
Cen_er]or 7_,rbutence Research / _ _-_ ?_;_ 455

N94_12
Tensorah a system for post-processing

turbulence simulation data

By Eliot Dresselhaus

1. Motivations and objectives

1.1 General motivations

_- :-Many computer simulations in engineering and science -- and especially in com-

putational fluid dynamics (CFD) -- produce huge quantities of numerical data.
These data are often so large (consider the roughly 1 Gbyte needed for a single

scalar variable in 5123 isotropic turbulence simulations) as to make even relatively

simple post-processing of this data unwieldy. The data, once computed and quality-
assured, is most likely analyzed by only a few people (usually only the simulation's

authors) and from at most a few perspectives (usually only those at which the au-
thors are most concerned and knowledgeable). As a result, much useful numerical

data is under-utilized. Since future state-of-the-art simulations will produce even

larger datasets, will use more complex flow geometries, and will be performed on
more complex super-computers (for example, super-computers with many loosely

coupled processors), data management issues will become increasingly cumbersome.

My goal is to provide software which will automate the present and future task of

managing and post-processing large turbulence datasets. My research has focused
on the development of these software tools -- specifically, through the development

of a very high-level language called '(Tensora?'. The ultimate goal of TensoraJ is to

convert high-level mathematical expressions (tensor algebra, calculus, and statistics)
into efficient low-level programs which numerically calculate these expressions given

simulation datasets. For example, a user's program to calculate vorticity would be

coded in Tensoral as something akin to _3 V × _. Tensoral would process this

"program" -- at least for the case of homogeneoias turbulence on the Cray Y-MP
-- into a roughly 200-line Vectoral program to calculate vorticity.

This approach to the database and post-processing problem has several advan-

tages. Using Tensoral the numerical and data management details of a simulation
are shielded from the concerns of the end user. This shielding is carried out without

sacrificing post-processor efficiency and robustness. Another advantage of TensoreJ

is that its very high-level nature lends itself to portability across a wide variety of

computing (and super-computing) platforms. This is especially important consid-

ering the rapidity of changes in supercomputing hardware.

1.2 Specific motivations and objectives

The fundamental scientific goal of fluids research is to reach an understanding of

the correlation between the Navier-Stokes equations

Otff + (if" V)ff = -Vp/p + vV2ff

PRECEDING PAGE E_,..,,a,_.$gNOT FILMED ,_ ,_

456 E. Dresselhaus

(whether incompressible or compressible) and the observed and theoretically pre-
dicted features of the velocity field ff(_7, t), the pressure field p(_, t), and other related

quantities, ff(_, t) is the fundamental hydrodynamic quantity: all other quantities,

both dynamic and statistical, are derived from it (at least for incompressible flows).
Turbulence theory, modeling, and experiments are all phrased in terms of quantities

derived from the velocity field ff(_, t). The quantities arising in this theory, model-
ing, and experiments are precisely the ones we desire to compute; they include:

• the vorticity vector field, ._(_,, t) = V × ff(_, t),

• the strain rate tensor, Sij = (Oiuj + Ojui)/2,

• the pressure scalar, p(_, t) = -V -2 V. (ft. V)ff (for incompressible flows),

• the kinetic energy dissipation density e(_, t) = u Y]_ijSijSij (incompressible),

• the wave-space velocity field if(g, t) and associated energy spectrum E(k) =
t)l

• the density scalar p(_, t) (for compressible flows),

• the stream function ¢, V x ¢ = if,

• the helieity density, ft. 07.

Statistical quantities of interest include:

• mean velocity profiles and other averaged velocity components,

• the Reynolds stress tensor Rij = (uiuj),

• the correlation tensor (ui(.g)uj(_ + _')),

• the total energy dissipation • c< _ij (SijSii),

• the enstrophy (mean square vorticity) (072),

• the pressure strain correlation (pSi j).

We desire to compute quantities such as the above using data from several fam-

ilies of turbulence simulations. These datasets solve either the incompressible or

compressible Navier-Stokes equations for a variety of geometries and boundary con-

ditions. Different geometries and boundary conditions imply that the velocity field

is represented by different grids or with various different orthogonal function expan-

sions (for spectral methods). Even though these datasets simulate roughly the same
underlying equations, such dissimilarities in geometry and boundary conditions re-
quire dissimilar numerical methods and data management schemes. Some simu-

lations use orthogonal functions (e.g. Fourier, Chebyshev, Jacobi eigenfunctions)
to satisfy the boundary conditions; derivatives are calculated spectrally. Other

simulations use finite-difference methods to calculate derivatives and are likely set
in complex geometries (relative to the spectral simulations). Certain simulations

use curvilinear grids. Some simulations evolve the evolution equation for if; others

evolve its curl, _. Thus, some databases contain the velocity field ff itself while

others contain its curl. On a more mundane level, the simulations are performed

on several different super-computers (Cray Y-MP, lntel Hypercube, Thinking Ma-
chines CM-2) and retain some degree of machine specificity even at the database

level (e.g. machine byte-order, floating point format, machine-specific optimized
Fourier transform routines, etc.).

Ten, oral database po_t-processing 457

. Current post.processing

Currently all post-processing of turbulence data is done "by hand." That is, for
each simulation and for each desired quantity, someone must either add the required

code to an existing post-processor or develop a specific new post-processor, perhaps

with an existing one as a model. If the databases in question were small and simple,

either of these options would be straightforward. Since the databases are very large

and have numerical quirks to them, both options involve significant effort.

A simple example will illustrate this. Suppose we desire to calculate the physical-

space pressure p(_) given a wave-space space velocity field snapshot tT(k) from an

isotropic turbulence database (the simplest to post-process in the above table). Here

is an outline of what must be done to calculate p(_) = -V-2 _/j _ °-D-Ozj Oz_

• Read in if(k) in k:-k_ planes and calculate necessary y derivatives in wave space

(multiplying by ikv).
• Fourier transform these derivatives from wave y space to physical y space. This

is the first of three sub-transform steps that make up a full three-dimensional Fourier

transform.
• Read in data in x-z planes, still in wave space, and calculate necessary x and z

derivatives (multiplying by ik_ and ikz).
• Fourier transform both x and z axes into physical space. At this point, all of

the required velocity derivatives are in physical space.
• Form the source term _ij _ _ in physical space.Ozj Dz_

• Transform source term, now fully calculated, back into full wave space and

invert V 2 (divide by __2).
• Transform result back to full physical space.

Much of the complexity of this example stems from the fact that the complete

velocity field is too large to fit into even a super-computer's central memory. Thus,
the data must be split into "pencils" or "planes" of one or two dimensional data.

For more complex databases, even more steps must be taken to perform a similar

computation: for example, for certain simulations the physical space product must
be dealiased on a 3/2 size grid; for others the derivatives involve Chebyshev and

Fourier transforms rather than just Fourier transforms as above.

Considering the above example, one can see that a post-processor which computes

many quantities can become significantly complex and inscrutable to the uniniti-
ated. In fact, for certain simulations the post-processing software is a more complex
code than the simulation code itself. This is particularly true when time and space

optimization issues are important. It is important to realize, however, that these

complexities can all be understood and are fairly algorithmic. In particular, it is

plausible that an expert system (such as the Tensoral language) can be taught to

generate code to perform the above and similar post-processing tasks.
To summarize, the post-processing of turbulence data involves performing tensor

calculus and statistics on a number of dissimilar numerical dataset types. Numerical

operations must be performed in a manner consistent with the simulation which

generated the database. Currently post-processors are written entirely by hand
and are specific not only to the simulation in question but also to one or more

458 E. Dresselhaus

particular quantities of interest. Moreover, these post-processors are quite complex
codes in their own rights and provide significant barriers to the uninitiated who

desire to distill scientific understanding from the myriad computational details. It

is entirely plausible that this task -- the creation of database post-processors --
can be automated.

2. Accomplishments: tensoral design and ptensoral implementation.

2.1 Yensoral by example

The best way to introduce a new computer language is by example: suppose we

desire to study the role of the pressure strain term (pSii) in the mean Reynolds
stress (uiuj) evolution

0

o-7<R,i)= 2(pS,i)+, (.iV=u, + u,V=ui>.

This hypothetical study would calculate (pSii) for various turbulence databases.

To calculate (pSii) given a database file db, one would code the following Tensoral
program in a file ps .th

Line 1 A_ij ,. db :u_i,j

Line2 S_ij = (A_ij + A_ji)/2

Line 3 w_k = i/2 epsilon_ijk A_ij

Line 4 p = -unlaplacian(S_ij,S_ji - w_k*w_k)

Line 5 print "Mean pressure strain", <p S_ij>

Line 1 defines the velocity gradient tensor A_ij. Lines 2 and 3 form the strain S_ij

tensor and vorticity w_k. Line 4 inverts the Poisson equation for the pressure p. Line

5 averages the pressure strain and writes the result to the console. To complete our

study, we would run this program for several database files from several different
simulations.

£.£ Tensoral design: from top to bottom

Exactly how is the program ps. tl turned into an efficient post-processor to per-

form the indented task? The overall answer to this question is illustrated in figure 1

and is described in what follows. The TensorM compiler takes the program supplied

by the end database user (e.g. ps.tl), determines the appropriate numerical meth-

ods and data management techniques for the database file db (found in a "database

description"), and uses this information to output a post-processor in a lower-level

language (relative to TensorM). This low-level post-processor is automatically gen-

erated and may in principal be any sufficiently powerful language such as VectorM,

Fortran, or C; we use the Vectoral language in our prototype because of several of

its unique features. Finally, this low-level post-processor is compiled and combined

with the requisite library routines (e.g. Fourier, Chebyshev, Jacobi transforms,
Poisson solvers) to make an executable post-processor which can then be used to

visualize data, to make graphs, or to transport post-processed data to other sites.

Tensoral database post-processing 459

Data Visualization

I:!:"_ile_iiJ --_ _ 7_P°stpr°cess°._ _ Send Data t0Other Sites

Suppliedby database author

Suppliedby system (_

Suppliedby database user

Automaticallygenerated

F_um 1

Clearly, the most involved step of this automated system is the generation of a

low-level Vectoral post-processor given a high-level Tensora/program. This step

is performed by the Tensora/compiler, which compiles very high-level tensor op-
erations into a low-level "machine code" (called /_Tensora/). #Tensora/machine

code consists of the primitive database operations such as reading a pencil or plane

of data into main memory, Fourier transforming that pencil or plane, etc. These

primitive operations are defined in the database description. Seen this way, the
Tensoral compiler is an expert system which figures out how to generate and order

primitive #Tensora/database operations to accomplish a given task. If the database

description is properly coded, the compiler should be able to generate code which

is nearly as efficient as that generated by hand.

P..3 Tensoral implementation: from the bottom up

Implementation of the TensorM proceeds from the bottom up. That is, my goal

is to develop a fully functional and robust low-level #Tensoral machine code be-

fore launching into the TensoraJ compiler development which will eventually gen-

erate this low-level code. Using this approach, the design outlined above can be

proved and tuned from its foundations up. In particular, database descriptions and

/_Tensoral codes can be written and refined as experience is gained.

Currently a functional #Tensoral system has been implemented. This system

is built atop a small Lisp interpreter. The description of numerical methods and

data management schemes provided to p Tensoral by database descriptions drive

Lisp code which sets up an environment in which I_Tensoral code is then executed.

Thus, slight differences between simulations can be conditionalized in Lisp (using if

statements, for example) so that one database description file can actually handle

460 E. Dresselhaus

multiple related simulations. Also, using such conditionals one can write # Tensoral

programs which are common between closely related simulations. The Lisp system

is only seen by those programming in/_ Tensora/and writing database descriptions,

and only then in the remote background. In particular, Lisp will never be seen by

Tensora/programmers and almost never by _tTensora] programmers.

A/_Tensora/program to calculate vorticity _(_, t) = V x if(Z, t), given spectral
if(k, t), is coded as follows:

(define-tensor w I)

; Read u in xy planes; calculate y derivatives;

; transform to physical y.

(loop-memxy

(bs->memxy u_1 u_3)

(->memxy w_3 w_l)

(= w_l (dill_2 u_3))

(= w_3 (diff_2 u_l))

(wavey->physy- w_l w_3)

(memxy->bs w_l w_3))

; Read u in xz planes; calculate other derivatives;

; form vorticity.

(loop-memxz

(bs->memxz u)

(bs->memxz w)

(= w_l (- w_1 (dill_3 u_2)))

(= w_2 (- (dill_3 u_l) (diff_1 u_3)))

(= w_3 (- (difZ_iu_2) w_3))
(wavez->physz- w)

(wavex->physx- w)

(memxz->bs w))

This program is essentially a high-level "shorthand" for the two passes through

the database needed to calculate vorticity. It is particularly noteworthy that the

roughly 20 line p Tensoral shorthand shown here generates an approximately 180-

line Vectoral program. This large code expansion indicates that even the embry-

onic pTensoral system can be used as a useful post-processing tool, even though

it assumes a programmer be familiar with the precise numerics of a simulation (as
represented by its database description).

Current work focuses on extending # Tensora/. Currently/_ Tensora] only "knows"

about tensor algebra and calculus but not statistics. General statistical functions

are now being added to average over combinations of x, y, and z coordinates to form

correlations and probability density functions (PDFs). Thus far only one database
description has been completed; others will follow.

