocity fluctuation is white in

time. The consequences of these simplifications are explained elsewhere (Gao 1992).

Hence, a particle detected at time t at the observation point (x, y) can be traced

back to an earlier time 7-when it was released from the source at (0, y0) and acquired
the temperature T(0, y0;r) (refer to Figure 4 for a sketch of the system being
considered), i.e.

f' f'x = U(t - r) + u'dt and y - y0 = u'dt. (10)

It can be shown that (Gao 1992)

x = U(t - r) + a_v/t - rr, and y - y0 = ayv/t- rr2, (11)

where a_ = 2uiLi and ri are standard independent Gaussian random variables.

Here ui is the variance of velocity and Li the correlation length in the i direction.
The PDF of temperature can be written as

P(T; z, y, t) = (_(2" - T(0, y0; r)}u0,,<,, (12)

where the average is taken over all possible particles released from the source prior
to t.

Consider the case of linear source, i.e.

T(0, y0; r) = _y0-

It can be shown that

P(T; x, y, t) = F(T; x, y, t)G(T; x, y, t) (13)

where

and

G(T) = --

F(T) = _ exp[ U(7__- x)] (14)
O-2

1 /'= 2 + 2v-r(x + 7)
exp( -_ 2/ 2a2 )d_. (15)

2a3, 2 J__ ._/_2 + 4U7

Here, 0- = 0-_, fl = a_ lay and

75 = x2 _ y)L (16)
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It can be demonstrated that

dln G
lira _ = O,

T--.oo dT

hence the main contribution to the tails comes from F(T) which decays exponen-

tially as T --, oo.
In linear theory, the fluctuation in x (i.e. rz) is neglected compare with U(t - r).

This is equivalent to letting a _ 0 while keeping ay = a//_ finite. In this limit,

we have fl ----* O. It can be easily shown that

F(t) _ 1 V Texp[- -

and

G(T)---,_/_.

Hence,

P(T)= v_ V T
2v/_'_aav exp[_ 2__a2 (_ _ y)2],

which recovers what would be obtained using the traditional method.

However, this approximation seems to be a rather awkward one because in tur-
bulence, /_ is generally not small. In fact, in a grid generated turbulence, u' ,,_ U

and v' ~ 0 near the grid and u' ,,_ v' in the later stage. It doesn't seem reasonable

to neglect the fluctuation in x direction while keeping the terms of similar or lower

order of magnitude in the y direction.
For finite _, we therefore should expect exponential tails under turbulent disper-

sion at not too distant downstream locations. The exponent can be shown as

a 2[ 2+/_2( _y)2_z],,__aa T for T>>I.

Another limit can be obtained if we look at far downstream locations and finite

(z - <<1,hence,temperature range. In this limit, 2 T

u (T_ v)2

which also recovers the traditional result. This approximation is equally applicable

if we have a strong mean scalar gradient. Therefore, if we move the probe to further

downstream locations and/or increase the gradient of the scalar source, we will see
more Gaussian-like distributions.

Other quantities, such as mean and higher order moments, can be readily calcu-
lated. The qualitative features predicted by this idealized model compare favorably

with the available experiments. For detailed discussions, please refer to Gao (1992).
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3. Future plans

Given the recent exciting developments in large-eddy simulations of turbulent

fields (see related reports in this volume), it seems only natural to extend this suc-

cessful technique to the reacting flow problems. However, despite many attempts,
the proper modeling of the reaction source terms remains an unsolved problem.

Considering the wide range of different type of reactions encountered in engineering

applications, the prospect of developing a suitable sub-grid-scale model for these

source terms seems to be grim. The PDF approach can probably be usefully em-
ployed to address this problem.

REFERENCES

BILGER, R. W. 1989 Turbulent diffusion flame. Ann. Rev. Fluid Mech. 21, 101-
135.

BORGHI, R. 1988 Turbulent combustion modeling. Prog. Energy Combust. Sci. 13,
245-292.

BRAY, K. N. C. 1980 Turbulent flows with premixed reactants, in Turbulent Re-

acting Flows. 115-183, Springer-Verlag.

CHEN, H., CHEN, S. _ KRAICHNAN, R. H. 1989 Probability distribution of a

stochastically advected scalar field. Phys. Rev. Left. 63, 2657-2660.

GAO, F. 1991a An analytical solution for the scalar probability density function in
homogeneous turbulence. Phys. Fluids A. 3_ 511-513.

GAO, F. 1991b Mapping closure and non-Gaussianity of the scalar probability

density functions in isotropic turbulence. Phys. Fluids A. 3, 2438-2444.

GAO, F. 1992 Probability distribution of a passive scalar with a mean gradient in

homogeneous stationary turbulence (in preparation).

GAO, F., KIMURA, V. & KRAICItNAN, R. H. 1992 Non-Gaussianity of the scalar

probability density function induced by random advection (in preparation).

GAO, F. & O'BRIEN, E. E. 1991 A mapping closure for multi-species Fickian

diffusion. Phys. Fluids A. 3, 956-959.

GOLLUB, J. P., CLARKE, J., GIIARIB, M., LANE, B. & MESQUITA, 0. N. 1991
Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev.
Left. 67, 3507-3510.

,]'AYESH _ WARHAFT, Z. 1991 Probability distribution of a passive scalar in grid-

generated turbulence. Phys. Rev. Left. 67, 3503-3506.

KRAICHNAN, R. H. 1990a Intermittent turbulence from closures. Proc. 6th Beer-
Sheva Seminar. Jerusalem.

KRAICHNAN, R. H. 1990b Models of intermittency in hydrodynamic turbulence.
Phys. Rev. Left. 65, 575-578.

MONIN, A. S. &: YAGLOM, A. M. 1975 Statistical Fluid Mechanics, MIT press.



PDF approach for turbulent scalar field 391

O'BRIEN, E. E. 1980 The probability density function (pdf) approach to reacting
turbulent flows, in Turbulent Reacting Flows. 185-218, Springer-Verlag.

POPE, S. B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Cora-

bust. Sci. llt 119-192.

POPE, S. B. 1990 Computations of turbulent combustion: progress and challenges.
Proc. Ir, L Syrrtp. CorrtbuMiott. 591- , The Combustion Institute, Pittsburgh.

POPE, S. B. 1991 Mapping closures for turbulent mixing and reaction. Theoret.

Comput. Fluid Dynamics. 2, 255-270.

POPE, S. B. 1992 PDF method, Tutorial I,ectur*, CTR Summer Program, Stanford

Univ./NASA Ames.

TENNEKES, H. & LUMLEY, J. L. 1973 A First Course in Turbulence, MIT Press.

TAVOULARIS, S. _ CORRSIN, S. 1981 Experiments in nearly homogeneous tur-

bulent shear flow with a uniform mean gradient. Part 1. Y. Fluid Mech. 104,

311-347.

VALII_O, L. _ GAO, F. 1992 Monte Carlo implementation of a single-scalar map-

ping closure for diffusion in the presence of chemical reaction. Phys. Fluid A.

4, 2062-2069.

VENKATARAMANI, K. S. _ CHEVRAY, R. 1978 Statistical features of heat transfer

in grid-generated turbulence: constant-gradient case. J. Fluid Mech. 86, 513-
543.

VERVISCIt, L. 1992 see report in this volume.




