ROLLER-GEAR DRIVES FOR ROBOTIC MANIPULATORS DESIGN, FABRICATION AND TEST FINAL REPORT - CONIRACT NAS 3-25803
$S B \backslash R=05.03-139 / A_{B Y}$ Release 12-10-92 WILLIAM J. ANDERSON and WILLIAM SHIPITALO September, 1991
SBIR 1987 Phase, III

# ROLLER-GEAR DRIVES FOR ROBOTIC MANIPULATORS 

## DESIGN, FABRICATION AND TEST

## FINAL REPORT

for

## NASA LEWIS RESEARCH CENTER

CONTRACT NAS 3-25803
by
WILLIAM J. ANDERSON
and
WILLIAM SHIPITALO
September, 1991

SB/R 05-03-13919 Release 12-10-92 STIR 198.7 pIT

CORPORATE OFFICES:
1700 Ohio Savings Plaza
1801 East Ninth Street Cleveland, Ohio 44114 216-696-5157

ENGINEERING \& DESIGN CENTER 5310 West l61st Street
Suite G
Brook Park, Ohio 44142
216-433-1555

 $\because \because$
ACKNOWLEDGMENT ..... 1
SUMMARY ..... 2
SYMBOLS ..... 4
INTRODUCTION ..... 7
DRIVE DESIGNS ..... 10
WRIST-ROLL JOINT ROLLER-GEAR DRIVE ..... 10
DESIGN ..... 10
Cluster and Gear Geometry ..... 10
Materials ..... 10
Roller Sizing ..... 11
Drawings ..... 13
ASSENBLY PROCEDURE - ALL STEEL DRIVE ..... 14
ASSEMBLY PROCEDURE - STEEL PLASTIC DRIVE ..... 16
HINGE-JOINT ROLLER-GEAR DRIVE ..... 18
DESIGN ..... 18
Cluster and Gear Geometry ..... 18
Materials ..... 18
Roller Sizing ..... 19
Drawings ..... 20
ASSEMBLY NOTES ..... 20
ASSEMBLY PROCEDURE ..... 21
PITCH/YAW JOINT ROLLER-GEAR DRIVE ..... 23
DESIGN ..... 23
Gear Geometry ..... 23
Roller Geometry ..... 23
Materials ..... 24
Drawings ..... 24
ASSEMBLY PROCEDURE ..... 26
ASSEMBLY NOTES ..... 32
DRIVE AND CONTROL SYSTEM. ..... 35
General Description ..... 35
Drawings ..... 36
Electro-Mechanical System Components ..... 36
Software ..... 38
Operating the Joint ..... 38
System Menu. ..... 39
Display ..... 40
Data Processing ..... 41
TEST RESULTS ..... 42
WRIST-ROLL AND HINGE-JOINT DRIVES ..... 42
LINEARITY ..... 42
Experimental Procedure ..... 42
Data ..... 42
Analysis ..... 43
FRICTION. ..... 43
Experimental Procedure ..... 44
Data. ..... 44
Analysis ..... 45
INERTIA ..... 45
Experimental Procedure ..... 45
Data ..... 46
Analysis ..... 46
BACKLASH ..... 47
Experimental Procedure ..... 47
Data ..... 47
Analysis ..... 48
STIFFNESS ..... 48
Experimental Procedure ..... 48
Data ..... 48
Analysis ..... 49
EFFICIENCY ..... 49
Experimental Procedure ..... 49
Data ..... 51
Efficiency Measurement Validation. ..... 53
Analysis ..... 53
PITCH/YAW JOINT DRIVE ..... 54
STIFFNESS ..... 54
Experimental Procedure ..... 54
Data ..... 56
Analysis ..... 56
CONTROL SYSTEM AND JOINT PERFORMANCE ..... 58
Experimental Procedure ..... 58
Data and Analysis ..... 59
BACKLASH AND LINEARITY ..... 61
EFFICIENCY ..... 62
REFERENCES ..... 65
TABLES ..... 66
FIGURES ..... 81
APPENDICES ..... 146
A. WRIST-ROLL JOINT ROLLLER-GEAR DRIVE GEAR DATA ..... A-1
B. HINGE-JOINT ROLLER-GEAR DRIVE GEAR DATA ..... B-1
C. PITCH/YAW JOINT ROLLER-GEAR DRIVE GEAR DATA ..... C-1
D. SOFTWARE FOR PITCH/YAW JOINT ..... D-1

## ACKNOWLEDGMENT

The authors would like to acknowledge the invaluable contribution of Mr. Richard Glassell of Glassell Enterprises, and of Professor Wyatt Newman, Department of Electrical Engineering and Applied Physics, Case-Western-Reserve University. Mr. Glassell designed the software and control system for the Pitch-Yaw Joint drive. Professor Newman conducted the experimental evaluation of the Wrist-Roll and Hinge-Joint drives.

## SUMMARY

Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel.

The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.

Specifications for the single axis drives, named the Wrist-Roll and Hinge-Joint were:
WRIST-ROLL HINGE-JOINT

| Ratio | $23.23: 1$ | $29.23: 1$ |
| :--- | :--- | :--- |
| Input torque | $1.12 \mathrm{Nm}(9.9$ in 1 b$)$ | $28.94 \mathrm{Nm}(256$ in lb$)$ |
| Output torque | $26 \mathrm{Nm}(230$ in lb$)$ | $845.8 \mathrm{Nm}(7483$ in ib) |

Specifications for the two axis drive; named the Pitch/Yaw Joint Drive, were:

Ratio
Dual input torques $\quad 27.1 \mathrm{Nm}$ ( 240 in lb)
Output torque $\quad 186.5 \mathrm{Nm}$ (1650 in lb)
Two Wrist-Roll Drives, one all steel and one containing alternate sets of steel and plastic rollers and gears, and one Hinge-Joint Drive, all steel, were fabricated, assembled and performance tested. Drive linearity, friction, inertia, backlash, stiffness and efficiency were determined with experimental setups employing high resolution optical encoders, precision torque meters, and dc servomotors with either proportional-plus-integral velocity or torque feedback control.

For all three single axis drives, linearity was good. Ratio variations of the two steel drives were typically within $0.5 \%$. Ratio variations of the plastic drive were as high as 1.5\%. No backlash was observed in either of the steel drives (within the 0.001 degree accuracy of the encoders). The plastic drive exhibited a small hysteresis, on the order of the measurement accuracy. Dynamic efficiencies of up to $97 \%$ were measured for the steel Wrist-Roll Drive; notably, it was more efficient as a speed increaser than as a speed reducer. Efficiency measurements of the plastic Wrist-Roll Drive were influenced by two failures that occurred during testing. Only quasi-static measurements of efficiency of the Hinge-Joint Drive were made, with a projected efficiency of $96 \%$ at full torque.

A drive and control system was designed and constructed for use in conjunction with the Pitch/Yaw Joint. The control system is PC based, and was designed to drive the joint, input specific commands to perform single or multiple defined movements, measure input and output speeds and angular positions, measure input torques, and record all of these data as functions of time for use in analyzing performance of the joint. To accomplish these tasks a system of drive motors, tachometers, torque meters and input and output resolvers was assembled.

Control system response was smooth and lag times between command and execution were typically 0.1 seconds. Execution times for $20^{\circ}$ to $30^{\circ}$ moves in pitch or yaw were typically 0.5 to 0.7 seconds, which translates to a pitch or yaw axis angular velocity of approximately 6.5 rpm. Static torsional stiffness measurements were made of the Pitch/Yaw Joint. These revealed stiffnesses of only a few percent of the theoretical stiffness of the roller-gear train, indicating that structural elements are quite soft. A heavier structure could significantly increase torsional stiffness. Some difficulties in analyzing data were encountered because of inertia in the torque loading system. Problems with torque loading system instability limited input torques to $75 \%$ of full load rating. Efficiencies of up to $98 \%$ were measured. The joint was backlash free. Fluctuations in output axis angular velocities (either pitch or yaw) of $\pm 2 \%$ were determined from differentiation of pitch and yaw axis position data, but limited resolver accuracy makes this data somewhat questionable. There may also have been some feedback from the dynamics of the torque loading system. A more meaningful assessment of joint linearity would require further work with a low (or preferably zero) inertia, damped loading system and more precise resolvers or encoders.

## SYMBOLS

C

E

R

S
T
compliance rad/in lb (rad/Nm)
constants as defined
deflection mm(in)
modulus of elasticity psi, (GPa)
force, $N$ (lb.)
bevel gear geometry factor
spur gear tooth geometry factor
stiffness in $1 \mathrm{~b} / \mathrm{rad}$ ( $\mathrm{Nm} / \mathrm{rad}$ )
measurement over pins, in.
ratio of $\mathrm{N}_{\mathrm{G}} / \mathrm{N}_{\mathrm{P}}$
$\left\{\begin{array}{l}\text { number of gear teeth } \\ \text { normal load, } N, ~(l b s .)\end{array}\right.$
gear diametral pitch
gear pitch diameter, mm (in.)
$\left\{\begin{array}{l}\text { drive ratio } \\ \text { roller radius }\end{array}\right.$
stress, GPa (psi)
$\left\{\begin{array}{l}\text { tooth thickness, in. } \\ \text { torque in lbs ( } \mathrm{Nm} \text { ) }\end{array}\right.$
gear radial reaction force, N (lb.)
gear axial reaction force, $N$ (lb.)
$\left\{\begin{array}{l}\text { Tooth deflection } \\ \text { Lewis factor }\end{array}\right.$
load, $N,(l b s)$
base circle diameter, in.
basepitch

```
CD center distance, in.
OD outside diameter, mm (in.)
SAP start of active profile
a
b
a
c
d
f
r
\(\propto\)
ワ efficiency
\(\omega \quad\) angular velocity, rpm, rad/sec
roller or gear cluster angles, deg.
\(\Theta \quad\) angular deflection, rad
\(\mu \quad\) traction coefficient
\(\phi \quad\) gear tooth pressure angle
```


## SUBSCRIPTS

```
A \(\left\{\begin{array}{l}\text { axial } \\ \text { load arm } A, \text { input } A\end{array}\right.\)
```

A $\left\{\begin{array}{l}\text { axial } \\ \text { load arm } A, \text { input } A\end{array}\right.$
B $\left\{\begin{array}{l}\text { bending } \\ \text { load arm } B, \text { input } B\end{array}\right.$

```
B \(\left\{\begin{array}{l}\text { bending } \\ \text { load arm } B, \text { input } B\end{array}\right.\)
```

| C | compressive |
| :---: | :---: |
| a |  |
| x 1 |  |
| $x 2>$ | roller or gears |
| $\mathrm{y}^{2}$ |  |
| c |  |
| G | gear |
| N | normal |
|  | ¢pinion |
| P | $\{$ pitch |
| R | radial |
|  | $\int$ separating |
| S | \{system |
| T | tangential |
| Y | yaw |
| ax1 |  |
| y $1 \times 2$ | contact pair |
| x 2 c |  |

## INTRODUCTION

Traction drives offer advantages of high efficiency at high ratios, backlash free operation, low noise, no gear cogging, smooth torque transfer and back drivability. However, the maximum tangential force that can be transmitted through a roller contact is a function of the normal load and the available traction coefficient. Structural rigidity, materials, and lubrication mode limit normal loads and thus drive torque. Where space is at a premium and the torque to be transmitted exceeds the capability of a traction drive, alternative designs are required.

Roller-gear drives offer an alternative approach; they utilize torque transfer paths in which rollers and gears function in parallel. The gears enhance torque capacity. In planetary arrangements, retention of rollers acting in parallel with gears has two functions:

1. The rollers provide positioning for the gears and allow the use of multiple planet rows. In gear units without rollers, only single planet row arrangements are feasible;
2. Compressively loaded rollers remove backlash from the torque path, attenuate gear cogging and torque ripple, and support the radial component of gear tooth forces.

In non-planetary arrangements of bevel gears and bevel rollers the rollers supplement the torque capacity of the gears, remove the backlash from the torque path, attenuate gear cogging and torque ripple, and support the non-tangential components of gear tooth forces.

As in ordinary single row planetaries, in two row planetaries, the low torque high speed input is supplied to the sun roller-gear and the high torque, low speed output is taken from the ring gear. Roller diameters are nominally equal to gear pitch diameters with a preload set at assembly which exceeds the gear separating force. This insures that the rollers will not separate and cause backlash or chatter. The gear teeth will then transmit purely tangential forces.

Three row roller-gear drives can be designed in a fashion similar to two row drives where higher ratios are required. Bearings are necessary in only one of the planet roller-gear rows, usually the outermost row. Other planet roller-gears are spatially located by the rollers. Preloading of a roller-gear drive can be accomplished by employing ring rollers to compressively load the roller cluster, or by employing eccentric mounts for the planet rollers which are located on bearings.

Preliminary designs of three roller-gear drives were completed and reported in ref. 1 to assess their feasibility for use in a Laboratory Telerobotic Manipulator. These include a two axis drive which utilizes cone rollers and zerol bevel gears, and two single axis drives which utilize cylindrical rollers and spur gears.

Technical objectives of this effort were:

1. Complete detailed designs and manufacturing drawings for:
a. A nominal 25:1 ratio single axis roller-gear drive for the Wrist-Roll Joint. Design two versions of the drive - one incorporating steel gears and rollers and one incorporating combinations of plastic and steel gears and rollers.
b. A nominal 30:1 ratio high torque capacity single axis Hinge Joint roller-gear drive.
c. A 3.43:1 ratio two axis cone roller-bevel gear drive for the Large Pitch/Yaw Joint.
2. Seek manufacturing bids and have one complete assembly of each of the three drives fabricated. Fabrication will include a spare set of rollers for each drive and, for the Wrist-Roll Joint drive, two sets of gears and rollers - one steel and one plastic.
3. Assemble and check out drives for test.
4. Design test facilities for experimentally evaluating the three drives. The test facility for each drive will consist of an input drive system, a torque applicator on the output side, torque meters for monitoring input and output torques, a magnetic clutch and brake for initiating and stopping drive motion and encoders for measuring angular displacement. Appropriate shafting, couplings and a base to interconnect the components will complete each test facility. Complete manufacturing drawings for test facility components that are not standard commercial items. Include instrumentation for measurement and readout of input and output speeds, torques and angular positions.
5. Seek bids for and have fabricated non-commercial items for the test facilities.
6. Purchase all commercial items for the test facilities.
7. Assemble and check out test facility components with the drive prototypes.
8. Conduct an experimental evaluation of each of the roller-gear drives. Monitor input speed and/or angular position, and monitor and control output torque. Monitor input torque, output speed and input and output angular positions. These data will be taken over a range of input speeds and output torques. From these data drive torsional stiffness (in a locked mode), efficiency and torque ripple characteristics will be determined.

## DRIVE DESIGNS

## WRIST-ROLL JOINT ROLLER-GEAR DRIVE

## DESIGN

Specifications for the Wrist-Roll drive were:
Nominal ratio 25:1
Output torque $\quad 26 \mathrm{Nm}(230 \mathrm{in} .1 \mathrm{~b}$.
Output speed 120 rpm
Maximum diameter 152.4 mm (6 inches)

## Cluster and Gear Geometry

A cluster geometry was initially established in the Phase I study (ref. 1). When carried forward into detail design, it was found to present some assembly difficulties so a slightly modified design (Ratio $=23.23$ ) was chosen from the solutions available for two planet row, four planet arrangements (ref. 1).

Two drive assemblies - one all steel, and one containing alternate steel and plastic rollers and gears are to be designed and fabricated.

Detail calculations of cluster geometry, gear stresses, gear geometry and measurement data are given in Appendix A. In the section Cluster Geometry, gear diametral pitch, pitch diameters, and numbers of teeth, together with nominal roller diameters are calculated. In the section Gear Stresses, gear face widths necessary to keep tooth bending and compressive stresses acceptable are calculated for both steel and plastic materials. In the section Gear Geometry and Measurement Data, tooth geometries necessary for manufacture and data required for inspection of the gears are developed. TABLE 1 summarizes gear geometry and inspection data for the WRIST-ROLL DRIVE.

## Materials

Stress conditions in the steel gears are such that an alloy steel of Rc 30-38 is adequate. Special gear steels that are nitrided or carburized for operation at higher stress levels are not required. Sun, planet and ring rollers in the all steel drive are made of AMS-6490 M-50 tool steel. M-50 steel was chosen because the shrink fits required for roller mounting on the sun and first planet roller-gear assemblies require heating to $600^{\circ} \mathrm{F}$. Fully hardened rollers (Rc 60) are required for the normal loads and Hertz stresses in the all steel drive. Bending stresses
in the ring roller are nominal so that a carburized steel with a soft core is not required.

For the steel-plastic drive, Delrin 100 acetal resin polymer was chosen for the plastic gears because of extensive design and use experience in a wide array of gear applications. Procedures for designing Delrin 100 gears are given in reference 2. As in the all steel drive, the steel gears are an alloy steel of Rc 30-38, Torlon 4203 poly (amide-imide) resin was chosen for the plastic rollers. It has high strength over a wide temperature range (ref. 3). Steel rollers are of AISI 4340 alloy steel, Rc 39-42. Use of fully hardened rollers mating with poly (amide-imide) resin rollers is not necessary. Gear and roller material combinations for the steel-plastic Wrist-Roll Drive are shown in TABLE 2. TABLE 3 shows the gear and roller material contact combinations for the steel-plastic drive.

## Roller Sizing

A number of iterative calculations of roller torque fraction, normal load and Hertzian contact were made to determine a feasible level of torque that could be carried through the rollers without extending roller widths much beyond . 125 inches. A torque fraction of . 20 was settled upon as reasonable. A traction coefficient of .06 was assumed for the Steel vs. Steel rollers (assuming traction oil or traction grease lubrication) and one of . 15 was assumed for the Steel vs. Torlon rollers (assuming dry operation). Steel vs. Steel rollers were configured as straight cylinders with line contact except for the ring roller which was crowned for ease of assembly. Steel vs. Torlon rollers were configured as straight vs. crowned cylinders with elliptic contacts to eliminate edge effects with the torlon rollers.


The Steel vs. Torlon roller data, for $20 \%$ torque transfer and $u=.15$ are as follows:

Roller Diameter, Load,N(lbs) Cross Contact Max Hertz mm(in)
$\frac{\text { Radius, }}{\underline{m m(i n)}} \frac{\text { Width }}{m m(i n)}$ Stress GPa(KSI)


Because of the low modulus of Torlon (4.83 GPa [700 KSI]) approximately 97 percent of the contact deformation occurs in the Torlon. Hertzian deformations in the roller contacts are as follows:

Roller Steel vs. Steel, mm(in) Steel vs. Torlon, mm(in)
a $\mathrm{x}_{1}$
$7.87 \times 10^{-4}\left(3.1 \times 10^{-5}\right)$
$6.86 \times 10^{-3}\left(2.7 \times 10^{-4}\right)$
$Y_{1} X_{2}$
$3.35 \times 10^{-3}\left(1.32 \times 10^{-4}\right)$
$2.44 \times 10^{-2}\left(9.6 \times 10^{-4}\right)$
$\mathrm{Y}_{2} \mathrm{C}$
$6.35 \times 10^{-3}\left(2.5 \times 10^{-4}\right)$
$2.54 \times 10^{-2}\left(1 \times 10^{-3}\right)$
Roller effective radii were calculated assuming all of the deformation to occur in the Torlon rollers for the Steel-Torlon drive.

The radial bending deflection of the ring roller was determined to be $2.79 \times 10^{-3} \mathrm{~mm}(.00011 \mathrm{in})$ for the Steel-Torlon drive and $1.39 \times 10^{-2} \mathrm{~mm}(.00055 \mathrm{in})$ for the Steel-Steel drive (ref. 4, p. 224). The operating diameter of the ring roller, after Hertzian deformation and bending deflection, should be the operating pitch diameter of gear c (110.14 $\mathrm{mm}(4.3361 \mathrm{in})$, APPENDIX A). Nominal diameters of the ring rollers were set at 110.11 mm ( 4.3351 in ) for the Steel-Steel drive and $110.13 \mathrm{~mm} \cdot(4.3359 \mathrm{in})$ for the Steel-Torlon drive.

The theoretical diameter over the second row planet rollers before mounting the ring rollers is 110.157 mm (4.3369 in) for the Steel-Steel drive and $110.254 \mathrm{~mm}(4.3407$ in) for the Steel-Torlon drive. Thus the interference fits to be overcome in mounting the ring rollers are
$.0457 \mathrm{~mm}(.0018 \mathrm{in})$ for the Steel-Steel drive, and
$.1219 \mathrm{~mm}(.0048 \mathrm{in})$ for the Steel-Torlon drive,
with a $63.5 \mathrm{~mm}(2.5$ in) crown radius on the ring roller inside diameter, the crown drop (.03 mm (.0012 in)) is sufficient for assembly of the Steel-Steel drive. For the Steel-Torlon drive, the ring roller should be preheated to approximately $225^{\circ} \mathrm{F}$.

Roller diameters and drawing sources for both the Steel-Steel and Steel-Torlon drives are given in TABLE 4.

## Drawings

Design of the Steel-Steel drive is defined by assembly drawings NAS-140A and NAS-140B and detail drawings NAS-141 through NAS-181 inclusive. Commercial parts required for assembly are defined on these detail drawings. Design of the steel-plastic drive is defined by assembly drawings NAS-140AP and NAS-140B and the following detail drawings:

| NAS-142P | NAS-148P | NAS-153 |
| :--- | :--- | :--- |
| NAS-144 | NAS-149P | NAS-154P |
| NAS-145 | NAS-150 | NAS-155 |
| NAS-146P | NAS-151 | NAS-156P |
| NAS-147 | NAS-152P |  |

and NAS-157 through NAS-184 inclusive. Commercial parts required for assembly are defined on these detail drawings.

The assembly fixture required for assembly of both drives is shown on drawings NAS-185 and NAS-186.

## WRIST ROLL ROLLER-GEAR DRIVE ASSEMBLY PROCEDURE ALL STEEL DRIVE - ASSEMBLY DRAWING NAS-140A

1. Lay the Assembly Fixture, NAS-186, flat on a table.
2. Place the Sun Roller Gear Assembly, NAS-143, on the center post of the Assembly Fixture with the shaft extension inserted into the center post hole.
3. Using Dykem marking compound or equivalent, mark four equally spaced tooth spaces on the Sun Gear. Orient these four spaces to face the four equally spaced holes in the Assembly Fixture.
4. Highlight the indexed tooth on the large central gear of each of four 1st Row Roller Gear Assemblies, NAS-149.
5. Radially assemble a 1st Row Roller Gear Assembly with the Sun Roller Gear Assembly so that the marked indexed tooth goes into a marked tooth space. Index the Assembly Fixture on the table so that the shaft extension on the lst Row Roller Gear Assembly can be inserted into an Assembly Pin, NAS-185.
6. Repeat steps for the remaining three 1st Row Roller Gear Assemblies. At this time the Assembly Fixture should be resting on the four Assembly Pin heads.
7. Press fit needle Roller Bearings, NAS-151, into each of four 2nd Row Gears, NAS-152.
8. Assemble one 2nd Row Roller, NAS-154, onto each 2nd Row Gear with Screws, NAS-153.
9. Assemble a key, NAS-170, two Bearing Races, NAS-164, and a Planet Shaft Spacer, NAS-163, onto each of four Planet Shafts, NAS-162.
10. Insert the Planet Shaft assemblies into the 2 nd Row Gears and assemble these into each of four slots in the Assembly Fixture. Make certain that proper gear mesh and roller contact is made. Planet shaft keys must properly fit into the key slots. The previously assembled 2nd Row Rollers should be laying on the side nearest the Assembly Fixture plate. It may be necessary to hold the Planet Shafts in the Assembly Fixture plate with nuts.
11. Assemble a Ring Support Washer, NAS-167, onto the top of each Planet Shaft assembly.
12. Assemble the Planet Shaft Ring Support, NAS-165, to the Planet Shafts and tighten with Ring Support Nuts, NAS-168.
13. Assemble two Ring Gear Dowels, NAS-157, and two Ring Gear Dowels, NAS-161, to the Ring Gear, NAS-155.
14. Assemble the Ring Gear to the four 2nd Row Gears from the top. This requires patience and deft maneuvering to obtain the proper mesh. The side with the shorter dowels should face down. With the Ring Gear in place, remove the Planet Shaft Ring Support.
15. The remaining four 2nd Row Rollers can now be assembled to the 2nd Row Gears. Reassemble the Planet Shaft Ring Support.
16. Assemble two Ring Rollers, NAS-156, to the 2nd Row Rollers and Ring Gear taking care to properly align dowels with dowel holes.
17. Assemble two Output Shaft Dowels, NAS-173, to the Output Shaft Adapter, NAS-171.
18. The Output Shaft Adapter, can now be assembled to the Ring Roller. Bolt the Adapter in place with Ring Gear Bolts, NAS-158, and Ring Gear Nuts, NAS-160.
19. Assemble the Output Ball Bearing, NAS-159, into the Main Housing, NAS-175. Clamp the bearing in place with Bearing Retainer Plate, NAS-179, and Flat Head Screws, NAS-174.
20. Remove the Assembly Fixture plate from the roller gear assembly by sliding it axially from the unclamped Planet Shaft extensions.
21. Slide the Main Housing and Bearing assembly over the Output Shaft Adapter, making sure that the bearing is properly seated on the Adapter. Clamp in place with Output Shaft, NAS-172, and Flat Head Screws, NAS-174.
22. Assemble Housing End Plate, NAS-176, and Main Housing Gasket, NAS-180, to Main Housing with Main Housing Screws, NAS-177, Planet Shaft Washers, NAS-166, and Planet Shaft Nuts, NAS-169.
23. Insert the Input Shaft Seal, NAS-178, into the Housing End Plate.

## WRIST ROLL ROLLER-GEAR DRIVE ASSEMBLY PROCEDURE STEEL-PLASTIC DRIVE - ASSEMBLY DRAWING NAS-140AP

1. Lay the Assembly Fixture, NAS-186, flat on a table.
2. Place the Sun Roller Gear Assembly, NAS-184, on the center post of the Assembly Fixture with the shaft extension inserted into the center post hole.
3. Using Dykem marking compound or equivalent, mark four equally spaced tooth spaces on the Sun Gear. Orient these four spaces to face the four equally spaced holes in the Assembly Fixture.
4. Highlight the indexed tooth on the large central gear of each of four 1st Row Roller Gear Assemblies, NAS-149P.
5. Radially assemble a lst Row Roller Gear Assembly with the Sun Roller Gear Assembly so that the marked indexed tooth goes into a marked tooth space. Index the Assembly Fixture on the table so that the shaft extension on the lst Row Roller Gear Assembly can be inserted into an Assembly Pin, NAS-185.
6. Repeat steps for the remaining three 1 st Row Roller Gear Assemblies. At this time the Assembly Fixture should be resting on the four Assembly Pin heads.
7. Press fit needle Roller Bearings, NAS-151, into each of four 2nd Row Gears, NAS-152P. Check the .8752/.8747 diameter hubs for growth due to the bearing press and machine to size if necessary.
8. Assemble a key, NAS-170, two Bearing Races, NAS-164, and a Planet Shaft Spacer, NAS-163, onto each of four Planet Shafts, NAS-162.
9. Insert the Planet Shaft assemblies into the 2nd Row Gears and assemble these into each of four slots in the Assembly Fixture. Make certain that proper gear mesh and roller contact is made. Planet Shaft keys must properly fit into the key slots. Hold the 2nd Row Gears in place with an O-Ring or heavy rubber band stretched over their center recesses. It may be necessary to hold the Planet Shafts in the Assembly Fixture plate with nuts.
10. Assemble a Ring Support Washer, NAS-167, onto the top of each Planet Shaft assembly.
11. Assemble the Planet Shaft Ring Support, NAS-165, to the Planet Shafts and tighten with Ring Support Nuts, NAS-168.
12. Assemble two Ring Gear Dowels, NAS-157, and two Ring

Gear Dowels, NAS-161, to the Ring Gear, NAS-155.
13. Assemble the Ring Gear to the four 2nd Row Gears from the top. This requires patience and deft maneuvering to obtain the proper mesh. The side with the shorter dowels should face down. With the Ring Gear in place, remove the Planet Shaft Ring Support.
14. Four 2nd Row Rollers, NAS-154P, can now be assembled on the output side. Inward pressure on the roller-gear cluster by hand or with a heavy rubber band to compress the Sun-1st Row Planet Roller contacts may be necessary in order to be able to put the 2nd Row Rollers in place. The Torlon 4203 rollers are larger in diameter than their steel counterparts so the rollers must be compressed even before the Ring Rollers are put in place. Reassemble the Planet Shaft Ring Support.
15. Remove the Assembly Fixture plate from the roller gear assembly by sliding it axially from the unclamped Planet Shaft extensions. Assemble four 2nd Row Rollers on the input side. Apply inward pressure to the roller cluster, if necessary, to put the rollers in place.
16. Assemble two Ring Rollers, NAS-156P, to the 2nd Row Rollers and Ring Gear taking care to properly align dowels with dowel holes.
17. Assemble two Output Shaft Dowels, NAS-173, to the Output Shaft Adapter, NAS-171.
18. The Output Shaft Adapter, can now be assembled to the Ring Roller. Bolt the Adapter in place with Ring Gear Bolts, NAS-158, and Ring Gear Nuts, NAS-160.
19. Assemble the Output Ball Bearing, NAS-159, into the Main Housing, NAS-175. Clamp the bearing in place with Bearing Retainer Plate, NAS-179, and Flat Head Screws, NAS-174.
20. Slide the Main Housing and Bearing assembly over the Output Shaft Adapter, making sure that the bearing is properly seated on the Adapter. Clamp in place with Output Shaft, NAS-172, and Flat Head Screws, NAS-174.
21. Assemble Housing End Plate, NAS-176, and Main Housing Gasket, NAS-180, to Main Housing with Main Housing Screws, NAS-177, Planet Shaft Washers, NAS-166, and Planet Shaft Nuts, NAS-169.
22. Insert the Input Shaft Seal, NAS-178, into the Housing End Plate.

## HINGE JOINT ROLLER-GEAR DRIVE

## DESIGN

Specifications for the Hinge-Joint drive were:

| Nominal ratio | $30: 1$ |
| :--- | :--- |
| Input torque | $28.9 \mathrm{Nm}(256 \mathrm{in} . \mathrm{lb})$. |
| Output speed | 120 rpm |
| Maximum diameter | $304.8 \mathrm{~mm}(12 \mathrm{in})$. |

## Cluster and Gear Geometry

A cluster geometry with a somewhat larger toggle angle than that used in the Phase I study (ref.l) was chosen in an effort to meet the target diameter of 304.8 mm (12 in.). Detail calculations of cluster geometry, gear stresses, gear geometry and measurement data are given in Appendix B. In the section Cluster Geometry, gear diametral pitch, pitch diameters, and numbers of teeth, together with nominal roller diameters are calculated. In the section Gear Stresses, gear face widths necessary to keep tooth bending and compressive stresses acceptable are calculated. In the section Gear Geometry and Measurement Data, tooth geometries necessary for manufacture, and data required for inspection of the gears are developed.

TABLE 5 summarizes gear geometry and inspection data for the HINGE-JOINT DRIVE.

## Materials

Stress conditions in the gears are such that nitrided or carburized steels are required for all of the external gears. An unhardened alloy steel is adequate for the ring gear. Nitralloy 135M with a .005/.008 in. case of Rc60-63 was chosen for all four external gears. SAE 4340 steel is adequate for the ring gear. Gear material data are summarized in TABLE 6. All rollers except the ring rollers are made of AMS-6490 vacuum melted M-50 steel through hardened to Rc 61-63. The ring rollers are made of AMS-6245 vacuum melted 9310 steel case carburized with a .030/.045 in. case of $\mathrm{R}_{15 \mathrm{~N}} 89.5-91$ hardness. Bending stresses in the ring rollers dictate that a carburized steel with a soft core be used rather than a through hardened steel. For 20\% torque transfer through the rollers (discussed later in the section ROLLER SIZING) the maximum bending stress (at the inner fiber) is . $15 \mathrm{GPa}(22,100 \mathrm{psi})$, (ref. $4, \mathrm{p} .210)$. This level of reversed stress would make use of a through hardened steel risky.

The most critical aspect of gear fabrication is
achievement of accurate timing of the $x_{1}$ and $Y_{1}$ gears. Nitrided gears are not normally machined after nitriding because the process does not cause appreciable tooth distortions. The risk of small distortions, however, which might make assembly difficult or impossible, necessitated revisions in the fabrication procedure for the $\mathrm{x}_{1}$ gear. The $Y_{1}$ gear was finish cut and nitrided before mounting the $x_{1}$ gear blank. The $x_{1}$ gear was then rough cut with the teeth timed to the $Y_{1}$ gear. Approximately 1 mil of stock was left on tooth faces. The $\mathrm{x}_{1}$ gear was then nitrided with the $\mathrm{y}_{1}$ gear masked off during nitriding. After nitriding, the $\mathrm{x}_{1}$ gear was finish cut, again with teeth timed to the $Y_{1}$ gear. Timing accuracies achieved are discussed in the section ASSEMBLY.

## Roller Sizing

As with the WRIST-ROLL DRIVE a number of iterative calculations of roller torque fraction, normal load, and Hertzian contact were made to determine a feasible level of torque that could be carried through the rollers without extending roller widths much beyond .187 inches. At a torque fraction of .20 with an assumed traction coefficient of .06 , Hertz stresses are acceptable with line contacts at $\mathrm{ax}_{1}$ and $\mathrm{Y}_{1} \mathrm{x}_{2}$ and point contacts at $\mathrm{Y}_{2} \mathrm{c}$. A cross radius of $30.48 \mathrm{~mm}(1.2$ in.) is used on the ring roller inside diameter to produce a crown which assists in assembly. For $20 \%$ torque transfer through the rollers, loads, stresses and deformations are as follows:

the Hertzian deformation. Manufacturing diameters and drawing numbers for the rollers are shown in TABLE 7.

With each roller manufactured to its nominal diameter, the theoretical diameter over the second row planet rollers before assembly of the ring rollers is 238.19 mm 19.3774 in.) with the ring roller manufactured to 237.97 mm (9.3687 in.) the nominal radial interference to be overcome at assembly is . 11 mm (. 0044 in .) . The crown resulting from a $30.48 \mathrm{~mm}(1.2 \mathrm{in}$.$) cross radius on the ring roller is .13 \mathrm{~mm}$ (.0051 in.) so the ring rollers should be assemblable with little or no preheating.

## Drawings

The Hinge-Joint Drive is defined by assembly drawing NAS-300A, and detail drawings NAS-301 through NAS-341 inclusive. These detail drawings include commercial parts required for assembly. The Assembly Fixture is defined by drawings NAS-342 and NAS-343.

## ASSEMBLY NOTES

The first row planet gear and pinion timing errors received from the manufacturer were:

| Part | Error, in. |
| :--- | :--- |
| S/N 1 | .0005 |
| S/N 2 | .0005 |
| S/N 3 | .0035 |
| S/N | .0005 |

Second row planet rollers were assembled with Nos. 1 , 3. 5 and 7 on the input side and Nos. $2,4,6$ and 8 on the output side.

No problems were encountered at my stage of assembly. The ring gear engaged the second row gears without forcing. The measurements over the second row rollers averaged 238.20 $\mathrm{mm}(9.3780 \mathrm{in}$.$) . Ring roller IDs were measured as 237.98 \mathrm{~mm}$ (9.3692 in.) resulting in an initial diametral interference of .22 mm (.0088 in.). Ring rollers were heated to approximately $250^{\circ} \mathrm{F}$ for ease of assembly.

## HINGE-JOINT ROLLER-GEAR DRIVE ASSEMBLY PROCEDURE ASSEMBLY DRAWING NAS-300A

1. Lay the Assembly Fixture, NAS-343, flat on a table.
2. Place the Sun Roller Gear Assembly, NAS-301, on the center post of the Assembly Fixture with the shaft extension inserted into the center post hole.
3. Using Dykem marking compound or equivalent, mark four equally spaced tooth spaces on the Sun Gear. Orient these four spaces to face the four equally spaced holes in the Assembly Fixture.
4. Highlight the indexed tooth on the large central gear of each of four 1st Row Roller Gear Assemblies, NAS-304.
5. Radially assemble a lst Row Roller Gear Assembly with the Sun Roller Gear Assembly so that the marked indexed tooth goes into a marked tooth space. Index the Assembly Fixture on the table so that the shaft extension on the lst Row Roller Gear Assembly can be inserted into an Assembly Pin, NAS-342.
6. Repeat steps for the remaining three 1 st Row Roller Gear Assemblies. At this time the Assembly Fixture should be resting on the four Assembly Pin heads.
7. Press fit needle Roller Bearings, NAS-325, into each of four 2nd Row Gears, NAS-311.
8. Assemble one 2nd Row Roller, NAS-312, onto each 2nd Row Gear with Hex Head Screws \#1, NAS-339.
9. Assemble a key, NAS-324, two Bearing Races, NAS-322, and a Planet Shaft Spacer, NAS-321, onto each of four Planet Shafts, NAS-319.
10. Insert the Planet Shaft assemblies into the 2nd Row Gears and assemble these into each of four slots in the Assembly Fixture. Make certain that proper gear mesh and roller contact is made. Planet Shaft keys must properly fit into the key slots. The previously assembled 2nd Row Rollers should be laying on the side nearest the Assembly Fixture plate. It may be necessary to hold the Planet Shafts in the Assembly Fixture plate with nuts.
11. Assemble a Ring Support Washer, NAS-323, onto the top. of each Planet Shaft assembly.
12. Assemble the Planet Shaft Ring Support, NAS-327, to the Planet Shafts and tighten with Planet Shaft Nuts, NAS-326.
13. Assemble two Ring Gear Dowels \#1, NAS-315, and two Ring Gear Dowels \#2, NAS-316, to the Ring Gear, NAS-313.
14. Assemble the Ring Gear, to the four 2nd Row Gears from the top. This requires patience and deft maneuvering to obtain the proper mesh. The side with the shorter dowels should face down. With the Ring Gear in place, remove the Planet Shaft Ring Support.
15. The remaining four 2nd Row Rollers can now be assembled to the 2nd Row Gears. Reassemble the Planet Shaft Ring Support.
16. Assemble two Ring Rollers, NAS-314, to the 2nd Row Rollers and Ring Gear taking care to properly align dowels with dowel holes. It may be necessary to heat the Ring Rollers to be able to press them over the 2 nd Row Rollers.
17. Assemble two Output Shaft Dowels, NAS-330, to the Output Shaft Adapter, NAS-328.
18. The Output Shaft Adapter can now be assembled to the Ring Roller. Bolt the Adapter in place with Ring Gear Bolts, NAS-317, and Ring Gear Nuts, NAS-318.
19. Assemble the Output Ball Bearing, NAS-331, into the Main Housing, NAS-334. Clamp the bearing in place with Bearing Retainer Plate, NAS-332, and Hex Head Screws, NAS-338.
20. Remove the Assembly Fixture plate from the roller gear assembly by sliding it axially from the unclamped planet Shaft extensions.
21. Assemble "O" Ring \#1, NAS-333, into Output Shaft, NAS-329.
22. Slide the Main Housing and Bearing assembly over the Output Shaft Adapter, making sure that the bearing is properly seated on the Adapter. Clamp in place with Output Shaft and Hex Head Screws \#1, NAS-339.
23. Assemble Housing End Plate, NAS-335, and "O" Ring \#2, NAS-337, to Main Housing with Hex Head Screws, \#2, NAS-340, Planet Shaft Washers, NAS-320, Planet Shaft Nuts, NAS-326, "O" Rings \#3, NAS-341, and Planet Shaft Keys, NAS-324.
24. Insert the Input Shaft Seal, NAS-336, into the Housing End Plate.

## PITCH YAW JOINT ROLLER-GEAR DRIVE

## DESIGN

Specifications for the Pitch Yaw Joint drive were:
Nominal ratio 3.43:1
Output torque $\quad 186.5 \mathrm{Nm}(1650 \mathrm{in} .1 b$.
Dual input torques
Maximum size
$27.1 \mathrm{Nm}(240 \mathrm{in} .1 \mathrm{~b}$.
no larger than ORNL LTM Large $P / Y$ unit

The Pitch Yaw Joint Roller-Gear Drive preliminary design was reported in ref. 1. Size constraints dictated that it fit into the same $15.24 \mathrm{x} 15.24 \mathrm{~cm}(6 \mathrm{x} 6 \mathrm{in}$.) cross section as the ORNL LTM Large $P / Y$ unit.

## Gear Geometry

Gear calculations were made to establish viable tooth design. They are presented in Appendix $C$ with slight modifications of geometry factor $J$ as obtained from the Gleason Corp. computer run. Gear dimensions, tooth stresses and reaction forces are shown in Table 8. Detailed geometries of the Zerol bevel gears obtained from the Gleason computer run are shown in Table 9.

## Roller Geometry

Spatial constraints limited the width of the input cone roller face to approximately $9.525 \mathrm{~mm}(.375 \mathrm{in}$ ) ) and the transversing bevel roller face to approximately 11.227 mm (.442 in.). It was decided to set roller loads so that they could transmit 20 percent of the torque with a design traction coefficient of 0.06 .

For the input roller set:
Input torque to each cone roller bevel pinion $=$ 27.1 Nm (240 in. 1b.)

Cone roller pitch radius $=18.445 \mathrm{~mm}$ (. 726 in.$)$
Cone half angle $=16.26^{\circ}$

Roller torque $=.726 \mu \mathrm{~F}_{\mathrm{N}}$
For 20 percent torque through rollers and $\mu=0.06$, the normal force $F_{N}$ is $F_{N}=(240)(.20) /(.726)(.06)=1101 \mathrm{lb}$. (4899N) .

The required axial force, $\mathrm{F}_{\mathrm{A}}$, is then $\mathrm{F}_{\mathrm{A}}=1101 \sin$ $16.26^{\circ}=308 \mathrm{lb}$. (1,371N).

For the transversing or output cone roller set:
Total output torque $=186 \mathrm{Nm}(1646 \mathrm{in} . \operatorname{lb}$.
Torque through each roller-gear contact $=93 \mathrm{Nm}(823$
in. lb.)
Cone roller pitch radius $=46.83 \mathrm{~mm}$ (1.8438 in.)
Cone half angle $=45^{\circ}$
Roller torque $=1.8438 \mu F_{N}$
For 20 percent torque through rollers and $\mu=0.06$, the normal force $F_{N}$ is
$\mathrm{F}_{\mathrm{N}}=(823)(.20) /(1.8438)(.06)$
$\mathrm{F}_{\mathrm{N}}=1488 \mathrm{lb} .(6,621 \mathrm{~N})$
The required axial force, $\mathrm{F}_{\mathrm{A}}$, on the pitch/yaw bevel roller is then
$\mathrm{F}_{\mathrm{A}}=(2)(1488) \sin 45^{\circ}=2104 \mathrm{lb} .(9,364 \mathrm{~N})$
Table 10 lists roller dimensions, loads, contact stresses, normal approach and drawing sources for the bevel rollers.

## Materials

Stress conditions in the bevel gears dictate that the teeth be carburized and hardened, so AMS 6265F (AISI 9310) steel was chosen. All gears are carburized to have an effective case depth of .030-.045 in. after finishing. The vacuum processed 9310 steel has excellent resistance to fatigue pitting, and with a specified core hardness of Rc 34-40, high strength in bending as well. Because of bending stresses as well as compressive stresses in the Hertzian contacts, AMS 6265 F was also chosen for the bevel rollers. The specification for surface hardness, case depth and core hardness is the same as for the gears.

Drawing sources for the gears are given on Table 8 and for rollers on Table 10.

## Drawings

Design of the Pitch/Yaw Roller-Gear Drive is defined by assembly drawing NAS-200, and detail drawings NAS-201 through NAS-240 inclusive. Commercial parts required for assembly are indicated by callouts 51 through 83 inclusive
on drawing NAS-200.
Drawings NAS-241 and NAS-242 define the Output Bracket and Torque Arms which are used for loading the output.

## PITCH/YAW JOINT ROLLER-GEAR DRIVE ASSEMBLY PROCEDURE ASSEMBLY DRAWING NAS-200

As part of the assembly procedure it will be necessary to group several parts as "A" or "B" parts, with all "A" parts and all "B" parts used together. All such parts are to be clearly marked. The following parts will require coding as "A" or "B":

| DESIGNATION ON |
| :---: | :---: | :---: | :---: |
| DRAWING NAS-200 |$\quad$ PART NO. | DESIGNATION ON |
| :---: |
| DRAWING NAS-200 |$\quad$ PART NO.

on NAS-201 mark 2.250 Dia bores as "A" and "B" .
It will be necessary to measure and record values of several dimensions on a number of parts as follows:

| PART NO. | DIMENSION |  | VALUE |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | A-SIDE |  | B-SIDE |
| NAS-201 | 6.000 |  | 6.004 |  |
|  | 3.000 REF. | 3.004 |  |  |
|  | 2.875 |  | 2.8743 |  |
|  | 1.4375 REF. | 1.4365 |  |  |
|  | 5.704 REF. |  | 5.7042 |  |
| NAS-205A, B | 1.624 | 1.622 |  | 1.622 |
|  | 375 | . 374 |  | . 374 |


|  | $\begin{array}{r} .336 \\ .722 \\ .593 \end{array}$ | $\begin{array}{r} .335 \\ .722 \\ .593 \end{array}$ |  | $\begin{aligned} & .3365 \\ & .722 \\ & .5943 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| NAS-209A, B | 5.812 | $\begin{aligned} & 5.812 \\ & (.004 \mathrm{~B} / \mathrm{L}) \end{aligned}$ |  | $\begin{aligned} & 5.812 \\ & (.004 \mathrm{~B} / \mathrm{L}) \end{aligned}$ |
| NAS-208A, B | 2.3125 | 1 A 2 A 2 $2.31272{ }^{\text {a }}$ |  | 2.3111 3116 |
| NAS-210A, B | 5.690 | $\begin{array}{ll} 1 \mathrm{~A} & 5.6883 \\ 2 \mathrm{~A} & 5.6876 \end{array}$ | 1B 2 B | $\begin{aligned} & 5.6866 \\ & 5.6875 \\ & 5.6878 \end{aligned}$ |
| NAS-206A, B | 1.0310 | $\begin{array}{ll} \text { 1A } & 1.0268 \\ 2 \mathrm{~A} & 1.0281 \end{array}$ | $1 B$ 2B 3 B | $\begin{aligned} & 1.0300 \\ & 1.0300 \\ & 1.0303 \end{aligned}$ |
| NAS-207A, B | 2.4375 | 2.4415 |  | 2.4425 |
| NAS-203 | $\begin{aligned} & 3.034 \\ & 1.562 \end{aligned}$ |  | $\begin{aligned} & 3.034(.00 \\ & 1.5615 \end{aligned}$ | $4 B / L$ |
| NAS-204 | 1.844 | 1.8429 |  | 1.8429 |
| NAS-211 | 5.620 |  | 5.621 |  |
| NAS-238 | $\begin{array}{r} 5.745 \\ .055 \\ .477 \end{array}$ |  | $\begin{gathered} 5.746 \\ .0548 \\ .4768 \end{gathered}$ |  |
| NAS-229 | . 935 | . 932 |  | . 932 |
| NAS-220 | . 094 |  | . 094 |  |
| NAS-226 | . 094 |  | . 094 |  |
| NAS-202 | 1.094 |  | 1.095 |  |
| NAS-212 | . 100 |  | . 1015 |  |
| NAS-235 | . 625 | . 625 |  | . 625 |
| 1. Grind two Fitted Shims, NAS-236, to suit assembly of two sets of one each NAS-205 and NAS-207. Each shim thickness is determined as follows: <br> Thickness $=$ Value of 1.624 dim. on NAS-205 plus value of 1.4375 REF for $A$ side or value of 2.875 dim. minus 1.4375 REF for $B$ side on NAS-201, minus value of .593 dim. on NAS-205, minus value of 2.4375 dim . on NAS-207. Code mark each set as $A$ and $B$. |  |  |  |  |
|  |  |  |  |  |

2. Make two complete assemblies, A \& B, of parts NAS-205, NAS-206, NAS-207, NAS-208, NAS-236 from step 1, Socket Head Cap Screws (part 62), dowels (parts 57 and 58) and bearings (part 73).
3. Determine proper distance D3 between needle thrust bearing faces on parts NAS-205A and B at assembly:

D3 $=$ Value of 2.875 dim. on NAS-201 plus value of 1.624 dim. minus value of .336 dim. on NAS-205A, plus value of 1.624 dim. minus value of .336 dim. on NAS-205B. (Nominal value is 5.451")
4. Grind Thrust Washer, NAS-237 (part 37, Torrington TRC-3244) to the following thickness T4:
$\mathrm{T} 4=$ Value of 5.745 dim. on NAS -238 minus D 3 minus part 74 thickness minus .1562".
5. Grind Spacers, NAS-223 (parts 8) to allow proper axial spacing of parts NAS-205. Determine S5A and S5B as follows:

Measure widths of Inner and Outer Rings of four parts 76 ( 543 TA bearings). Nominal values are .281" for inner rings and .250" for outer rings. Calculate average IR width and average OR width.

S5A,B $=1.624$ dim. minus .336 dim. minus .722 dim. for NAS-205A and B.

Each spacer width should be
W5A $=1 / 2$ value of 5.620 dim. on NAS- 211 minus value of 1.4375 dim. on NAS-201 minus S5A minus $3 / 2 \mathrm{IR}_{\mathrm{AV}}$. minus $1 / 2 \mathrm{OR}_{\mathrm{AV}}$. $W 5 B=1 / 2$ value of 5.620 dim. on NAS- 211 minus value of 2.875 dim. on NAS-201 plus value of 1.4375 dim . on NAS-201 minus $S 5 B$ minus $3 / 2 I_{A V}$. minus $1 / 2 \mathrm{OR}_{\mathrm{AV}}$.
(Nominal value of $W 5$ is . 260")
6. Determine thickness of Shims, NAS-222 for proper axial spacing of assemblies from Step 2 as follows:

Measure axial distance from inner race face to outer race face on parts 73 (Kaydon bearings) as follows:

Place each bearing horizontally, resting on inner race face. Measure distance to outer race face under light thrust load. Each measurement should be approximately . 375" less the bearing axial clearance. Mark bearings $A$ and $B$. Calculate $S 6=$ 1.624 dim. minus .375 dim. for $N A S-205 A$ and $B$.

Assemble Shims NAS-222 to thicknesses T6 as follows:
$T 6 A=$ Value of 3.000 REF dim. on NAS-201 plus value of .094 dim. on NAS -226 minus bearing A width minus S6A minus 1.4375 REF dim. on NAS-201.

T6B = Value of 6.000 dim. minus 3.000 REF dim. on NAS-201 plus value of .094 dim. on NAS-220 minus bearing $B$ width minus $56 B$ minus 2.875 dim. plus 1.4375 REF dim. on NAS-201.
(Nominal value of T6 is .032")
7. The complete assembly of parts on the pitch axis can now be made, including the Yaw Shaft, NAS-202 and its Set Screw, NAS-224. Before the assemblies from Step 2 can be solidly mated with the Pitch Shaft, NAS-211 and Bearing Retainer, NAS-225, however, the Input Bevel Pinions, NAS-209, and Input Bevel Rollers, NAS-210, must be in place. Otherwise parts NAS-205 will interfere with entry of parts NAS-210.

Assembly on the Pitch Axis will consist of the following parts:

|  | NAS-205 | 2 | pcs | Parts 62 | Socket Head Screws |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | NAS-206 | 2 | pcs | Parts 57 | Dowels |
|  | NAS-207 | 2 | pcs | Parts 58 | Dowels |
|  | NAS-208 | 2 | pes | Part 74 | Thrust Washer |
| NAS-238 | NAS-211 | 1 | pc | Parts 75 | Needle Thrust Bearings |
|  | NAS-225 | 1 | pc | Part 37 T | Thrust Washer |
|  | NAS-202 | 1 | pc | Parts 73 | 2 Kaydon bearings |
|  | NAS-224 | 1 | pc | Parts 76 | 4 Barden bearings |
|  | NAS-236 | 2 | pcs | Parts 56 | Flat Head Screws |
|  | NAS-223 | 2 | pcs | Parts 59 | Flat Head Screws |
|  | NAS-222 | 2 | pcs | Parts 78 | Transducer |
|  | NAS-220 | 1 | pc | Part 61 | Nut |
|  | NAS-229 | 1 | pc |  |  |
|  | NAS-226 | 1 | pc |  |  |
|  | NAS-227 | 1 | pc |  |  |
|  | NAS-228 | 1 | pc |  |  |

8. Install four Parts 72, Needle Roller Bearings, in place in NAS-201.
9. Install Parts 70 (B 545 ball bearings) on NAS-209A and B. Put Parts 69 (Snap Rings) in place and measure the gap between bearing inner races and snap ring face. Grind NAS-231, 2 pcs, for a no-shake fit of the bearing inner ring on NAS-209A and B.
10. Grind two Spacers, NAS-232 to .093". Install two Parts 71 (Wave Springs) and parts NAS-232 in NAS-201.
11. Place NAS-210A and $B$ in NAS-209A and $B$ and install in

NAS-201.
12. After the Pitch Axis Assembly is solidly in place (Step 7), allow parts NAS-209A and B to mesh with NAS-205A and B. Without installing parts NAS-233, NAS-234 and Parts 68 (Belleville Springs) assemble parts NAS-235 with Parts 62 (socket head cap screws) and Parts 57 (dowels). Put Parts 67 (thrust washers) and Parts 66 (needle roller bearings) in place. Fit parts NAS-229 over thrust washers and measure the gap between parts NAS-229 and NAS-201 for both A and B sides. If pinions NAS-209 are solidly meshed with gears NAS-205, the gap should represent the zero backlash position. Axial withdrawal of pinion NAS-209 should result in backlash at the rate of .102 mils for each mil of withdrawal ( $\left.\left(\operatorname{Sin} 16.26^{\circ}\right) \mathbf{x}\left(\tan 20^{\circ}\right)=.102\right)$. Withdraw pinion NAS-209 to provide the level of backlash to which the teeth were cut as measured by pinion gaging (should be between . 002 and . 004 in.) Grind parts NAS-230 to the measured gaps plus the amount of withdrawal. Install parts NAS-230, NAS-239, and assemble parts NAS-235 with Parts 82 (socket head cap screws). Measure backlash between parts NAS-209 and NAS-205 and make appropriate adjustments. Input assembly is complete except for installation of parts NAS-233, NAS-234, Parts 68 (Belleville Springs) and Parts 65 (shoulder screws) which will load parts NAS-210 against NAS-206. When these parts are loaded, as per the schedule on drawing NAS-234, at a later assembly step, it may increase backlash between NAS-209 and NAS-205. It may then be necessary to adjust the thickness of NAS-230.
13. Assemble Parts 77 (duplex angular contact bearings) and parts NAS-214 and NAS-215 into NAS-203. Measure distance S13 from back face of NAS-203 to the face of the bearing. Grind NAS-217 to thickness T13 as follows:

T13 $=$ S 13 minus .100 dim. on NAS-212 minus .002 to . 004
(This will allow .002/.004 clamping gap for the duplex bearing pair.)
14. Complete assembly of NAS-212, NAS-217, Parts 57 (dowels) and Parts 51 (socket head cap screws) to NAS-203.
15. Place the assembly from Step 14 with the face of NAS-212 supported on a horizontal surface. (Gear teeth on NAS-203 are up). Gently press down on the inner race of the upper bearing while turning it until the axial play is taken out of the bearing. Measure the distance, $\mathrm{S}-15$, from the face of the bearing inner race to the back face of NAS-203. (This should be coincident with the upper face of NAS-212).
16. Grind NAS-216 to the following width W16P.
$W 16 P=3.034$ dim. on NAS-203 minus $S-15$ minus 1.094
dim. on NAS-202.
Place NAS-216 on NAS-202 and follow with the assembly from Step 14. It may be necessary to freeze NAS-202 with dry ice and to warm the assembly from Step 14. Assemble Part 35 (locknut) onto NAS-202.

Measure the backlash between NAS-203 and NAS-207A and B with NAS-203 withdrawn from the mesh as much as possible by tugging on NAS-212 while the measurement is made. The backlash should be set at the level to which the teeth were cut as measured by gear gaging (should be between . 002 and . 004 in.). If the backlash needs to be reduced, for each mil reduction of backlash remove 3.89 mils from NAS-216
$\left(1 /\left(\operatorname{Sin} 45^{\circ}\right)\left(\tan 20^{\circ}\right)=3.89\right)$
W16F $=\mathrm{W} 16 \mathrm{P}-3.89 \mathrm{x}$ reduction in backlash
Reassemble and recheck backlash between NAS-203 and NAS-207A and B. Make appropriate adjustments to NAS-216 to achieve desired backlash.
17. Assemble Part 78 (transducer) into NAS-240. It is assembled to NAS-212 with Parts 59 (flat head socket head cap screws).

Yaw assembly is now complete except for installation of parts NAS-218, NAS-219, Parts 54 (Belleville Springs) and Parts 53 (shoulder screws) which will load part NAS-204 against NAS-208A and B. When these parts are loaded, as per the schedule on drawing NAS-219 it may increase the backlash between NAS-203 and NAS-207A and B. It may then be necessary to adjust the width of NAS-216.
18. Remove NAS-212 from the assembly in Step 15.
19. The input rollers NAS-210A and $B$ and the pitch/yaw roller NAS-204 can now be loaded against their mating rollers. For NAS-210A and $B$ follow the load schedule on drawing NAS-234 for grinding that part for use in conjunction with NAS-233 and Parts 68 (Belleville Springs). For NAS-204 follow the load schedule on drawing NAS-219 for grinding that part for use in conjunction with NAS-218 and Parts 54 (Belleville Springs).

## ASSEMBLY OF PITCH/YAW JOINT DRIVE

The following dimensional details were accumulated at assembly:

## Step 1:

A side thickness $=1.622+1.4365-.593-2.4415=.024$
B side thickness $=1.622+1.4378-.5943-2.4415=.024$
Step 3:
$\mathrm{D} 3=2.8743+1.622-.335+1.622-.3365$
D3 $=5.4468$

## Step 4:

$\mathrm{T} 4=5.746-5.4468-.0615-.1562=.0815$

## Step 5:

```
Average inner ring width \(=.2804 "\)
Average outer ring width \(=.2497^{\prime \prime}\)
\(W 5 A=(5.621 / 2)-(1.4365+1.622-.722-.335)\)
- 3/2 (.2804) - 1/2 (.2497)
\(\mathrm{W} 5 \mathrm{~A}=.264\)
\(W 5 B=(5.621 / 2)-(2.8743-1.4365+1.622-.7213-.3365)\)
\(-3 / 2\) (.2804) - \(1 / 2\) (.2497)
\(\mathrm{W} 5 \mathrm{~B}=.2645\)
```

Spacers NAS-233 were made to $.260 / .255$

## Step 6:

Measured dimensions of Kaydon bearings

```
Bearing A: . 3726"
Bearing B: .3713"
S6A = 1.622 - . 374 = 1.248
S6B = 1.622 - . 374 = 1.248
T6A = 3.004 + .094-.3726-1.248-1.4365 = .0409"
T6B = 3.000 +.094-.3713-1.248 + 1..4365-2.8743 = .0369"
```

Step 8:
Before installing needle roller bearings, parts 70 , into NAS-201, it was noted that the free O.D. of the bearings was . 005" greater than the bore diameter. A check with Torrington revealed that up to . $007^{\prime \prime}$ interference is
permissible for this size bearing. The bearings pressed easily into place. The thin wall drawn cup does not behave as would a rigid shell. According to Torrington, if the radial thickness of the housing (even if it is aluminum) is at least equal to that of the bearing, most of the yield will take place in the drawn cup.

Step 9:
Spacers NAS-231 were ground to approximately .062" to provide no shake fits between bearings, parts 70, and retaining rings, parts 69, on NAS-209.

Step 12:
It proved to be impractical to try to measure the gap between parts NAS-229 and NAS-201 so individual dimensions in the stack up were measured to arrive at trial thicknesses S 12A, B for shims NAS-230. $\mathrm{S} 12 \mathrm{~A}, \mathrm{~B}=5.812 \mathrm{Dim}$ on NAS-209 +.625 Dim on NAS-235 - 5.704 Dim on NAS-201 - . 935 Dim on NAS-229 + Thrust Needle Bearing Stack (part $66+2$ parts 67). Both the $A$ and $B$ side dimension sets were the same. The .935 Dim in NAS-229 less the bearing stack was measured as . 666 on both A and B.

Therefore

$$
S 12 A, B=5.812+.625-5.704-.666=.067
$$

The A side was assembled with a .067" shim. The input pinion and gear mesh felt smooth. For the B side a .067" shim resulted in very tight mesh with obvious tooth ratcheting. It was gradually increased to .070". At that thickness both gear meshes had a similar feel.

## Step 13:

Distance S 13 was measured to be . 1605"
T $13=.161-.101-.002$
$\mathrm{T} 13=.058$
NAS-217 was ground to $.058^{\prime \prime}$
Step 15:
S 15 was measured to be $1.555^{\prime \prime}$
Step 16:
$\mathrm{W} 16 \mathrm{P}=3.034-1.095-1.555=.384^{\prime \prime}$
NAS-216 was ground to .384"
The assembly from Step 14 went into place without any cooling or heating. The mesh of NAS-203 with the two gears NAS-207 was smooth. No further adjustment of NAS-216 was made.

## Step 17:

Washers NAS-219 (8 total) were ground to . 064 in. to produce $29 \%$ compression in Belleville Springs (parts 58 on NAS-200) and a total axial force on NAS-204 of 1037 pounds. Load vs. compression is given on drawing NAS-219.

## Step 19:

Washers NAS-234 were ground to . 045 in. to produce $35 \%$ compression in Belleville Springs (parts 68 on NAS-200) and a total axial force of 325 pounds on each input roller NAS-210. Load vs. Compression is given on drawing NAS-234.

## DRIVE AND CONTROL SYSTEM FOR PITCH/YAW JOINT

## General Description

The objective was to design, construct and assemble a system which would: (1) drive the joint, (2) input specific commands to perform single or multiple defined movements, (3) measure relevant input speeds and angular positions, (4) measure input torques, (5) measure output angular positions, and (6) record all of these data as functions of time for use in and analyzing performance of the joint.

The system measures and records, at 4 millisecond intervals ( 250 HZ$)$, the following variables:
(1) input speeds, TACH A and TACH B, rpm
(2) input torques, TORQUE A and TORQUE B, ft lbsf
(3) motor commands, $A$ and $B$, volts
(4) Input Resolver positions, $A$ and $B$, degrees
(5) Input Resolver Revolutions, $A$ and $B$
(6) Output Pitch Position, degrees
(7) Output Yaw Position, degrees
(8) Output Pitch Velocity, rpm
(9) Output Yaw Velocity, rpm
(10) Output Desire Pitch position, degrees
(11) Output Desire Yaw position, degrees.

The control system is an IBM compatible PC based system. Other systems, such as the Macintosh, were considered, but the availability of the resolver decoders plus the simplicity of the MS-DOS operating system (important for real time operation) narrowed the choice to an IBM compatible. The system is flexible and can be re-programmed for future projects.

The hardware system is centered around three pieces of equipment: the computer, the joint, and an electronics board. The computer contains a resolver decoder card and a D/A-A/D I/O converter card. The electronics board contains the resolver reference signals, the torque sensors' reference signal, the torque output signal amplifiers, the motor tachometers' voltage divider circuit, and the PWM amplifiers for the motor drives.

The electronics board is a custom board that interfaces some of the sensors to the computer. The board is contained in a box that is set near the joint. Circuits are patterned after those that were proven on the LTM and the ORNL LeRC projects. The board has the following functions:

Motor tachometer maximum output voltage is +63 volts at maximum rpms. A voltage divider network is needed to reduce the voltage to +-10 volts for the $A / D$ input.

The torque sensors require $\mathrm{a}+5$ and -5 vdc signal for their reference signal. The circuit used is modeled after the circuit used by the LeRC electronics.

The torque sensors' output signal is very small, in the millivolt range. For the signal to be useful for the $A / D$ 's the signal needs to be amplified. Again, this circuit is modeled after the amplifiers used on the LeRC project.

The input and the output resolvers require reference drive signal for the primary winding of the resolvers. The resolvers operate at two different frequencies, therefore two separate circuits, one for the input resolver drive and one circuit for the output resolver drive, are provided.

The PWM amplifiers are mounted on the circuit board. Their control and outputs are wired to the board.

A +-15 or +-12 vdc power supply to drive the board and a $50 \mathrm{v}, 10 \mathrm{amp}$ unregulated power supply for the PWM amplifiers are included.

## Drawings

General arrangement of parts comprising the drive and control system is shown on assembly drawing NAS-200A. Design of machined parts is defined on detail drawings NAS-251 through NAS-266 inclusive. Commercial hardware required for assembly are defined by callouts 51 through 78 inclusive on drawing NAS-200A.

## Electro-Mechanical System Components

The commercial components of the electro-mechanical system are as follows:

## Input Side

> 1. Gear motors - $\begin{aligned} & \text { Electrocraft (Robbins Myers) } \\ & \text { E652-MGHD, Part No. } 652-006-205, \\ & \text { complete with tachometer function. }\end{aligned}$ 2. $\frac{\text { Position indicators - Clifton Precision Products }}{\text { Brushless Resolver }} \begin{aligned} & \text { Model JSSBH-21-K-1 }\end{aligned}$ 3. Torque meters - GSE Inc. Torque Sensor Model 8040.

Range, $\pm 50$ ft lbf.
4. Brake - Magtrol electromagnetic friction brake, Model FB-130-101. De-energized torque, 0 ; energized torque, $1.27 \mathrm{Nm}(180 \mathrm{oz} . i n$.

## Output Side

1. Position indicators - Vernitron Corp. Transducer VRP 20-2

## Computer and Electronics Board

Microlab 386 SX system with:
SIM Ram Module 256 K
Intel CP 80387-SX Co-Processor Toshiba 1.2 MB 5 1/4" Floppy Western Digital 1:1 H/F Controller 386 SX Main Board AT I/O Card Seagate 40 MB 65 ms Hard Disk Focus 101 AT Keyboard Star XR-1000 Printer

Electronics board with:
ILC Data Device Corporation SDC-36015 resolver decoder board (6 channel resolver to digital converter)
Metrabyte DAS-16 A/D-D/A card (16 A/D channels, two D/A.channel plus eight I/O digital bits) Advanced Motion Controls AMC-500 PWM motor drive amplifiers (used in current output mode) ILC Data Device Corporation R/D Modules (7 units)

Wiring schematics for the various electronics board circuits are given on Figures 1-11:

1. Figure 1 - Power and Power Control
2. Figure 2 - Motor Power and Motor Brake Power
3. Figure 3 - Motor Tachometer Signals
4. Figure 4 - Torque Sensor Reference Signal
5. Figure 5 - Torque Sensor Signal
6. Figure 6 - Pitch and Yaw Resolver Reference Signal
7. Figure 7 - Motor Shaft Resolver Reference Signal
8. Figure 8 - Motor Shaft Resolver Position Signal
9. Figure 9 - Pitch and Yaw Resolver Position Signal
```
10. Figure 10 - Pitch, Yaw and Motor Shaft Resolver
    Velocity Signals
11. Figure 11 - Pitch, Yaw and Motor Resolver Signal
    Power Amplifiers
```


## Software

Software for the system is written in Turbo C. The basic functions are to accept a commanded input then drive the joint to that location, collect and store joint data, monitor the joint condition, and shutdown the joint on an error. It is designed for easy operation interface and tuning of joint parameters. Files NASA 1.C through NASA 8.C inclusive, NASADATA.H, EXTDATA.H and NASADEF.H comprise the system. Hard copies of these files are in Appendix D.

## Operating the Joint

The operation of the computer control panel is by menus and keystrokes. The control of the arm joint is completely done from the computer. The following is a guide to the operation and control to the computer and the control system. Power up:

1. Turn the computer on and allow the computer to perform self-diagnostics. This will take about 90 seconds. The printer (if connected) will also self-start. The computer is ready when the prompt $C>$ appears.
2. At the prompt type cd tr . Press enter.
3. At the prompt type $t r$, the control screen will appear after a few seconds.
4. Turn on the power switch, the black toggle switch. The green light will come on. If the green light is dark, check that the power cord is plugged in, the fuses are good, or the cable from the switch box to the power box is plugged in.
5. Turn on the motor drive power by pushing the black button. The orange light will come on. To turn off the motor drive power, push the red button.

| " R" | Restart | - will initialize the control system. |
| :---: | :---: | :---: |
| "S" | Single Command | -to move the joint in a single motion. <br> -computer will ask for the following parameters <br> -Time time for motion <br> -Pitch desired pitch angle <br> -Yaw desired yaw angle |
| "M" | Multiple Command | ```-to move the joint in a path of multiple motions. -computer will ask for the following parameters -input motions can be entered by hand or from a disk file (the disk file is created from hand input). -motions the number of motions (0-10) in the path for each motion enter the following -Time time for that motion -Pitch desired pitch angle that motion -Yaw desired yaw angle that motion -save after the path is entered, the operator can save the path to disk file for later use (need a file name).``` |

After the "S" and "M" commands have been completed, the path data can be saved to disk for later use. The data is collected automatically during the motion. If the answer to the question about saving the data is $N$ (no), the data is lost. A file name is required.

"J" Joystick Command | -joint operation with the joystick. |  |
| ---: | :--- |
|  | -the joystick has a deadman and a |
| return button. |  |
|  | -Deadman releasing the deadman |
|  | will lock the motor brakes, |
|  | holding the deadman will release |
|  | the brakes. |
|  | -Return (ashing the return |
| button (at the rear of the stick) |  |

will return control to the main menu.
-Control pitch and yaw motions with the joystick.

| "N" | Neutral Position | -will move the joint to neutral position. <br> -neutral position is determined from the setpoint data file. |
| :---: | :---: | :---: |
| "P" | Parameters | -will display system data, system setpoints, and system gains. <br> -will display a short menu. <br> -"D" displays system data and allows the control of the motor brakes. <br> -"S" displays system setpoints and allows for the change of the setpoints. The setpoints determine the neutral position, high and low position setpoints. -"G" displays system control loop gains and allows for the change of the gain values. The control loop only uses the motor velocity (motor tachs), position (pitch and yaw resolvers), and output velocity (resolver velocity). The other gains listed are not used but the variables have been defined. |

When exiting the main control program and if any gain or setpoint values have been changed, the computer will ask if the gains and setpoints need to be saved. If the operator answers yes, the new values are saved. If the operator answers no, the new values are lost. During the program startup, the gains and setpoints are loaded from a disk file.
"E"
-exit the control program.
-note the motor drive power should be off before exiting the program.

## Display

The program will display the pitch and yaw angles after a completed motion. The brake status is displayed. The condition window displays the operation, warning, or alarm conditions.

## Data Processing

Data files are stored in the TR directory and can be hardcopied with a print command. Data is printed out in a four column format. Values of all sixteen variables are stored at 4 millisecond intervals so the volume of data from even a fractional second run is formidable.

In order to facilitate processing the data into convenient plots, MATLAB has been included in the software. The following procedure is used to make plots. At the prompts


## TEST RESULTS

## WRIST-ROLL AND HINGE-JOINT DRIVES

## LINEARITY

Torque ripple is introduced by transmissions through an equivalent variable transmission ratio. For geared drives, the average ratio is fixed by the relative numbers of gear teeth. While this ratio must be a predictable constant, over the course of a cycle the apparent ratio can vary about this mean due to machining and assembly imperfections. Such variations introduce cyclic accelerations of the input and output, producing an apparent "torque ripple". In fact, the effect is a position ripple, and the resulting torque ripple depends on the dynamics of the drive as well as the dynamics of the loads attached to both the input and output. Thus, position ripple should be minimized, or, equivalently, drive linearity should be maximized to minimize resulting torque disturbances. Drive linearity measurements are reported here.

## Experimental Procedure

To measure drive linearity and backlash, high-resolution optical incremental encoders were coupled to the input and output shafts of each of the drives. Corresponding input vs output rotations were recorded.

The shaft sensors used were BEI series 143 optical incremental encoders, which provided 360,000 counts per revolution. Each drive was tested with an encoder at the input and at the output. A computer program was written to sample the encoder angles and compute a ratio of input to output position increments for each 1 degree ( 1000 counts) of output (low-speed) rotation. Drive input was rotated slowly by hand during sampling in one direction, thus avoiding effects of backlash, mechanical dynamics, and sampling rate limitations. Input rotations were applied at minimum torque to minimize the influence of drive friction and stiffness on the position linearity tests.

The experimental procedure was evaluated using an "ideal" drive with unity ratio, i.e. a solid shaft. The two encoders were mounted identically to that of an actual drive measurement, and the same drive and sampling procedures were used. The equivalent incremental drive ratio was measured over each 1 degree of rotation, and the ratio proved to be unity within $0.1 \%$, corresponding to plus or minus one encoder count. Thus, the measurement technique is believed to be accurate to 0.1\%.

## Data

Figure 12 shows the input angle vs output angle of the Hinge-Joint drive, measured over one rotation of the output.

The drive appears perfectly linear, at least within the resolution of the plot. To observe the small deviations from linear, the slope of input vs output, or the incremental drive ratio, was computed over each one degree of output and plotted vs output angle. Since the input vs output angles appear perfectly linear, only incremental drive ratios are displayed for the Steel Wrist-Roll and Plastic Wrist-Roll Drives.

Figure 13 shows the incremental drive ratio of the Steel Wrist-Roll drive measured over each 1 degree of output rotation, displayed over one full revolution of the output. The average drive ratio is 23.23 , and the data shows incremental ratio variations as large as 0.5\%. The experimental accuracy is $0.1 \%$.

Figure 14 shows the same measurement for the Plastic Wrist-Roll drive. The average drive ratio was 23.23. Here, the incremental transmission ratio variations are 1.5\% with a clear periodicity of approximately 33 degrees of output rotation. This data was taken before the two failures. Linearity after repairs was noticeably worse.

Figure 15 shows the incremental drive ratio of the Hinge-Joint drive. Its average ratio was 29.23. Typically, the drive ratio varied by less than $0.3 \%$. However, there were four regions within the single revolution of the output in which the transmission ratio changed significantly, particularly in the region around 100 degrees output. Figure 16 displays a zoom-in of this worst-case region. The variation includes multiple consistent datapoints, which suggests that the variation is not attributable to measurement noise.

## Analysis

For all three drives, linearity was good. The two Wrist-Roll drives had a ratio of 23.23 , and the ratio of the Hinge-Joint drive was 29.23. The plastic Wrist-Roll drive had the greatest nonlinearity, with the ratio variations occurring periodically at about $1.5 \%$ every 33 degrees of output. Ratio variations of the two steel drives were typically within $0.5 \%$, though the Hinge-Joint drive showed a spike of about $1.7 \%$ variation over about 3 degrees of output rotation. This variation may be attributable to a slip of a roller upon gear-tooth contact due to accumulated roller creep.

## FRICTION

In addition to low backlash and high linearity, another potential advantage of roller/gear drives is low friction. Torque of the three drives was measured as both an unloaded speed reducer and as an unloaded speed increaser. For the Steel Wrist-Roll drive, tests were conducted running dry, then again after adding traction fluid.

For the plastic Wrist-Roll drive, the friction
decreased noticeably with time (about 30\%); the friction data reported was taken after approximately one hour of unloaded run-in near the rated speed. During this time, the input torque was monitored, and appeared to have stabilized at the values shown. Data shown was taken before the drive incurred a failure which necessitated repair.

The Hinge-Joint drive was driven both as a speed reducer and a speed increaser using the Steel Wrist-Roll drive to increase the motor drive torque. Torque measurements, however, were taken directly at the shaft of the Hinge-Joint drive. Use of the Wrist-Roll drive to increase motor torque, however, reduced the measured range of input velocities by a factor of 23 . The Hinge-Joint drive thus did not experience as many cycles of run-in time as the Wrist-Roll drives. Further, all Hinge-Joint drive data was collected "dry".

## Experimental Procedure

For all friction measurements, shaft torques were measured using Himmelstein model MCRT 2402 T non-contact rotating torque transducers with rated $0.1 \%$ linearity. Two meters were used: a 50 in-lb range meter and a 350 in-lb range meter. Himmelstein strain-gauge amplifiers were used to produce analog torque signals. The two meters were calibrated relative to each other by coupling them in series, performing a complete friction test collecting data from both sensors, and computing the scale factor which produced correspondence of the two outputs. This calibration process thus included calibration of the analog-to-digital converters and the strain-gauge amplifiers as well as the torque meters.

For each datapoint of the friction measurements, the input was driven by a dc servomotor with proportional plus integral velocity control. For a complete dataset, the motor was commanded to successive velocities in increments of $20 \mathrm{rad} / \mathrm{sec}$ from 0 to $180 \mathrm{rad} / \mathrm{sec}$, then back down in increments of $-20 \mathrm{rad} / \mathrm{sec}$, through zero to $-180 \mathrm{rad} / \mathrm{sec}$, then in increments of $20 \mathrm{rad} / \mathrm{sec}$ back to 0 . At each new speed, the data was permitted to settle for 10 seconds, then data was sampled continuously over 15 seconds and averaged.

For friction measurements, the strain-guage amplifier low-pass filter frequency was set to 1 Hz . Filtered analog data was sampled by 12 -bit analog-to-digital converters at a rate of 1 kHz , and averaged over 15,000 samples for each datapoint.

Each resulting datapoint is highlighted on the graphs, with connecting lines illustrating the history of data collection.

## Data

Figure 17 shows the steady-state torque required to drive the "input" (high-speed shaft) of the Steel Wrist-Roll
drive with no load. This data was taken before adding traction fluid to the drive. Similarly, Figure 18 is the friction driving the Steel Wrist-Roll drive as an unloaded speed increaser. The data shows a significant Coulomb friction and a lesser viscous (speed-dependent) friction. Slopes of the friction curve about the origin should not be interpreted as an apparent saturating viscous effect. The slopes here are merely a graphical consequence of connecting discrete datapoints. In fact, the Coulomb friction effect extends down to zero velocity.

Friction tests on the Steel Wrist-Roll drive were repeated after adding traction fluid. The lubricated friction data is shown in Figure 19 and Figure 20 as a reducer and increaser, respectively.

Identical tests were performed on the Plastic Wrist-Roll drive, after a suitable run-in time. Friction data as a speed reducer and as a speed increaser are shown in Figure 21 and Figure 22 , respectively.

Friction data for the Hinge-Joint drive was only taken over a speed range of -8 to $+8 \mathrm{rad} / \mathrm{sec}$, since the Steel Wrist-Roll drive was used as a speed reducer to drive it. Friction data as a reducer and an increaser is given in Figure 23 and Figure 24, respectively. Note that the range of input velocities as a speed reducer is severely limited, though the same range as a speed increaser corresponds to about $60 \%$ of the rated top speed.

## Analysis

The drives exhibit a large Coulomb friction component. The Hinge-Joint and Plastic Wrist-Roll drives show virtually no viscous effect. The Steel Wrist-Roll drive does show a viscous effect. The Plastic Wrist-Roll drive showed friction levels comparable to the Steel Wrist-Roll drive, though they differ in friction vs speed dependence. The reducer friction and increaser friction are roughly the same ratio as the speed ratio, though not precisely so. Friction/speed hysteresis (friction depending on history of velocity excitation) is noticeable in the steel drives, though negligible in the plastic drive. The speed hysteresis may be due to variations in internal loading due to inertial transients when changing between successive steady state velocities.

## INERTIA

Inertia was measured for the Steel Wrist-Roll drive only. Input (high-speed shaft) and output (low-speed) shaft inertia were measured separately, though accuracy of the input inertia measurement was poor.

## Experimental Procedure

The Steel Wrist-Roll drive (test drive) was coupled to
a dc servomotor through a 50 in-lb reactionless torque meter. The servomotor was controlled with acceleration feedforward and proportional-plus-derivative feedback to produce a smooth, specified sinusoidal motion. Over each sinusoid, the torque meter and the drive angle were sampled at 1 kHz . One hundred of these sinusoids were sampled synchronously and averaged together to reduce noise. The 100-sample average, though, was hardly different from that of a single-pass, implying that the noise content was low. The torque meter was low-pass filtered in analog at 100 Hz before sampling. To correct the measurements for inertia of the couplings and the torque meter itself, the same data acquisition routine was run on the system with the test drive removed. The inertia of the measurement system was thus derived.

The test drive was driven both as an unloaded speed reducer to obtain input inertia and as an unloaded speed increaser to obtain output inertia.

## Data

The measurement system alone (motor, torque meter and couplings) was driven sinusoidally with a magnitude of 10 radians and a frequency of 2 Hz . The apparent inertia seen by the torque meter (one coupling and $1 / 2$ of the meter's own inertia) was measured to be $0.000255 \mathrm{Kg}-\mathrm{m}^{2}$. The same amplitude and frequency were imposed with the high-speed shaft of the test drive coupled to the system. The apparent inertia increased by less than 25\%. Thus, the measurement of input inertia had poor accuracy, since the inertial load was dominated by the inherent inertia of the measurement system itself. Nonetheless, the input inertia of the test drive could be estimated at $0.00006 \mathrm{Kg}-\mathrm{m}^{2}\left(600 \mathrm{gm}-\mathrm{cm}^{2}\right)$.

Measurement of the output inertia was more accurate. The low-speed shaft was driven sinusoidally with an amplitude of 1.0 radians at a frequency of 2.5 Hz , and the position and drive torque were sampled at 1 kHz over 100 cycles. The averaged data is shown in Figure 25.

## Analysis

The data shown in Figure 25 was curve-fit to pure sinusoids, resulting in a torque signal of $4.4 \mathrm{~N}-\mathrm{m}$ amplitude, 2.5 Hz , leading the position signal by 140 degrees. If the torque signal were due entirely to inertial effects, then it would have led the position signal by 180 degrees. The actual phase shift implies that the inertial effect has a magnitude of $3.35 \mathrm{~N}-\mathrm{m}$. In addition, there is an apparent viscous effect with a magnitude of $2.85 \mathrm{~N}-\mathrm{m}$ in-phase with the velocity. The chosen excitation produces an angular acceleration of $247 \mathrm{rad} / \mathrm{sec}^{2}$. Thus, the inertial torque of $3.35 \mathrm{~N}-\mathrm{m}$ implies an apparent test drive output inertia of $0.0135 \mathrm{Kg}-\mathrm{m}^{2}$. The influence of the measurement system inertia compared to the true load inertia
is less than 2\%.
Ideally, the output inertia should be equal to the input inertia times the drive ratio squared. The measured input inertia of $0.00006 \mathrm{Kg}-\mathrm{m}^{2}$ times the drive ratio of 23.23 squared is $0.033 \mathrm{Kg}-\mathrm{m}^{2}$, which is roughly 2.5 times greater than the measured output inertia. The discrepancy is primarily due to the poor resolution of the input inertia measurement. Based on the more trustworthy output inertia measurement, the equivalent input inertia should be 0.000025 $\mathrm{Kg}-\mathrm{m}^{2}$, or $250 \mathrm{gm}-\mathrm{cm}^{2}$.

Although the input inertia measurement had a relatively low accuracy, it should have been more consistent with the output inertia. It is possible that nonlinear friction terms, which cannot be accounted for in terms of phase-shifted sinusoids, influenced the measurements more than expected. Thus, while the output inertia has been measured more accurately than the input inertia, the derived value of the output inertia should not be considered precise.

## BACKLASH

An unusual feature of roller/gear drives is that, ideally, they exhibit no backlash. Since the rollers always maintain rolling contact, there should be no deadzone between input and output angles.

## Experimental Procedure

This measurement used the same experimental setup as used for the tests for LINEARITY. High-resolution encoders were coupled to both the input and the output of each transmission. The input shaft was rotated by hand forward, reverse, forward, and reverse again through an angle corresponding to 0.5 degrees of output rotation. The encoders were sampled at a high rate, and input and output angles were recorded for each 0.050 degrees of output rotation. Using the prescribed cyclic input, backlash in the drives would appear as a hysteresis in the input vs. output angle plots.

Data
Input vs. output angle of the Steel Wrist-Roll drive is shown in Figure 26. The negative slope is due to the arrangement of the encoders in opposition. The measured datapoints retrace themselves almost identically; any possible hysteresis is smaller then the measurement accuracy of 0.001 degrees of output angle. Similar plots are given in Figure 27 and Figure 28 for the Plastic Wrist-Roll drive and the Hinge-Joint drive, respectively.

## Analysis

At least within the accuracy limitations of the high-resolution encoders ( 0.001 degrees), no backlash could be observed in either of the steel drives. The plastic drives might have exhibited a small hysteresis, but the effect is hardly larger than the measurement accuracy. This experiment was performed on the drive after it was damaged and re-worked.

## STIFFNESS

Stiffness measurements were made only of the Steel Wrist-Roll drive. Stiffness measurements on the plastic Wrist-Roll drive were not performed prior to the failure, and the stiffness of the Hinge-Joint drive exceeded the stiffness of the couplings connecting the transmission input to the torque meter.

## Experimental Procedure

The high-torque shaft of the Steel Wrist-Roll drive was held stationary (secured to ground) while the input was torqued through the 50 in-lbf reactionless torque meter. Torques were applied manually, held steady by observing the torque-meter output. The input torque and twist angle were sampled in the steady state (static torque balance) at 1 kHz over 15 seconds, and the mean values were recorded. Eleven datapoints were recorded using input torque values of $0,0.5$ and $1.0 \mathrm{~N}-\mathrm{m}$, imposed alternately.

The same test was repeated on the torque meter and coupling alone, with the test drive removed, to isolate the influence of the measurement system stiffness.

## Data

The measurement system exhibited a nonlinear stiffness, which increased from a value of $190 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$ at low torques, to about $300 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$ at torque levels near the transmission's rated maximum input torque, to nearly 400 $\mathrm{N}-\mathrm{m} / \mathrm{rad}$ at the maximum torque input of the meter.

With the measurement system in series with the test drive, the measured input stiffness was also nonlinear. An average stiffness up to $50 \%$ of maximum rated torque was approximately $30 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$. A representative (incremental) input stiffness for loadings from $50 \%$ to $100 \%$ of the rated torque was $40 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$.

A similar experiment on the Hinge-Joint drive yielded data which only demonstrated that the transmission stiffness was significantly larger than the stiffness of the measurement system.

## Analysis

Since the measured stiffness with the Steel Wrist-Roll drive was an order of magnitude lower than the stiffness of the measurement system, the experiment should be valid. Thus, the Steel Wrist-Roll drive has an input stiffness of 30 to $40 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$ (roughly 300 in-lbf/rad). Its input stiffness varies with the applied torque, behaving like a stiffening spring.

The stiffness of the Hinge-Joint drive could not be measured. It could only be proven that this transmission was significantly stiffer then the measurement system, which was approximately $200 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$.

## EFFICIENCY

Efficiency as a function of speed and torque was measured on the two Wrist-Roll drives. For the Steel Wrist-Roll drive, efficiencies were measured both dry and with traction fluid added. Efficiencies were measured up to the rated torque, though only up to $60 \%$ of the rated speed due to equipment limitations. For the Hinge-Joint drive, only static measurements were performed.

## Experimental Procedure

To measure efficiencies of the Wrist-Roll drives, the two drives were coupled together at their high-torque shafts through a rotating, 350 in-lb range torque meter. The high-speed shafts of each drive were driven by dc servomotors. The drive under test was coupled to its drive motor through a rotating, 50 in-lb range torque meter. All devices were coupled using Thomas miniature flexible disc couplings, which provide relatively high torsional stiffness along the shaft axis and compliance along all five remaining degrees of freedom. Figure 29 shows the test setup.

The high-speed shaft of the drive under test was controlled to run at specified speeds from -180 to 180 rad/sec. As in the friction experiments, each datapoint was obtained by controlling the drive speed through a proportional-plus-integral speed controller, waiting 10 seconds for settling after each new speed command, and sampling torque and speed data for 15 seconds during steady-state conditions. Both torque meters were low-pass filtered in analog at 1 Hz and digitally sampled at 1 kHz to obtain a 15,000-point average for each datapoint.

To produce a desired load torque, the second drive and servomotor were controlled in a proportional-plus-integral torque feedback loop, based on the measured output torque of the drive under test. The controlled torque source achieved accurate steady-state torque loads at all input speeds.

Each dataset was obtained at a fixed "output" (low-speed) torque while the "input" (high-speed) velocity was incremented through a range of values. As in the
friction experiments, the data was collected starting from rest, incrementing in steps of $20 \mathrm{rad} / \mathrm{sec}$ up to $180 \mathrm{rad} / \mathrm{sec}$, then retracing the positive-velocity measurements in speed decrements of $20 \mathrm{rad} / \mathrm{sec}$, then continuing through zero down to $-180 \mathrm{rad} / \mathrm{sec}$, and finally retracing the negative velocity measurements in increments of $20 \mathrm{rad} / \mathrm{sec}$ back to rest. Individual datapoints are highlighted, showing repeatability and/or hysteresis in the measurements.

Load torques were held constant in each dataset at six values in equal increments from 0 to $25 \mathrm{~N}-\mathrm{m}$. Note that a positive "output load" in combination with a negative "input velocity" corresponds to power flow in the "reverse" direction. That is, at negative velocities the torque source at the low-speed shaft acts as a power source, and the velocity controller at the high-speed side acts as a controlled brake which sinks power. In this regime, the drive may be thought of as acting as a speed increaser rather than a speed reducer. This type of measurement is somewhat unusual, since drives are seldom measured with active torque sources. Additional measurements were performed to validate the procedure, described further below.

Figure 30 shows the measured output torque vs input velocity for each of the datapoints obtained. This plot documents the effectiveness of the controlled velocity and torque sources. Each line includes 37 datapoints, each consisting of 15,000 torque and velocity samples at steady states. Typically, only 19 datapoints per line can be observed, since the controlled states retrace themselves almost identically (with some exceptions at zero velocity). Figure 30 is representative of the states sampled for each of the Wrist-Roll drive cases: Steel running dry; Steel with traction fluid and Plastic.

Figure 31 shows the output power (positive for power out of the low-speed shaft, negative for power into the low-speed shaft) corresponding to the states of Figure 30. Since these controlled power flows are typical for all Wrist-Roll drive measurements, the plots are not repeated for each case.

Dynamic efficiency of the Hinge-Joint drive was not measured. Instead, the output (high) torque was measured using a 10,000 in-lb Himmelstein reaction torque meter, model 2060. The input (low) torque was excited using the Steel Wrist-Roll drive coupled through the 350 in-lb Himmelstein reactionless torque meter. The input to the Steel Wrist-Roll drive was driven by a dc servomotor which was controlled in a proportional-plus-integral torque feedback loop with respect to the measured input torque of the Hinge-Joint drive. Thus, the Steel Wrist-Roll drive acted as a torque source to the Hinge-Joint drive. The test setup is shown in Figure 32.

The controlled torque source was stepped through three cycles of increasing and decreasing input torques, ranging from -25 $\mathrm{N}-\mathrm{m}$ to $+25 \mathrm{~N}-\mathrm{m}$ in steps of $5 \mathrm{~N}-\mathrm{m}$. For each step,
the torque source was slowly ramped between successive torque commands in order to avoid torque "overshoot". Thus, the torque data was collected with a known history of loading to preserve hysteresis information. In the three cycles of torque loading, 61 datapoints were recorded. As a quasi-static torque source, the control over input torque was not as precise as under dynamic conditions. Nonetheless, the loading was smooth and reasonably reproducible, as demonstrated in the data plots.

The torque controller was given 15 seconds to settle between successive torque commands, then data was sampled at 1 kHz over 10 seconds and averaged. The 10,000 in-lb reaction torque meter at the output was analog low-pass filtered at 1 Hz . The 350 in-lb reactionless torque meter at the input was analog low-pass filtered at 100 Hz . This filter frequency was required to obtain adequate bandwidth of the torque source feedback controller. The strain-guage amplifier used was not matched (recalibrated) to the 10,000 in-lb reaction torque transducer. Thus, the absolute accuracy of the output torque data is not guaranteed to be as precise as the input torque data. However, the $0.1 \%$ linearity specification still applies, so differential measurements can be compared with high accuracy.

## Data

Each of the dataplots for the Wrist-Roll drive cases include 222 datapoints, each of which consists of a 15,000-sample average under steady-state conditions. Each datapoint is marked, and lines are drawn between successive samples, illustrating the history of the data collection and possible hysteresis. Measurements at zero speed are accurate, though they show less reproducibility due to static friction. Efficiency plots do not include the zero-velocity datapoints, as efficiency is undefined at zero speed.

Since both speed and output torque are controlled (as shown in Figure 30), characterization is completed by a measurement of the corresponding input torques. Figure 33 shows the input torques measured for the steel Wrist-Roll drive running dry. Two datapoints on this plot, corresponding to a load of $17.3 \mathrm{~N}-\mathrm{m}$ and speeds of -160 and $-180 \mathrm{rad} / \mathrm{sec}$, were inadvertently recorded at load torques slightly lower than the desired $17.3 \mathrm{~N}-\mathrm{m}$. The efficiencies corresponding to these states have been corrected for the true loading conditions. The input power corresponding to Figure 33 is shown in Figure 34. Note that the direction of power flow at negative velocities is negative, corresponding to the velocity source acting as a brake. Efficiency for the Steel Wrist-Roll drive, running dry, is shown in Figure 35. In this and subsequent efficiency plots, the efficiency is computed as the ratio of power extracted from the transmission to the power delivered to the transmission. For positive velocities, the efficiency is the low-speed
power over the high-speed power, while for negative velocities the efficiency is the high-speed power over the low-speed power. The slope of the efficiency curves through zero velocity is a graphical consequence of connecting successive datapoints, and it should not be interpreted as a valid efficiency derivative near zero velocity.

Efficiency measurements were repeated for the Steel Wrist-Roll drive after adding traction fluid. The resulting input (high-speed) torque, input power, and efficiency are shown in Figure 36 , Figure 37 and Figure 38 , respectively.

During efficiency measurements on the Plastic Wrist-Roll drive, two failures occurred. At higher torques, the "sun" gear broke its Loctite bond on the input (high-speed) drive shaft. The gear was subsequently pinned in place. On the second efficiency measurement attempt, an internal locknut came loose, damaging gear teeth and rollers. Repairs were made with available replacement parts, but a noticeable distortion remained in the re-worked drive. All efficiency measurements reported on the Plastic Wrist-Roll drive were obtained from the re-worked unit.

Input torques and input power for the Plastic Wrist-Roll drive are shown in Figure 39 and Figure 40, respectively. Note from Figure 40 it can be seen that the lowest two output torques (4.2 and $8.3 \mathrm{~N}-\mathrm{m})$ were not sufficient to operate the drive as a speed increaser. To obtain measurements under these loading conditions, the controlled velocity source at the high-speed shaft had to supply power to the drive in addition to the power supplied by the torque source at the low-speed shaft. Thus, efficiencies as a speed increaser at these torques are actually negative, since the drive absorbs power from both ports.

Efficiency of the Plastic Wrist-Roll drive is shown in Figure 41. Data corresponding to the lowest 2 loading conditions has not been displayed, since these loads include negative efficiencies.

Dynamic efficiency of the Hinge-Joint drive was not measured. Only reaction torques were obtained. Figure 42 shows the set of input torques applied to the Hinge-Joint drive. This data is displayed vs the angle of the drive motor at the input of the Steel Wrist-Roll drive, which was used to amplify torque inputs to drive the Hinge-Joint input. In applying plus and minus $25 \mathrm{~N}-\mathrm{m}$ of torque to the Hinge-Joint drive, the Steel Wrist-Roll drive required an input rotation in excess of one full revolution. Stiffness measurements showed that this wind-up is primarily due to the reflected compliance of the mechanical couplings driving the Hinge-Joint input shaft. Figure 43 shows the Hinge-Joint drive output torques corresponding to the inputs of Figure 42. Note in both cases that 61 datapoints taken over three cycles of loading are highly reproducible, except for the initial loading application. The clear hysteresis is not attributable to the instrumentation, nor to any friction effects outside of the Hinge-Joint drive.

Input torque vs output torque is plotted in Figure 44. The plot superimposes all three cycles of loading, which are virtually identical.

## Efficiency Measurement Validation

A surprising result of the Steel Wrist-Roll drive efficiency measurements is that this efficiency is actually higher using the transmission as a speed increaser (power flow into the low-speed shaft) than as a speed reducer (power flow into the high-speed shaft). A potential cause of the unexpectedly high reverse efficiency is the unusual measurement technique, in which the low-speed shaft is driven by an active torque source. Ordinarily, the "load" torque is exclusively passive, such as a friction brake. In the present system, a controlled torque is maintained either as a power source or as a power sink.

To test the validity of the measurement technique, the procedure was inverted: the low-speed shaft was driven with a velocity source, and the high speed shaft was driven with a torque source. A complete dataset was obtained for the lubricated Steel Wrist-Roll drive in this reverse test mode.

Figure 45 shows the measured input torques at velocities ranging from $-160 \mathrm{rad} / \mathrm{sec}$ to $+160 \mathrm{rad} / \mathrm{sec}$. The corresponding output torques are shown in Figure 46. Figure 47 and Figure 48 show the input and output power, respectively. Figure 49 shows the resulting efficiency plot.

Figure 49 should not be identical to Figure 38 , since the individual datasets were taken under different loading conditions (controlled high-speed torques vs controlled low-speed torques, respectively). Nonetheless, the two graphs are quite similar, and clearly support the evidence that the Steel Wrist-Roll drive is more efficient as a speed increaser.

## Analysis

The most notable feature of the efficiency measurements is that the Steel Wrist-Roll drive was more efficient as a speed increaser than as a speed reducer. More precisely, power transfer was more efficient when power flowed from the low-speed port to the high-speed port. The Steel Wrist-Roll drive was most efficient at the highest torque loads and the lowest speeds. Decrease in efficiency with increasing speeds is consistent with the observed speed-dependent frictional losses. High-efficiency as a speed increaser was observed in both the lubricated and unlubricated state, whether excited by a torque source or by a velocity source.

Another interesting feature of the efficiency measurements of the Steel Wrist-Roll drive is that it exhibited higher efficiencies when lubricated than when run dry. This indicates that lubrication was effective and that viscous losses were not significant.

Efficiency measurements on the Plastic Wrist-Roll drive were affected by the two failures which occurred during testing. Nonetheless, the efficiencies at higher loads appears flat as a function of velocity. This behavior is consistent with the input and output friction measurements performed prior to the failures, in which the friction appeared entirely Coulomb-like, with no observable speed dependence.

Dynamic efficiency measurements were not performed on the Hinge-Joint drive. The quasi-static measurements showed a torque hysteresis of approximately $30 \mathrm{~N}-\mathrm{m}$ of output torque. This torque loss is higher than the measured output friction (driven as an unloaded speed increaser) and higher than the reflected measured input friction (driven as an unloaded speed increaser). However, the torque loss is less than the combined output friction plus reflected input friction.

Since the measured friction curves of the Hinge-Joint drive are essentially flat (Coulomb-like), the efficiency of this drive may be expected to be flat vs velocity. At the rated full torque of $820 \mathrm{~N}-\mathrm{m}$, a loss of $30 \mathrm{~N}-\mathrm{m}$ would result in a projected efficiency of $96 \%$.

## PITCH/YAW JOINT DRIVE

## STIFFNESS

## Experimental Procedure

Static stiffness tests were conducted by locking the inputs and measuring deflections of the output load arms under various loads. Figure 50 shows the test setup. Dual load arms were used to apply torques about the pitch axis, and a single load arm was used to apply torques about the yaw axis.

The inputs were locked by first removing the torque meters. A length of $3 / 8$ inch square ( 9.52 mm square) steel rod with a coupling silver soldered to one end was substituted for each torque meter. When in place no backlash could be detected in either rod between it and its connection to the drive. The two rods were then locked to each other by placing two lengths of heavy angle iron at right angles to the axes of the rods. Sturdy C-clamps locked the angle irons to the rods.

A .0001 in/division (. $00254 \mathrm{~mm} / \mathrm{div}$ ) dial indicator was clamped to the frame of the drive with the indicator point contacting the load arm at 4.687 in (119mm) from the drive axis. For torque about the pitch axis, each load arm weighs 6.56 pounds $(2.98 \mathrm{Kg})$ with a center of gravity 16.5 inches (419.1 mm) from the mounting axis. The crossbar weighs 1.156 pounds (.525 Kg) and acts at 33 inches (838.2 mm ) from the axis. The torque about the pitch axis is therefore

$$
T_{p}=[2(16.5)(6.563)+33(W+1.156)] \cos \theta
$$

where $\Theta$ is the angle to the horizontal made by the load arms. For these tests $\theta_{\mathrm{P}}=4.66^{\circ}$.
$T_{p}=253.89+32.89 \mathrm{~W}$ in lbs ( W in lbs)
$\mathrm{T}_{\mathrm{p}}=28.69+0.835 \mathrm{~W} \quad \mathrm{Nm}(\mathrm{W}$ in N$)$
The tare torque at zero deflection (arms in place) is 253.89 in lbs (28.69 Nm).

The angular deflection about the pitch axis is

$$
\begin{aligned}
& \Theta_{P}=\frac{D p}{4.687 \cos 4.66^{\circ}} \\
& \Theta_{P}=\frac{D p}{4.672} \mathrm{rad}
\end{aligned}
$$

where $D p$ is the dial indicator reading.
The torsional stiffness about the pitch axis is

$$
\begin{aligned}
& \mathrm{K}_{\Theta \mathrm{P}}=\frac{\mathrm{T}_{\mathrm{P}}-253.89}{\Theta_{\mathrm{P}}} \\
& \mathrm{~K}_{\Theta \mathrm{P}}=\frac{32.89}{\Theta_{\mathrm{P}}} \mathrm{~W}
\end{aligned}
$$

In a similar fashion, use of a single load arm to apply torque about the yaw axis results in

$$
T_{Y}=[(16.5)(6.653)+(W+.969)(33)] \cos \phi \cos \theta
$$

where $\varnothing$ is the angle between the yaw axis and a true horizontal. For these tests $\phi=5.87^{\circ}$ and $\theta=5.82^{\circ}$

Therefore

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{Y}}=138.8+32.659 \mathrm{~W} & \text { in lbs }(\mathrm{W} \text { in lbs }) \\
\mathrm{T}_{\mathrm{Y}}=15.689+.830 \mathrm{~W} & \mathrm{Nm}(\mathrm{~W} \text { in } \mathrm{N})
\end{array}
$$

The tare torque at zero deflection is 138.8 in lbs (15.69 Nm).

In applying torques about the yaw axis there is also a torque about the pitch axis

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{P}}^{\prime}=(6.563+\mathrm{W}+.969)(3.625) \cos \Theta \\
& \mathrm{T}_{\mathrm{P}}=27.163+3.606 \mathrm{~W} \quad \text { in lbs }(\mathrm{W} \text { in lbs }) \\
& \mathrm{T}_{\mathrm{P}}=3.07+.0916 \mathrm{~W} \quad \mathrm{Nm}(\mathrm{~W} \text { in } \mathrm{N})
\end{aligned}
$$

The tare torque at zero deflection is 27.163 in lbs (3.07 Nm).

The previously derived pitch axis stiffness, together with the torque about the pitch axis, must be taken account of in calculating stiffness about the yaw axis.

$$
\begin{aligned}
& \theta_{Y}=\frac{D_{Y}-\theta_{P}\left(3.625 \cos 5.82^{\circ}\right)}{4.687 \cos 5.87^{\circ}} \\
& \theta_{Y}=\frac{D_{Y}-3.810\left(3.606 \mathrm{~W} / K_{\theta P}\right.}{4.662} \\
& K_{\Theta Y}=T_{Y}-138.8 \\
& \text { or } \\
& K_{\Theta Y}=\frac{32.659 \mathrm{~W}}{\theta_{Y}}
\end{aligned}
$$

## Data

Measured deflections at various loads about the pitch axis are shown in TABLE 11, along with calculated values of $\theta_{p}$ and $K_{\Theta P}$. Measured deflections at various loads about the yaw axis are shown in TABLE 12 , along with calculated values of $\Theta_{Y}$ and $K_{\Theta Y}$. A value of $K_{\Theta P}=137,450$ as determined from the pitch axis data was used calculate $K_{\Theta Y}$.

## Analysis

Data of load vs. angular deflection are shown plotted in Figure 51. The pitch axis data are fairly linear over the load range investigated and indicate a torsional stiffness of approximately 137,000 in lb/rad (15,490 $\mathrm{Nm} / \mathrm{rad}$ ). The yaw axis data are irregular, indicating decreasing stiffness with increasing load. This is not likely real, so the methodology of accounting for deflections about the pitch axis probably has deficiencies. The pitch axis data can probably be accepted as a reasonable value for the joint about either the pitch or yaw axis.

It is interesting to compare these results with the theoretical stiffness of the gear train. At the rated input torques of 240 in lb ( 27.2 Nm ) we have the following:

1. First Stage

$$
\begin{aligned}
& \text { Mean P.D. of pinion }=1.6567 \text { in }(42.08 \mathrm{~mm}) \\
& \text { Mean P.D. of gear }=5.68 \text { in (144.3 mm) } \\
& \mathrm{F}_{\mathrm{T}}=289.8 \text { lbs }(1290 \mathrm{~N}) \text { tangential } \\
& \mathrm{F}_{\mathrm{N}}=308 \text { lbs }(1371 \mathrm{~N}) \text { normal } \\
& \mathrm{F}_{\mathrm{S}}=105.5 \mathrm{lbs}(469.5 \mathrm{~N}) \text { separating }
\end{aligned}
$$

2. Second Stage

Mean P.D. of gears $=2.88$ in ( 73.15 mm )
$\mathrm{F}_{\mathrm{T}}=571.5$ lbs (2543N) tangential
$\mathrm{F}_{\mathrm{N}}=608.8 \mathrm{lbs}(2709 \mathrm{~N})$ normal $\mathrm{F}_{\mathrm{S}}=208$ lbs (926N) separating

From ref. 5,
Tooth deflection

$$
\begin{aligned}
& Y_{T}=\frac{4.85 \mathrm{~F}_{\mathrm{N}}}{\mathrm{Ef}} \\
& { }^{2} \mathrm{Y}_{\mathrm{T}}=\frac{9.70 \mathrm{~F}_{\mathrm{N}}}{\mathrm{Ef}}
\end{aligned}
$$

Compliance

$$
\mathrm{C}=\frac{2 \mathrm{Y}_{\mathrm{T}_{2}}}{\mathrm{~F}_{\mathrm{T}} \mathrm{r}^{2}} \quad \mathrm{rad} / \mathrm{in} \mathrm{lb}
$$

First Stage:

$$
\begin{aligned}
& C_{1}=\frac{(9.70)(308)}{\left(30 \times 10^{6}\right)(.31)(289.8)(1.6567 / 2)^{2}} \\
& C_{1}=8.0776 \times 10^{-7} \quad \mathrm{rad} / \mathrm{in} \mathrm{lb}
\end{aligned}
$$

Second Stage:

$$
\begin{aligned}
& C_{2}=\frac{(9.70)(608)}{\left(30 \times 10^{6}\right)(.5)(571.5)(2.88 / 2)^{2}} \\
& C_{2}=3.3177 \times 10^{-7} \quad \mathrm{rad} / \mathrm{in} \mathrm{lb}
\end{aligned}
$$

Overall:

$$
\begin{aligned}
& C_{T}=\frac{C_{1}}{(3.4286)} 2+C_{2} \\
& C_{T}=6.871 \times 10^{-8}+3.3177 \times 10^{-7} \\
& C_{T}=4.0048 \times 10^{-7} \mathrm{rad} / \mathrm{in} 1 \mathrm{~b} \\
& K_{T}=2.5 \times 10^{6} \mathrm{in} 1 \mathrm{~b} / \mathrm{rad}
\end{aligned}
$$

Since there are two inputs in parallel the theoretical stiffness of the entire gear set should be

$$
2 \mathrm{~K}_{\mathrm{T}}=5 \times 10^{6} \text { in } 1 \mathrm{~b} / \mathrm{rad}
$$

The roller train would be expected to have a torsional stiffness comparable to that of the gear train. Since the rollers act in parallel with the gears, the stiffness of the
roller-gear train should be greater than that of the gears alone.

Comparison of the theoretical gear set stiffness with the measured system stiffness shows that about 97 percent of the compliance arises from the multitude of spring elements, other than rollers and gears, that comprise the system. The sequence of spring elements from input to output is

1. Torque meter shaft
2. Key connection with NAS-235
3. Dowel pin and bolt connection to input pinion NAS-209
4. Input pinion needle bearings
5. Housing NAS-201
6. Input pinion
7. Input pinion to gear NAS-205 tooth connection
8. Gear NAS-205 Kaydon ball bearing
9. Housing NAS-201
10. Gear NAS-205
11. Dowel pin and bolt connection to gear NAS-207
12. Barden torque tube bearings
13. Pitch shaft NAS-238
14. Gear NAS-207 to gear NAS-203 tooth connection
15. Gear NAS-203 angular contact bearings
16. Yaw shaft NAS-202

The "soft" elements in this sequence are the frame, NAS-201, and the various bearings. The interaction of the elements is complex and not amenable to analysis. To appreciably increase torsional stiffness the housing and various bearings would have to be made significantly heavier.

## CONTROL SYSTEM AND JOINT PERFORMANCE

## Experimental Procedure

Generally, single motion commands to execute a simple change in pitch or yaw were inputted to the system to evaluate system performance and response of the joint. Figure 52 illustrates schematically the loading system which consists of a yoke and two load arms. The load arms can be bolted to the yoke in either the forward or rearward position. The joint was operated at four load levels ranging from 0 (yoke only, arms off) to 100.73 ft lbs output torque (about $75 \%$ of full load rating). Inertia effects became very troublesome at higher loads, so data was not taken at full rating. Table 13 is a tabulation of the data files; the type of maneuver, initial and final pitch and yaw positions, and load data are listed.

As stated earlier, the data system operates at 250 HZ , recording values of fourteen variables at . 004 second intervals. Data files can be printed in tabular form but, because of the huge volume of data generated in runs of only
a fraction of a second, they are not readily amenable to analysis without a plotter routine. To facilitate data analysis MATLAB was incorporated into the software system. Data files are translated into a format readable by MATLAB and then plotted exactly as read, or filtered to smooth out noise and irregularities arising from limits in instrument accuracy. Unless otherwise stated on a figure a value of 11 was used to smooth data. This means that each data point represents the arithmetic average of the five previous points, the point in question and the five succeeding points. Motor Command and Tach (motor speed) data were filtered to remove electronic noise. Data from Input Resolvers and Output Pitch and Yaw Position are presented unfiltered because the readouts are smooth within the accuracy of the instruments $(20$ minutes of arc for the input resolvers and 75 seconds of arc for the pitch and yaw resolvers). Torque data are filtered because of a ripple in the A side input (to be discussed later). Pitch and Yaw Velocity data are filtered to reduce irregularities which are magnified when slopes are calculated from position data at . 004 second intervals. Changes in position at successive samples are on the order of 10 minutes of arc while resolver accuracy is on the order of 1.25 minutes of arc or 12.5 percent of the measurement difference.

Data and Analysis
Figures 53-61 illustrate data from a $20^{\circ}$ pitch lift (Data 76), a $20^{\circ}$ pitch drop (Data 77) and a $30^{\circ}$ yaw swing (Data 78), each at essentially zero load. Motor Commands for the two pitch moves are shown in Figure 53. On each of the data plots of two variables, the first is represented by the solid line and the second by the dashed line. On four variable plots (Desire and Actual. Pitch and Yaw, for example) the hierarchy is:

Desire Pitch - Solid line
Actual Pitch - Dashed line
Desire Yaw - Dot-dash line
Actual Yaw - Dotted line.
Full voltage for the Motor Command is $\pm 10$ volts. For the pitch moves the system response time to reach full voltage (Figure 53) was . 08 seconds and for the yaw move (Figure 59a) was . 057 seconds. Duration of the full Motor Command voltage was 0.4 seconds for the $20^{\circ}$ pitch moves and 0.65 seconds for the yaw move. Figures 54 and 59b illustrate the Tachs (motor speed patterns) for the pitch moves and the yaw move, respectively. Time to reach maximum motor speed was 0.16 seconds. Duration of maximum motor speed was 0.4 seconds for the pitch moves and 0.58 seconds for the yaw move. Note, for the pitch moves, the opposite sense of the Motor Commands and the Tachs (Figures 53 and 54). For a pure pitch move input rotations are in the
opposite sense. In contrast inputs are in the same sense for a pure yaw move (Figure 59). For all three moves maximum motor speed approaches 2000 rpm . This was found to be true for all operations of the joint except when the output torque approaches full rating.

Figure 55 illustrates input shaft positions for the two pitch moves, as measured by the input resolvers. The absolute values of resolver angles, and whether or not the two curves approach or diverge for a particular move, have no meaning. Input resolver positions at the beginning of a move are random. For a pitch move they must approach or diverge, however. For these two cases each resolver moves approximately $(20)(3.4286)=68.57^{\circ}$, where 3.4286 is the reduction ratio of the joint. In contrast, for a yaw move the input resolvers move together, as shown in Figure 60a. For a $30^{\circ}$ yaw move, each resolver should move approximately (30) (3.4286) $=102.9^{\circ}$. Close examination of Figure 60a shows that resolver $A$ moved $113^{\circ}$ and resolver $B 92^{\circ}$, indicating some asymmetry in control for a pure yaw move. For all three moves, the moves are smooth. Any high frequency variations in motion are less than the accuracy of the resolvers.

Figure 56 shows the Desired and Actual Pitch and Yaw for the two pitch moves and Figure $60 b$ the same data for the yaw move. "Desire Pitch" and "Desire Yaw" are representative of an ideal system with zero response time operating at maximum speed. Actually the curves of Figure 56 are compatible with the system's capabilities but Figure 60b is overly optimistic. At a maximum achievable motor speed of 2000 rpm the angular speed of either the pitch axis or yaw axis would be

$$
\left(\frac{2000}{90}\right)\left(\frac{1}{3.4286}\right)=6.48 \mathrm{rpm}
$$

$(90$ is the gear box ratio, and 3.4286 is the joint ratio)

Then a $20^{\circ}$ pitch move should be executable in

$$
\left(\frac{20}{360}\right)\left(\frac{1}{6.48}\right)\left(\frac{60}{1}\right)=0.514 \text { seconds }
$$

Figure 56 indicates this and the system response is excellent, with a lag time of 0.1 seconds.

For a $30^{\circ}$ yaw move a realistic execution time would be 0.771 seconds. The "Desire Yaw" curve on Figure 60b is too optimistic. The joint executes the yaw move in 0.88 seconds which is what can be expected with a servo lag time of 0.1 seconds.

Pitch and Yaw Velocities as calculated from slopes of the position curves are shown in Figure 57 for the two pitch moves, and on Figure 61b for the yaw move. All three curve sets indicate an angular velocity of 6.5 to 6.7 rpm for the
axis in motion, with a ripple of approximately $\pm 2.2$ percent. The frequency of the velocity ripple is approximately 37.5 cycles/sec or 2250 cycles/minute. This is not related to any mechanical frequency in the joint itself, but it is fairly close to the number of data samples (27) per revolution of the moving axis. Considering that the pitch and yaw resolver inaccuracies can be as high as 12 percent of the magnitude of the movement from point to point, much of the ripple may be noise.

Torque data are shown for the two pitch moves on Figure 58 and for the yaw move on Figure 61a. The $B$ input torque curve is smooth but the $A$ input curve shows a definite ripple. The frequency for the two pitch moves on Figure 58 is 75 cycles/sec and that for the yaw move on Figure 61a is 37 cycles/sec. Again, neither of these frequencies is relatable to any mechanical frequency in the joint. When the A side input ripple was first noted the joint was partially disassembled to check the input pinion-gear setting. The A side shim set was originally . 067 in . and the $B$ side .070 inches. A . 004 in. shim was added to the $A$ side assembly. This increased the backlash approximately .001 in. but made no difference in the pattern or magnitude of the ripple. The significance of this will be discussed more in the discussion of efficiency.

The high values of torque at startup when the joint is accelerating up to speed are the result of inertia. Even the relatively low inertia of the joint components and the yoke without the load arms or any weights attached (Figure 52) requires initial torques on the order of 12 to 16 ft lbs (Figures 58 and 61a) to accelerate the mass up to speed. In other runs at high levels of output torque load, input torques of up to 35 ft lbs were recorded. With inertia present in the joint components and loading system, only the torque values in the constant speed region of each run are amenable to analysis.

Note the relative differences and magnitudes of the two input torques in the region between sample numbers 50 and 130 on Figure 58 a and b. For the pitch lift (Figure 58a) the joint is doing work and the tare torques are approximately $\pm 1.1 \mathrm{ft}$ lbs. For the pitch drop (Figure 58b) the small torque of the yoke does work on the joint and the tare torques resisting the drop are $\pm 0.16 \mathrm{ft}$ lbs.

## BACKLASH AND LINEARITY

When the static stiffness setup was in place, backlash measurements were made with dial indicators placed against output members. The inputs were effectively locked with the arrangement discussed in the section on STIFFNESS. No backlash could be discerned through the roller-gear trains from the two inputs to the output.

To investigate linearity a series of multiple runs was made (data files 79-83, TABLE 13). These consisted of three dual moves in pitch (a pitch drop followed by a pitch lift)
at three load levels, a dual move in yaw (a swing followed by a return) and a quadrille move (a yaw swing followed by a pitch drop followed by a yaw swing back and a pitch lift). Data from these moves are plotted in Figures 62 through 74.

In the regions of constant motor speed, for all of these moves, the filtered velocity of the moving axis (whether pitch or yaw) indicates an approximate cyclic variation of $\pm 2$ percent (Figures 63b, 65b, 67b, 69b and 71b. A pitch or yaw shaft angular velocity of 6.5 rpm represents a change in position of approximately 9.4 minutes of arc each . 004 seconds (one sampling interval). The accuracy of the pitch and yaw resolvers is 1.25 minutes of arc or 12.5 percent of measurement magnitude. Possible inaccuracies in measurement, therefore, exceed the measurement magnitude so the cyclic fluctuation may or may not be real. Its frequency ( 37 cycles/sec) cannot be related to any obvious physical characteristic of the $P / Y$ joint.

In regions of rapid acceleration or deceleration (at the beginning, center portion and end of each dual move) inertia effects predominate. This is more and more apparent as output torque (and thus load system inertia) increases. Figures 63b (zero load), 65b (17.96 ft lbs torque) and 67b (60.44 ft lbs torque) show an increasing irregularity in velocity profile. The fluctuations in velocity may be a feedback from the torque loading system. A relatively undamped high inertia loading system could account for, at least in part, for the observed velocity profiles. The increasing irregularity of input torques with increasing load for the three dual pitch moves, Figures 72a, 73a and 73b, indicate graphically that the loading system characteristics influence behavior of the joint.

Figures 70 and 71 indicate that the joint operates smoothly through a four part maneuver. Velocity fluctuations are very similar in the pitch and yaw changes (Figure 71b). For this quadrille maneuver with zero load, tare torque is greatest for the pitch lift move, midway for the two yaw swings and least for the pitch drop move (Figure 74).

It is apparent from these results that a more meaningful assessment of joint linearity would require further work with a low (or preferably zero) inertia damped loading system and more precise resolvers or encoders.

## EFFICIENCY

For the Pitch/Yaw Joint efficiency can be defined as

$$
\eta=\left[\frac{\text { Input Power - Output Power }]}{\text { Input Power }} 100\right.
$$

Input Power $=T_{A} \omega_{A}+T_{B} \omega_{B}$ where $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{T}_{\mathrm{B}}$ are input torques and $\omega_{A}$ and $\omega_{B}$ are input angular velocities

From the kinematics of the joint

$$
\begin{aligned}
& \omega_{\text {PITCH }}=\omega_{P}=\frac{\omega_{A}-\omega_{B}}{2 R} \\
& \omega_{Y A W}=\omega_{Y}=\frac{\omega_{A}+\omega_{B}}{2 R}
\end{aligned}
$$

$R$, the reduction ratio, is 3.4286
when torques $T_{P}$ and $T_{Y}$ are applied to the output of the joint, then

Output Power $=T_{P} \frac{\left(\omega_{A}-\omega_{B}\right)}{2 R}+T_{Y} \frac{\left(\omega_{A}+\omega_{B}\right)}{2 R}$
These relationships are used to calculate efficiency from known values of $T_{P}, T_{Y}$ and $R$, and measured values of $T_{A}$ and $T_{B}$. During a pitch lift the imposed torque load is the output. During a pitch drop the imposed torque load is the input with the normal "input" torques opposing the motion and acting as "outputs".

The loading system makes it impossible to apply a torque about the yaw axis without also applying a torque about the pitch axis. For simplicity torque data were taken only in pitch moves (pitch lifts and drops) of 20 to $30^{\circ}$ with the load arms close to horizontal. The change in torque due to small rotations from the horizontal was neglected. The joint was operated at four load levels: 0, $17.96,60.44$ and 100.73 ft lbs output torque about the pitch axis. Figures 50 a and 52 illustrate the loading arrangement. TABLE 14 summarizes the data files from which torque data are obtained and the figures on which the torque plots can be found.

The frictional loss at zero load can be calculated from the torque data on Figures 58a, 58b and 72a. The presence of the yoke (Figure 52) applies a small but non-zero torque at the output during pitch lifts and drops. Its effect can be cancelled by averaging the input torques for the lift and drop moves. The input torques during pitch lifts (Figures 58 a and 72 a ) average $\pm 1.07 \mathrm{ft}$ lbs. The input torques during pitch drops average $\pm 0.24 \mathrm{ft}$ lbs. The average of these, $\pm 0.66 \mathrm{ft}$ lbs, is probābly a reasonably good representation $\bar{\circ} \mathrm{f}$ tare loss in the joint. This represents about 0.5 percent of the full load rating. The torque ripple in the $A$ side input, which was present for all of the runs made, did not result in any statistical difference in absolute magnitudes between the $A$ and $B$ side torques. The algebraically positive input torque (A side with load arms
forward, and $B$ side with the load arms rearward) was slightly greater in magnitude than the algebraically negative torque for all of the pitch moves.

Efficiency increases with increasing load. At 60 ft lbs torque (slightly less than 50 percent of full load rating) efficiency values between 88 and 98 percent were obtained. Figure 79 is a plot of all of the torque data tabulated on TABLE 14. Efficiencies of 98 percent or better can be expected when the joint is loaded at 70 percent or greater of full load rating.

Figures 75 through 78 show the torque plots at load torques of $17.96,60.44$ and 100.73 ft lbs. Input torques become increasingly irregular at higher values of load torque because of inertia. Torques were averaged over the constant speed region of the move for the efficiency calculations. The relatively short duration of a typical move (less than one second) requires an initial acceleration up to speed, followed by a constant speed region, and a deceleration to a stop. The duration of the constant speed region is approximately 0.35 seconds. During acceleration and deceleration input torques can be high and irregular due to bouncing of the weights at the end of the load arms. As shown on Figures 75 through 78, input torques are irregular and asymmetric during the acceleration and deceleration portions of the move, reaching values as high as 35 ft lbs. This compares with steady state values of $\pm 14.4 \mathrm{ft}$ lbs at the highest torque load (Figure 78).

It is apparent that for more precise torque and efficiency analysis a low inertia, damped load system would have to be employed.

## REFERENCES

1. Anderson, William J.: "Roller-Gear Drives For Robotic Manipulators". Final Report for NASA Lewis Research Center, Contract NAS 3-25282, August, 1988.
2. duPont Company: "Design Handbook for duPont Engineering Plastics", Section 9, Gear Design, E. I. duPont de Nemours \& Co., Inc. Polymer Products Department, Wilmington, Delaware, 19898.
3. Amoco Performance Products, Inc.: "Torlon Engineering Polymers/Design Manual". Booklet F-49893. Amoco Performance Products, Inc., 38C Grove Street, Ridgefield, Ct., 06877.
4. Roark, Raymond J., and Young, Warren C.: "Formulas for Stress and Strain, 5th Edition". McGraw-Hill Book Company, New York, 1982.
5. Cornell, R. W.: "Compliance and Stress Sensitivity of Spur Gear Teeth". Journal of Mechanical Design, Vol. 103, No. 2, April, 1981.
6. Buckingham, E.: "Manual of Gear Design". The Industrial Press, New York.

TABLE 1 - GEAR DATA FOR THE WRIST-ROLL JOINT ROLLER-GEAR DRIVE

| GEAR | a | $\mathrm{x}_{1}$ | $\mathrm{Y}_{1}$ | $\mathrm{x}_{2}$ | c |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of teeth | 24 | 51 | 15 | 60 | 164 |
| Diametral pitch | 43 | 43 | 38 | 38 | 38 |
| Pitch dia.,in. | . 5581 | 1.1860 | . 3947 | 1.5789 | 4.3158 |
| Pressure ang.deg. | 20 | 20 | 20 | 20 | 20 |
| Base Circle dia., in. | . 5245 | 1.1145 | . 3709 | 1.4837 | 4.0555 |
| Circular tooth thickness, in. | $\frac{.0392}{.0387}$ | $\frac{.0319}{.0314}$ | $\frac{.0440}{.0435}$ | $\frac{.0315}{.0310}$ | $\frac{.0454}{.0444}$ |
| Outside or Major dia., in. | $\frac{.6126}{.6120}$ | $\frac{1.220}{1.219}$ | $\frac{.4552}{.4547}$ | $\frac{1.600}{1.599}$ | $\frac{4.3626}{4.3679}$ |
| Root or Minor dia., in. | $\underline{.5121}$ | $\frac{1.1199}{1.1134}$ | $\frac{.3415}{.3341}$ | $\frac{1.4913}{1.4839}$ | $\frac{4.284}{4.285}$ |
| True involute <br> form dia. (max) | . 5318 | 1.1462 | . 371 | 1.5255 | 4.354 |
| Msrg.pin dia.,in. | . 040 | . 040 | . 050 | . 050 | . 050 |
| Measurement over (between) pins | $\frac{.6194}{.6182}$ | $\frac{1.2293}{1.2279}$ | $\frac{.4744}{.4735}$ | $\frac{1.6344}{1.6331}$ | $\frac{4.2201}{4.2231}$ |
| Operating Center <br> Distance (ref.1) | . 870 | . 870 | . 9775 |  | 1.3749 |
| Contact Ratio | 1.66 |  | 1.66 |  |  |
|  |  |  |  | 1.30 |  |
| Backlash at Operating Center Distance, (ref.1) | $\frac{.0015}{.0015}$ | $\frac{.0005}{.0015}$ | . 0.0007 |  | $\frac{.001}{.0025}$ |
| Operating Pitch <br> Dia., (ref.1) | . 5568 | 1.1832 | . 3910 | $\begin{aligned} & 1.564 \\ & 1.5864 \end{aligned}$ | $4.3361$ |
| Mating Roller Dia. | . 5568 | 1.1832 | . 3910 | $\begin{aligned} & 1.564 \\ & 1.5864 \end{aligned}$ | $4.3344$ |
| Dwg.No. (Steel) | NAS-141 | NAS-147 | NAS-144 | NAS-152 | NAS-155 |
| Dwg.No. (Plastic) | NAS-182 | NAS-147 | NAS-144 | NAS-152P | NAS-155 |

TABLE 2. - ROLLER AND GEAR MATERIALS FOR THE WRIST-ROLL DRIVES

|  | STEEL DRIVE (NAS-140A) | PLASTIC DRIVE <br> (NAS-140AP) |
| :---: | :---: | :---: |
| SUN |  |  |
| ROLLER a | AMS $6490 \mathrm{M}-50$ | AISI 4340 |
| GEAR a | $1_{\text {ETD }} 150$ | DELRIN 100 |
| FIRST PLANET |  |  |
| ROLLER $\mathrm{x}_{1}$ | AMS $6490 \mathrm{M}-50$ | TORLON 4203 |
| GEAR $\mathrm{x}_{1}$ | $1_{\text {ETD }} 150$ | $1_{\text {ETD }} 150$ |
| ROLLER $\mathrm{Y}_{1}$ | AMS 6490 M-50 | AISI 4340 |
| GEAR $\mathrm{Y}_{1}$ | $1_{\text {ETD }} 150$ | $1_{\text {ETD }} 150$ |
| SECOND PLANET |  |  |
| ROLLER $\mathrm{x}_{2}$ | AMS 6490 M-50 | TORLON 4203 |
| GEAR $\mathrm{x}_{2}$ | $1_{\text {ETD }} 150$ | DELRIN 100 |
| RING |  |  |
| ROLLER C | AMS $6490 \mathrm{M}-50$ | AISI 4340 |
| GEAR c | $1_{\text {ETD }} 150$ | $1_{\text {ETD }} 150$ |

TABLE 3. - GEAR AND ROLLER MATERIALS FOR THE STEEL-PLASTIC WRIST-ROLL DRIVE


| ROLLER | STEEL DRIVE | DRAWING NO. | PLASTIC DRIVE | DRAWING NO. |
| :---: | :---: | :---: | :---: | :---: |
| a. Dim. | $\frac{.5569}{.5567}$ | NAS-143 | $\frac{.5570}{.5568}$ | $\begin{aligned} & \text { NAS-142P, } \\ & \text { NAS-183 } \end{aligned}$ |
| Material | $\begin{aligned} & \text { M-50 Steel } \\ & \text { (AMS-6490) } \end{aligned}$ | NAS-146 | $\begin{aligned} & 4340 \\ & \text { Steel } \end{aligned}$ | $\begin{aligned} & \text { NAS }-146 \mathrm{P}, \\ & \text { NAS }-183 \end{aligned}$ |
| $\mathrm{x}_{1}$ Dim. | $\frac{1.1833}{1.1831}$ | NAS-149 | $\frac{1.1840}{1.1836}$ | NAS-149P |
| Material | $\begin{gathered} \text { M-50 Steel } \\ \text { (AMS-6490) } \end{gathered}$ | NAS-148 | $\begin{aligned} & \text { Torlon } \\ & 4203 \end{aligned}$ | NAS-148P |
| $Y_{1}$ Dim. | $\frac{.3911}{.3909}$ | NAS-149 | $\frac{.3912}{.3908}$ | NAS-149P |
| Material | $\begin{gathered} \text { M-50 Steel } \\ \text { (AMS-6490) } \end{gathered}$ | NAS-146 | 4340 Steel | NAS-146P |
| $\mathrm{x}_{2}$ Dim. | $\frac{1.5643}{1.5641}$ | NAS-154 | $\frac{1.5662}{1.5658}$ | NAS-154P |
| Material | $\begin{aligned} & \text { M-50 Steel } \\ & \text { (AMS-6490) } \end{aligned}$ | NAS-154 | $\begin{aligned} & \text { Torlon } \\ & 4203 \end{aligned}$ | NAS-154P |
| $\mathrm{Y}_{2}$ Dim. | $\frac{1.5871}{1.5869}$ | NAS-154 | $\frac{1.5886}{1.5882}$ | NAS-154P |
| Material | $\begin{gathered} \text { M-50 Steel } \\ \text { (AMS -6490) } \end{gathered}$ | NAS-154 | $\begin{aligned} & \text { Torlon } \\ & 4203 \end{aligned}$ | NAS-154P |
| c Dim. | $\frac{4.3356}{4.3346}$ | NAS-156 | $\frac{4.3365}{4.3355}$ | NAS-156P |
| Material | $\begin{aligned} & \text { M-50 Steel } \\ & \text { (AMS-6490) } \end{aligned}$ | NAS-156 | $\begin{aligned} & 4340 \\ & \text { Stee } \end{aligned}$ | NAS-156P |

TABLE 5 - GEAR DATA FOR THE HINGE-JOINT ROLLER-GEAR DRIVE

| GEAR | a | $\mathrm{x}_{1}$ | $\mathrm{Y}_{1}$ | $\mathrm{x}_{2}$ | c |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of teeth | 28 | 62 | 20 | 100 | 264 |
| Diametral pitch | 32 | 32 | 28 | 28 | 28 |
| Pitch dia.,in. | . 875 | 1.9375 | . 7143 | 3.5714 | 9.4286 |
| Pressure ang.deg. | 20 | 20 | 20 | 20 | 20 |
| Base Circle dia., in. | . 8222 | 1.8207 | . 6712 | 3.3560 | 8.8600 |
| Circular tooth thickness, in. | $\frac{.0519}{.0514}$ | $\frac{.0338}{.0333}$ | . 06663 | . .0614 | . .0617 |
| Outside or Major dia., in. | $\frac{.9461}{.9455}$ | $\frac{1.9529}{1.9519}$ | $\frac{.8145}{.8135}$ | $\frac{3.6583}{3.6573}$ | $\frac{9.4929}{9.5000}$ |
| Root or Minor dia., in. | $\frac{.8111}{.8023}$ | $\frac{1.8239}{1.8151}$ | $\frac{.6602}{.6502}$ | $\frac{3.5040}{3.4940}$ | $\frac{9.370}{9.372}$ |
| True involute <br> form dia. (max) | . 8369 | 1.8629 | . 6846 | 3.5410 | 9.476 |
| Msrg.pin dia.,in. | . 060 | . 060 | . 06857 | . 06857 | . 06857 |
| Measurement over (between) pins | $\frac{.9768}{.9757}$ | $\frac{1.9961}{1.9947}$ | $\frac{.8423}{.8414}$ | $\frac{3.6975}{3.6963}$ | $\frac{9.2967}{9.2996}$ |
| Operating Center Distance, in. |  | 90 |  | $1650$ | 630 |
| Contact ratio | 1. |  |  | $55$ |  |
| Backlash at Operating Center Distance, in. | . 0 |  | $\frac{.0013}{.0023}$ |  | $\frac{.001}{.002}$ |
| Operating Pitch Diameter, in. | . 8649 | 1.9151 | . 7217 | $\begin{aligned} & 3.6083 \\ & 3.5511 \end{aligned}$ | 9.3749 |
| Mating Roller Dia., in. | . 8649 | 1.9151 | . 7217 | $\begin{aligned} & 3.6083 \\ & 3.5511 \end{aligned}$ | 9.3749 |
| Drawing No. | NAS-302 | $\begin{aligned} & \text { NAS-305 } \\ & \text { NAS }-307 \end{aligned}$ | $\begin{aligned} & \text { NAS-305 } \\ & \text { NAS-306 } \end{aligned}$ | NAS-311 | MAS-313 |

TABLE 6. - ROLLER AND GEAR MATERIALS FOR THE HINGE-JOINT DRIVE

|  | MATERIAL (Steel Alloys) | DRAWING NO. |
| :---: | :---: | :---: |
| SUN |  |  |
| Roller a | $\begin{aligned} & \text { AMS }-6490 \\ & \text { Rc } 61-63 \end{aligned}$ | NAS-303 |
| Gear a | Nitralloy 135 M . 005/.008 in. CASE, Rc 60-63 | NAS-302 |
| FIRST PLANET |  |  |
| Roller $\mathrm{x}_{1}$ | $\begin{aligned} & \text { AMS }-6490 \\ & \text { RC } 61-63 \end{aligned}$ | NAS-310 |
| Gear $\mathrm{x}_{1}$ | Nitralloy 135M .005/.008 in. CASE, Rc 60-63 | $\begin{aligned} & \text { NAS-307 } \\ & \text { NAS }-305 \end{aligned}$ |
| Roller $\mathrm{Y}_{1}$ | $\begin{aligned} & \text { AMS-6490 } \\ & \operatorname{RC} 61-63 \end{aligned}$ | NAS-309 |
| Gear $\mathrm{Y}_{1}$ | Nitralloy 135M . 005/.008 in. CASE, Rc 60-63 | $\begin{aligned} & \text { NAS-306 } \\ & \text { NAS }-305 \end{aligned}$ |
| SECOND PLANET |  |  |
| $\begin{array}{rr} \text { Roller } & \mathrm{x}_{2} \\ \mathrm{Y}_{2} \end{array}$ | $\begin{aligned} & \text { AMS }-6490 \\ & \text { RC } 61-63 \end{aligned}$ | NAS-312 |
| Gear $\mathrm{x}_{2}$ | Nitralloy 135M . 005/.008 in. CASE, Rc 60-63 | NAS-311 |
| RING |  |  |
| Roller c | AMS-6265(AISI 9310) .030/.045 in. CASE $\mathrm{R}_{15 \mathrm{~N}}$ 89.5-91 | NAS-314 |
| Gear c | SAE 4340 <br> Rc 33-38 | NAS-313 |

TABLE 7. - ROLLER DIAMETERS AND DRAWING SOURCES FOR HINGE-JOINT DRIVE

|  | DIAMETER, in. | DRAWING NO. |
| :---: | :---: | :---: |
| SUN |  |  |
| a | $\frac{.8655}{.8653}$ | NAS-301 |
| FIRST PLANET |  |  |
| $\mathrm{x}_{1}$ | $\frac{1.9157}{1.9155}$ | NAS-304 |
| $Y_{1}$ | $\frac{.7223}{.7221}$ | NAS-304 |
| SECOND PLANET |  |  |
| $\mathrm{x}_{2}$ | $\frac{3.6089}{3.6087}$ | NAS-312 |
| $Y_{2}$ | $\frac{3.5520}{3.5518}$ | NAS-312 |
| RING |  |  |
| c | $\frac{9.3685}{9.3689}$ | NAS-314 |

TABLE 8 - ZEROL BEVEL GEAR STRESSES AND REACTION FORCES FOR PITCH/YAW JOINT ROLLER-GEAR DRIVE Standard Involute $20^{\circ}$ P.A.

|  | GEAR |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Input <br> Pinion | Intermediate Fixed Gear | Intermediate Transversing Gear | $\begin{aligned} & \text { Pitch- } \\ & \text { Yaw } \\ & \text { Gear } \end{aligned}$ |
| Cone Half <br> Angle, deg. | 73.74 | 16.26 | 45 | 45 |
| $\begin{aligned} & \text { Diametral } \\ & \text { Pitch } \end{aligned}$ | 16 | 16 | 12 | 12 |
| Pitch Dia. mm (in.) | $\begin{aligned} & 44.45 \\ & (1.75) \end{aligned}$ | $\begin{aligned} & 152.4 \\ & (6.00) \end{aligned}$ | $\begin{aligned} & 82.55 \\ & (3.25) \end{aligned}$ | $\begin{aligned} & 82.55 \\ & (3.25) \end{aligned}$ |
| No. of Teeth | 28 | 96 | 39 | 39 |
| $\begin{aligned} & \text { Face Width, } \\ & \text { mm (in.) } \end{aligned}$ | $\begin{aligned} & 7.87 \\ & (.31) \end{aligned}$ | $\begin{aligned} & 7.87 \\ & (.31) \end{aligned}$ | $\begin{aligned} & 12.7 \\ & (.50) \end{aligned}$ | $\begin{aligned} & 12.7 \\ & (.50) \end{aligned}$ |
| Tooth Bending Stress, GPa (psi) | $(26, .181)$ | $\begin{gathered} .181 \\ (26,300) \end{gathered}$ | $\begin{gathered} .192 \\ (27,800) \end{gathered}$ | $\begin{gathered} .192 \\ (27,800) \end{gathered}$ |
| Tooth Comp. Stress, GPa (ksi) |  | $\begin{aligned} & 1.414 \\ & (205) \end{aligned}$ |  |  |
| Separating <br> Force, N(lb.) |  | $\begin{gathered} 472 \\ (106) \end{gathered}$ | (20 ${ }^{9}$ |  |
| ```Radial Force, N(lb.)``` |  | $\begin{gathered} 449 \\ (101) \end{gathered}$ | (145) |  |
| Axial <br> Force, N(lb.) |  | $\begin{aligned} & 131 \\ & (29.5) \end{aligned}$ | 65 $(14)$ |  |
| Drawing | NAS-209 | NAS-205 | NAS-207 | NAS-203 |



2
5
5


- . Mnoys os. MJdY NJ\&I FAEE ANG JUNCT TO OETEN APEU
MEAM SIMCULAN TNIERNESS MEAM CIMCULAR THIERNESS
OUTEA NOMANL TOP LANO - ONVT JOL TVWBON NVIM MEAN NORMAL TOP LANO
INHER NORMAL TOP LAMO INNER NORNAL TOP LANO
PITCH ANGLE MNV 74 30 379NV 3JVs IMNEA FACE AMGLE OF - - - 379NY 100 y DEDENDUR ANGLE s79NY TVuids NVBN giswr TVuIds yinNI 7vylds 10 aVVA



 OEPTH FACTOR
ADDENDUF FACTOR $\cdot C I:$ GEOMETAY BACTOR - ITAENGTM-d STRENGTM IACTOR-I M19N3y1s Ny assn snicyy 3903 xy - voigvi sniovy y3isnj STAENGTH AALANCE OESIAED STGENGTK BALANCE OAIAIMED
GECHETRY FACTOR IURADILETV DUAAEILITY PACTOTER geonetar facton-Iconinges* SCORING FACTOR © X
MOOT LINE FACE WEOTH: $\cdot$ PROFILE SLIDINE FAGTOR ${ }^{\circ}$ ©



홍․․


옹․․




픙 - ©

310

3.0000

$20^{2}$
005
005
300

 | 8 |
| :---: |
| 5 |
| $n$ |
|  |
|  |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

 2
-8
00 20
00
00 DEPTM


 paiseunt am\&LE........ Thangvense contact Ratio: - - OIIVU 1 JY\&NOS SJYi MOBEBEE COMTAET MATIO:
OUTEA COME DISTANEE $33 N V 1810$ 3MOS MVIN
ISNYLEs gMOS ysino

-     - M3Y1810 3MOS MVIN

CLEAMANEE
ADEENDUA $\cdot$


[^0]



310
GEAM ANGULAR PACE - COMCAVE
GEAA ANGULAA PACE COMVEY.
GEAR ANGULAR PACE - TOTAL.

- 40 635v3730

> FORM M-2

TIME 11:33


 12

## P1MEN $2015 \%$ <br> $\omega^{\circ} 801^{\circ}$ <br> $\qquad$ <br> ${ }^{2}$ 8 2 0 0 0.0 0.0 0.0310 10010 M 10029 m $2 \pi$ 20

 MEAN CIACULAK TNICKNESS $\quad$ -OUTER NONMAL TOP LANO OUTEA NOAMAL TOP LANO
MEAN NORMAL TOP LAMB INNEA NOAMAL TOP LANO PITCN ANGLE $\bullet \bullet \bullet \bullet$. IMNGA FACE AMGLE OF LANK
 DEOENDUK ANGLE
OUTEA SPIRAL ANGLE $\cdot \bullet$. OUTEN SPIRAL ANGLE $\quad \bullet \bullet \bullet$
MEAN SPIRAL ANGLE INNER SPIRAL ANELE: .
 DIAECTION OF MOTITICN-DAIVEA
OUTER NORAAL HACYLASH OUTER NORMAL HACYLASH GEAR TYPE ©
FACE IN PERCENT TF CONE OIST
 GEOMETAY FACTOA-ITAENGTM-d GEOMETAY FACTOA-ITAENGIM-
STMENGTM PACTOR-I
 $\begin{array}{ll}2 & 0 \\ 8 & 0 \\ 0 & 0 \\ 0\end{array}$

 55 ©

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |





| $95^{\text {GEAR }}$ |
| :---: |
| 10.000 |
|  |  |
|  |
| 0.000 |
| 1.601 |
| 3.125" |
| $\begin{aligned} & 2.970^{\prime \prime} \\ & 0.000^{\circ \prime} \end{aligned}$ |
|  |  |
|  |
| $0.012^{\prime \prime}$ |
| $0.010^{\circ \prime}$ |
| $0.101{ }^{\prime \prime}$ |
| $6.020{ }^{\prime \prime}$ |





|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

TABLE 10 - BEVEL ROLLER GEOMETRY, LOADS AND STRESSES FOR PITCH/YAW JOINT ROLLER-GEAR DRIVE

|  | ROLLER |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Input | Intermediate Fixed | Intermediate Transversing | Pitch/ <br> Yaw |
| Cone Half Angle, deg. | $16.26^{\circ}$ | $73.74{ }^{\circ}$ | $45^{\circ}$ | $45^{\circ}$ |
| Pitch Rad. mm (in.) | $\begin{gathered} 18.445 \\ (.726) \end{gathered}$ | $\begin{aligned} & 63.246 \\ & (2.490) \end{aligned}$ | $\begin{aligned} & 46.83 \\ & (1.8438) \end{aligned}$ | $\begin{aligned} & 46.83 \\ & (1.8438) \end{aligned}$ |
| Face Width, mm (in.) | $\begin{aligned} & 9.525 \\ & (.375) \end{aligned}$ | $\begin{aligned} & 9.525 \\ & (.375) \end{aligned}$ | $\begin{gathered} 11.226 \\ (.442) \end{gathered}$ | $\begin{array}{r} 11.226 \\ (.442) \end{array}$ |
| Cross Rad., mm (in.) | $\infty$ | $\begin{array}{r} 381 \\ (15) \end{array}$ | $\begin{array}{r} 381 \\ (15) \end{array}$ | $\infty$ |
| Normal <br> Load,N (lb.) | 4,899 | $(1,101)$ | 6,621 ( | ,488) |
| ```Contact Ellipse, 2a mm (in.) 2b mm (in.)``` | $\begin{aligned} & 6.528 \\ & 0.940 \end{aligned}$ | $\begin{aligned} & (.257) \\ & (.037) \end{aligned}$ | $\begin{aligned} & 6.782 \\ & 1.448 \end{aligned}$ | $\begin{aligned} & .267) \\ & .057) \end{aligned}$ |
| Maximum Hertz Stress GPa (ksi) | 1.53 | (222) | 1.28 (180 | 86) |
| Normal Approach, mm (in.) | 0.020 | (.0008) | 0.023 | .0009) |
| Drawing | NAS-210 | NAS-206 | NAS-208 | NAS-204 |

TABLE 11 - PITCH/YAW JOINT DRIVE PITCH AND TORSIONAL STIFFNESS DATA

| $\begin{aligned} & \text { LOAD W, } \\ & \text { lbs (N) } \end{aligned}$ | AVERAGE DEFLECTION, $\frac{D_{\mathrm{PA}}+D_{\mathrm{PB}}}{2}$ <br> in ( mm ) | $\Theta_{\mathrm{P}}, \mathrm{rad}$ | $K_{\Theta P} \frac{i n l b}{r a d}\left(\frac{N n}{r a d}\right)$ |
| :---: | :---: | :---: | :---: |
| 2.5 (11.13) | . 0028 (.0711) | . 00060 | 137,000 (15,485) |
| 5.06 (22.52) | . 0049 (.1245) | . 00105 | 158,500 (17,915) |
| 10. (44.5) | . 0108 (.2743) | . 00231 | 142,400 $(16,096)$ |
| 15.72 (69.95) | . 0181 (.4597) | . 00387 | 133,600 (15,100) |

TABLE 12 - PITCH/YAW JOINT DRIVE YAW AXIS TORSIONAL STIFFNESS DATA

| $\begin{aligned} & \text { LOAD W, } \\ & \text { lbs (N) } \end{aligned}$ | AVERAGE DEFLECTION, Dy, in(mm) | $\begin{aligned} & \theta_{\mathrm{P}}=\frac{3.606 \mathrm{~W}}{\mathrm{~K}_{\Theta P}, \mathrm{rad}} \\ & \mathrm{~K}_{\Theta P}=137,450 \\ & \text { (Figure } 52 \text { ) } \end{aligned}$ | $\theta y$, rad | $\begin{aligned} & \text { Key } \\ & \frac{\text { in } 1 b}{\text { rad }}\left(\begin{array}{rl} \text { rad } \end{array}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | . 0011 | . 000052 | . 000193 | 338,000 $(38,204)$ |
| 4 | . 0028 | . 000105 | . 000515 | 253,700 (28,676) |
| 6.56 | . 0058 | . 000172 | . 01104 | 194,000(21,927) |
| 10. | . 0122 | . 000262 | . 002403 | 135,900(15,361) |
| 15 | . 0235 | . 000394 | . 00472 | 103,800(11,732) |

TABLE 13 - DATA FILES USED FOR PITCH/YAW JOINT DRIVE ANALYSIS

| FILE | MANEUVER | Puch, dea. |  | YAW. dea. |  | TORQUE ARM POSITION | LOAD TORQUE, ft lbs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | INITIAL | FINAL | INITIIAL | FINAL |  |  |
| DATA 48 | PITCH LIFT | -20.3 | 20.1 | 10.07 | 10.8 | REARNARD | 60.44 |
| DATA 49 | PITCA DROP | 20.1 | -21.86 | 10.8 | 11.2 | REARNARD | 60.44 |
| DATA 63 | PITCA DROP | -0.44 | -20.76 | 10.07 | 11.22 | REARWARD | 100.73 |
| DATA 64 | PITCH LIFT | -20.76 | -0.11 | 11.22 | 10.93 | REARNARD | 100.73 |
| DATA 67 | PITCH DRCP | -0.46 | 20.26 | 10.78 | 10.69 | FORWARD | 17.96 |
| DATA 68 | PITCA LIFT | 20.26 | 0.26 | 10.69 | 11.24 | FORNARD | 17.96 |
| DATA 71 | PITCH DRCP | 0.57 | 20.65 | 10.65 | 10.89 | FORWARD | 60.44 |
| DATA 72 | PITCH LTFT | 20.65 | 0.07 | 10.89 | 11.09 | FORWARD | 60.44 |
| DATA 76 | PITCH LTFT | 20.58 | -0.75 | 11.02 | 11.11 | ARMS OFF <br> yoke anly | 0 |
| DAIA 77 | PITCH DROP | -0.75 | 20.21 | 11.11 | 10.93 | ARMS OFF <br> YOKE ONLY | 0 |
| DATA 78 | YAN SWING | 0.07 | 0.07 | -20,14 | 10.56 | $\begin{aligned} & \text { ARMS OFF } \\ & \text { YOKE ONLY } \end{aligned}$ | 0 |
| DATA 79 | $\begin{aligned} & \text { PIICA DPOP } \\ & \text { PIICH LIFT } \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 20 \end{aligned}$ | $\begin{aligned} & 20 \\ & 0 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | ARMS OFF YOKE ONLY | 0 |
| DATA 80 Dual move | COW YAN SWING CW YAN SWING | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 11 \\ & 30 \end{aligned}$ | $\begin{aligned} & 30 \\ & 11 \end{aligned}$ | ARMS OFF <br> YOKE ONLY | 0 |
| DAIA 81 Quadrille move | CW YAN SWING PITCH DROP CW YAW SWING PITCH LIFT | $\begin{aligned} & 0 \\ & 0 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & 0 \\ & 20 \\ & 20 \\ & 0 \end{aligned}$ | 10 30 30 10 | 30 30 10 10 | ARMS OFF YOKE ONLY | 0 |
| DAIA 82 <br> Dual move | PITCH DROP PITCA LIFT | 0 <br> 20 | $\begin{aligned} & 20 \\ & 0 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | FORWARD | 17.96 |
| DATA 83 Dual move | PITCH DROP <br> PITCH LIFT | 0 20 | 20 0 | 11 | 11 | FORWARD | 60.44 |

TABLE 14 - PITCH/YAW JOINT DRIVE TORQUE DATA

| FILE | FIGURE | MANEUVER | INPUT TORQUES, ft lbs | LOAD TORQUE, ft lbs | EFFICIENCY, |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Data |  |  |  |  |  |
| 76 | 58a | Pitch Lift | +1.1 |  | --- |
| 79 | 72a | Pitch Lift | $\mp 1.04$ |  |  |
| 68 | 75a | Pitch Lift | $\pm 3.71$ | $\{17.96$ | 70.6 |
| 82 | 73 a | Pitch Lift | $\pm 3.54$ |  | 73.8 |
| 48 | 76a | Pitch Lift | $\pm 9$. | $\{60.44$ | 97.9 |
| 72 | 77a | Pitch Lift | $\pm 10$. | 160.44 | 88.1 |
| 64 | 78a | Pitch Lift | £15. | 100.73 | 97.9 |
| 77 | 58 b | Pitch Drop | $\pm 0.16$ | \{ 0 | --- |
| 79 | 72a | Pitch Drop | $\pm 0.32$ |  |  |
| 67 | 75b | Pitch Drop | $\pm 2.58$ | $\{17.96$ | 98.5 |
| 82 | 73 a | Pitch Drop | $\mp 2.9$ | $\{17.96$ | > 100 |
| 49 | 76b | Pitch Drop | $\pm 8.0$ | \{60.44 | 94.0 |
| 71 | 77 b | Pitch Drop | $\pm 8.51$ |  | 96.5 |
| 63 | 78b | Pitch Drop | ¥14.4 | 100.73 | 98.1 |


FIGURE 1 - POWER AND POWER CONIROL
$\bullet$

FIGURE 2 - MOTOR POWER AND MOTOR BRAKE POWER

FIGURE 3 - MOTOR TACHOMEIER SIGNALS

FIGURE 4 - TORQUE SENSOR REFERENCE SIGNAL

FIGURE 5 - TORQUE SENSOR SIGNAL



FIGURE 9 - PITCH AND YAN RESOLVER POSITION SIGNAL
FIGURE 10 - PITCH, YAN AND MOTOR SHAFT RESOLVER VELOCITY SIGNALS

$$
\text { Channels } 4,5,6, " \text { Lo }
$$



FIGURE 11 - PITCH, YAN AND MOTOR RESOLVER SIGNAL POWER AMPLIFIERS


FIGURE 12 - Linearity of Hinge-Joint Drive

$$
c-2
$$



FIGURE 13 - Linearity of Steel Wrist-Roll Drive


FIGURE 14 - Linearity of Plastic Wrist-Roll Drive


FIGURE 15 - Incremental Linearity of Hinge-Joint Drive


FIGURE 16 - Hinge-Joint Drive worst-case nonlinearity


FIGURE 17 - Friction of Steel Wrist-Roll drive, unloaded, as a speed reducer (dry).


FIGURE 18 - Friction of Steel Wrist-Roll drive, unloaded, as a speed increaser (dry).


FIGURE 19 - Friction of Steel Wrist-Roll drive, unlcaded, as a speed reducer (lubricated).


FIGURE 20 - Friction of Steel Wrist-Roll drive, unloaded, as a speed increaser (lubricated).


FIGURE 21 - Friction of Plastic Wrist-Roll drive as a speed reducer.


FUGURE 22 - Friction of Plastic Wrist-Roll drive as a speed increaser.


FIGURE 23 - Friction of Hinge-Joint drive, unloaded, as a speed reducer.


FIGURE 24 - Friction of Hinge-Joint drive, unloaded, as a speed increaser.


FIGURE 25 - Output Inertia Test of the Steel Wrist-Roll drive.


FIGURE 26 - Backlash data for the Steel Wrist-Roll drive.


FIGRE 27 - Backlash data for the Plastic Wrist-Roll drive.


FIGURE 28 - Backlash data for the Hinge-Joint drive.

a) Schematic

b) Photo showing test arrangement and data processing system

FIGURE 29 - Test setup for efficiency measurements of the Wrist-Roll drives.

c) Steel Wrist-Roll drive, partially assembled

d) Plastic Wrist-Roll drive, partially assembled

> FIGURE 29 - Test setup for efficiency measurements of the Wrist-Roll drives.


FIGURE 30 - Controlled input velocities and output torques (typ) for the Steel Wrist-Roll drive (lubricated).


FIGURE 31 - Controlled output (low-speed) power (typ) for the Steel Wrrist-Roll drive (lubricated).

a) Schematic

b) Photo showing Hinge-Joint drive and reaction torquemeter

FIGURE 32 - Test setup for static measurements of the Hinge-Joint drive.

c) Hinge-Joint drive, partially assembled

[^1]

FIGURE 33 - Steel Wrist-Roll drive input torques (dry).


FIGURE 34 - Steel Wrist-Roll drive input power (dry).


FIGURE 35 - Steel Wrist-Roll drive efficiency (dry).


FIGURE 36 - Steel Wrist-Roll drive input torques (lubricated).


FIGRE 37 - Steel Wrist-Roll drive input power (lubricated).


FIGURE 38 - Steel Wrist-Roll drive efficiency (lubricated).


FIGURE 39 - Plastic Wrist-Roll drive input torques.


FIGURE 40 - Plastic Wrist-Roll drive input power.


FIGURE 41 - Plastic Wrist-Roll drive efficiency.


FIGURE 42 - Hinge-Joint drive quasi-static input torques.


FIGURE 43 - Hinge-Joint drive quasi-static output torques.


FIGURE 44 - Hinge-Joint drive torque hysteresis.


FIGURE 45 - Steel Wrist-Roll drive input torques (lubricated). (Reverse Measurement: high-speed torque source, low-smeed velocity source).


FIGURE 46 - Steel Wrist-Roll drive output torques (lubricated). (Reverse Measurement: high-speed torque source, low-speed velocity source).


FIGURE 47 - Wrist-Roll drive low-speed power (lubricated). (Reverse lieasurement: high-speed torque source, low-speed. velocity source).


FIGURE 48 - Wrist-Roll drive high-speed power (lubricated). (Reverse measurement: high-speed tormue source, low-speed velocity source).


FIGURE 49 - Steel Wrist-Roll drive efficiency (lubricated). (Reverse ifeasurement: high-speed torque source, low-speed velocity source).


ORIGINAL PAGE COLOR PHOTOGRA $H$
a) Pitch axis

b) Yaw axis

FIGURE 50 - Test setup for Pitch-Yaw Joint drive stiffness measurements.

c) Pitch-Yaw Joint drive, partially assembled

[^2]


FIGURE 52 - Schematic of Pitch/Yaw Joint loading system.


Figure 53 - Pitch/Yaw Joint motor cammands for pitch lift (a) and pitch drop (b). No load.
(a) $\operatorname{dota76}$ : Filtered Tach $A$ and Tach B

(b) dato77: Filtered Tach A and Tach B


Figure 54 - Pitch/Yaw Joint drive motor speeds for pitch lift (a) and pitch drop (b). No load.


Figure 55 - Pitch/Yaw Joint input resolver positions for a pitch lift (a) and pitch drop (b). No load.


Figure 56 - Pitch/Yaw Joint desired and actual pitch and yaw positions for pitch lift (a) and pitch drop (b). No load.


Figure 57 - Pitch/Yaw Joint pitch and yaw velocities for pitch lift (a) and pitch drop (b). No load.


Figure 58 - Pitch/Yaw Joint input torques for pitch lift (a) and pitch drop (b) . No load.


Figure 59 - Pitch/Yaw Joint motor commands (a) and motor speeds (b) for a yaw swing. No load.
(a) doto78: Resolver $A$ and Resolver $B$

(b) data78: Desired and Actual Pitch and Yaw


Figure 60 - Pitch/Yaw Joint input resolver positions (a) and desired and actual pitch and yaw positions (b) for a yaw swing. No load.


Figure 61 - Pitch/Yaw Joint input torques (a) and pitch and yaw velocities for a yaw swing. No load.


Figure 62 - Pitch/Yaw Joint motor speeds and input resolver positions for a $20^{\circ}$ pitch drop, followed by a $20^{\circ}$ pitch lift. zero load.


Figure 63 - Pitch/Yaw Joint pitch and yaw positions and velocities for a $20^{\circ}$ pitch drop followed by a $20^{\circ}$ pitch lift. zero load.
(a) data82: Filtered Tach A and Tach B

(b) data82: Resolver A and Resolver B


Figure 64 - Pitch/Yaw Joint motor speeds and input resolver positions for a $20^{\circ}$ pitch drop followed by a $20^{\circ}$ pitch lift. Load, 17.96 ft lbs torque.


Figure 65 - Pitch/Yaw Joint pitch and yaw positions and velocities for a 200 pitch drop followed by a $20^{\circ}$ pitch lift. Load, 17.96 ft lbs torque.


Figure 66 - Pitch/Yaw Joint motor speeds and input resolver positions for a 200 pitch drop followed by a $20^{\circ}$ pitch lift. Load, 60.44 ft lbs torque.


Figure 67 - Pitch/Yaw Joint pitch and yaw positions and velocities for a 200 pitch drop followed by a $20^{\circ}$ pitch lift. Load, 60.44 ft lbs torque.


Figure 68 - Pitch/Yaw Joint motor speeds and input resolver positions for 200 yaw swings back and forth. zero load.


Figure 69 - Pitch/Yaw Joint pitch and yaw positions and velocities for 200 yaw swings back and forth. zero load.
(a) data81: Filtered Tach A and Tach B

(b) data81: Resolver $A$ and Resolver $B$


Figure 70 - Pitch/Yaw Joint motor speeds and input resolver positions for a 200 yaw swing followed by a $20^{\circ}$ pitch drop followed by a $20^{\circ}$ yaw swing back and a 200 pitch lift. Zero load.


Figure 71 - Pitch/Yaw Joint pitch and yaw positions and velocities for a 200 yaw swing followed by a $20^{\circ}$ pitch drop followed by a 200 yaw swing back and a 200 pitch lift. Zero load.




Figure 74 - Pitch/Yaw Joint input torques for a 200 yaw swing followed by a 200 pitch drop, followed by a 200 yaw swing back and a 200 pitch lift. zero load.


Figure 75 - Pitch/Yaw Joint input torque data for (a) pitch lift and (b) pitch drop. Load, 17.96 ft lbs torque.


Figure 76 - Pitch/Yaw Joint input torque data for (a) pitch lift and (b) pitch drop. Load, 17.96 ft lbs torque.
(a) data72: Filtered Torques $A$ and $B$

(b) dota71: Filtered Torques A and B

Figure 77 - Pitch Yaw Joint input torque data for (a) pitch lift and (b) pitch drop. Load, 60.44 ft lbs torque.
(a) data64: Filtered Torques $A$ and $B$ '

(b) dato63: Filtered Torques $A$ and $B$

somple number
Figure 78 - Pitch/Yaw Joint input torque data for (a) pitch lift and (b) pitch drop. Load, 100.73 ft lbs torque.

A. WRIST ROLL JOINT ROLLER-GEAR DRIVE GEAR DATA
B. HINGE JOINT ROLLER-GEAR DRIVE GEAR DATA
C. PITCH YAW JOINT ROLLER-GEAR DRIVE GEAR DATA
D. SOFTWARE FOR PITCH YAW JOINT

# WRIST-ROLL JOINT ROLLER-GEAR DRIVE GEAR DATA <br> Specifications for the Wrist Roll drive were: <br> <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Nominal ratio</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$25: 1$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Output torque</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$26 \mathrm{Nm}(230 \mathrm{in} .16)$.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Output speed</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">120 rpm</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Maximum diameter</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$152.4 \mathrm{~mm}(6$ inches)</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Nominal ratio | $25: 1$ |  |
| :--- | :--- | :--- |
| Output torque | $26 \mathrm{Nm}(230 \mathrm{in} .16)$. |  |
| Output speed | 120 rpm |  |
| Maximum diameter |  | $152.4 \mathrm{~mm}(6$ inches) |</table-markdown></div> <br> <br> Cluster Geometry 

 <br> <br> Cluster Geometry}

The cluster geometry chosen from the Phase I study. (ref. l), when carried forward into detail design, was found to present some assembly difficulties so a slightly modified four planet system was chosen from Table l of ref. $1:$

$$
\mathcal{C}=6.000^{\circ} \quad \gamma=39.000^{\circ}
$$

Using equations 1 through 12 of ref. 1:
$(7 / 15) N_{y 1}=$ integral number $\quad N_{y 1}=15$ teeth
$(13 / 60) N_{x_{2}}=$ integral number $\quad N_{x_{2}}=60$ teeth
Selecting

$$
a+x_{1}=.870
$$

$$
N_{a}=24 \text { teeth } \quad N_{x 1}=51 \text { teeth }
$$

$$
x_{1} / a=51 / 24=2.125
$$

$$
a=.870 / 3.125=.2784 \mathrm{in} .
$$

$x_{1}=.5916 \mathrm{in}$.
Operating P.D. $a=(.2784)(2)=.5568 \quad x_{1}=(.5916)(2)=1.1832$
Selecting a cutter with $P=43$
Cutting P.D. $a=24 / 43=.5581395 \quad x_{1}=51 / 43=1.1860465$
Maximum permissible 00 of $x_{1}$ gear for clearance

$$
00_{x 1}=(.870)(\sin 45)(2)=1.2304
$$

Standard addendum $=1 / 43=.02325$
Standard $O D_{x_{1}}=1.186+2(.02325)=1.2325$
Use a short addendum for $x_{1}=.70 / 43=.0163$
Long addendum for $a=1.30 / 43=.0302$

$$
00_{x 1}=1.18605+2(.0163)=1.21865 \mathrm{in} .
$$

$$
\begin{array}{ll}
\left(y_{1}+x_{2}\right) /\left(a+x_{1}\right)=\left(\sin 45^{\circ} / \sin 39^{\circ}\right)=1.1236038  \tag{1}\\
y_{1}+x_{2}=.9775353 & x_{2} / y_{1}=60 / 15=4 \\
y_{1}=.1955071 \mathrm{in.} & x_{2}=.7820284 \mathrm{in} .
\end{array}
$$

Operating P.D. $y_{1}=(.1955071)(2)^{\circ}=.3910142$
Operating P.D. $x_{2}=(.7820284)(2)=1.5640568$
Selecting a cutter with $P=38$
Cutting P.D. $y_{1}=15 / 38=.3947368 \quad x_{2}=60 / 38=1.5789474$

$$
\begin{equation*}
z=\frac{\left(y_{1}+x_{2}\right) \sin (90+\infty)}{\sin \theta}=1.3748705 \mathrm{in} . \tag{2}
\end{equation*}
$$

Selecting $N_{c}=164$ teeth (divisible by 4)
Cutting P.D. $c=164 / 38=4.3157895$

$$
\begin{array}{rlrl}
c / x_{2}=164 / 60=2.733333 & c-x_{2} & =1.3748705 \\
x_{2}= & c 931947 \mathrm{in} . & c=2.1680652 \mathrm{in.} \\
\text { Operating P.D. } x_{2} \text { with } c \text { gear }=(.7931947)(2)=1.586389 \\
c \text { with } x_{2} \text { gear }=(2.1680652)(2)=4.3361304 \\
\text { Ratio }=(51 / 24)(164 / 15)=23.233
\end{array}
$$

## Gear Stresses

Input torque $=230 / 23.233=9.9$ in.lbs. at $2,788 \mathrm{rfm}$ axl contacts ( 4 contacts)

$$
F_{T}=(9.90 / 4)(1 / .2784)=8.89 \mathrm{lb} .(2 \mathrm{~N})
$$

Bending Stress

$$
\begin{aligned}
S_{B}=\frac{F_{T} P}{f Y} & f
\end{aligned} \quad \begin{aligned}
& =.25 \mathrm{in.} \text { (face width) } \\
Y & =.572
\end{aligned}
$$

Steel:

$$
S_{B}=\frac{(8.89)(43)}{(.25)(.35)}=4,368 \mathrm{psi} \quad\left(12.54 \mathrm{~N} / \mathrm{m}^{2}\right)
$$

$$
\text { Plastics: } S_{B}=\frac{(8.89)(43)}{(.25)(.572)}=2,673 \mathrm{psi}\left(7.67 \mathrm{~N} / \mathrm{m}^{2}\right)
$$

(4,000 to 6,000 psi is OK for $10^{7}$ cycles for Delrin or Zytel nylon)
Pitch line velocity $=\frac{(\pi)(.5568)(2788)}{12}=406 \mathrm{fpm}(2.06 \mathrm{~m} / \mathrm{s})$

$$
\begin{aligned}
& m_{G}=51 / 24=2.125 \\
& \frac{m_{G}+1}{m_{G}}=1.47
\end{aligned}
$$

Compressive Stress

$$
\begin{gathered}
\text { Stress } S_{c}=5715 \sqrt{\left(\frac{F_{T}}{D f}\right)\left(\frac{m_{G}+1}{m_{G}}\right)}=55,400 \mathrm{psi}\left(159 \mathrm{~N} / \mathrm{m}^{2}\right) \\
\text { OK for } R_{c} 30-38 \text { steel } \\
y_{1} \times_{2} \text { contacts ( } 4 \text { gears, } 2 \text { contacts per gear) }
\end{gathered}
$$

Torque $=(9.90)(51 / 24) / 4=5.26 \mathrm{in}, \mathrm{lb}$. per gear
$F_{T}=(5.26) /(.1955)(2)=13.45 \mathrm{lb}(59.85 \mathrm{~N})$
$f=.375$ for $y_{1} \quad f=.343$ for $x_{2} \quad f=.375$ for $c$
Steel: $\quad S_{B}=\frac{(13.45)(38)}{(.375)(.28)}=4,868 \mathrm{psi}\left(13.98 \mathrm{~N} / \mathrm{m}^{2}\right)$ OK for $R_{c}$ 30-38 steel
Plastics: $_{B}=\frac{(13.45)(38)}{(.375)(.48)}=2,840 \mathrm{psi} \quad\left(8.15 \mathrm{~N} / \mathrm{m}^{2}\right)$ OK for Delrin or Zytel

Pitch line velocity $=\frac{(2788)(.2784 / .5916)(\pi)(.391)}{12}=134.3 \mathrm{fpm}(.68 \mathrm{~m} / \mathrm{s})$

$$
\begin{aligned}
& m_{G}=60 / 15=4 \\
& \frac{m_{G}+1}{m_{G}}=1.25
\end{aligned}
$$

Compressive Stress $S_{c}=5715 \sqrt{\frac{(13.45)(1.25)}{(.343)(.391)}}=64,000 \mathrm{psi} \quad\left(183.7 \mathrm{~N} / \mathrm{m}^{2}\right)$

## $x_{2} c$ contacts ( 4 contacts)

Torque $=230$ in. lbs.

$$
F_{T}=(230) /(2.168)(4)=26.52 \mathrm{lb} \quad(118 \mathrm{~N})
$$

Steel:

$$
S_{B}=\frac{(26.52)(38)}{(.343)(.384)}=.7 .651 \text { psi }\left(21.97 \mathrm{~N} / \mathrm{m}^{2}\right)
$$

Plastics: OK for $R_{c}$ 30-38 steel

$$
S_{B}=\frac{(26.52)(38)}{(.343)(.713)}=4,120 \text { psi }\left(11.83 \mathrm{~N} / \mathrm{m}^{2}\right)
$$

Pitch line velocity $=\frac{(120)(4.336)(\pi)}{12}=136.2 \mathrm{fpm}(.69 \mathrm{~m} / \mathrm{s})$

$$
\begin{aligned}
& m_{G}=164 / 60=2.733 \\
& \frac{m_{G}+1}{m_{G}}=.634 \\
& \quad S_{C}=5715 \sqrt{\frac{(26.52)(.634)}{(.343)(1.586)}}=31,800 \mathrm{psi} \quad\left(91.2 \mathrm{~N} / \mathrm{m}^{2}\right) \\
& \text { OK for } R_{c} 30-38 \text { steel }
\end{aligned}
$$

## Gear Geometry and Measurement Data

$$
C D \text {, center distance }=\frac{a-x_{1} \text { mesh }}{=} \quad\left(P=43 ; \mathrm{in} . . \quad \phi=20^{\circ}\right.
$$

Operating P.D. $a=.5568$
Cutting P.D. $a=24 / 43=.5581 \quad x_{1}=51 / 43=1.186 u$

Operating pressure angle $\phi$ :

$$
\begin{gathered}
\text { Cutting P.D. } \times \cos \phi=\text { Operating P.D. } \times \cos \phi_{1} \\
.5581 \cos 20^{\circ}=.5568 \cos \phi_{1} \\
\phi_{1}=19.61778^{\circ}
\end{gathered}
$$

$$
A-4
$$

```
        BC, Base circle dia. = Cutting P.D. }x\operatorname{cos}
Base circle diag. \(a=.5245 \quad x_{1}=1.1145\)
Operating pinion addendum \(=1.20 / 43=.0279\)
Operating gear addendum \(=.80 / 43=.0186\)
0.D. Pinion \(a=.5568+2(.0279)=.6126 \mathrm{in}\).
O.D. Gear \(x_{1}=1.1832+2(.0186)=1.2204 \mathrm{in}\).
Cutting Standard addendum \(=1 / 43=.0233\)
Cutting circular pitch \(=\pi / 43=.0730\)
Nominal Tooth thickness \(=.073 / 2=.0365 \mathrm{in}\). (. 0363 with min. backlash)
Pinion a addendum with respect to the cutting P.O.:
\[
\text { addendum }=(.5)(.6126-.5581)=.02725 \text { (addendum increases) }
\]
Pinion a tooth thickness at cutting P.D.:
\[
T_{1}=.0363+(.02725-.0233)\left(2 \tan 20^{\circ}\right)=.0392 \mathrm{in} .
\]
Gear \(x_{1}\) addendum with respect to the cutting P.D.:
\[
\text { addendum }=(.5)(1.2204-1.1860)=.0172 \text { (addendum decreases) }
\]
Gear \(x_{1}\) tooth thickness at cutting P.D.:
\[
T_{1}=.0363-(.0233-.0172)\left(2 \tan 20^{\circ}\right)=.0319 \mathrm{in} .
\]
Pinion a tooth thickness, \(T_{2}\), at operating P.D.:
```

```
\[
\begin{aligned}
& T_{2}=2 r_{2}\left[\frac{T_{1}}{2 r_{1}}+i n v \phi-i n v \phi_{1}\right] \\
& \text { (1) } \\
& 2 r_{1}=\text { cutting P.D. }=.5581 \quad 2 r_{2}=\text { operating P.D. }=.5568 \\
& \text { inv } \boldsymbol{\theta}=\tan \phi-\phi \\
& \text { inv } \boldsymbol{\phi}=.01490438 \\
& T_{2}=.0396 \mathrm{in} . \\
& \text { Ref. } 6 \text { p 25, Sect. } 2
\end{aligned}
\]
(1)
```

Gear $x_{1}$ tooth thickness, $T_{2}$, at operating P.D.:

$$
\begin{array}{rlrl}
T_{1} & =.0319 & 2 r_{1} & =1.1860 \\
2 r_{2} & =1.1832 & T_{2} & =.0328 \mathrm{in.} \text { (eq. 7) }
\end{array}
$$

Operating circular pitch $=(\pi)(.5958) /(2)(12)=.072885$
Minimum backlash $=.072885-(.0396+.0328)=.0005 \mathrm{in}$.
Recommended tooth thicknesses:

$$
\begin{aligned}
& \text { Pinion } a=.0392 / .0387 \text { at cutting P.D. } \\
& \text { Gear } x_{1}=.0319 / .0314 \text { at cutting P.D. }
\end{aligned}
$$

Expected backlash .0005/.0015
Pinion a
Maximum Root Dia. $=.6126-4.32 / 43=.5121$
Minimum Root Dia. $=.6126-4.60 / 43=.5056$
Gear $x_{1}$
Maximum Root Dia. $=1.2204-4.32 / 43=1.1199$
Minimum Root Dia. $=1.2204-4.60 / 43=1.1134$
Pinion a Form Dia $=\sqrt{(B C)_{P}^{2}+\left[2 C D \sin \phi_{1}-\left\{(O D)_{G}^{2}-(B C)_{G}^{2}\right\}^{\frac{1}{2}}\right]^{2}}$
$(B C)_{P}=.5245 \quad C D=.870$
$(00)_{P}=.6126 \quad(00)_{G}=1.220$
$(B C)_{G}=1.145 \quad \phi_{1}=19.61778^{\circ}$
Pinion a Form Dia $=.5318$
Gear $x_{1}$ Form Dia $=\sqrt{(B C)_{G}{ }^{2}+\left[2 \operatorname{CDSin} \phi-\left\{(O D)_{P}{ }^{2}-(B C)_{P}\right\}^{\frac{1}{2}}\right] \cdot 2}$
Gear $x_{1}$ Form Dia $=1.1462$

$$
\begin{equation*}
\text { Contact Ratio }=\frac{P_{P}+P_{G}-C D \sin \phi_{1}}{B P} \tag{10}
\end{equation*}
$$

where:

$$
\begin{gather*}
B P \text {, Base Pitch }=\frac{(\pi)(.5245)}{24}=.0687 \\
P_{P}=\sqrt{(0 D)_{P}^{2}-(B C)_{P}^{2} / 2}  \tag{11}\\
P_{G}=\sqrt{(O D)_{G}^{2}-(B C)_{G}^{2} / 2}  \tag{12}\\
\text { Contact Ratio }=1.66
\end{gather*}
$$

Minimum clearance for $x_{1}$ gear $=2(.870)(\sin 45)-1.220=.0104 \mathrm{in}$.
M , Measurement over pins:
Pinion a

$$
\begin{align*}
& M_{1}=\frac{2 r_{1} \cos \phi_{1}}{\cos \phi_{2}}+2 x  \tag{13}\\
& \operatorname{inv} \phi_{2}=\frac{T_{1}}{2 r_{1}}+\operatorname{inv} \phi+\frac{x}{r_{1} \cos \phi}-\frac{\pi}{N} \tag{14}
\end{align*}
$$

$$
\begin{array}{ll}
\phi_{2}=\text { Pressure angle at center of roll } ; \phi=20^{\circ} \\
\operatorname{inv} \phi=.01490438 & ; \quad 2 x=\text { pindiameter }
\end{array}
$$

$$
\text { For } T_{1}=.0392 ; 2 r_{1}=.5581 ; N=24 ; 2 x=.040
$$

$$
\operatorname{inv} \phi_{2}=.030504
$$

$$
\phi_{2}=25.13842^{\circ}
$$

$$
M_{1}=.61935
$$

For $T_{1}=.0387 ; \operatorname{inv} \phi_{2}=.02961 ; \phi_{2}=24.90283^{\circ}$

$$
M_{1}=.61824
$$

Pin measurement . $6194 / .6182$ with .040 diameter pins

```
Gear (x)
```

$$
\begin{align*}
& M_{2}=2 r_{3} \cos \frac{90}{N}+2 x  \tag{15}\\
& r_{3}=\text { radius to center of roll } \\
& r_{3}=\frac{r_{1} \cos \phi}{\cos \phi_{2}} . \tag{16}
\end{align*}
$$

$$
\text { For } T_{1}=.0319 ; 2 r_{1}=1.1860 ; N=51 ; 2 x=.040
$$

$$
\operatorname{inv} \phi_{2}=.01609
$$

$$
\phi_{2}=20.4990^{\circ}
$$

$$
M_{2}=1.2293
$$

$$
\text { For } T_{1}=.0314
$$

$$
\operatorname{inv} \phi_{2}=.01567
$$

$$
\phi_{2}=20.32459^{\circ}
$$

$$
M_{2}=1.2279
$$

Pin measurement $1.2293 / 1.2279$ with .040 diameter pins

$$
y_{1} x_{2} \text { mesh }\left(P=38 ; \phi=20^{\circ}\right)
$$

$$
C D=.9775
$$

Operating P.D. $y_{1}=.3910 ; \quad x_{2}=1.5640$
Cutting P.D. $y_{1}=15 / 38=.3947 ; x_{2}=60 / 38=1.5789$
Operating pressure angle $\boldsymbol{\phi}_{1}$ (eq. 5):

$$
\phi_{1}=18.45278^{\circ}
$$

Base circle diag. $y_{1}=.3709$ (eq. 6) $; x_{2}=1.4837$ (eq. 6)
Operating Pinion addendum $=1.22 / 38=.0321$
Operating Gear addendum $=.78 / 38=.0205$
0.0. Pinion $y_{1}=.3910+2(.0321)=.4552$
O.D. Gear $x_{2}=1.5640+2(.0205)=1.6050$

Cutting standard addendum $=1 / 38=.0263$
Cutting circular pitch $=\pi / 38=.0827$
Nominal tooth thickness $=.0827 / 2=.0413$ (with min. backlash allowance of .0002 , use .0411)

Pinion $y_{1}$ addendum with respect to the cutting P.D.:

$$
\text { addendum }=.5(.4552-.3947)=.03025 \text { (addendum increases) }
$$

Pinion $y_{l}$ tooth thickness at cutting P.O.:

$$
T_{1}=.0411+(.03025-.0263)\left(2 \tan 20^{\circ}\right)=.0440 \mathrm{in}
$$

Gear $x_{2}$ addendum with respect to the cutting P.D.:

$$
\text { addendum }=.5(1.605-1.5789)=.01305 \text { (addendum decreases) }
$$

Gear $x_{2}$ tooth thickness at cutting P.D.:

$$
T_{1}=.0411-(.0263-.01305)\left(2 \tan 20^{\circ}\right)=.0315 \mathrm{in} .
$$

Pinion $y_{1}$ tooth thickness, $T_{2}$, at operating P.D.:

$$
\begin{aligned}
& 2 r_{1}=.3947 \\
& \operatorname{inv} \phi=.014904 \\
& \operatorname{inv} \phi_{1}=.011617 \\
& T_{1}=.0440 \\
& T_{2}=.0449 \text { in. (eq. 7) }
\end{aligned}
$$

$$
\phi=20^{\circ}
$$

$$
\phi_{1}=18.45278^{\circ}
$$

$$
2 r_{2}=.3910
$$

Gear $x_{2}$ tooth thickness, $T_{2}$, at operating P.D.:

$$
2 r_{1}=1.5789 \quad 2 r_{2}=1.564
$$

$$
\begin{aligned}
& T_{1}=.0315 \\
& T_{2}=.0363 \text { in (eq. 7) }
\end{aligned}
$$

Operating circular, pitch $=(\pi)(.3910) / 15=.0819$
Minimum backlash $=.0819-(.0449+.0363)=.0007 \mathrm{in}$.
Recommended tooth thicknesses:

```
Pinion }\mp@subsup{y}{1}{}=.0440/.0435 at cutting P.D
Gear }\mp@subsup{x}{2}{}=.0315/.0310 at cutting P.O.
    Expected backlash . 0007 to . 0017
```

Pinion $y_{1}$

$$
\begin{aligned}
& \text { Maximum Root Diag. }=.4552-4.32 / 38=.3415 \\
& \text { Minimum Root Diag. }=.4552-4.60 / 38=.3341
\end{aligned}
$$

Gear ${ }^{-} x_{2}$

```
Maximum Root Dia. = 1.605-4.32/38=1.4913
Minimum Root Dia. = 1.605-4.60/38=1.4839
```

Pinion $y_{1}$ Form Via (eq. 8):

$$
\begin{array}{ll}
(B C)_{P}=.3709 & C O=.9775 \\
(O D)_{G}=1.605 & (O D)_{P}=.4552 \\
(B C)_{G}=1.4837 & \phi_{1}=18.45278^{\circ}
\end{array}
$$

Pinion $y_{1}$ Form Dial $=.371 \mathrm{in}$.
Gear $x_{1}$ Form Diag (eq. 9): Gear $x_{1}$ Form Dial $=1.5255 \mathrm{in}$. Contact Ratio (eq. 10):

$$
\begin{gathered}
P_{P}=.1319 \text { (eq. } 11 \text { ) ; } P_{G}=.3061 \text { (eq. 12) } \\
\text { Contact Ratio }=1.66
\end{gathered}
$$

M , Measurement over pins:
Pinion $y_{1}$

$$
\begin{gathered}
\text { For } \begin{array}{c}
T_{1}=.0440 ; 2 r_{1}=.3947 ; \phi=20^{\circ} \\
\operatorname{inv} \phi=.0149 ; N=15 ; 2 x=.050 \\
\text { inv } \phi_{2}=.05174 \text { (eq. 14) } ; \phi_{2}=29.6493^{\circ} \\
r_{3}=.2134 \text { (eq. 16) } ; M_{3}=.4744 \text { (eq. 15) } \\
\text { For } \quad T_{1}=.0435 ; i n v \phi_{2}=.0505 \text { (eq. 14) } \\
\phi_{2}=29.4232^{\circ} ; \quad r_{3}=.2129 \text { (eq. 16) } \\
M_{3}=.4735 \text { (eq. 15) }
\end{array} .
\end{gathered}
$$

Pin measurement . $4744 / .4735$ with .050 diameter pins

Gear $x_{2}$

$$
\text { For } \begin{aligned}
T_{1} & =.0315 ; 2 r_{1}=1.5789 ; \quad \phi=20^{\circ} \\
\operatorname{inv} \phi & =.0149 ; N=60 ; 2 x=.050 \\
\operatorname{inv} \phi_{2} & =.0162 \text { (eq. 14) } ; \phi_{2}=20.54180
\end{aligned} M_{4}=1.6344 \text { (eq. 13) } \quad .
$$

For $T_{1}=.0310 ; \operatorname{inv} \boldsymbol{\phi}_{2}=.0159$ (eq. 14)

$$
\phi_{2}=20.4117^{\circ} ; \quad M_{4}=1.6331 \text { (eq. 13). }
$$

Pin measurement 1.6344/1.6331 with . 050 diameter pins

$$
\underline{x_{2} c \text { mesh }}(P=38 ; \phi=20)
$$

$$
C D=1.3749
$$

Operating P.D. $x_{2}=1.5864 ; \quad c=4.3361$
Cutting P.D. $x_{2}=60 / 38=1.5789 ; c=164 / 38=4.3158$
Operating pressure angle $\boldsymbol{\phi}_{1}$ (eq. 5)

$$
\phi_{1}=20.73142^{\circ}
$$

Base circle diag. $x_{2}=1.4837$ (previously derived) ; $c=4.0555$ (eq. 6)
Pinion $x_{2}$ tooth thickness, $T_{2}$, at operating P.D. with gear $c:$

$$
\begin{gathered}
2 r_{1}=1.5789 ; \quad \phi=20^{\circ} ; \quad \operatorname{inv} \phi=.014904 \\
\phi_{1}=20.73142^{\circ} ; \quad \operatorname{inv} \phi 1=.01666 ; 2 r_{2}=1.5864 \\
T_{2}=.0289 \mathrm{in} . \text { (eq. 7) }
\end{gathered}
$$

In order to have a backlash of $.0005 / .002$ between pinion $x_{2}$ and ring gear $c$ the space width of gear $c$ at its P.D. must be .0294 min. to .0304 max.

Operating circular pitch of gear $c=(\pi)(4.3361) / 164=.0831$
Gear c tooth thickness, $T_{1}$, at operating P.D. $=.0831-.0294=.0537 \mathrm{max}$. $=.0831-.0304=.0527 \mathrm{~min}$.

Gear $c$ tooth thickness, $Y_{2}$, at cutting P.D. of 4.3158 :

$$
\begin{equation*}
T_{2}=2 r_{2}\left[T_{1} / 2 r_{1}-i n v \phi_{1}+i n v \phi\right] \tag{17}
\end{equation*}
$$

$2 r_{1}=4.3361 ; 2 r_{2}=4.3158 ; \phi_{1}=20.33142^{\circ}$
$\operatorname{inv} \phi_{1}=.01666 ; \phi=20^{\circ} ; \operatorname{inv} \phi=.01490$
when $T_{1}=.0537 \quad T_{2}=.0459$
when $T_{1}=.0527 \quad T_{2}=.0449$
Gear $c$ tooth thickness at cutting P.D. $=.0459 / .0449$
Expected backlash with $x_{2}$ gear $=.0005 / .002$
Gear $c$ circular pitch at cutting P.D. $=(\pi)(4.3158) / 164=.08267$
Space widths at cutting P.D. $=.0827-.0459=.0368 \mathrm{~min}$. $=.0827-.0449=.0378$ max.

Gear $c$ major diag. $=$ Operating P.D. $+(2)$ (gear $x_{2}$ Operating addendum)

+ (2)(Clearance)
Minimum clearance $=.150 / 38=.00395$
Maximum clearance $=.250 / 38=.0066$
Operating P.D. $=4.3361$
Pinion $x_{2}$ operating addendum $=(1.605-1.5864) / 2 \approx .0093$
Gear $c$ major diag. $=4.3679 / 4.3626$
Gear $c$ tooth thickness, $T_{3}$, at major ia.:

$$
\begin{gathered}
T_{3}=2 r_{3}\left[T_{2} / 2 r_{2}-\operatorname{inv} \phi+\operatorname{inv} \phi_{3}\right] \\
2 r_{2}=4.3158 ; 2 r_{3}=4.3679 ; \phi=20^{\circ} \\
\operatorname{inv} \phi=.01490 ; \cos \phi_{3}=\left(2 r_{1}\right)(\cos \phi) / 2 r_{3}=.928484 \\
\phi_{3}=21.8003^{\circ} ; \operatorname{inv} \phi_{3}=.01949 ; T_{2}=.0459 \\
T_{3}=.06649
\end{gathered}
$$

Gear c circular pitch at major dian $=(\pi)(4.3679) / 164=.08367$
Circular space at major dial $=.08367-.06649=.017 \mathrm{~min}$.
This looks acceptable for this 38 p cutter design.
Calculation of gear $c$ inside diameter for a minimum contact ratio of 1.3

$$
\begin{equation*}
\text { Contact Ratio }=\left(P_{P}+C D \sin \phi_{1}-P_{G}\right) / B P \tag{19}
\end{equation*}
$$

$$
(O D)_{P}=1.605 ; \quad(B C)_{P}=.74184 ; P_{P}=.3061 \text { (eq. } 11 \text { ) }
$$

$$
\operatorname{cosin} \phi_{1}=.4867 ; B P=(\pi)(4.0555) / 164=.0777
$$

$$
\begin{equation*}
P_{G}=\sqrt{(1 D)_{G}^{2}-(B C)_{G}^{2}} / 2 \tag{20}
\end{equation*}
$$

$(I D)_{G}$ to be solved for.
Eq. 19:

$$
\begin{aligned}
& 1.30=\left(.3061+.4867-P_{G}\right) / .0777 \\
& P_{G}=.6918 ;(B C)_{G}=4.0555
\end{aligned}
$$

Eq. 20:

$$
(10)_{G}=4.285 ; \text { Use }(10)_{G}=4.285 / 4.284
$$

Calculation for SAP (Start of Active Profile, ie., True Involute form)

$$
\begin{align*}
& \text { SAP pinion } x_{2}=\left\{(B C)_{P}^{2}+\left[\left((10)_{G}^{2}-(B C)_{G}^{2}\right)^{\frac{1}{2}}-2 \operatorname{CDsin} \phi_{1}\right]^{2}\right\}^{\frac{1}{2}}  \tag{21}\\
& (B C)_{P}\left(\text { pinion } x_{2} \text { base did.) }=1.4837\right. \\
& (10)_{G} \text { (gear c min. internal dial.) }=4.284 \\
& (B C)_{G}(\text { gear } c \text { base did. })=4.0555 \\
& 2 C D \sin \phi_{1}=(2)(.4867)=.9734 \\
& \text { SAP pinion } x_{2}=1.5385 \\
& \text { SAP gear } C=\left\{(B C)_{G}^{2}+\left[2 \operatorname{CDSin} \phi_{1}+\left((00)_{P}^{2}-(B C)_{P}^{2}\right)^{\frac{1}{2}}\right]^{2}\right\}^{2}  \tag{22}\\
& (O D)_{P}=1.605
\end{align*}
$$

Tip interference check:

$$
C D=1.3749
$$

Gear c inside radius, $(1 R)_{G}=4.284 / 2=2.142$
Gear c base radius, $(B R)_{G}=4.0555 / 2=2.0278$
Pinion $x_{2}$ outside radius, $(O R)_{P}=1.605 / 2=.8025$
Pinion $x_{2}$ base radius, $(B R)_{P}=1.4837 / 2=.7149$
Pressure angle at pinion $x_{2} O D=\oint_{4}$
Pressure angle at gear c $10=\boldsymbol{\phi}_{5}$
Operating pressure angle, $\phi_{1}=20.7314^{\circ}$

$$
\begin{aligned}
\cos \phi_{4} & =\frac{(8 R)_{P}}{(O R)_{P}}=.9244 & \cos \phi_{5}=\frac{(B R)_{G}}{(1 R)_{G}}=.9467 \\
\phi_{4} & =22.42^{\circ} & \phi_{5}=18.80^{\circ} \\
\operatorname{inv} \phi_{4} & =.02128 & \operatorname{inv} \phi_{5}=.01231 \\
\sin \phi_{1} & =.3540 & \cos \phi_{1}=.9353
\end{aligned}
$$

$$
\phi_{1}=.3618 \mathrm{rad}
$$

$$
\begin{equation*}
\phi_{6}=\arccos \left[\frac{(1 R)_{G}^{2}-(O R)_{P^{2}}-C D^{2}}{2 C D(O R)_{P}}\right]=\arccos .9307 \tag{23}
\end{equation*}
$$

$$
\phi_{6}=21.45^{\circ} \quad \phi_{6}=.3744 \mathrm{rad}
$$

$$
\begin{equation*}
\phi_{7}=\arccos \left[\frac{(1 R)_{G}^{2}+C 0^{2}-(O R)_{P}^{2}}{2 \operatorname{CO}(1 R)_{G}}\right]=\arccos .9906 \tag{24}
\end{equation*}
$$

$$
\phi_{7}=7.876^{\circ} \quad \phi_{7}=.1375 \mathrm{rad}
$$

For no tip interference
$x>y$
Where

$$
\begin{align*}
& X=C D\left(\sin \phi_{1}-\phi_{1} \cos \phi_{1}\right)+(B R)_{P}\left(\phi_{6}+i n v \phi_{4}\right)  \tag{25}\\
& Y=(B R)_{G}\left[\phi_{7}+i n v \dot{\phi}_{2}\right] \tag{26}
\end{align*}
$$

$$
\begin{aligned}
& X=.3149 \\
& Y=.3037
\end{aligned}
$$

Since $x>Y$ there will not be any tip interference.
$M$, Measurement between pins:

$$
\begin{aligned}
& \text { For } T_{1}=.0459 ; 2 r_{1}=4.3158 \\
& \phi=20^{\circ} ; \operatorname{inv} \phi=.0149 \\
& N=164 ; 2 x=.050 \\
& \text { inv } \phi_{8}=\frac{\pi}{N}+\operatorname{inv} \phi-\frac{T_{1}}{2 r_{1}}-\frac{x}{r_{1} \cos \phi} \\
& \text { inv } \phi_{8}=.0111 ; \phi_{8}=18.1803^{\circ} \\
& M_{5}=\left(2 r_{1} \cos \phi\right) / \cos \phi_{8}-2 x \\
& M_{5}=4.2186
\end{aligned} \quad \begin{aligned}
& \text { For } T_{1}=.0449 \\
& \operatorname{inv} \phi_{8}=.0113 ; \phi_{8}=18.3025^{\circ} \\
& M_{5}=4.2216
\end{aligned}
$$

Measurement between pins $4.2186 / 4.2216$ with .050 diameter pins.

## HINGE-JOINT ROLLER-GEAR DRIVE GEAR DATA

Specifications for the Hinge Joint drive were changed from those used for the original design in the Phase 1 study (ref. I):

```
Nominal ratio target 30:1 or higher
Input torque 28.9 Nm (256 in.lb.)
Output speed 120 rpm
Maximum diameter target }12\mathrm{ in. (approx.)
```


## Cluster Geometry

A cluster geometry with a somewhat greater toggle angle than that used in ref. 1 was chosen in an effort to meet the diameter target of 12 inches. The solution chosen from Table 1 of ref. 1 is

$$
\alpha=18^{\circ} \quad \gamma=27^{\circ}
$$

Using equations 1 through 12 and 15 of ref. 1:
$(2 / 5) N_{y 1}=$ integral number $\quad N_{y I}=20$ teeth
$(3 / 20) N_{x_{2}}=$ integral number $\quad N_{x_{2}}=100$ teeth
Selecting

$$
\begin{array}{ll}
a+x_{1}=1.390 & N_{a}=28 \text { teeth (divisible by 4) } \\
N_{x_{1}}=62 \text { teeth } & x_{1} / a=62 / 28=2.214286 \\
x_{1}=2.214286 a & a=1.390 / 3.214286=.432445 \\
x_{1}=.957556 &
\end{array}
$$

Operating P.D. $a=.8649 \quad x_{1}=1.9151$
Selecting a cutter with $P=32$ ( $20^{\circ}$ pressure angle)
Cutting P.D. $\quad a=28 / 32=.8649 \quad x_{1}=62 / 32=1.9375$
Max. permissable $x_{1} 00=(1.390)(\sin 45)(2)=1.9658$
Standard addendum $=1 / 32=.03125$
Use short addendum $=.6 / 32=.01875$

$$
x_{1} 00=1.9151+2(.01875)=1.9526
$$

$$
\text { Clearance }=1.9658-1.9526=.0132 \quad \text { OK }
$$

From eq. (1): (All equation nos. taken from ref. 2) $\left(y_{1}+x_{2}\right) /\left(a+x_{1}\right)=\left(\sin 45^{\circ} / \sin 27^{\circ}\right)=1.55754$ $y_{1}+x_{2}=2.164976 \quad x_{2} / y_{1}=100 / 20=5$ $y_{1}=.360829 \quad x_{2}=1.804147$

Operating P.D. $y_{1}=(.3608293)(2)=.7216586$
Operating P.D. $x_{2}=(1.8041465)(2)=3.608293$
Selecting a cutter with $P=28 \quad\left(20^{\circ}\right.$ pressure angle)
Cutting P.D. $y_{1}=20 / 28=.7142857 \quad x_{2}=100 / 28=3.5714286$
From eq. (2) :

$$
z=\frac{\left(y_{1}+x_{2}\right) \sin (90+\alpha)}{\sin \theta}=2.911886
$$

Selecting $N_{c}=264$ (divisible by 4 )
Cutting P.D. $c=264 / 28=9.428571$

$$
\begin{array}{ll}
c / x_{2}=264 / 100=2.64 & c-x_{2}=2.911886 \\
x_{2}=1.775540 & c=4.687426
\end{array}
$$

Operating P.D. $x_{2}$ with c gear $=3.551080$
Operating P.D. $c$ with $x_{2}$ gear $=9.374852$

$$
\text { Ratio }=(62 / 28)(264 / 20)=29.23
$$

Gear Stresses (Methods of ref. 3)
Input torque $=256$ in. 1 bs.
Output torque $=(256)(29.23)=7483$ in.lbs.
ax| contacts ( 4 contacts)
$F_{T}=(256 / 4)(1 / .4324)=148 \mathrm{lbs}$.
Selecting . 312 in. face width, $P=32, y=.344$
Bending Stress: eq. (3):

$$
s_{8}=(148)(32) /(.312)(.344)=44,100 \mathrm{psi}
$$

$$
m_{G}=62 / 28=2.214 \quad \frac{m_{G}+1}{m_{G}}=1.45
$$

Compressive Stress, eq. (4):

$$
S_{c}=5715 \sqrt{\frac{(148)(1.45)}{(2)(.4324)(.312)}}=162,000 \mathrm{psi}
$$

$$
\begin{aligned}
\text { Torque } & =(256)(2.214)(1 / 4)=141.7 \text { in. } 1 \text { ibs. } \\
F_{T} & =(141.7 / 2)(1 / .361)=196.3 \text { ibs. } .
\end{aligned}
$$

Selecting .56 in. face width, $P=28, y=.33$

$$
\begin{aligned}
& S_{B}=(196.3)(28) /(.56)(.33)=29,700 \mathrm{psi} \\
& m_{G}=100 / 20=5 \quad \frac{m_{G}+1}{m_{G}}=1.2 \\
& K=(196.3)(1.2) /(2)(.361)(.56)=583 \\
& S_{C}=5715 \sqrt{583}=138.000 \mathrm{psi}
\end{aligned}
$$

$x_{2} c$ contacts ( 4 contacts)
Torque $=7483$ in. 1 bs.

$$
F_{T}=(7483 / 4)(1 / 4.687)=399 \mathrm{Jbs} .
$$

Selecting . 56 in. face width (gear $x_{2}$ ), $P=28, y=.38$

$$
S_{B}=(399)(28) /(.56)(.38)=52,500 \text { psi in } x_{2}
$$

Selecting . 60 in. face width (gear $c$ ), $P=28, y=.38$

$$
\begin{aligned}
& S_{B}=(399)(28) /(.60)(.38)=49,000 \mathrm{psi} \text { in } c \\
& m_{G}=264 / 100=2.64 \quad \frac{m_{G}-1}{m_{G}}=.62 \\
& K=(399)(.62) /(2)(1.7755)(.56)=124 \\
& S_{C}=5715 \sqrt{124}=63.800 \mathrm{psi}
\end{aligned}
$$

With these levels of $S_{8}$ and $S_{c}, a, x_{1}, y_{1}$ and $x_{2}$ gears should be case carburized 8620 steel or equivalent, case hardened to $R_{c} 58-61$, or nitralloy 135 M nitrided to a case hardness of $R_{c}$ 60-63. Gear $C$ need not have a hardened face.

## Gear Geometry and Measurement Data

$$
\text { a }-x_{1} \text { mesh } \quad\left(P=32 ; \emptyset=20^{\circ}\right)
$$

$$
\begin{array}{cc}
\text { CD, center distance }=1.390 \mathrm{in} . \\
\text { Operating P.D. } a=.8649 ; & x_{1}=1.9151 \\
\text { Cutting P.D. } \quad a=28 / 32=.875 ; & x_{1}=62 / 32=1.9375
\end{array}
$$

Operating pressure angle $\varnothing$ :
From eq. ..... (5)
Cutting P.D. $x \cos \emptyset=$ Operating P.D. $\times \cos \emptyset_{1}$
$.875 \cos 20^{\circ}=.8649 \cos \emptyset_{1}$

$$
\varnothing_{1}=18.0723^{\circ}
$$

From eq. (6)
$B C$, Base circle did. $=$ Cutting P.D. $\times \cos \varnothing$

Base circle dia. $a=.8222 ; \quad x_{1}=1.8207$
Operating pinion addendum $=1.30 / 32=.0406$
Operating gear addendum $=.70 / 32=.0219$
O.D. Pinion $a=.8649+2(.0406)=.9461$ in. Use $.9461 / .9455$
0.0. Gear $x_{1}=1.9151+2(.0219)=1.9589 \mathrm{in}$.
O.D. clearance $=(1.390)\left(\sin 45^{\circ}\right)(2)-1.9589=.0069 \quad$ (Too close)

Stub 0.D. to 1.9529
Then O.D. clearance $=1.9658-1.9529=.0129$ OK
Make O.D. 1.9259/1.9519
Cutting Standard addendum $=1 / 32=.0313$
Cutting circular pitch $=\pi / 32=.0982$
Nominal Tooth thickness $=.0982 / 2=.0491$ in. (. 0488 with .0003 backlash )
Pinion a addendum with respect to the cutting P.D.:

$$
\text { addendum }=(.5)(.9461-.875)=.0356 \text { (addendum increases) }
$$

Pinion a tooth thickness at cutting P.D.:

$$
T_{1}=.0488+(.0356-.0313)\left(2 \tan 20^{\circ}\right)=.0519 \mathrm{in} .
$$

Gear $x_{l}$ addendum with respect to the cutting P.D.:

$$
\text { addendum }=(.5)(1.9589-1.9375)=.0107 \text { (addendum decreases) }
$$

Gear $x_{1}$ tooth thickness at cutting P.D.:

$$
T_{1}=.0488-(.0313-.0107)\left(2 \tan 20^{\circ}\right)=.0338 \mathrm{in} .
$$

Pinion a tooth thickness, $\mathrm{T}_{2}$, at operating P.D. (eq. (7)):

$$
\begin{gathered}
T_{2}=\left[2 r_{2} \frac{T_{1}}{2 r_{1}}+i n v-i n v \emptyset_{1}\right]^{(1)} \\
2 r_{1}=\text { cutting P.D. }=.875 ; 2 r_{2}=\text { operating P.D. }=.8649 \\
\\
i n v \emptyset=\tan \emptyset-\emptyset
\end{gathered}
$$

inv $\varnothing=.01490438$
$\operatorname{inv} \varnothing_{1}=.01089422$

$$
T_{2}=.0548 \mathrm{in} .
$$

(1) Ref. 4, P. 25 , Sect. 2

Gear $x_{1}$ tooth thickness, $T_{2}$, at operating P.D.

$$
\begin{array}{rlr}
T_{1}=.0338 & 2 r_{1}=1.9375 \\
2 r_{2}=1.9151 & T_{2}=.0411 \mathrm{in.}(\mathrm{eq.7})
\end{array}
$$

Operating circular pitch $=(\pi)(.8649) /(28)=.09704$
Minimum backlash $=.09704-(.0548+.0411)=.0011$ in.
Recommended tooth thicknesses:
Pinion $a=.0519 / .0514$ at cutting P.D.
Gear $x_{1}=.0338 / .0333$ at cutting P.D.
Expected backlash .001/.002
Pinion a
Maximum Root Dia. $=.9461-4.32 / 32=.8111$
Minimum Root Dia. $=.9461-4.60 / 32=.8023$

Gear $x_{1}$
Maximum Root Dia. $=1.9589-4.32 / 32=1.8239$
Minimum Root Dia. $=1.9589-4.60 / 32=1.8151$
From eq. (8):
Pinion a Form Dia $=\sqrt{(B C)_{P}^{2}+\left[2 C D \sin \emptyset_{1}-\left\{(O D)_{G}^{2}-(B C)_{G}^{2}\right\}^{\frac{1}{2}}\right]^{2}}$
$(B C)_{P}=.8222 \quad C D=1.390$
$(O D)_{P}=.9461 \quad(O D)_{G}=1.9259$
$(B C)_{G}=1.8207 \quad \emptyset_{1}=18.0723^{\circ}$
Pinion a Form Dia $=.8369$
From eq. (9):
Gear $x$, Form Dia $=\sqrt{(B C)_{G}^{2}+\left[2 C D \operatorname{sing}-\left\{(00)_{P}^{2}-(B C)_{P}\right)^{\frac{1}{2}}\right]^{2}}$
Gear $x_{1}$ Form Dia $=1.8629$
From eq. (10):
Contact Ratio $=\frac{P_{P}+P_{G}-\operatorname{CDsin} \varnothing_{1}}{B P}$
where:

$$
B P, \text { Base Pitch }=\frac{(\pi)(.8222)}{28}=.0923
$$

From eq. (11):

$$
P_{p}=\sqrt{(O D)_{p}^{2}-(B C)_{p}^{2}} / 2
$$

From eq. (12):
$P_{G}=\sqrt{(O D)_{G}{ }^{2}-(B C)_{G}{ }^{2}} / 2$
Contact Ratio $=1.69$
M , Measurement over pins:
Pinion a (eq. (13)):

$$
M_{1}=\frac{2 r_{1} \cos \theta}{\cos \emptyset_{2}}+2 x
$$

From eq. (14) :

$$
i n v \emptyset_{2}=T_{1} / 2 r_{1}+i n v \emptyset+x / r_{1} \cos \emptyset-\pi / N
$$

$$
\varnothing_{2}=\text { Pressure angle at center of roll } ; \varnothing=20^{\circ}
$$

$$
\text { inv } \varnothing=.01490438 \quad ; \quad 2 x=\text { pin diameter }
$$

For $T_{1}=.0519 ; 2 r_{1}=.875 ; \quad N=28 ; 2 x=.060$

$$
\begin{aligned}
& \operatorname{inv} \emptyset_{2}=.03499 ; \varrho_{2}=26.2487^{\circ} \\
& M_{1}=.9768
\end{aligned}
$$

For $T_{1}=.0514 ; \quad \operatorname{inv} \theta_{2}=.03442 ; \quad \theta_{2}=26.1133^{\circ}$

$$
M_{1}=.9757
$$

Pin measurement . 9768/.9757 with . 060 diameter pins

$$
\text { Gear } x_{1} \text { (eq. (13)): } \quad M_{2}=\frac{2 r_{1} \cos \theta}{\cos \phi_{2}}+2 x
$$

For $T_{1}=.0338 ; 2 r_{1}=1.9375 ; N=62 ; 2 x=.60$

$$
\operatorname{inv} \emptyset_{2}=.01463 ; \emptyset_{2}=19.8823^{\circ}
$$

$$
M_{2}=1.9961
$$

For $\mathrm{T}_{1}=.0333$

$$
\begin{aligned}
& \operatorname{inv} \theta_{2}=.01438 ; \quad \emptyset_{2}=19.7685^{\circ} \\
& M_{2}=1.9947
\end{aligned}
$$

Pin measurement $1.9961 / 1.9947$ with . 060 diameter pins

$$
y_{1} x_{2} \operatorname{mesh}\left(P=28 ; \emptyset=20^{\circ}\right)
$$

$$
C D=2.1650
$$

Operating P.D. $y_{1}=.7217 \quad ; \quad x_{2}=3.6083$
Cutting P.D. $y_{1}=20 / 28=.7143 ; \quad x_{2}=100 / 28=3.5714$
Operating pressure angle $\emptyset_{1}$ (eq. 5):

$$
\emptyset_{1}=21.5562^{\circ}
$$

Base circle dia. $y_{1}=.6712$ (eq. 6) ; $x_{2}=3.3560$ (eq. 6)
Operating Pinion addendum $=1.30 / 28=.0464$
Operating Gear addendum $=.70 / 28=.0250$
0.D. Pinion $y_{1}=.7217+2(.0464)=.8145$ use $.8145 / .8135$
O.D. Gear $x_{2}=3.6083+2(.0250)=3.6583$ use $3.6583 / 3.6573$

Cutting standard addendum $=1 / 28=.0357$
Cutting circular pitch $=\pi / 28=.1122$
Nominal tooth thickness $=.1122 / 2=.0561$ (with min. backlash allowance of .0003, use .0558)

Pinion $y_{l}$ addendum with respect to the cutting P.D.:

$$
\text { addendum }=.5(.8145-.7143)=.0501 \text { (addendum increases) }
$$

Addendum increase (hob pullout) $=.0501-.0357=.0144$
Pinion $y_{1}$ tooth thickness at cutting P.D.:

$$
T_{1}=.0558+(.0144)(2)\left(\tan 20^{\circ}\right)=.0663 \mathrm{in} .
$$

Gear $x_{2}$ addendum with respect to the cutting P.D. :

$$
\begin{aligned}
\text { addendum }=.5(3.6583-3.5714)=.0435 \text { (addendum decreases) } \\
\text { Addendum increase (hob pullout) }=.0435-.0357=.0078
\end{aligned}
$$

Gear $x_{2}$ tooth thickness at cutting P.D. :

$$
T_{1}=.0558+(.0078)(2)\left(\tan 20^{\circ}\right)=.0614 \mathrm{in} .
$$

Pinion $y_{1}$ tooth thickness, $T_{2}$, at operating P.D.:

$$
\begin{array}{ll}
2 r_{1}=.7143 & \emptyset=20^{\circ} \\
\operatorname{inv} \emptyset=.014904 & \emptyset_{1}=21.5562^{\circ} \\
\operatorname{inv} \emptyset_{1}=.018817 & 2 r_{2}=.7217
\end{array}
$$

$$
\begin{aligned}
& T_{1}=.0663 \\
& T_{2}=.0642 \text { in. (eq. 7) }
\end{aligned}
$$

Gear $x_{2}$ tooth thickness, $T_{2}$, at operating P.D.:

$$
2 r_{1}=3.5714 \quad 2 r_{2}=3.6083
$$

$$
\begin{aligned}
& T_{1}=.0614 \\
& T_{2}=.0479 \mathrm{in} . \text { (eq. 7) }
\end{aligned}
$$

Operating circular pitch $=(\pi)(.7217) / 20=.1134$
Minimun backlash $=.1134-(.0642+.0479)=.0013$ in. (OK $-\operatorname{target}$ was .001$)$
Recommended tooth thicknesses:
Pinion $y_{1}=.0663 / .0658$ at cutting P.D.
Gear $x_{2}=.0614 / .0609$ at cutting P.D.
Pinion $y_{1}$ tooth thickness, $T_{3}$, at $0 . D$. (for adequacy of land width for shrink $f i t$ of $x_{2}$ gear)

$$
\begin{array}{rlrl}
2 r_{1} & =.7143 & \emptyset_{3} \text { (Pressure angle at 0.D.) from eq. (5): } \\
2 r_{3} & =.8145 \text { (0.0.) } & \cos \emptyset_{3}=(.7143)\left(\cos 20^{\circ}\right) / .8145=.8241 \\
T_{1} & =.0663 & \emptyset_{3}=34.5035^{\circ} \\
& \text { inv } \emptyset_{3}=.08517
\end{array}
$$

This should be enough land to support the shrink fit.

Pinion $y_{1}$
Maximum Root Bia. $=.8145-4.32 / 28=.6602$
Minimum Root Bia. $=.8145-4.60 / 28=.6502$
Gear $x_{2}$
Maximum Root Bia. $=3.6583-4.32 / 28=3.5040$
Minimum Root Bia. $=3.6583-4.60 / 28=3.4940$
Pinion $y^{\prime}$ Form Via. (eq. 8):
$(B C)_{P}=.6712 \quad C D=2.1650$
$(O D)_{G}=3.6583 \quad(O D)_{P}=.8145$
$(B C)_{G}=3.3560$
$\theta_{1}=21.5562^{\circ}$
Pinion $y_{1}$ Form Dial $=.6846 \mathrm{in}$.
Gear $x_{1}$ Form Via (eq. 9):
Gear $x_{1}$ Form Dial $=3.5410 \mathrm{in}$.
Contact Ratio (eq. 10 ):

$$
P_{P}=.2307 \text { (eq. 11) } \quad P_{G}=.7281 \text { (eq. 12) }
$$

Contact Ratio $=1.55$
M, Measurement over pins:
Pinion $y_{1}$
For $T_{1}=.0663 ; \quad 2 r_{1}=.7143 ; \quad \theta=20^{\circ} ; \quad \operatorname{inv} \emptyset=.0149$
$N=20 ; 2 x=.0686 ; \quad$ inv $\emptyset_{2}=.0528$ (eq. 14) $; \emptyset_{2}=29.8359^{\circ}$
$M_{3}=.8423$ (eq. 13)
For $T_{1}=.0658 ; \quad \operatorname{inv} \emptyset_{2}=.0521$ (eq. 14) ; $\emptyset_{2}=29.7134^{\circ}$
$M_{3}=.8414$ (eq. 13)
Pin measurement . $8423 / .8414$ with .0686 diameter pins

Gear $x_{2}$
For $T_{1}=.0614 ; 2 r_{1}=3.5714 ; D=20^{\circ} ; \quad$ inv $\quad=.0419$

$$
N=100 ; 2 x=.0686 ; \quad \text { inv } \emptyset_{2}=.0211\left(\mathrm{eq.} \mathrm{14)} ; \quad \emptyset_{2}=20.3649^{\circ}\right.
$$

$$
\left.M_{4}=3.6975 \text { (eq. } 13\right)
$$

For $T_{1}=.0609 ; \quad \operatorname{inv} \emptyset_{2}=.02097$ (eq. 14) ; $\emptyset_{2}=22.3174^{\circ}$

$$
M_{4}=3.6963(\text { eq. } 13)
$$

Pin measurement 3.6975/3.6963 with . 0686 diameter pins

$$
x_{2} c \text { mesh }(p=28 ; \emptyset=20)
$$

$$
C D=2.9119
$$

Operating P.D. $x_{2}=3.5511 \quad c=9.3749$
Cutting P.D. $x_{2}=100 / 28=3.5714 ; \quad c=264 / 28=9.4286$
Operating pressure angle $\Phi_{1}$ (eq. 5)

$$
\theta_{1}=19.0798^{\circ}
$$

Base circle dia. $x_{2}=3.3560$ (previously derived) ; $c=8.8600$ (eq. 6)
Pinion $x_{2}$ tooth thickness, $\mathrm{T}_{2}$, at operating P.D. with gear $c:$

$$
\begin{gathered}
T_{1}=.0614 ; 2 r_{1}=3.5714 ; \quad \emptyset_{1} ; 20^{\circ} ; \quad \text { inv } \emptyset=.014904 \\
\emptyset_{1}=19.0798^{\circ} ; \quad \text { inv } \emptyset_{1}=.01288 ; 2 r_{2}=3.5511 \\
T_{2}=.0682 \mathrm{in.} \text { (eq. 7) }
\end{gathered}
$$

In order to have a backlash of $.001 / .002$ between pinion $x_{2}$ and ring gear $c$, the space width of gear $c$ at its P.D. must be .0692 min . to .0702 max.

Operating circular pitch of gear $c=(\pi)(9.3749 / 264)=.1116$
Gear $c$ tooth thickness, $T_{1}$, at operating P. $0 .=.1116-.0692=.0424 \mathrm{max}$. $=.1116-.0702=.0414 \mathrm{~min}$.

Gear c tooth thickness, $T_{2}$, at cutting P.D. of 9.4286 (eq. 17):

$$
T_{2}=2 r_{2}\left[T_{1} / 2 r_{1}-i n v \theta_{1}+i n v \theta\right]
$$

$$
2 r_{1}=9.3749 ; 2 r_{2}=9.4286 ; \quad \theta_{1}=19.0798^{\circ}
$$

inv $\emptyset_{1}=.01288 ; \quad \emptyset=20^{\circ} ; \quad$ inv $\varnothing=.01490$
when $T_{1}=.0424$ $T_{2}=.0617$
when $T_{1}=.0414$ $T_{2}=.0607$

Gear c tooth thickness at cutting P.D. $=.0617 / .0607$
Expected backlash with $x_{2}$ gear $=.001 / .002$
Gear c circular pitch at cutting P.D. $=(\pi)(9.4286) / 264=.1122$
Space widths at cutting P.D. $=.1122-.0617=.0505 \mathrm{~min}$.

$$
=.1122-.0607=.0515 \max .
$$

Gear c major dia. = Operating P.D. + (2) (Gear $\times_{2}$ Operating addendum) + (2) (Clearance)

Minimum clearance $=.150 / 28=.0054$
Maximum clearance $=.250 / 28=.0089$
Operating P.D. $=9.3749$
Pinion $x_{2}$ operating addendum $=(3.6583-3.5511) / 2=.0536$
Gear c major dia. $=9.5000 / 9.4929$
Gear c tooth thickness, $T_{3}$, at major dia. (eq. 18):
$T_{3}=2 r_{3}\left[T_{2} / 2 r_{2}-\operatorname{inv} \emptyset+\operatorname{inv} \emptyset_{3}\right]$
$2 r_{2}=9.4286 ; 2 r_{3}=9.500 ; \emptyset=20^{\circ}$
inv $\emptyset=.01490 ; \quad \cos \theta_{3}=\left(2 r_{2}\right)(\cos \emptyset) / 2 r_{3}=.9326$
$ø_{3}=21.1514^{\circ} ; \quad \operatorname{inv} \varnothing_{3}=.01774 ; \quad T_{2}=.0617$
$T_{3}=.0891$
Gear c circular pitch at major dia. $=(\pi)(9.500) / 264=.1130$
Circular space at major dia. $=.1130-.0891=.0239$
This looks acceptable for this 28P cutter design.

$$
8-12
$$

Calculation of gear c inside diameter for a minimum contact ratio of 1.48 Contact Ratio $=\left(P_{P}+\operatorname{CDsin} \emptyset_{1}-P_{G}\right) / B P$ (eq. 19)

$$
\begin{gathered}
\emptyset_{1}=19.0798^{\circ} ; \quad C D=2.9119 ; \quad(O D)_{P}=3.6583 \quad ; \quad(B C)_{P}=1.678 \\
\left.P_{P}=.7281 \text { (eq. } 11\right) ; \quad \operatorname{CDsin} \varnothing_{1}=.9519 ; B P=(\pi)(8.8600) / 264=.1054 \\
P_{G}=\sqrt{(10)_{G}^{2}-(B C)_{G}^{2} / 2 \quad \text { (eq. 20) }}
\end{gathered}
$$

$(10)_{G}$ to be solved for.
Eq. 19:

$$
1.48=\left(.7281+.9519-P_{G}\right) / .1054
$$

$$
P_{G}=1.5239 \quad ; \quad(B C)_{G}=8.860
$$

Eq. 20 :

$$
(I D)_{G}=9.3696 \text {; Use }(10)_{G}=9.370 / 9.372
$$

Calculation for SAP (Start of Active Profile, i.e., True Involute Form), eq. (21): SAP pinion $x_{2}=\left\{(B C)_{P}{ }^{2}+\left[\left((1 D)_{G}{ }^{2}-(B C)_{G}{ }^{2}\right)^{\frac{1}{2}}-2 C D \sin \varnothing_{1}\right]^{2}\right\}^{\frac{1}{2}}$
$(B C)_{P}\left(\right.$ Pinion $x_{2}$ base dia. $)=3.3560$
$(10)_{G}(G e a r ~ c m i n . ~ i n t e r n a l ~ d i a)=$.
$(B C)_{G}($ Gear $c$ base dia. $)=8.860$
$2 C D \sin \varnothing_{1}=1.9037$
SAP pinion $x_{2}=3.546$ (eq. 21)
(Can use previously calculated T.l.F. dia. of 3.541)
SAP gear $c=\left\{(B C)_{G}{ }^{2}+\left[2 C D \sin \emptyset_{1}+\left((O D)_{P}{ }^{2}-(B C)_{P}{ }^{2}\right)^{\frac{1}{2}}\right]^{2}\right\}^{\frac{1}{2}}$ (eq. 22)
$(00)_{p}=3.6583$
SAP gear $c=9.476$ (eq. 22)
Tip interference check: $\quad C D=2.9119$
Gear c inside radius, $(I R)_{G}=9.370 / 2=4.685$
Gear $c$ base radius, $(B R)_{G}=8.860 / 2=4.430$
Pinion $x_{2}$ outside radius, $(O R)_{p}=3.6583 / 2=1.8292$
Pinion $x_{2}$ base radius, $(B R)_{p}=3.356 / 2=1.678$

For no tip interference

$$
x>y
$$

Where

$$
\begin{aligned}
& X=C O\left(\sin \varnothing_{1}-\emptyset_{1} \cos \theta_{1}\right)+(B R)_{p}\left(\emptyset_{6}+\operatorname{inv} \emptyset_{4}\right) \quad \text { (eq. 25) } \\
& Y=(B R)_{G}\left[\emptyset_{7}+\operatorname{inv} \emptyset_{2}\right] \quad \text { (eq. 26) }
\end{aligned}
$$

$$
x=.6073
$$

$$
Y=.5955
$$

Since $x\rangle y$ there will not be any tip interference.

M, Measurement between pins:
For $T_{1}=.0617 ; 2 r_{1}=9.4286 ; \quad=20^{\circ}$
$\operatorname{inv}=.0149 . ; N=264 ; 2 x=.0686$

$$
8-14
$$

$$
\begin{aligned}
& \text { Pressure angle at pinion } x_{2} O D=\varnothing_{4} \\
& \text { Pressure angle at gear c } 10=\varnothing_{5} \\
& \text { Operating pressure angle, } \emptyset_{1}=19.0798^{\circ} \\
& \begin{array}{rlrl}
\cos \emptyset_{4} & =(B R)_{P} /(O R)_{P}=.9174 \\
\emptyset_{4} & =23.4560^{\circ} & \therefore \cos _{5} & =(B R)_{G} /(I R)_{G}=.9456 \\
\operatorname{inv} \emptyset_{4} & =.0245 & \emptyset_{5} & =18.9908^{\circ} \\
\sin \emptyset_{1} & =.3269 & \operatorname{inv} \emptyset_{5} & =.0127 \\
& \cos \varnothing_{1} & =.9451
\end{array} \\
& ø_{1}=.3330 \mathrm{rad} . \\
& \emptyset_{6}=\arccos \left[\frac{(1 R)_{G}^{2}-(O R)_{P}^{2}-C D^{2}}{2 C D(O R)_{P}}\right]=\arccos .9504 \text { (eq. 23) } \\
& \emptyset_{6}=18.1207^{\circ} \quad \emptyset_{6}=.3163 \mathrm{rad} . \\
& \emptyset_{7}=\arccos \left[\frac{(I R)_{G}^{2}+C D^{2}-(O R)_{p}^{2}}{2 C D(I R)_{G}}\right]=\arccos .9926 \text { (eq. 24) } \\
& \emptyset_{7}=6.9746^{\circ} \quad \emptyset_{7}=.1217 \mathrm{rad} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{inv} \emptyset_{8}=(\pi / N)+i n v \emptyset-\left(T, / 2 r_{1}\right)-x /\left(r_{1} \cos \varnothing\right) \quad \text { (eq. 27) } \\
& \text { inv } \emptyset_{8}=.01252 \quad \emptyset_{8}=18.9058^{\circ} \\
& M_{5}=\left(2 r_{1} \cos \theta\right) / \cos \theta_{8}-2 x \quad \text { (eq. 28) } \\
& M_{5}=9.2967 \\
& \text { For } T_{1}=.0607 ; \quad \operatorname{inv} \varnothing_{8}=.01263 ; \quad \varnothing_{8}=18.9574^{\circ} \\
& M_{5}=9.2996
\end{aligned}
$$

Measurement between pins $9.2967 / 9.2996$ with .0686 diameter pins.

```
Gear calculations are summarized in TABLE 5.
```


## APPENDIX C

## PITCH YAW JOINT ROLLER-GEAR DRIVE GEAR DATA

Specifications for the Pitch Yaw Joint drive were:
Nominal ratio 3.43:1 Output torque Dual input torques Maximum size
186.5 Nm ( 1650 in . 1 b. )
27.1 Nm (240 in。1b.)
no larger than ORNL LTM
large P/Y Unit

## Gear Stresses

Input torque to each bevel roller-gear $=240 \mathrm{in} .1 \mathrm{~b}$.
Bevel pinion P.D. $=1.75 \mathrm{in}$.

Bevel gear P.D. $=6.00 \mathrm{in}$ 。
First reduction ratio $=6 / 1.75=3.4286$
Second bevel reduction ratio $=1$
Output torque, first stage bevel reduction $=(240)(3.4286)=823 \mathrm{in} . \mathrm{lb}$.
Total output torque $=(823)(2)=1646 \mathrm{in} .1 \mathrm{lb}$.
Select for bevel pinion $P=16,20^{\circ}$ pressure angle
Then

$$
\begin{aligned}
& N_{P}=28 \\
& N_{G}=96
\end{aligned}
$$

Select face width $f=.31$ in.

$$
F_{T}=(240)(2) / 1.75=274.3 \mathrm{lb}
$$

From standard gear design texts
Bending stress:

$$
\begin{array}{ll}
S_{B}=\frac{F_{T} K_{0} P K_{s} K_{m}}{K_{v} f} \quad & P=16 \\
& K_{0}=1.0 \\
S_{B}=\frac{(274.3)(16)(.5)(1.1)}{(1)(.31)(.318)} & K_{v}=1.0 \\
& K_{m}=1.1 \\
S_{B}=24,500 \mathrm{psi} & K_{s}^{m}=0.5 \\
J=0.318
\end{array}
$$

Compressive stress:

$$
\begin{aligned}
& s_{c}=c_{p} \sqrt{\frac{F_{T} C_{o} C_{s} C_{m} C_{f}}{c} f_{d}} \\
& s_{c}=2800 \sqrt{\frac{(274.3)(1.1)}{(.31)(1.75)(.104)}} \\
& s_{c}=204,800 \mathrm{psi}
\end{aligned}
$$

Use AlSI 9310 steel, case hardened to $R_{c}$ 60-62.
For second stage
Bevel pinion P.D. $=3.25 \mathrm{in}$.
Bevel gear P.D. $=3.25 \mathrm{in}$.
Select $P=12,20^{\circ}$ pressure angle
Then

$$
\begin{aligned}
& N_{P}=39 \\
& N_{G}=39
\end{aligned}
$$

Select face width $f=.50 \mathrm{in}$.

$$
F_{T}=(823)(2) / 3.25=506.5 \mathrm{lb} .
$$

Bending stress:

$$
\begin{aligned}
& S_{B}=\frac{(506.5)(12)(.54)(1.1)}{(.50)(.270)} \\
& S_{B}=26,740 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=12 \\
& \mathrm{~K}_{\mathrm{o}}=1 \\
& \mathrm{~K}_{\mathrm{v}}=1 \\
& \mathrm{~K}_{\mathrm{m}}=1.1 \\
& \mathrm{~K}_{\mathrm{s}}=.54 \\
& \mathrm{~J}=.270
\end{aligned}
$$

Compressive stress:

$$
s_{c}=2800 \sqrt{\left(\frac{(506.5)(1.1)}{(.50)(3.25)(.07)}\right.} \quad c_{o}=c_{v}=c_{s}=c_{f}=1.0
$$

$$
S_{C}=196,000 \mathrm{psi}
$$

Use AISI 9310 steel, case hardened to $R_{c}$ 60-62.
These stresses are acceptable for hardened steel gears. The loading is too high for soft metallic or non-metallic gears. This is in contrast to the low torque Wrist-Roll drive in which non-metallic gears could be used.

After executing a layout，mean $P_{0} D_{0}$＇s of the gears were determined by measurement for calculation of reaction forces．

First stage：
Mean P．D．of gear $=5.68 \mathrm{in}$ ．
$F_{T}=\frac{(823)(2)}{5.68}=289.81 \mathrm{~b}$.
Bevel gear angle
$\tan \alpha=6.00 / 1.75=3.4285714$

$$
\alpha=73.7397950^{\circ}
$$

Separating force
$\mathrm{F}_{\mathrm{S}}=289.8 \tan 20^{\circ}=105.5 \mathrm{lb}$ 。
Radial reaction
$T_{G}=F_{S} \sin \infty=101.3 \mathrm{lb}$ 。
Axial reaction
$T_{P}=F_{S} \cos \alpha=29.5 \mathrm{lb}$.
Second stage：
Mean P．D．of gears $=2.88 \mathrm{in}$ ．
$\mathrm{F}_{\mathrm{T}}=(823)(2) / 2.88=571.5 \mathrm{lb}$ 。
$\alpha=45^{\circ}$
$F_{S}=571.5 \tan 20^{\circ}=208 \mathrm{lb}$ ．
$T_{G}=208 \sin 45^{\circ}=1471 \mathrm{~b}$ 。
$T_{P}=208 \cos 45^{\circ}=1471 \mathrm{~b}$ ．
These forces are used in final design for computation of bearing loads and structural deflections．

To summarize the gear data，all gears are $20^{\circ}$ pressure angle standard involute AISI 9310 steel，case carburized to $R_{c} 60-62$ ．These data are shown in Tables 8 and 9.

[^3]

    \(\begin{array}{ll}* & \text { FILE: NASAI:E } \\ \text { * } & \\ * & \text { DATE: JLIY } 28: 1950\end{array}\)
    *
    * FRUTINES
    * System_Stertup
    * System-Shutdown
    * Festart pperation
    * Ferameter Operation
    \% Guit Operetion
    * Select_Fumction
    \% main
    血
    察
    

```
#include "extdatenn"
#include "masadef"M"
#include <dosah>
#include cconio.h%
#imcluce <Etdionh>
```


* perform the initiel startup of the system wards in a safe and
* Lnown Eondition and ail motors locked

void Systembentup(void)
〔
Bet AD_Cara! !
Lock Erates () :
Load Parameters () !


MFTF-Tme.res rev $=0:$
MFTF->mb.t゙EErev=0!
testcolor (WHITE)?
textbackground (BLACE) :
ClrBar () ?
/ For testing only FEMDVE FOR DFEFATIOMW;
/ w MFTF->py, pitch pos = MFTF-sspapitch_neutrala

3
* perform the system startdown

vaid System Shutdown(void)
-

Save Feremeters（）：
textcolor（WHTTE）
textbeckgrourd（ELACK）：


```
    * restart the system operating progrem
```



```
vaid Festart_Operation(vaid)
            r
            Set_AD_Card():
            Loed Farameters():
            ERRGR_FLAG = FESET:
            Display_Error(TEUE):
            v
/************************
    * Function to display system datas
    * setpoint values and gain values
```



```
void Farameter- Operation(void)
    c
    int done_flag:
    done flag = FALSE:
    while (!done_flag)
                            <
            textcolor(BLACK):
            testbackground(WHITE)"
            Flushall():
            gotony(20,15)%
            printf(" "):
            gotoxy(20,15):
            printF(" D - DISFLAY SYGTEM DATA "):
            gotoxy(20,16):
            printF(" S-DISFLAY SYSTEM SETFOYNTS ")!
            gotoxy(20,17):
            printf(" G - DISFLAY SYSTEM GAINS ('):
            gotomy(20,18);
            printf(" E - EXIT ")!
            gotoxy(20,20):
            printf(" Enter In Desired Dperation: "):
            gotoxy(50,20):
            switch(toupper(getche()))
                                    \varepsilon
                                    Case "D": Displey_System_Data(): bread;
                                    case 's': Display Systemsetpoints(): break!
                                    Gase "G": Display_System_Gains(): break:
                                    case "E": done fiag == TFUE! break:
                                    default: breats
                                    3
            3
    textcolor(WHITE):
    textbackground(BLACK):
    gotoxy(20,14):
    clreol():
    gotowy(20,15):
    clreal():
    gotoxy(20,16):
    cl+eol!!
    gotoxy(20,17);
    c1reol():
    gotoxy(20,18):
    c1temi(),
```

```
gotoxy(20,20)g
clreol():
```

7


亘 Will Save தystem parameters if
* given the gr:


```
void Duit_Operation(void)
    Disable_AD_Interrupt():
    System_Shutdrown():
    OFEFATE = FALSE:
    3
```


* displays the commend optioma

vaid Gelect Fumction(void)
-
int loppy
for (100p $=0$ O $100 \mathrm{BO}++100 \mathrm{O})$
Get Joint Dete():
textcolor (ELACK):
textbackground (WHTTE):
gotoxy (40,24):
"puts("CONDITTON")
gotooy (1, 1):
clreol ()
gotoxy (17g1):
CPUTS("NASA LEFC - TFANSMISSION RESEAFCH TEST CENTEFi":
gotoxy (50, 24):
cputs(" $\because$ )
gotory (1.22):
cputs("FITCH ANGLE =
gotoxy (15, 2x)

gotoxy (1,23)
cputs("YAW ANGLEE ": ")
gotoxy(1,24):
cputs("EFAKES : ")
Lock Erakec ()
gotoxy (15, 2 S )
printr("\%, 2F", MFTF-->pyoyawnang)!
gotoxy $(20,4)$ \%
cprintf(" F - FESTAFT THE SYSTEM ")n
attony (20,5):
cprintr(" $5 \cdots$ SINELE COMMAND INFUT
gotoxy (20, 0 )
cprintf(" m - MLLTIFLE CDMMAND INFUT "):
gotaxy (20;7)
corintf(: J - JOYSTICK GYSTEM OFERATION ")
gotoxy(20, 8)
Eprintf(" N - MOVE TO NEUTFAL FOSITION "):
gotoxy(20, $):$
cprintr (" F - SYSTEM FAFAMETEF OFEATTON ") *
gotoxy (20s10):
cprintf("E EXIT ")
gotany (20,12)
Eprintf(" Enter In Desired Operetionn
gotowy (50, 12)

OF FPCM QUALITY
grint (axy $\mathrm{a}_{12}$ )
switcn(toupper (qetche()))
\&
case "f": Festart_Operation(): breaf: case "S": Command_Gper"ation()s breabu case "M": M_Command_Dperation(): break: Lese "J": Joystick_Operation(is breaks case "N": Neutral_Operation() case "F": Farameter Dperation(): breas: Ease "E": Ouit_Operation(): breakg defaultg breaky 3
textcolor (WHITE): textheackground (ELACE): 3

```
void main(void)
    <
    DFEFATE = TFUE:
    System_Startup():
    wtile (OFEFATE) Select Function():
    System Shutdown():
    7
```


## 

| 血 | FILE：NASAE．E |
| :---: | :---: |
| ＊ | DATE：July 20，1990 |
| ＊ |  |
| 早 | FQUTINES |
| ＊ | Timer |
| ＊ | Setwrlock |
| \％ | Unset Clock |
| ＊ | Set AD＿Card |
| 婁 | Lock Brakes |
| ＊ | Unlock Erates |
| 寀 | Enable AD＿Interrupt |
| 京 | Disuble AD Interrupt |
| 需 | Fead AD Channel |
| 耑 | Feed Fesolver＝ |
| ＊ | Get Joint Data |
| W |  |
|  |  |

```
#include "extdetaah"
#include "mesedef"h"
㧣林ude sdom,hs
珄\mp@code{molude <emnionhs}
```



事 giotal variablew

Floet pitch_mewn pitch_olen
Float yawnew, yaw old:
fioct res_mew! mes_emid!
float res b_new res_b_oldy

察 seve the address of the printer


void interrupt ( woldhandler) (void) / wector of interrupt routine
that will be replace for $A / D$ ©lock;

* this is the new interrupt handler: on interrupt the flag STAFTHLOQF
* is set; the program monitors time flag for sync operation

roid interrupt Timer (void)
r
disablé)
START_LDOF = TFUE:


enable():


```
    * replace the printer interrupt handler with the above handler
```


void Set_Clock__Up(void)
E
STAFT_LOOF = FALSE:
OldhandIer = getvect(INTF: LDC) ?
setvect (INTF:_LOC, Timer)?
?

* return the printer hamder to the interrupt vector location

void Inset EIock(void)
$\varepsilon$
STAFT_LOOF = FALSE:
OUtportb (AD EOM, INT OFF):
setvect (INTF LoC, oldhandler):
3

\% set up the A/D - D/A Eard for initiel operation

voia set_ad Cerd(vode)
int tempg low higny
ureigned chat value
outportb(AD CON: INT DFF):
outportb (AD SCAN: OKOQ): /*one whannel scen*/


outportb(DAOHI, OxBO):
outportb(DA1 LOW, OxOO):
outportb(DA1 HI, oxBO):
outportb (ID OUT: LOCK E):
outportb(AD_TMEgOxOL): /wallow wounters 1 8 2 to coumtw
outportb(AD_GATN:GATN_1):
outportb(ADC_GONョ oxb4): /Kontr 2, r/l low then high bytay rate g
End/

曰の章
outportb(AD_CNTF_2. Ox14):
outportb(AD_CNTF_玉ッ OxOO): /wlaad
temp = EOOOG / FFEOUENCY: /\% A/D internal ciock i= loooooohz */
High = temp / 256: / * $1000000 / 20=50000$ using frequ */
Low $=$ temp - (2EG * high) / *now find the low $w$ high bytes for w


pitch_old = MFTF->spupiten_neutral.
yaw old = MFTF--sspuyawneutral:
3

* loct the motor brekes

void Loct Erates (void)

```
Outportb(ID_OUT: LOCE_E):
MFTR->mamot_drive = 204Ey
MFTF->mb.mot_drive = 2048:
Motor_Drive():
textcolor(BLACK):
testbackground(WHITE):
gotoxy(10,24):
cputs(" ")!
gotoxy(10,24):
cputs(" LOCK "):
sound(bOO):
delay(50):
ncsound():
}
```

```
/*寀**********************
    * unlock the motor brakes
```



```
void Unlock Eraves(void)
&
MFTF--me.mot drive = 2048;
MFTF->mbumot_ririve = 204B%
Motor_Drive():
autportb(IG DUT, UNLDCE B):
textcolor(BLACK):
textbeekground(WHITE):
goto*y(10,24):
cputs(" ")!
gotoxy(10,24):
cputs(" UNLOCE "):
sound(400):
delay(50):
nosound():
%
```


* enable the $A / D$ interrupts for sync operatione

void Enetre_AD Intermupt (void)
C
cutportb(AD CON: INT ON):
outportb(AD STATUS: CIF_INT):
enable():
?

* disable the $A / D$ interrupts for sync operations

void Diseble AD Interrupt (void)
\&
outportb(AD_CON: INT_DFF):
$\geqslant$

* fead the value out of an A/D channel
********************/
int Fead AD Chan(channei)

```
int
10op:
unsigned char" lows high:
unsigned short raw!
int detag
outportb(0xSEzy chanmel):
For (1ogp = 0: loop <= is + +10op):
outportb(0xSEO, 0xOO):
For (loop = O: loop < = 2% +r+1oop):
low = inportb(0x_SO):
migh = inportb(oxsei);
raw == (((High & &) + low) >> 4) & OMOFFF):
datea = (int) raw -- 2048;
/* gotoxy(40, 2\Xi):
clreol():
gotoxy(40, 23)!
if(chanmel ==0<OO)
                                    &
    printf("ch %x raw %x datea == %d"g whammelg raws data);
    delay(10):
    3 test onlyw/
returm datag!
J
```


## 

* The the six Ehannels of the resolvers
* Fhect: Far error ommditions
* on pitet and yaw. read the $x 1$ and $x 16$ chanmejs

宗 and find the Final value

void Feed fresolvers ()
-
ungigned Ehar errory countw low by high b:
unsigned short xis xi $\boldsymbol{s}_{5}$ temp_xis temp xits
static unsigned int maresmold = צ276e:
static unsigned int mb_resond $=32768$
outportb(EASE, MAB) / Aread motor A input resolverw/
10w $\mathrm{O}=$ importb(LSE):
High b $=$ inportb(MSE):

if ( $21<49152$ ) $21=41+16384$
EIEex1 = x1 - -49152


$=1!$

rey $-=1!$

```
    ma_res_old= MFTFi-\cdotsmex.res_mota
```

    outportb(EASEy MER) (Aread motor E input resalverw/
    low_b \(=\) inportb (LSE):
    high \(b=i m p o r t b(m E E):\)
    \(x 1=(\) high \(b\) 曹 \(256+10 w b)\) Oxfffog
    if ( \(x 1<49152\) ) \(\times 1=\times 1+16384 \%\)
    E1se \(\because 1=41-45152\)
    

$1:$

rev - = $\ddagger$ ụ
$m b$ res old = MFTFi--Mb.res_cnt

Iow $b=$ inoofth (LSE)
high_b = inportb(MSE):


else xi $=\times 1-471524$
outportb(EASE, F_HI): $;$ (not used)read pitch resolver xib winding
$\leq * /$
low_b = inportb(LSE):
high_b $=$ inportb(ivEE):


/\% temp_xic $=\times 16 \& 0 \times f 000$ ?



Final resultw/
/* FUT IN FOF FEAL OFEFATION*/

```
MFTF-wpy:pitch_pos=xi: /*Find Final result*/
outportb(EASE, Y LG):% /wread yaw resolver X1 windings*/
low_b = inportb(LSE):
High_b= inporth(NGS):
```




```
else x1 = <1 - 4%152%
```



```
    high_b=inportb(MSE):
```




```
/* temp-x1b= <16 & 0xfooge */
```



/ W Iow $\quad$ ? $=$ inpartb (LSB):

inel resulta,
/*FUT IN FOF FEAL OFEEATION\%/

yaw_old = yaw_new:
MFTF-Spy:yaw Fo= (int) (yaw_new)! \%/




M_neutral) ( 65SE6.0)

neutrel) ( 65 SG 0 )


7

## 

* collect the joint date and store away

void Get_Joint_Deta(void)
int loop:
int tempag tempt:
ORUPNA PAEE IS
int tora_loop $=16 \%$
OF POOR QUALITY

Qutportb (AD CON $A D$ EET):


```
MFTF-sma,tach
MFTE->mb.tach = Fead AD Chan(AD TACHEB:
MFTF->ma,res_vel = Fead_AD_Chan(AD_RD_V_A) %
MPTF-YmbuFE_vE1 = FEad_AD_Chan(AD_RD_V_B):
MFTR-Spy,pitch_vel=Fead_AD_Chan(AD_FD_V_F):
MFTF->PY:yaw vel = Fead_AD_Chan(AD_RD_V Y)
outportb(AD_GAIN: GAIN_5OO):
Fead_Fesolvers()!
/Htest only next Four lines*/
```



```
MFTF-Ypy:yaw_vel = (int)(MFTF-\py.yaw_pos - MFTF-\py=old_yaw):
MFTF-'py"aid_pitch = MFTR-Ypy*piteh_pos:
MFTR--YpY,old_yaw = MPTR--Ypy,yaw_pos:
tempe = O;
tempo =Og
for (loop = O: 100p & torq_100p: ++100p)
    tempa = Fead_AD_Chan(AD_TOFQ_A) + tempas
For (1oop = O: 1oop < torq_loop: w+wloop)
    temph = Fead_AD Chan(AD TOFQ_B) + tempbs
outportb(AD GAIN, GAIN i)%
MFTR->ma,torq = (int) (tempe / torq_loop):
MFTF->mb,torq= (int) (tempb (torq_loop):
Enable_AD Interrmpt():
?
```



```
    FILE: NASAS.C
    DATE: July 28: 1990
        foutcnes
                            Initial_System
        Display_Error
        Motor_Drive
        Data Fecord
        Data_Save
        Load_Ferameters
        Save_Farameter=
    *
    *
    ***************************
#inciude "extdatari"
*inciude "nasadef"t"
Hinclude sdoent>
#include sconioum>
#include <etmio.h%
```


* routine to set up system for arm motion

void Initiel_System(void)
<
FUN ARM = TRUE:
ERROF FLAG = FALSE:
MPTE-->sp.slimit pitch = FALSE:
MFTR->SPuslimit_yaw = FALSE:
MPTE- manmotrive $=204 \mathrm{~m}_{5}$
MFTE-Tmbnot drive $=2049$
MPTE-->dserounter $=0$
LOG_CNT $=0$ :
LOG REV = FALSE:
/ For testing only*/
$/ * \quad$ MFTE-Spypitch_vel $=0:$
MFTF--Ppy yaw vel $=0$
MFTE->matach $=20485$
MFTR-smb.tach $=2048 \% /$
Motor Initial():
3

需 routine to display the reason for the system shutdown

void Display_Error (int fiag)
*
gotoxy $(50,24)!$

```
else gotoxy(25,18):
tentcolor(BLACK)!
textbac!ground(WHITE);
if (EFFOF_FLAG== F_HI_LTMIT) CPUtE("FITCH LIMIT - HIGH")=
EISE if (EFROF,FLAG == F LO_LIMIT) GPLTE("FITCH LIMIT - LOW"):
E1BE if (EFFOR_FLAG == Y_HI_LTMTT) EPUES("YAW LIMTT -- HIGH")%
ElSe if (EFFOF_FLAG == Y_LD_LIMIT) CPLTE("YAW LIMIT - LOW");
EISE i% (EFROF FLAG == FESOLVEFEFFDR') CPUES("FESOLVEF EFROF")
ElSE if (EFROR FLAG == NOFMAL SHUTDOWN) CPUTS("NOFMAL SHUTDOWN"):
EISE if (EFFOF FLAG == FESET) EPUES("FESTARTING COMFUTEF"):
EISE IF (EFFOF_FLAG == SOFT_LIMIT_F' CPUES("FTTCH SOFT LTMIT"):
EISE iF (ERFOFFFLGG== SOFT_LIMIT_Y CDUtS{"YAW SOFT LIMIT");
Else if (EFFOF_FLAG== TIME_OUT; Eputs("TIME OUT EFFOF:"):
Else if(EFFOR FLAG== AD FAIL' CPULE("AD INTEFFLFT FAIL")%
Sound(500);
delay(100)!
nosound():
I
```


## 

* output values for moter drive
* Chect: for proper range of values

void Motor_Drive(void)

```
unsigried int temp_ag temp_b:
```



```
if (MFTF->maumot_erive % 4095) NFTR-%manmot_drjve = 4074!
```



```
if (MFTFE->mbmotw drive ? 4075) MFTF-->mbumot_drive = 40%4%
    Else if (MFTF->mbumot drive & O) MFTFE->mbomotmdrive= O!
temp_a = (MFTF->manmot_drive < 4):
ni_a = ( (temp_a e oxffoo) >> E):
lo_a = (temp_a % OxOOfF)%
temp_b= (MFTF->mbamot_drive << A):
hi_b = ((temp_b & OxffOO) v B)!
10b = (tempb & Oxo@FF):
outportb(DAOLLDW, lo_a):
outportb(DAOHI, hima):
outportb(DA1 LOW, 1o_b):
"utportb(DAL_HI; Gi_b):
```



```
3
```



* Foutime to re■ord joint deta for leter displey

void Deta Feword(void)

```
Iog_piteh_vel[LOG_DNT] = MPTF-spy"pitch_vel:
log_yaw pos[LOG_[NT] = MFTF-YpY:Yawmpos
10Q yaw vel[LOG CNT] = MFTR-Spy:yew vel:
log_desire_pitch_pos[LOG_CNT] = MPTF-_ds.pitch_pos:
Iog_desir゙E_yaw_pos[LOG_[NT] = MFTF->ds.yaw_pos:
LOG CNT = LOG ENT + i:
if (LDG CNT == MAX_LDG)
C
LDG CNT = O
    LDG FEV = TFUE:
    3
3
```



```
    * routine to gave juint data for Iater digplay
```


void Date_Save(void)
FILE $\quad$ 典param_files \%fopen ():
unsigned int ustemp:
$\begin{array}{ll}\text { int } & \text { itemp: } \\ \text { Float } & \text { ftemp: } \\ \text { int } & \text { loopy counts } \\ \text { Char } & \text { answer } \\ \text { char } & \text { logfilename[i2]! }\end{array}$
textcolor (BLACE):
textbeckgrourn (WHITE) :
gotoxy(20: 5):
cputs("SYSTEM DATA HAS EEEN COLLECTED "):
gotoxy(20,16):
cputs ("DO YOU WISH TO SAVE THE DATA Y/N "):
gotany $(60,16)$ ?
flushall()
answer =" Fgetchar():
textcolor (WHITE):
textbackground (BLACK):
gotoxy(20,15):
cireal():
gotoxy (20,16):
cireal():
gotory (50,24):
clreal():
gotaxy (50,24):
textcolor (Black)!
textbeckground (WHITE):
cputs(" ") s
if ( (answer $==$ " $\gamma^{\prime}$ ) | (answer $==$ " $\left.y^{*}\right)$ )
r
textcolor (ELACK):
textbackground (WHITE):
gotoxy(20,15):
Cputs("ENTEF IN FILE NAME "):
gotory (45, 15):
Flushail():
Ecant("\%ils:, Iogfilename):
textcolor (WHITE) :
textbadeground(ELACK):
$\operatorname{gotoxy}(20,15)$

```
    param file = fopen(logfilenames "w"):
    if (paramfile= NOLL)
    textcolor(ELACK):
    textbeckground(WHITE):
    gotony(50,24):
    cputs("FilE ERROR"):
    sound(500):
    delay(1500):
    nosound():
    delay(5000):
    z
    textcolor(BLACK):
    textbackground(WHITE):
    gotoxy(50,24)!
    printf("WOft(NG"):
    IF (LIDG_REV == FALSE)
        &
        fprintf(parram_file: " TACH A
        TORGUE E\N"):
    for (loop == Og loop & LOG_CNT: loop+t)
                            &
                            itemp = log tachma[loop]:
                            ftemp = (floet)itemp * 2.0726S%
                            fprintf(param_file, "%d %& ", "loop,f
temp ):
    itemp=1og_tach_blloop7:
    ftemp = (float)itemp (2.0g203:
    fprintf(param_files "%f ", ftemp)!
    itemp=log torga[100p]:
    ftemp = (float)itemp * 0.024414:
    fprintf(parem_files " %f ", ftemp):
    itemp = log_torq_b[loop]g
    Ftemp = (float)itemp * 0.oc4414%
    fprintf(param_file, "%f \n"gFtemp)"
    z
    Fprintf(paramfile, " FESOLVEF A
    FESOLVEF B FESDLVEFE FEV\n"):
FEV
FEEOLVEF: A
```


## $100 p++1$

```
For (loop=on loop (GOG CNT: loop+t)
    &
    Lstemp = log_res_cnt a[loop]:
    ftemp = (float)ustemp * 0.00549%:
    fprintflparam_files "%d %f% ",lo
op:ftemp):
#
    itemp = log_res_rev_e[loop]:
    fprintf(paramfiles "%d ", itemp)
    ustemp = log_res_cnt_b[loop]:
    ftemp =- (floet)ustemp * 0.0054gS%
    fprintf(param_files "%f "%ftemp)!
    itemp == log_res_rev,b[loop]:
    fprintf(param_file, "%d \n", itemp):
    3
    fprintf(peram_file, " MOTOF COMMAND A MOTOF C
OMMAND E:
        FITCH POSITION
        FITCH VELOCITY\""):
    For (loop = O: loop & LOG CNT: loopt+)
    C
    itemp = log_motor_cmd_e[loop]-204s:
    ftemp = (fioat)itemp * Onog4egs;
    Fprintf(parem_files "%d %% "% loop
Ftemp):
itemp = logmotor_mmb[100p]-2048:
Ftemp = (FLoat)itemp * 0.0048es:
Fprintf(parem_fileg "%f ", "ftemp):
```

```
    ftemp = (float)ustemp * 0.00547%:
    fprintf(param_file, "%f "; ftemp):
    itemp = log_pitch_vel[loop]g
    fprintf(param_file: "%d \n", itemp):
    Fprintflparam_file, " YAW FOSITION YAW VELOC
    DESIRE FITCH DESIRE YAW\\"):
    for (loop = Oy loop < LDG_CNT: loop++)
    &
    ustemp == log_yaw_pos[loop]:
    ftemp = (float)ustemp % 0.005493:
    fprintf(parem_file, "%d %f "% loop,ft
emp):
    itemp = log_yaw_vel[loop]:
    fprintf(perm_fileg " %d "sitemp):
    itemp = log_desire_pitch_pos[loop]:
    Ftemp = (floet)itemp * 0.00549S:
    fprintf(parem_files "/%f ";ftemp)%
    itemp = log_desire_yaw pos[ioop]!
    ftemp = (float)itemp * 0.0054g3%
    fprintf(param_fileg "%f \n"!fteme)!
    7
```

/Wtest routines*/

* Fprintf(param_files "TOFQUE A\n")"
For (loop $=0 \mathrm{~g}$ loop LOG CNT: loopt+
<
itemp $=109$ torgariogelit
Fprintf(paramfile, "\%d \%dtn": loopgitemp);
2
fprintf(paramfiles "TORQUE E $\mathrm{F}^{(n ")}$ "
for (loop $=0$ lop 100 LOG CNT: loop++)
itemp $=$ log torgorloop]
Fprintf(parampile, "\%d $/ / d \backslash n "$ loopyitemp) :
\% torque test routines*/
3
else
TORQUE A
Ftemp):
temp * $1.349895:$


```
itemp = log_tech_e[10op]:
ftemp =(float) itemp * 2.0g26Sg
fprintf(param_files "%al %f "% coumt:
```

GOLVEF A REV
ourt: ftemp):
untyftempl:

COMMAND E

RESOLVER E
for (loop $=($ LGG_CNT - 1): loop \& MAX_LOGg loopt+)
c
ustemp $=\log r e s \cot a[100 p]:$
ftemp $=$ (float)ustemp * 0.005493?
fprintf(param_files "\%d \%f
itemp $=$ log_res_rev_a[logp]:
Forintf(parem_fie, "\%d "itemp) "
ustemp $=$ Iog resent b[Iope].
ftemp = (floet)ustemp*0.005493:
fprintf(param_fle:"\% $\quad$, ftemp):
itemp $=\log$ res reverloop]:
fprintf(param_file, "\%d $\mathrm{Hn}_{\mathrm{g}}$, count, itemp)
coumt $+=1$
3
For $(100 p=0: 100 p<(\log$ CNT -1$): 100 p++)$
¢
ustemp $=10 \mathrm{~g}$ res_cnt a[loop]:
Ftemp = (Float) ustemp * 0.00549 s
fprintflparamfiles "\%d \%f $\quad$ "co
itemp $=$ log_res_rev_e[1oopI:
Fprintf(paramfilen"/ad ", itemp):
ustemp $=10 \mathrm{~g}$ resent b[loop]:
Ftemp $=$ (float)ustemp * $0.00549 \%$
fprintf(paramfile, "\%d " ftemp):
itemp $=1$ log_res rev brloopy
fprintf(paramfiles "\%d $\mathrm{m}^{3}$;itemp)
comint +1 .
3
count $=00$
fprintf(param_file, " MOTOF command A MOTOF
PITCH FOSITION
FITCH VELOCITY\п"):
for (loop $=($ LOE_CNT -1$): \operatorname{loOp}$ (MAX_LOG: looptrt $)$
©
itemp $=\log$ motor_cmd_e[100p]-2048:
ftemp $=$ (floet)itemp $0.004883:$
fprintf(parem_files "\%d \%f " coun
ftemp):
itemp $=10 \mathrm{gmotor}$ cmd b[Ioop]-204日:
Ftemp $=($ figat $)$ itemp 0.0046 B .
fprintf(paramfile, " \%f "ftemp):
ustemp $=10 \mathrm{~g}$ pitch pos[loop]:
ftemp = (float)ustemp * 0.005493:
fprintf(parampiles "\%f " ${ }_{4}$ ftemp)
itemp $=$ log pitch_vel[loop]:
count $t=1 \%$
3
For (1oop $=0: 100 p$ (LDG_CNT - 1): 1ooptrt)
itemp $=10 \mathrm{~g}$ motor_cnd_a[1oop]

Fprintf(param_file, "\%d \%f "\% count,
itemp $=10 \mathrm{~g}$ motor__cmd b[100p]:
ftemp $=$ (float)itemp * o. ou48e马:
Fprintf(param_files "\%f " ftemp) \%
ustemp = lag_pitom_pos[loop]:
Ftemp $=(f 10 a t) u s t e m p$ * 0.00549 ?
fptinttiparam_files "\%f $\quad$ "; ftemp);
itemp $=$ log_pitch_vel[loop]:
Fprintf(parampiley "\%d vn"gitemp)s
count $+=1 \%$
3
count $=0$
Fprintf(param_files "
YAW FOSITION
YAW VEEDC
DESTRE FITCH
DESTFE YA(M $n^{\prime \prime}$ )

r
ustemp $=10 \mathrm{~g}$ Yaw_pos[]oop]:

fprintf(paramfiley "/ud yt " eount, f
$t \in m p)$

Emp!
itemp $=10 \mathrm{~g}$ yaw velcloppl!

itemp $=$ loo desirepptch postloopla
ftemp = (float)itemp w osoos 49 O
fprintw(parantileg "\%f ", ftemp) !
itemp $=$ ]og desire yan pos[ioqp]!
Ftemp $=$ (floet)itemp * O.005493:
Fprintf(param_fies " $\%$ for", ftemp):
count $+=1$ :
3
for (100p $=$ O: 100 a (LOE ENT - 1): 100pt+)
Lstemp $=10 \mathrm{~g}$ yaw pos[1oop]:


$i t e m p=10 g_{\text {_ }}$ yaw vel. [100p]:
fprinty(paramfile, "\%d ", itemp)
itemp $=10 \mathrm{~g}$ desirenpitch pos[loop]:
ftemp = (fioat)itemp * Goos 493

itemp $=10 \mathrm{~g}$ desite youposinaopli
Ftemp $=(f 10 a t)$ itemp * 0. oos49S:

coumt $+=1$ n
3
/承emt routimesw/
/ $k$ count $=0$
fprintf(paramfiley "TOFDUE ADn"):

-
itemp $=$ Iog torqua[1oop]:
Fprintr(patzmfiles "\%d \%ov"; coumt, temp)
count $+=14$
3
for (100p $=$ O: loop © (LOG CNT - 1): 100ptit) i


```
    count +=1%
    %
count =0:
fprintf(par#mfile, "TOFQUE E\n"):
for (100p = (LOG_CNT - 1)% loop < MAX_LOG: loopt+)
    itemp = log_torg_b[loop]g
    fprintf(param_File: "%d %on", courtesitemp)s
    count += 1%
    3
For (loop = O; loop < (LOG_CNT - 1): loopt+)
    <
    itemp = 10g_tora_b[10op]:
    fprintf(peram_fiIE, "%dy %/w\m",coumt;itemp):
    count += !!
    3 torque test routines */
                            3
                            Fclose(parem_File):
textEojor(ELACK)?
textbeckground(WHTTE)!
gotoxy(50,24)?
mputs(" ")!
textcolor(WHITE):
textbeckground(BLACE);
    2
```

3

## 

* routine to get setpoint datz off of disk * This date includes the joint operating limjts


```
void Loed_Farameters(void)
    FILE *param_files %fopen():
    Float Ftemp:
    int itemp!
    unsigmed shortt umtemp:
    param File =: Fopen("NASA.FAF:", "r")%
    if (param,File== NULL;
            &
            textcolor (ELACK)
                textbamkgroumd (WHTTE):
                gotony(50,25):
                CPuts("FILE EFROF"):
            3
        FEcanf(param_fileg "/uu"; Eustemp):
```



```
        fscanf(param_file, "%u"; &ustemp):
        MFTF-SEpupitoh Hi alarm == ustemp:
        fscanf(per am_files "%u"; %ustemp);
        MFTE->Spapitchmeutral=ustempy
        FEEanf(param_file, "%ui", gustemp):
        MFTF-%spupitch_lo_elarm=ustemp!
        fEcanf(parmm_files "%u", %ustemp):
        MWTF--sg口,pjtth lo limit=ustemp!
        Fscanf(paramfile, "%u", gustemp),
        MFTF--gp.deifampitch=ustemp:
        fseanf(permm_filen "#u", %ustemp);
        MFTF-sED:yan mi limit = ustemp;
```

MFTE－＞spuyawhi aiarm＝ustemp：

MFTR－＞sp：yamneutral＝ustemp：
fscanf（pardm＿file，＂\％u＂，\％ustemp）
MFTF－＞sp，yaw＿io＿alarm＝ustemp：
fEcanf（paramfileg＂\％u＂，fustemp）：
MFTF：－sspyaw lo＿limit＝ustemo：
Fscanf（param＿files＂\％u＂，8ustemp）；
MFTR－Ysp．delta yaw＝ustemp：
fscanf（param＿files＂\％千＂，\＆ftemp）；
MFTF－大gn．A＿pos＿motion＿scale $=$ ftemp：
f＝canf（paramfile，＂\％F＂，bftemp）：
MFTE－＞gn．E＿pos＿motion＿mcale＝Ftemp：
fscanf（param＿file，＂\％f＂，Eftemp）：
MFTF－ $\operatorname{ygn} A$ vel motion Ecale $=$ Ftemps
FEcanf（paramfile；＂\％／f＂，\＆ftemp）；
MFTF－＞gn．E vel motion scale＝Fitempu
fEcanf（param＿file；＂\＄F＂，\＆ftemp）：
MFTF－xgna $A$ motor＿nel $=$ ttemps
fscanf（peram＿file，＂\％f＂，8Ftemp）：
MFTF－＇gan
fscanf（param＿files＂\％f＂；区ftemp）；
MFTR－ $\operatorname{sgn}$ a＿torque $=$ ftemp：
fccanf（param＿file，＂\％f＂，हftemp）；

fscant（param＿files＂\％f＂，sftemp）！
NFTR－sgn＂A position＝ftemp：

MFTE－大gn．B position＝ftemp：
fsemff（parampile；＂\％f＂；Bftemp）；
MFTE－sgnn A output vel＝ftemp：
fgannf（parem＿file；＂\％f＂，\％ftemp）；
MFTF－sgm．B output vel＝Ftemp：
fscenf（paramfjuen＂\％d＂，eitemp）：
MFTF－sgnodirection＝itemp：




Falose（param Fije）；
FAFAMETEF FLAG＝FALSE：／wset to Falses get true if valu
／4routine to save setpoint date and parametere will chect to see if deta has been chengedg if no the routine will not do anything＊／

## void Save＿permmeters（void）

FILE Wparam fileg wfopen（）

Floet ftemp：
int itemp：
unsjoned short ustemp：
cher
answer：
$3 F$ (FAGAMETEF FLAG == TRUE)
\&
texteolor (ELACK);
textbeckground (WHITE) :
gotoxy (20, 15):
CDUTE ("SYSTEM FAFAMETEFS HAVE EEEN CHANGED B) :
gotoxy (20, 16)!
GPutS ("DO YOU WISH TO SAVE NEW FAFAMETEFS Y/N "):
answer $=$ fqetchar ():
textcolor (WHTTE)
textbackground (ELACK):
gotoxy (20,15)
clreal ()
gotoxy(20,16):
cIreol():
gotoxy (50,11):
if ((answer $==$ " $Y^{*}$ ) |: (answer $\left.=={ }^{3} y^{*}\right)$ )
<
param_file = fopen("NASA.FAR", "w")! if (parambile $==$ NULL
\&
textcolor (ELACK):
textbackground (WHTTE):
gotoxy (50,25):
coute("FILE ERFOR"):
sound (500):
delay (1500):
nosound ():
delay(7500):
3
ustemp $=$ MFTE-SEpupitch_hi_limit:
Fprintf(param_file, "/bun", ustemp) ustemp = MFTR->Epapitch_hi_alemm
fprintf(param.Files "\%u\m", ustemp) ustemp = MFTR->spopiten neutral: Fprintf(paramfines "7u\n": ustemp)! ustemp $=$ MFTR--SEp.pitch_10_alarm: fprintf(paramfiles "gu\n" ustemp) ustemp $=$ MPTR-ssp.pitch_lo_1imit:
fprintf(parampile, "\%u\n", ustemp)! ustemp = MFTR->spadeltepitch:
fprintf(param_fies "/anत", uetemp):
ustemp $=$ MFTR->sp yawni limita
fptintf(parampiles "\%u\n", ustemp):
ustemp $=$ MFTR->Ep.Yaw hi_elarms
Fprintf(param_Files "7u\n"y ustemp):
ustemp = MFTF-->sp.yawneutrely
fprintfiparamfiles "\%u\n": ustemp)
ustemp $=$ MFTR-->sp.yew lo Elerm?
forintf(paramfiles "\%u\n": ustemp):
ustemp = MFTR->sp.yaw lonimito

ustemp $=$ MFTR->sp delta_yaw:
forintf(parampiles "\%LTn"; ustemp)?

forintf(paramfile, "\%fin", ftemp):
ftemp = WFTF-->gn.B_pos_motion_seales
Fprintf(paramfile, "\%f\n", ftemp)!
ftemp $=$ MFTF-->gn.A_vel_motion_scaleg
fprintf(paramfiles "\%f\n", ftemp)!
ftemp $=$ MFTF-->gn.B_vel_motion scale:
fprintf(paramfile, "\%f\n", Ftemp):
Ftemp $=$ MFTE-->gn.A_motor-_vel:
fprintf(peram_file; "\%f才n"y ftemp)
ftemp = MFTF->gn.E_motor_vel:
fprintf(paramfiles "\%f(n": ftemp):
ftemp = MFTF-->gna_torque:
fprintfiparam_file: "\%f\n", ftemp)
ftemp $=$ MFTR---sgn. B torque:
fprintf(param_file, "\%f\n", ftemp):
ftemp = MFTF->gn,A position
fprintf(paramfiles "\%fin"s ftemp)"
ftemp $=$ MPTR--vgnB_position:
ftemp $=$ MFTF-Sgn A_output_vel:
forintf(paramfiles "\%f\n", ftemp)
ftemp = MFTR->gnaE_output_vels
fprintf(paramfile, "\%f\n": ftemp)
itemp $=$ MFTF-Ygn.direction:
fprintf(param_file, "\%d\n": itemp):
ftemp $=$ MFTR->jy:x_gains
fprintf(peram_files "\%f\n"s ftemp):
ftemp = MFTR-->yyy_geins
fprintF(paramfilen "\%f\n", ftemp)"
folose(param_file):
3
3
7


```
    * FILE: NASA4:C
    * DATE: JuJY 2E: 1990
*
* FOUTINES
    Erzke Lock
    Erake Unlock
    Display System Data
    Mod Setpoint
    Moc_Gair
    Famge Check
    Dusplay_Gystem_Setpoints
    Display System Gains
    *
    *
```



```
#include "extdatanh"
wjnclude "mesedef.h"
#inclume cdos.h:
#smclude seonio.h%
#include <stdionh%
```



```
    # locte the motor brakes
```



```
void Etrace_Loct(vosd)
                    <
                    outportb(IO_OUT: LOCG_E):
                    MFTF->mamot: drive == 204日!
                    MFTF--mb.mot drive= 204Eu
                    Motor" Dr"jve():
                    textcolor(ELACK)\pi
                    textbackground(WHTTE):
                    gotoxy(60,24):
                    Eputi=(" ")!
                    gotoxy(60,24):
                    cputs(" LOCE ")品
                        textcolor(WHTTE)*
                        textbackground(ELACC)
                    sound(800):
                    deley(50):
                    nosound():
                    3
```


宗 unloct the motor brates

vad Erate uniock(vaid)
t
MFTF->mauct drive $=2048$

```
Motar_Drive():
OutportG(TO DUT% UNLOC&_E):
textcolor (ELACC):
textbackground(whTTE)?
gotony(60,24)%
cputs(" ")? ?
gotoxy(60,24):
CPuts(" UNLOCFE "):
textcolor(WHITE):
textbackgtoumd(ELACK)?
sound(400)!
delay(50):
mosound():
3
```


## 

\％foutine to show system dates can umlock brakes and
＊move joint and watch data changes

void

```
Display_gystem_Deta(void)
    &
    int done_fleg!
    EHar゙ E!!
    done Flag= FALSE:
    textcolor(WHTTE):
    textbackground (ELACK):
    Cl!゙ョじ():%
    textcolor(BLACK)?
    textbewkground (WHTTE):
    gotovy(iyi)y
    Eputse(: MOTDF A DATA "):
    gotoxy(1,2):
    cputs(" Tachometer" "):
    gotoxy(1,3):
    #puts(" Torgue ")"
    gotoxy(1,4):
    cputs(" FFesolver Count "):
    gotaxy(1,5):
    cputs(! Fesolver Feve ");
    gotoxy(1,6)?
    cputs(" Fesolver vel ")%
    gotoxy(1,7):
    Gouts("Femolver mngle ");
    gotoxy(1,10):
    GPuts(" MOTOF E DATA "):
    gotoky(1:11):
    Eput:e(" Tawhometer "):
    gotoxy(1,12)!
    cputs(" Torqu* ")!
    gotoxy(1,iE):
    Eputs(" Femolver Count "):
    gotoxy(1%14):
    cpute(" Fesulver" Reve ")!
    gotoxy(1,15):
    cputs(" Fesolver vel ")!
    gotoky(1,16):
    cputs(" Fesolver" Angle ")"
    gotoky(141日)?
    Eput=(" FITCH ; YAW DATA ")!
    gotoxy(1,19)!
    cpute(" Fitwh Fesemlver Goumt "%s
    gatoxy(1,20):
```

```
gotoxy(1,21):
cputs(" Fitch fingle "):
gotoxy(1,22):
cputs(" Yaw Fesolver Coumt i")!
gotokY(1,2己):
Gputs(" Yaw Fesolver" Vel ")?
gotony(1,24):
qpute{" Yaw Angle "):
textcolor(ELACE) =
#extbackground(WHITE)!
gotoxy(1,2G):
CPUTE("ENTEF "E" TO EXIT "U" TO UNLDCK & "L" TO LOCK EFAGES"):
textcelor(WHTTE);
testbackground(BLACK);
while (!domenflag)
<
Get_Toint_Data()#
gotoxy(18,2):
E1real():
gotoxy(18,2)!
printf("go",MFTG-->ma, tach)"
gataxy(ig,z):
Elreal():
gotoxy(18,\Xi): %
printF("gd"y MFTFm,-ma,torg)"
got"xy(18,4)?
clreol()!
gotaxy(18,4)\pi
```



```
gotoky(18,5)!
clreol():
gotowy(18,5):
printF("%a",y MFTF-Smaress_rev) !
gotowy(10,b)=
c1%eol():
gotoxy(18,6):
```



```
gotoxy(18,7)%
Elreol():
gotoxy(18,7)!
```



```
gotoxy(18,11)!
Elreol()!
gotoxy(18,11)!
printf("%|", MFT&-smbutemin)
gotoxy(10,12):
*1reol():
gotoxy(10,12)%
printf("%d", NFTF-wombtorq)!
gotwxy(18,1z)?
C1real():
gotowy(1Q,13):
```



```
gotoxy(18,14):
cIreol():
gotoxy(1E,14)s
printf("%d", MFTE->mb,res_rev)?
gotoxy(ig,d龵)
clmeol():
gotoxy(18,15)
printf("%d", froTr-smbares_vel)!
gotovy(18,1b)?
E1reol():
gotoxy(10,16):
```



```
    E1real():
    gotaxy(24:1.7):
```



```
    gotoxy(24,20):
    clreol():
    gotaxy(24;20):
    printf("%g", MPTF-Spyspitch_vel);
    gotoxy(24,2i):
    c1reol():
    got0%y(24,21):
    printf("%,2\mp@subsup{f}{}{\prime\prime}:MFTF-->py,pitch_amg):
    gotoxy(24,22):
    clreol():
    gotoxy(24,22):
    printF("%u %*"; MFTF-Ypy,yaw_pos, MFTF-\py,yaw,pos):
    gotoxy(24,2世):
    cl.real():
    gotowy(24,2s)?
    printf("%al", NFTF-\py,yaw_vel):
    gotomy(24,24)!
    clreol()!
    gotoxy(24,24):
```



```
    delay(100)y
    if (cbtit() )
        &
        E=getch():
```





```
                        3
    y
E1rscr()!
`
```




```
    * routine to chamge a setpoint during system pperation
```

```
    * routine to chamge a setpoint during system pperation
```




```
    void Mod Setpoint(int max_y)
        <
    int =E]scty
    int y!
    umsigmed int value:
    Eslect =OxOO!
    y =2!
    testcolor(WHITE);
    textbackgrounc(ELACE)!
    gotoxy(1,25):
    c1reol():
    tExtEOlor(ELACC):
    textbackgroumd(WHITE):
    gotoxy(t,25):
    GFut=("GEYFAD NUM LOCK ON USE UF/TDWN KEYS ENTEF TG SELEOT"):
    textcolor(WHTTE):
    tentbackground(BLACK)!
    gotoxy(1,y):
    eputs("每")
    while (celect !=13)
        C
        delmy(100):
        select = getch():
```

```
                        L
                        case50: y = y + 1%
                            textcolor(Black):
                            textbackground(WHITE)?
                        gotoxy(1,y-1);
                        cputs(" ")?
                        if (y > max_y) y = 2y
                            textcolor (WHITE);
                            E=&tbeckgrouncl(ELACE):
                        gotory(1;y);
                        cputs("*")!
                        breat:%
    case5b: y = y - i!
            textcolor(ELACK):
                            testbackground(WHITE)!
                            gotoxy(1;y+1):
                            cpute(" "):
                            if (y z) y = max_yu
                            textcoIor(WHTTE):
                            textbackground(BLAC&):
                            gotowy(i,y):
                            Gputs("家")!
                            break:
    defauat a breat:
        j
    j
textcolor(WHITE)a
textbackground (BLACK):
gotoxy(1,25)
EIrem]():
textcolor(ELACE):
textbackground(whTTE):
gotoxy(1;24):
EPUt:("ENTEF IN NEW SETPGINT VALUE ")"
testcolor(WHITE):
textbeakground(ELACE):
gotoxy(30%24):
scant("%%", %value)!
gotoxy(1,24):
Clreol():
textcolor(BLACK):
textbmckground (WHTTE):
gotoxy(1,y):
mputs(" ")"
FARAMETEF FLAG = TRLE:
gwitwh (y)
    y
    CESE 2 : MFTF->sp,pitch_hi limit = values breab:
```



```
    Ease 4 : MFTFi-mspapitchmmeutral = valueg break%
```




```
    case % MFTR-\Epudelta_pitch = valueu breafu
```



```
    mase % mFTF--sep:yem mi_alerm =: value! break!
    mese 10: MFTF-sgp,yaw neutral = valuea breaby
    cese L1 : NFTf-sep:ymw lomalarm = valueu breaky
    cese 12 : MFTR->sp:yaw lominmit = value% breaf:
```



```
    default: break:
    3
textcolor(BLACK)?
tEwtbackgtound(whITE):
gotowy(1,25):
GPUTE("ENTEF "E" TO EXIT "E" TO EHANGE A SETPQINT ")
```



```
    * routine to whange a gain curing Eystem operatioon
```



```
    void Mod_Gain(int max_y)
    <
    int selects
    int y:
    Floet value!
    select =0w00:
    y =2%
textcolor (WHITE):
textbechorourd (BLACK)
    gotoxy(1,25):
    Elr"eal()!
    tExtcolor(BLAC&)!
    Eextbackgroumd(WHITE):
    gotoxy(1,25):
    EPLWS("GEYFAD NUN LOGE DN USE UF/DOWN KEVS ENTEF TO SELEGT"):
    textcolor(urtmTE):
    textbeckgroumd(BLACE) y
    gotowy(1,y):
    cputs("承)!
    while (select !=13)
        <
        delay(100):
        gelect == getmh():
        Ewitem (select)
            <
                        CESe 50: y = y + iy
                        textacolor(ELACK):
                        textbackgroumd(WHITE):
                        gotaky(isy-1)%
                        cputs(" ")
                        if (y > max_y) y = z
                        wEstmolor(WHTTE):
                        textbeckground (ELACF):
                        gotoxy(1,y):
                        Eput:("午")
                            breaka
                CEEe Fe a y = y -- i.;
                            testmolor(ELACC):
                            textbeckground(WHITE):
                            gotoxy(1,y+1)m
                            Emuts(" "),
                            if (Y& 2) }Y=\mathrm{ mex,y!
                            textcolor(WHTTE)?
                            textbeckground(BLACK)%
                            gotaxy(1;y):
                            cputs("*")
                            break!
                                defeult : breafs
                        7
                            3
    textcolar(WHTTE):
    textbackground(BLACt):
    gotoxy(1,25)?
    El!EO!():
    textcolor(ELACK):
```

```
gotaxy(1,24)5
Eputs("ENTEF IN NEW EAIN VALUE "):
textcolor(WHITE)
tentbackground(ELACK);
gotoxy(30%4):
scant("%;':% Evalue)%
gotoxy(1:24);
clrequ():
textcolor(ELACC):
textbackgroumd(WHTTE):
gotoky(1,y):
Eputs(" ");
FAFAMETEF:FLAG = TFUE:
Ewitch (y)
                    %
vase 2 : MFTR->gm,A_pos_motion_scale = value: breat:
Gase : MFTF-->gn,E posmmotion Stale = valuem break:
case 4 : MFTF-Ygח.A_vel_motion_scale = value: break:
Case 5 % MFTF-ygm"B_veI_motion_scale = valueg break!
```



```
Gese 7 : MFTR->gn.B_motornvel = valuen breats
case g mFTF->gn.A_torque = value% break:
Ease % MFTF-->g.E torgue = value% break!
```



```
Ease 11 : NFTF-vgn,E_position = valuey breaby
vase 12 a MFTF->gn,A mutputwve1 = value: breate
Emse 13 : MFTR-mgn.Emutput-wvel = value% breefo
Cese 14 : MFTF->gridirection = (int) velue% bregag
case 1. a MFTR->jy,xgeim = velueg breaky
case jo n MFTFmyjy"y-mein = value! breetag
case i7 a MFTF->gnu = valuer break:
case 18 : MFTF-sgra = valueg breab:
cese 19 MFTFWgr. = veluen bremba
                    defeult : breat:
                    7
textaglor(ELACE):
textbectagroumd(WHTTE):
gotoxy(1,25):
EPutE("ENTEF' "E" TG EXIT "G* TG CHANGE A SETFOINT ";
tertcolor"(WHTTE)%
testbeckground(ELACK)?
3
```


* routine to chack that alarms and limits are where they
* should be

void Fangencheck(void)
Char * wersor a
errot = NLILE:
original page is
OF POOR QUALITY
if (MFTR-->spapitch hi limit \& MFTR--sppopitch_hinalarm)
Error =" "FITCH HIGH LJMIT OUT OF GFEC"?
else if (MFTR-Sspapitch_hizarm (= MFTF->gopitch_neutral)
Error" $=$ "PITCH HTGH ALAEM OUT OF GPEC":
eise if (MFTF--sspapitch lo alerm $\overline{\text { a }}$ MFTF->sp.pitch neutral)
error $=$ "PITCH LIOW ALAEM DUT OF EPEC":

error $=$ "FITCH LOW LIMTT OUT OF GFEC":
else if (MPTr->spyymininhmit (MPTE-->Ep:yawni_alarm)
Erロ = "YAW HTEH LTMTT OUT DF GFED:

```
    EHOF}= "YAW HTGH ALARM DUT DF SFEC":
Else if (MFTF->5p.yaw lo_alarm y= mFTF->sp:yewmeutral)
    Error" = "YAW LOW ALAFTH DUT DF GFEE:%
Else if iMFTF-\spayaw lo_imit % MFTF->sp.yaw lo_alarm)
    Error = "YAW LON LTMIT OUT OF GFEC":
if (error != NLLL)
    &
    testcolor(BLACK)?
    textbeckgroumd(WHITE):
    gotoxy(1,25):
    EIrEol():
    printf("%/s"; error)%
    Bound(EOO):
    delay(500):
    nosound():
    gotowy(1,25):
    Clreol():
    gotoxy(1,25):
    Eputs("ENTEF "F" TO FINISH 'E* TO CHANGE A GETFOINT ")?
    textcolot(WHTTE)%
    textbackground(BLACF)!
    3
7
```


＊routine to display sybtem setpoints anc allow changing
央 the getpoints during system operetion


```
void Display System_Setpoints(void)
    C
    int donemFlegu
    char co
    int <%
    int max_y = 13:
    x=26:
    dore_rlag= FALSE=
    textcolor(WHITE):
    textbmekgrmund(ELAC&):
    ClrEEr():
    t#xtEOlOH(ELACK):
    textbackground (WHITE):
    gotaxy(1gi)
    "puts(" SYSTEM SETFOTNTS ")%
    gotoxy(1,2)!
    cputs(" Fjtch Limit High ")!
    gotacy(1,z):
    cputs(" Fitch Alarm High "):
    gotoxy(1,4):
    mputs(" Fitch Neutral Fosition "):
    gotoxy(1, E)!
    Eputs(" Fitrh Alerm Low ")?
    gotoxy(1,b);
    Eputs("Fitch Limit Low ")!
    got0k)(1,7);
    cputs("Fitch DeIte ")%
    g口tox%(1, 日);
    cputs(" Yaw Limit High "):
    gotomy(1,7):
    cputs(: Yaw Alarm High ")!
    gotoxy(1,jo):
    cputs(* Yaw Neutrea Fositiom "):
    gotoxy(1,41):
```

```
cput=
gotoxy(is:2):
Gputs(" Yaw Limit Low ")?
gotoxy(1,1G):
Eputs(" Yaw Delta "):
gotoxy(1;25):
cQuts("ENTEF' *E* TO EXIT "C" TU CHANGE A SETFOTNT ")*
textcolor(WHITE)!
testbackground(BLACK):
while (idone_flag)
    }
    gotaxy(xy, )
    Clreol():
    gotoxy(x,2):
    Printf("%u", MFTF->spnpitch_hi_limit):
    gotoxy(%,z)!
    clreol():
    gotaxy(x,g):
    printf("%u", MFTF--sgpupitch_ni_magrm) !
    got:oxy(x,4):
    clreol():
    gotory (x,4):
    print+("%u'" MFTFi->spupitch_neutrai)!
    gotoxy(x,5):
    clreol()!
    gotoxy(%yE):
    printf("%u", MFTr-sgpupiten_lo_namam):
    gotony(x,s)?
    clrecl():
    gotaxy(x,6):
    primtF("%u", FmFTF->Epupitah_lo_limit):
    gotoxy(x,7)!
    clreol():
    gotuxy(xyy)
    printf("%u'%, MFTF--Gpadejtappitch):
    gotaxy(x,8):
    clreol():
    gotoxy(xye):
    primtF("%u", MFTF%"spuyaw_hi_mimit)!
    gotoxy(x,9)
    clreal()n
    gotoxy(x,9):
    print+("%u", MFTF->gp,yaw_hinalarm):
    gotoxy(x,10)多
    E1reol():
    gotoxy(x,10):
    printF("%a"" MFTF-->Sp:yaw_meutrel):
    gotoxy(%,1.1):
    ctreol():
    gotoxy(x,it);
```



```
    gotoxy(x, 2)!
    clreol.():
    gotoxy(x,iz):
    printF("%us, MFTFi-%sPuyaw_lo_limit);
    gotomy(x,1"):
    cirmeol():
    gotoxy(s,1 3) ;
    prirtf("/u"; mpTF'-ssp,delta_yew):
    deray(500y%
    if(fonit())
        ;
        C=getch()
```



textcolor (WHITE)
textbackgrourd(ELACE) :
clrscr ()
7

## 

* foutine to display system gains and allow changing
* the geins during system operation

void Display System_Gains(void)
- 

int donefleg:
char ci
int $x$
int $\quad \max y=16 s$
$x=20:$
done Fleg = FALSE:
textcolor (WHITE):
textbackgrama(BACK):
clrser ():
textcolor (ELACK):
textbeckground (WHITE):
gotoxy (1,1):
cputs(" SYETEM GAINS "):
gotexy(1,2):
cputs("A Fosition Motion Scale")
gotory (1, 3 ) :
cputs(" B Fosition Motion Scale")
gotory (1)4):
cputs(" A Velocity Motion Scale"):
gotony (1,5):
cputs(" E Velocity Motion Scale"):
gotosy (1, 6 )
cputs("A Motor Velocity ")"
gotony (1,7):
cpute(" 5 Motor Velowity "):
gotaxy(1, 8):
Cputs("A Torque "):
gotoxy (1,9) :
cputs(" B Torque "):
gotoxy(1, 10):
Eputs("A Fosition ") !
gotoxy(1, 1in):
cputs(" B Fosition ")!
gotoxy $(1,12)$ ?
cputs("A Dutput Velocity "):
gotony(1,13)!
cputs(" E Dutput Velocity ")?
gotony (1.14):
cputs(" Direction "):
gotowy (1, 15):
cputs("Joysticl: Yaw Gain "):
getoxy(1,16):
cputs("Joystick Fitch Gain ") !
gotoxy (1.17) 5
cputs(" ")
gotony (2,1e):
cputer: " ")

```
gotoxy(1:19):
cputs!"
")% */ /*reservedw/
gotony(1,25)!
GPLts("ENTEF "E" TOEXIT *G" TO GHANGE A GAIN VALUE "):
textcolor(bHTTE):
textbackground(ELACK):
while (idone_Flag)
<
gotoxy(xsz);
clreal():
gotoxy(x,2):
printF("%=玉下", MFTFi-\gnaA_pos_motion_scale):
gotoxy(x, ד):
clreol()?
gotoxy(x, E)
printF("%a&", MFTF->gnaB_posmmotion_scale);
gotaxy(x;4):
clreol():
gotoxy(%44)?
printf("%uz+"; MPTR-\gr, A_vel_motion_scele);
gotoxy(x,5):
Elreol():
gotowy(x,5):
```



```
gotowy(x,6):
E1reol():
gotoxy(%,G):
primtF("%%2f", MFTFF-->gn.A motor"_velju
gotoxy(x,7)=
Clreol():
gotoxy(x;7);
```



```
gotoxy(x,B):
<1reol();
gotoxy(x,g):
```



```
gotoxy(%, (%)
#1!EO\():
gotoxy(%,
```



```
gotoxy(x,10):
mIreol():
gotoxy(x:10)!
printF("%azf", MFTF゙-うgn"A_position):
gatoxy(x,is)!
clreol():
gotoxy(x,11):
```



```
gotoxy(x,1.2):
Elreol():
gatosy(x,12)!
```



```
gotoxy(x,iS)!
c1real():
gotoxy(x,is):
```



```
gotoxy(x,34):
M1%Em1()?
gotoxy(x,14):
printf("%d"; MFTR-*gnadiremtion)?
gotosy(x,15)!
E1recl()
gatoxy(4,15):

```

gotaxy(x,t6)s

```
```

gotaxy (x, 6 )

```

```

    gotoxy( \(x, 17)\)
    climeli)
    gotoxy (x, 17)
    ```


```

    clreol():
    gotoxy (x, 18)
    printf("\%d", MFTF-'gna) a
    gotoxy (x, 19) :
    Clteal():
    gatoxy \((x, 17)\) s
    ```

```

    delay(500):
    if (tibfit() )
        -
        G = getch():
    ```


```

    3
    3
    textbeckground (BLACE)

```
textcolor (WHTTE):
clrser () !
3

\section*{}
＊FILE：NASAS：C
＊DATE：August \(4 ; 1990\)
賩
＊FOUTINES
＊Motiom Done
＊Get Command Fosition
䒺 Error Check
＊CelcuIate Fosition
出 Celculate Drive
＊Command Operation
＊Neutral－Command
＊Neutral Dperation
专
楽

```

4include "sstdata, "
\#incluce "masedef.h"
\#inmlude sdoEnh>
Hinclucesconiouts
\#intlucle satwionhs

```

＊DATA

```

        int Eoft_pitct!-lagu
    ```
        j.nt \(\quad\) soft_yaw_fag:
        int ed check:
        misigned int counter?

    * routine to check when joint motion is dome
    * joyetiok i= no lorger attive or on commanded position
    * as been reached

void Fotion Done(void)
    c
    int chectep chectryg

    itch)
                            Chectp = TFLE:
            еlse

            Gherky = TRUE:
            else minecry = FALSE:

                    <
                            FUN AFIM \(=\) FALSE:
                            EFFOR FLAE \(=\mathrm{NOFHAL}\) SHLTDOWN:
                            3
```

void Get Command_Fositiom(void)
{
float values
Float Iownlimit:
Float highmlimitg
int moves:
short temps
unsigned int stepsy
int flag:
MFTF->ds.counter"=0:
textrolor(BLACF):
textbackground(WHITE):
do
G
FIag= TFUE:
gotaxy(20,15)?
EPuts(: ENTEF DESTRED MOVE TIME (SecondS) ";:
gotoxy(56,15)?
Ecamf("%f", \&value)y
if (value % O,O) Flag = FALSE:
3

```
    While (fIag):

    \(d o\)
    \(\stackrel{6}{6}\)
    F1ag = TFUE:
    gotoxy (20:16):
    GPutE (" ENTEF IN DESIFED FITCH ANGLE "):
    gotaxy (5e, 16)
    Ecanf("\%f", zvalue)!

utrel) ( 5 55E60)


Eutral) (65G560):


    3
    whine (fiag):
    MFTF->dsupitch angle \(=\) value?
    Value \(=\) (value * 655צ6,0) / 60 \% 0
    MFTF-vas.delte_pitch_pos = (int) vaiues

    "delta_pitctmpos):
    do
        r
        Fag = TFUE
        gotexy (20.17):
        EPuts (" ENTEF IN DESIRED YAW ANGLE : !
        gotowy (5e, 17):





al) / 6556.0):


while (fleg):
NFTF-->ds.yew_angle \(=\) valuea
velue \(=\) (value * 65SE6uO) / S60uO
MFTR-vds.delta_yaw pos = (int) value?

a_yan pos):


F-wpyopitch_pos) / (floet)MFTF->ds.steps):
MFTF-Yds.yaw_step \(=(\) Float \()(\) (fioat)MFTF-xds.final_yaw - (float)MFTFi-
>pyoyaw pos) ( (flaet)MFTF--sdsusteps) a
MFTF--sds.pitch_pos =: MFTF-Spy.pitoh_pos?
MPTR- M ds:yaw_pos = MFTFi- Ypy:yaw_pos:

MFTF->od yaw pos = MFTF->ds.yaw pos:
MFTR-yds.pitch start = MPTF->py.piten_pos?
MFTF- M dsyaw start = MFTF-spy yaw pos:
gatoxy (50y24):
©puts("WOFETNG") я
textcolor" (WHTTE)
textbackground (BLACK)?
gotony (20, 15) :
clreal()!
gotowy (20, 16)
cireol():
gotoxy (20, 17)
chreol ()
3

```

    * rourime to check for porper arm (joint:) operation
    * chemf motor and joint limits
    ```

```

void Error Ehect(void)
i

```

```

                EFEDFFFLAE=FOHT_LIMTT:
                            /*Fatal Erroor=%;
    ```

```

                ERFOF FLAE = F LOLIMTT:
    ```

```

                ERFGF FLAG=YMT INMT:
            if (mFTR-Mpynyawpos & MFTF-msp.yaw lomlimit)
                ERCDFFLAE = Y LOLLIMTT!
            if (EFROF FLAG !=FALSE) FUN AFM= FALSE:
            if (vPTFO-mpyapitch_pos == MFTF->EP.pitem_hi_alarm)
                MFTF-*EPaslimit_pitmF=1%
    ```

```

                MFTR-sEp"Elimit_pitah=\cdotsig
    ```

```

                        MFTF- %S=Slimit_yen=1%
            iF (MFTR-YPY Yaw_pos &= MFTR->Epuyaw_lo_alarm)
                        MFTF-->EP:E1imit yaw =-1:
            3
    ```

\section*{}
* routine to find the next desired joint position * input from commended positian or the joystict

void Caloulatempoition(void)

Fiodt tempa

4
temp＝（MPTF－＞ds．pitoh＿step＊（float）MFTR－sdsucounter）＋（float
；MFTR－大ds．pitch＿start！
MPTF－－＞ds．pitch＿pos＝（int）tempu

MFTR－大dsョyawstart！
MFTFT－＞ds．yew＿pos＝（int）temp？

3

MFTR－＞ds．counter \(+=18\)
if（MFTF－＞dsncounter \(==(2\)＊MFTF－＞ds．steps））
－
FLN AEM＝FALSE：


EISE EFFOF FLAG＝TIME ULT：
3

 MFTF－＞odspitch＿pos＝WFTF－sos．pitch＿pos？ MFTR－大aduyan pos＝WFTFi－vdsuyan pos： 3

\section*{}
＊routime to find the motor input（drive）values based ＊on system conditions angles desired and angles true

void CeIculate Drive（void）
\[
\because
\]
float diffar diffb：
float diffavg diffbv？
float tachay techbs
Fioet driveas driveb？
int pitcha yaw！
inte pitwhy yewv：
／＊Find if soft Ijmits are in effectw／ if（mFTR－sEpusimitnpiteh ！＝FALSE）

C
if（soft＿pitrh＿flag＝ou）
soft＿pitch＿flag＝is

3
Else if（MPTR－ssp．Elimit＿pitch \(==1\) ）
\＆



3
Ess
C


3
3
else soft aitomplag＝0，

\(\epsilon\)
```

    6
    SoFt_yawflag=1%
    MFTF-%odnglimit yaw = MFTF->dEyysw_pos:
    %
        else if (mFTF->spmslimit_yaw == 1)
    &
                        if (MFTF-%dE:yaw_pos %= MFTF-sod.slimit_yaw) MFTF-sds:ya
    wpos=MPTF->odu=1imit_yaw:
    clse
            C
    ```


```

    ?
    @lsesoft_yaw_fleg=0!
    /Wfind motor f drive signal京/
    /*find motor E drive gigmel%/
    ```

```

    Yaw == MFTF->py,yaw pos - MPTF->ds_yew pos:
    ```

```

    yawv = MFTFi->ds yam vei m..mFTF->py,yaw vela
    ```

```

    diffb = NPTF*-rgn.Eposition w (flomt) (pitch - yaw)!
    difFav = (rFTF-\gnaA output vel * (Float) (pitchv + yawv)):
    diffbv = (MPTR->gn.E output vel * (Flogt) (pitchv - yewv)):

```

```

tachb = MFTF--ggn.Emotor, vel * (fagat) (MFTF-->mbatach):
drivee = diffe + miffav -- teche:
driveb = difft + diffGv - tem@nbu

```




```

bvadrivea!dr"jveb) %*/

```

```

?

```

\section*{}
* performs the movimg of the arm
* given the final pitch and yaw angles
* will Ghemt for errors and Finel position


\section*{vaid Command Gperation(void)}

4
Set:cloctup():
Frable_AD Interrupt ? ?
Initial_System()
Get Commend Fosition():
ad_rhect \(=0_{0}\)
Un]oct: Erakes ():
while (RUN AEM)
\&
ad chectst+:
it (ed chect \(\%\) 15000)
-
EFFUF FLAG=ADFAIL:
TLH ARM = FALSE:
ORICMTAI PAOR 5
3
while (STAFT LDOF)
```

CalculetemFosition():
Error.fineck():
IaIcuIatem-ive()!
Motar Drive()a
Motion_Done()!
Data Fiecord():
ad check = 0;
STAET_LOOF = FALSE:
3

```
3
Loct_Erates () :
Unset Clock()?
Display_Error (TFUE) :
Data_Save():
\(?\)

    * routine to get neutral position of the joint

void Neutral_Command_Fosition(void)
                        ©
                        Float \(\quad\) valuet \(=5.0\) g
            Flaet valuep =o.
            floet veluey \(=\) out
            Ghort temp:
            unsigned int steps:
            texteolor (BLACK) :
            textbackground (WHTTE):
            gotoxy (50, 24):
            cputs ("WOFETNE") :
            textrolor (WHTTE):
            textbeckground (BLACE):



    MFTR->ds.delta pitch.pos = (int) valuep:





    MPTF- >os, delta_yanpos = inty valuey!

    a yem pos)





วpyryampos) ( (floet)mFTF->dsusteps):






    3

    * move the joint to the meutrel position

void Neutral Operation(void)
```

* 

Set_Clock__Up():
Enable_aD_Interrupt();
Initial System():
ad chect=0%
Neutr゙al Command_Fosition():
Unlock: Erakes()!
while (FLIN AFM)
<
ad_chect+t+
it (ad_chert: > 15000)
*
EFFOF,FLAG=AD_FAIL:
FUN_AFM= FALSE:
3
while (STAET LOOF)
\&
Get Toint Data():
Calculate Fosition():
Error Check()!
Calculate_Drjve();
Motar_Drive()!
Motion_Done():
Date_Fecord():
ad_mhect: = %:
GTAFT LDOF = FALEE:
z
3
Lock_Erakes():
Unsew_Clock()!
Displey Error(TRUE)?
Dete Save(!!
3

```

```

    * FILE: NASAO.C
    * DATEa July 28, 19马O
    *
    * FUUTTNES
    * Motor Incitial
    * Motor-_Sim
    *
    * WAFNING THIS FOUTIME WILL NOT WOFG WITH THE NEW CONTFQL
    *
    GYSTEM
    ```

```

\#mncluce "extwetanh"
\#include "masedefnt"

```
int mot drive_as mot drive_na
float rpc_motor"_a rpe._motor_bs
fioat total_moter_a = ouy
Float totalmotar b \(=\) ono:
float theta_ay thetaby
Ploet thetangear ar thetengear bis
Float thetapy ag thetapyou:
int
    tath a; tach bis
float pitch angle, yaw angle:
int pitch_res, yaw ress
Iong int despitch. des_yaw!
int old_piten po=: old_yampose
int \(\quad\) ]oop \(=O_{n}\)
char dump!
floet temp_patemp_y:





int gear \(=90\) :
fiodt fygear \(=4,3:\)
floet time_div = 250: /wioohz*/
int diane:
float gainpos \(=0.8:\)
Flost gain vel \(=0.0\)
float gain_tach \(=0.6\) g
int desireppitchy desire_yown
Float step_pitch, step_yaw
    void Motor mintial (void)
©
\(100 \mathrm{O}=0\)
old_piteh_pos = MPTR-2pynpitch_moss
odd yaw mos mFTr-spynyew_posu
3
```

    10op = 100p + 1%
    rpc_motor_a = (MFTF-\manmot_drive -- 204S) * kis
    rpc_motor__b = (MFTF->mbumot_rfive - 204e) N k!f
    total_motor__a = total_motor__a + rpc_motor._as
    total_motor b = total_motor b + rpc_motor an
    MFTF-Yma.res_ang = total_motor_a%
    MFTF-smb_r゙es_ang = total_motor_by
    MFTF->ma.tach = (int) ((((rpcmotor_e * k4) / kS) / k2)):
    MFTF->mbutach = (int) ((((rpcmmotor_b % k4) (kE) / k2)),
    if (MFTF->ma.tach > 4096) MFTF->ma.tach = 4096!
    Else if (MFTF->me.tach & O) MFTF-->mantach = O
    if (NFTF-%mD.temh > 40%6) MFTR-2mG.tach = 40%6%
    eise if (MPTR->mb.tach & g) MFTF-smbutach = 0;
    theta_a = total_motor__a w 360n
    theta_b = total_motor"_b * S6O:
    theta_gear_a= ino * theta_a/ggeary
    theta_gear.ob=1,0 * thata_b; gearg
    theta_py_a = thete_gear__a / py_gear:
    theta py b =% theta_gear b / py_gear:
    pitch_angle = (theta_py_m theta_py_b)/2n
    yaw angle = (thetampy_a + thetappyob)/ 2%
    MFTF-\py,pitch_pos == (umsigned int) (pitoh_argle/fs) + MFTF-->
    ```

    5papitcmameutraly
"younneutral


 y. Yawnoos):
```

Scenf("%c:4% Ecump)!:

```

```

    * FILE: NASAT:W
    * DATE: August 14: 1990
    *
    * FOUTINES
    * Toy Matiom Done
    * Jay Error Ehect:
    * Get Joy Fosition
    * Feed_Joystick
    * Joystick Operation
    *
    *
    ```

```

杪mcIude "extdatant"
\#include "nasadef,h"
\#imolude <dos,h>
侎新lude sconionh>
\#\#mclude astdjouh>

```

```

    素 DATA
    ```

```

    Int: view Flagu
    int meutral_*g
    int newtrea_yy
    jnt jad whem&%
    int button...s:
    ```

```

    * Foutime to chemb when joint motimm is come
    * joysticis is no lomger active or on commended position
    * a= been remched
    ```

```

void Toy_motiam_Done(vaid)
if (NFTF-sjy,buttom_2)
\&
FUN AFM = FALSE%
EPROF FLAG = NORHAL GHUTDOWN:
3

```

```

                        FUN AFH= FALSE:
            ?
    ```

＊routine to chect for proper arm（joint）operetion
＊check motor and joint limits

veid Joy Error Ehect（vode）

```

    ERRGRFLAG = FHH_LTMIT; %*Fatal errorso%
    if (mFTF->pyupitch_pos < vFTR-sopupitch_lo_limit)
EFFQF FLAG = F LG LIMTT:
if (MFTF-YPY:Yaw_POE Y MFTR-\sp:Yaw_hi_limit)
ERPOF,FLAG = Y_HI_LIMIT:
if (MFTF:->pYuyaw_pos <MFTF-ysp=yaw_In_limit)
ERROF_FLAG= Y_IO_LMMTO
if (MFTF-Ypy,pitch_pos, = MFTF-_sp:pitch_hi_alarm)
C
MFTF->spnslimit_pitch=1%
EFFOF FLAG= SOFT_LIMIT_F:
3
@lse if (MFTF-vpy.pitch_pOS = MFTF-2Spupitch_lo_alarm)
\&
MFTF->sp,51imit_pitch=-1:
EFFOF:FLAG = GOFT_LTMIT_FG
3
Else MFTR-Sspuslimit_pitch = FALSE:
if (MPTR-\pY:yam_pos %=MFTR->EP:yaw_hi_alarm)
*
MFTR->5pnslimit_yew = 1%
EFFOF:FLAG= BOFT_LIMIT_Y:
3
@Ige if (MFTF-'py,yaw_pos == MFTF--ssp,yan_IO_aIarm)
\&
MFTF->5p.glimjt yaw =-1%
ENFOR FLAG= SOFT LIMTT_Y%
F
Else MFTR-SEDuslimitwymw F=ALSEg
3

```

出 Foutime to get imitial position of the joint

void Get, Joy Fosition(void)
int gemeport \(=00201:\)
int counter. \(\%\), counter. \(y\) y
int total_ \(x\) total_y
int loop:
unsigned char game:
unsigned whar mask \(x=0 \times 6\) :
unsigned char mesk \(y=0\) oroz
\(\operatorname{totan} x=0 \%\)
total \(y=0 u\)
for \(\{\log =0 \sharp 100 p<100!++\) loop \(\}\)
counter \(x=0\)
counter- \(y=0\)
outportb(gameport: oxos):
do
\&
geme \(=\) inportb(qemeport):
if (game \& mask. \(\%\) ) counter \(:+\) is
if (game z mask y) counter \(\quad\) y \(+=1\);
\(\rangle\)
while ( (game \& mask \(x\) ) ; (game 8 mask_y) ! total \(x=\operatorname{totai} x+\operatorname{counter} x:\) total_y \(=\operatorname{total} \quad y+c o u n t e r \ldots\) 3
neutrel_ \(\%=\) totel_s / \(100 \%\)
neutral_y \(=\) total_y / tooy
```

%
neutral_x=22!%;
/wjust set to mid position*,
/* neutrel_y = 22%*/

```

```

MFTF->ds.pituh_pos=MFTF:-ppyapitch_pos%
MFTR-\ds.y日mpos = MFTR-Ypy:Yaw_pos,
MFTR-SOGupitch_pos= MPTR-_ds.pitwh_pos:
MFTF-\Od"Yaw pos = MFTF-%ds.yaw posa
MFTF-\ds.pitEh_start = MFTRI-spy,pitch_pos:
MFTF-YdS.yaw_start = MFTF-->py.yaw_pos:
MFTR-Sjy,totEl_x=0!
MFTF--sy%total-y=0%
textcolor(BLACE):
texthackground(WHITE):
gotoxy(50,24)
cputs("wOF(GNG"):
3

```

```

    * routine to read joy=ticl and convert to joint angles
    ```

```

    void Fead, Toy=tict:(void)
        &
        int gameport = 0x0201#
        int deadbend = 10:
        int counter_*: mountrer_ys
        urgigned char gemes
        ursigmed cher mask_% = OxOd.a
        unsigned cher mesk,y = 0x02#
        unsigned char masta_1 = Oxi0n
        unsigmed char mesk a = 0xeO;
        Float temp:
        counter_ms=0%
        counter"y=y=0
        button F= FALSE:
        MFTR-\jy,button_2 = FALSE:
        outportw(gameport% OMOS)?
        Co
        <
        game == importb(gameport):
    ```

```

        if (game & mask_y) coumter"_y f= 1!
    z
    while ((game & mast__x) { (game & mask_y))!
    ```

```

    if (game % mask_1) buttom_1= FALSE:
    E|5E button_1 == TRUE:
    if (game & mast; z) NFTF-- jY button_2=FALSE:
    elge MFTF-%jy,button 2 =: TrUE:
        if(button_i)
            E
            if (viEW_FIEg== TrUE)
                                    view flag = FALSEg
                                    Undock: Etrakes():
                                %
    coumter__* = moumter_* - neutrel_**
    counter-Y= coumter"........ neutrel_y"
    ```

```

        if ((abs(counter y)) y deadommd)
        <
    if(counter_y }>0
    ```

counterny（w－－deadbandw／）w MFTF－s jyoy＿gain）



MFTF－Sds．pitch＿pos＝（int）temp：
3
else if（counter＿y \＆o）
r


temp＝MFTF－bjyntotal＿y＋（Float）MFTF－＞ds．pitch
＿Etart？
NFTF－＞dsapitch＿pos＝（int）temp： 3
3
else
\(i\)
 MFTE－－dsupitch＿pos＝（int）temp？
3

if（（abs（counter \(x\) ））\(\rangle\) deadband）
t
if（counter＿z \(\%\) ）


temp＝MFTR－9jy，ootal＿x＋（Float）MFTF－rds．yaw＝
tarts
MFTF－ Md ：yaw pos \(=\)（int）temp：
3
```

    #]se if (counter"_,_< (0)
    *
    ```



tat゙ざ品
    MFTFADds:yampos=(int) temp:
    \(?\)
    3
    else
        \(\leftarrow\)


                            ?

    3
4.5
    <
    if (!vienfleg)
    r
    Lock Erakes ():
    texteolor(BLACE):
    textbeckgtound (WHITE) :
    gotoxy (15, 22)

    gotoxy(15, 玉马)
    printf("\% 玉f" "MFTF->py yew ang)
    EExtEOLOR (WHITE)
    textbeckground (ELACK):
    \(\vee\) i. \(w\) Flag \(=\) TFUE
    3
    3



```

    * moves the Erm with the joystick:
    * imputting commanc values
    ```

```

void Joystick_Gper=ation(void)
*
Set Cloct_Up()!
Enable_AD_Interrupt():
Get_Joint_Data();
jad chect: Os
Initial_System();
Get JoyPosition():
while (RUN AFM)
<
jad_check+w"g
iF (jad_mheck % 15000)
\zeta
EFROFEFAGG=AD FAIL:
RUN_AEM = FALSE:
7
while (START_LOOF)
C
Get Tointm Data():
Fead_Joysticc():
Joy Error_Check():
if(button 1)
8
Calculate_Drive()!
Motor.-Drive(i!
7
Joy_motiom_Done():
Data Fecord():
jad_chect = O:
STAFT LGOF = FALSE:
?
}
Lock_Etrakes():
Uncetcoclock()
DisoleyError(TRUE):
Date Save():
J

```

\section*{}
```

    * FILE: NASAB.L
    * DATE: December 20. 1970
    ```
    *
    * FOUTYNE
    *
        M_Motion_Done
        M_Get_Command_Fositiom
        MError Chect
        MEaiculate Fosition
        M_Celculate Drive
        M Command Uperation
        M Seve Feth_File():
        M Eet Feth File():
    *
    *

tinclude "extdatan"
\#imelude "Masadefu""
相inIne cosans
\#incluce comio.ns
tinciude stadions

    * DATA

    int m_saftaitchatag
    int \(\quad\) m_ EOFt yownfleg
    int mandefect:
    int mt loop:
    int
        junt:

    * routine to mheck when joint motion is done
    * on commanded pasition as befn reeched

vaid
            M motiom
                Done(void)
            "
            int checkos ehectya

apatch)

Checrp = TRUE:


4)

Checty = TRUE:
Else wherfy =FALSE:
/京test*
\% Chertp \(=\) FALSE:
Whetyy \(=\) FALSE:
if iumb \(=250\)
```

Ghechp = TRUE:
Checky = TRUE\#
} 票/
if (chectp s\& checky)
%
FUN_AFIM = FALSE:
EFFQP_FLAG = NORMAL GHLTDOWN:
mt_loop =mt_loop + 1%
?
3

```

\section*{}
```

＊routine to get joint pain
景

```

```

vaid M Get Fath File（vaid）
c
FTLE＊parampiles＊fopen（）：
whar mame［iz］n
int loop
int itmp：
Floet ftmp！
umsigned short ustimpu
gotaxy（20，15）：
EPuts（＂ENTEF IN FTLE NAME ：＂）：
gotoxy（45，55）：
Flushal1！）：
三6anf（＂\％12s＂，name）：
param＿file＝fopen（names＂r：${ }^{\prime \prime}$ ）
if（partmpile＝＝NULL
4
gotaxy $(50,24)$,
EPuts（＂FILE EFROP＂）！
Eounc（500）！
delay（1500）：
nosournd（：
delay（7500）！
3
gotoxy（50；24）？
Printf（＂WORSING＂）！
Fscanf（paremfiles＂\％d＂；8ritmp）：
mt moves $=$ itmp？

```

```

denzy（2000）：＊／
fecart（patam file，a\％fi，eftmo）

```


```

Fscanf(param_files "%f", \&ftmp)!

```

```

/* printf("Finel pitch = %u\n""mt_final_pitch[loop]):
printF("finei yow = %a\n" mot_final_yew[loop]i!
printf("delta pitch = %d\n"; mt_delta_pitch_pos[loop])!
printf("delte yaw = %d\n", mt_delta_yaw_pos[1oop])?
primtf("pitch angle =%F\m": mt_pitch_angle[loop]);
printf("yaw angle = %f\n", mt_yaw_angle[1oop]):
printF("pitch step =%F\n";mtmitmh_step[loop]);
printf("yaw step = %f\n"; mt_yaw_step[]oop])s
7.
fclose(param_file):

```
printf("eteps = \%u\n", mt_steps[loop]);

delay(2000) \% \%/
3

\section*{}
* routime to seve joint path

出

```

voig M Save Feth_File(void)
<
FILE Wparem_fileg wfopen();
cher remer12]:
int loopg
gotoxy(20,15):
EPutE("ENTEF IN FILE NAME "):
gotoxy(45:i5):
Flusma11()!
Ecenf("%yse", name)?
param_file= fopen(names "w"):
if (parmm FiIe== NuLL)
L
gotoxy(50,24):
EFutS("FILE EFFOE"):
Foumd(500):
delay(1500):
mosoumd():
deley(7500):
3
gotoxy(50,24):
pr"intF("WOFKING")!
Fprintf(param_Files "%d\n": mt_moves)"
For (100% = 1: loop {= mt moves: + +100p)
\&
fptintf(parem_files "%u\n"* mtyminel_pitoh[Iopp]);
Fprintf(param_fileg "/nu\n", mt_finel yaw[loop])"
Fprintf(param_files "%u\n", mt_steps[loopl);
fptintF(faram_fileg "gd\n"; mt_de]ta_pitach_pos[ioop])!
fprintf(paramfiles "%a\n", mt delta yaw pos[loop])%
Fprintf(paremfiles "%f\n", mt,pitohmanglelaoop])!

```

```

            fprintf(paramfiles "%f\m": mt pitach_step[loop])%
            fprintf(param_filEy "%f\n", mt_yam_step[loop]);
            FprintF(param_Fides "%F\n:" mt timerloopj):
            3
    FClose(permm_fine):
    7
    ```
```

void M_Get_Command_Fosition(void)
\&
Floet values
Float low_limit:
Fhoat high_limit:a
int moves:
short temp:
unsigned int steps:
int flag!
int loops
Ghar answer %
umsigned int temp_pitch[20]:
unsigned int temp_yaw[20]:
mt_counter = O:
texteolor(BLACE):
textbaccgroumd(wHITE):
gotoxy(20, I5):
cputs("ENTEF BY FILE OF HAND (F OF H) "):
gotoxy(59,5)%
Flusha11():
answer = Fgetwhar():
if ((ancwer == "H") (! (answer == "h"))
\#
do
<
F1ag = TFUE:
gotowy(2O, 5):
CPLGE("ENTEF NUNEEF OF DESIFED MOTTON ETEFS (MAX IG)
':%
gotoxy(60,15);
scan\mp@code{("%c"; %moves):}
if (moves > 0) Flag= FALGE:
y
while (Flag):
mt_moves =: moves:
wemp_pitwh[1]= MFTF--spy,pitch_pose
temp yaw[1] = MFTF->py yawnpos!
tertcolor(WHITE)s
tertbacfaround(ELACK);
gotoxy(20,15)!
<1ヶ"EO$)!
                textcolor(BLACK)%
                textback:groumd(WHTTE:y
                For (1oop = d! loop = mt moves: + +10op)
                C
                gotoxy(20,15):
                    printf("ENTEF VALUES FOF MOTION %d "% IoOP):
                    da
                i
                    FGEg TruE:
                    gotoxy(20,16):
                                    CFUts(" ENTEF DESTFED MDVE TIME (SECONdS)
    "):
                gotoxy(50,16):
```

```
                if (value % O.O) Flag = FALSE#
                    3
                while (flag):
                mt time[doop]=values
                do
                <
```
gotaxy \((20,17)$
Eputs＂ENTEFE IN DESIFED FITGH ANGLE
＂）
```    gotory(5g,17)!     scanf("%チ", Evalue):     low_limit = ((float)(mFTF-sspapitch_lo_alarm-```
FTP- - spapiten_neutrai) / 65SB6.0)

high_limit $=$ (float) (MFTR-swpaptch_hi_alarm -
MPTF-SED PItEM
FIAG $=$ FALSE:
3
while (fleg):
mt_pitch_engle[loop] = values

mt delta_pitah_pos[loop] $=$ (int) valueg

utrel + mt deltapitch_pos[10op]):
da
4

")

gotoxy (58, 18)
Eロafi("\%世"g 8ソalue)






FAG = FALSE:
3
while (flagin
mt yaw angle[loop] $=$ valuen

mt deltanyaw pos[loop] $=$ (int) velueu
mt Final yaw[loop] = (unsigned int.) (MFTF-->spuyawneutrat
$+m \mathrm{~m}$ delte_yawnos[10op]!
mt staps[]oop] $=$ (umsigned int) (mt_time[loop] * (floet)
FFEDUENCY) :

(float)temp_pitamiloopl)?




mt yaw step $[1 \operatorname{cop}]=$ (float) ( (float)mt finelyyawloop
]-(float)tempyaw[1oop]) (float)mtstepe[100p]):
temppitchrioop +1$]=m t$ Final pitch[10op]!
temp_yaw[100p+1] = mt_finalyow[100p]\%

printf("mt steps = \%unn" mt_steps[ioop])

h step [] $00 p]):$

ep[icop]):


7
```    gotoxy(20,15)?     Clreol():     gotoxy(20,16):     Clfeol():     gotosy(20.17):     clreol():     gotoxy(20,18):     clreal():     textcolor(ELACK):     textbeckground(WHITE);     gotoxy(20,15):     cputs("SAVE FATH IN A FILE YES or NO (Y or N) "):     gotoxy(60,15):     flushal1():     answer = fgetwhar():     if((answer == "Y') | (answer === " y*))         M_Gave_Fath_File(): z else                     MGet_Fath_File(): flushall(): mt_pitth_pos= MFTE->py,pitch_pose int yew_pos = MFTF:->py.yaw_pos: MFTF-->od.pitch_pOs=mt_piteh_pos: MFTF-->od.yaw pos =mt yaw pos: mt_piteh_start = MFTR->pywpitmh_pos: mt_yaw_start = MFTR-->py,yaw pos: textcolor(BLACK): textDackground(WHITE): gotowy(50,24): cputs("WOREINE"): textcolor(WHTTE): textbeckground(BLACE): gotaxy(20,15): clreol(): gotaxy(20,16): clreal(): gotoxy(20,17): cireol(!! gotomy(20,1e): clreol(!) y```

* moutime to chemb for proper arm (joint operation
* chect motor ame joint limits

void MError_Chectivoid)
i



ERRORFLAG $=F \mathrm{FQLIMTT}$

ERFDP FIAG: Y HI


if (EFFOF FLAG $=F A L S E$ ) FUM GFM $=F A L S E:$




```    HFTF-\sp,sIimit_yaw=1%     i+ (MPTR-gpy.yaw_pos &= MPTR-ysp.yaw_lo_alarm)     MFTF-\SP:S1imjt_yaw =-1: ?```

## 

* routine to Find the next desired joint position
* input from commanded position or the joystick

void M_Calmiate Fosition(void)
\&
float temp:
if (mt_counter (=mt_steps[mt_]oop])
r
temp $=$ (mt_pitch_step[mt_loop] * (floet) mt_counter) + (float)
t_pitch_startu
mt_pitch_pos=(int) tempy
MFTR--sdsapitch pos = mt pitch posa
temp $=$ (mt_yew_step[mt_loop] * (float) mt_counter) + (float) mt
yow_start:

```
                        mt yaw pos = (int) temp:
                            MFTR->ds.yeu_pOS = mt_yaw_pos:
/* printf("%u %u\n"smt_pitch_posumt_yew_pos)% */
    \vartheta
mt_counter += 1:
if (mtmcounter == (2 * mt._steps[mt_loop]))
    &
    RLN ABM = FALSE:
    if (MFTR->GP=limit_pitch !=0) EFGOR FLAG = SOFT IIMITF:
    else if (mFTE->EPuslimit_yaw (= O) EFFOF_FLAE = SOFT LIMITY:
    EIse ERFOR FLAG = TIME OUT:
    mt_loop =mt_loop + 1!
    y
mt_pitch_vel = (int)(mt_pitch_pos -- mpTE->odupitch_pos):
mt yaw vel = (int)(mt yawpos -- MFTE->od.yaw pos):
MFTE-->odapitch_pos=mt_pitch_pos:
MFTR->Od"yaw_pos=mt_yaw_pos:
3
```



* routine to find the motor input (drive) values based * on system conditions, angles desifed and angles true


```
voic M Calmusete_Drive(void)
            &
            floet diffag diffb:
            Float diffav, diffbv!
            Float tachay tachb:
            Float drivees driveb:
    inte pitch, yaw:
    int pitchy yamv
```

    /hfind if soft limits are in effectof
    if (MPTE->p.esimit piteh := FALSE)
    ```
    4
    m_soft_pitch_flag=is
    FFTF-vod.Elimit_pitch= MPTF-spy,pitch_pos:
    3
        Else if (mFTF->spasinmit_pitch == i)
    &
    if (MFTF-\pyopitch_pos s= MFTF-\od.slimit_pitch) mt_pitc
    H_pOE = MFTR-%Od"=1imit_pitch:
        EIEE
        i
        if (mt_pitch_pos &= MFTF-sodu=limit_pituh) mt_pitch_pos
    = MPTF-voduElimit.mitchy
    3
    2
        msem_soft_pitch_flag=0g
        if (MFTF->Sp.Eljmit_yaw !=FFALSE)
        <
        if (m_goft_yaw_flag==0)
                        <
                        m_soft_yaw_flag=1:
                        MFTR->od=slimit._yaw=mt_yyw_mosy
                        7
        GISe if (MFTF-ysp:slimit_yew == 1)
                            i
```



```
-\odnsImmit_yawi
    3
    else
        c
    if (mt yaw_pos < = MFTF-wodnslimit_yaw) mt_yaw_pos=m MFTF
    -\gammaad=sIimit_yaw:
                            3
    7
    E1=e m_oft,yaw F1ag=0
    /W&ind motor A drive wignedw/
    /*Find motor E drive signel%/
    pituh = mt pitch_pos - MPTR-vpympitch_pos:
    yaw == MPTR->pyuyew pos -- mt yaw_pos:
    pituhv = mtmpitwh__vel - NFTF-vpynpituh_vel%
    yewv =mtyywvel - MFTF-कpy,ymw vela
    diffa =- (MFTR-大gn,A position * (Fioat) (pitch + vaw)):
    diffb = MFTR-大gm,E_position w (float) (pituch -- yew):
    dffev=(MFTF->gn:A output vel w (figet) (pitahw + yewv))
    diffov=(MFTF--ggnE_output,vel * (floet) (pitchv - yawv)):
    tacine = MFTF-'gria motor_vel w (Flomt) (MFTF--Nmatach) %
    tachb = MFTF;-'gnaE_motor_vel * (Float) (MFTF-smbntamm)!
    drivea = diffe + diffav - tamhag
    driveb = diffb + djffby - tectib:
```






```
bv,drivesidriveb)=*/
```



```
    7
```


* performs the moving of the arm
* given the fingl piten and yew engles
OF POOR QUALITY
* wilu mbek for errore and final position

void M_Command Operation(void)
<
Set Ciock.jp():
Enable_ad_Interrupt():
Initial system()s
M_Get_Command_Fosition():
mad chect $=0$ :
Unlock Brekes () :
mt_loop $=1:$
do
$\leftarrow$

$$
\text { mt_counter } \quad=0
$$

mEpitch_pos = MFTF-ppypitch pos:

$$
\text { mt_yaw_pos }=\text { MPTr-ppy,yaw pos: }
$$

MFTE-_odupitch_pos = mt_pitch_pos:

$$
\text { MFTF yod.yaw_pos }=\text { mt yaw pos: }
$$

$$
\text { mt pitch start }=\text { MPTE-Ppyopitch pos: }
$$

mt yaw_start = MFTR-Ypy yaw_pos:

FUN AFM = TFUE:
EFFOF FLAG = FALSE:
while (RUN ARM)
\&
m_ad checttr:
if (m_ed_chect > 15000)
t
ERROR FLAG = AD FAIL:
FUN AEM = FALSE: nt $\log =m t$ moves $+1 \%$ 3
While (START LDOF)
E
Eet Joint_Data(): MCalculate Position(): M Error Chece(): MEalculatenorive(): Motor Drive(): M_motion Done(): Deta_mecord(): m_ad check $=0$ n START LOOF = FALSE: ?
3
2
while (mt loop \& mt._moves):
Lock Eraces ()
Unset Clock():
Display Error (TRUE)
Data Seve():
3


```
    * FILE: NASADATA:H
    * DATE: July 2S, 1990
    *
    *
    *
```


int STAFT LOOF:
Int FUN_AFMy
3nt EFFOR,FLAG:
int FARAMETEF FLAG:
IMt LOG DNT:
Int LOG_FEV%
EtruEt MTE
<
int tacha
int resevel:
int: tora:
unsigned int
Flgat
uncigred int
imt
unsigred char
?
strumery
<
umsigred int pitch_posu
int pitoh_..vel!
umsigned int oldpoitch:
Floet
unsigmed int:
int:
Lincigned int
Float
%
/HFLag to allow arm operationsw;
/wfleg to hold the ceuse of the shutcownw/
/Wflag to inform sy=tem of data parametar changew,
/*coumter for deta loggimg*/

```

```

resment!
res_ang!
re\#_m"\#V!
motworjve=
breve?
pitch_ang!
yaw_pos\#
Yam_ve1:
old_yew!
yaw_ang!
Gt+uct DESTPED
\&
unsigned int
pitch_pos:
pitch_pos: OF POOR QUALITY
yan-..os:
Fimel pitc!:
Finel_yew:

```
```

```
int OFEFMTE:
```

```
```

int OFEFMTE:

```

Etruct DESTRED c unsigned int unsigned int unsigned int unsigned int
struct Fy
* \(*\) fag to stop program*
```

/Wfleg for sync operations */

```
```

/Wfleg for sync operations */

```
unsigned
unsigned umsigned int jกセ
int
floet
Floet
Float
int
float int
Flaat
3

\section*{counter}
```

pitch__Etar゙せg

```
yaw starty
de1ta_pitch_pos:
delta_yen_pos:
piteh_engleg
yew engle:
pitch step:
pitrh_veI:
yaw step:
yaw vel.
time?
struEt SETFGMNT ©
unsigned int
unsigmed int
unsigned int unsigned int unsigned int unsigned int unsigned int unsigned int unsigned int unsigned int unsigned int wnsigned int int
int
\(y\)
pitch＿hi＿1imit：
pitch＿hi＿alermo
piten neutraly
pitch＿la＿anarma
pitch＿lo＿imity
delta＿pitchu
Yew＿hi＿n 1 joty
yaw hi alarmi
Yan＿meutrela
Yaw 10＿alerm：
yew lo＿limit！
delta yew？
＝11mat＿pitcha
EIEmit＿yaw！
strume EATN
i

Floet
floet
Float
float
Float
float
foret
float
floet
fioat
float
float jnt
\(3:\)
?

A pos motion sceleq
A vel＿motion Eexles
A＿motorn＿vel！
A torquer
A＿position：
A output velu
E＿pos＿motion＿sceleu
B vel motion weale！
E＿motor vely
E torgher
B＿posjtion：
B＿output vela
djrection：

ョビいぜ OLす
4
unsigred int． unsigmed int umsigned int umsigmed int 3
pitch＿pos：
yaw pos：
slimit＿pitwin
sInmit．．．yaw！

ตtrumt W0y
    int button 2
    Fleat totel \(\%\)
    Floet totery


```

    * arreys for mult moves
    ```

\begin{tabular}{|c|c|c|}
\hline unsigned & int & mt_pitch_posy \\
\hline mmeigned & int: & mt yew pos: \\
\hline unsigned & int. & mt final. pitch[10]: \\
\hline umsigned & int & mt final yaw[10]? \\
\hline Lneigned & int & \(m t \ldots 5 t e p s[10]:\) \\
\hline unsigned & ir! & mt coumbers \\
\hline uns igned & imt & mt_piteh_metrti \\
\hline uncmoned & int & mt yaw start? \\
\hline int & & \(m t\) delta oitch pos[10]\% \\
\hline imt & & mt_deltanyawpos[10]? \\
\hline Float & & mt_piteh_angierdoy \\
\hline Fiout & & mix yaw angle[10]a \\
\hline Float & & mt piteh stepliona \\
\hline int & & mt piteh vel \\
\hline Float & & mt yaw step[10]! \\
\hline int & & mty yaunvela \\
\hline Fiont & & mt time[Jo]: \\
\hline int & & ot moneses \\
\hline
\end{tabular}

    * arr"ay= for dete Joggimg



```

    * FTLE: EXTDATA,H
    * DATE: JUIY 28, 1990
    *
    *
    *
    ```

extern ant orEFATE:
Extern int START LDOF:
extern int FUN AFM:
Extern int ERFOFFFAG:
Enterm int FAFAMETERELAEg
*
Extern int LOG CNT:
extern int buErEv:
extern struct MTF
\(\because\)
int tachig
int res, vel!
int: torqu
uncigmed int res_omts
Float
unsigned int
int.
unsigned char
3

        \(r\)
        unsigned int
        int:
        unsigned imt
        flogt
pitch pos:
        pitch vel:
        old_pitena
        pitch_ang:
        unsigned int
        int
        unsigned int
        float
        \(\geqslant\)
Extern struut DESTPED
        c
        umsigmed int
        pitwhmos!
        uncigmed int
        Yewnome

Lmsigried int
unsinred int:
Linsigred int
urnsigned int
int:
int
FIodt
F10at
Flaat
int
Float
int
FIoet
34
extern struct SETFOINT
s
\begin{tabular}{|c|c|c|}
\hline unsigned & int & pitch_hi_nimita \\
\hline unsigmed & int & pitaryinalarma \\
\hline umsigned & int & pjten_neuttoaly \\
\hline umsigned & int & pitch_amalarmat \\
\hline unsigned & int & pitch_lolimitu \\
\hline unsigned & imt & deltapitcha \\
\hline unsigned & int & yawhinlimita \\
\hline unsigned & int & yew_hinalarmo \\
\hline unsigned & int & yaw meutral! \\
\hline unsigned & int & \(y=\omega 10\) alarmo \\
\hline umsigned & int & yaw_1o_1imity \\
\hline umsigned & int & delta yew: \\
\hline int & & slimit_pitcha \\
\hline int & & SIimit._yang \\
\hline
\end{tabular}

\(i\)

floet \(\quad\) A vel_motion_
Fioct A mator vel.

fiopt A_positions
flomte Moutput vely
Floet E posmotion scale

Float E-motar_vely

Flost E_positiony
Floet Boutput:.... wis
まサt
\(3:\)
extern struct OLD
e
umsigned int
unsigned int unsigmed int unsigned int F

Extern struct Joy
\(\tau\)
int button 2
Flogt
totel. \(\because\)
pitch pos:
yaw pos:
=1imit_pitch!
sImityyaw
tarel_yaw!
stepes
counter ?
pitch_startig
yawstart!
delva_pitch_pos
deltanyan pos?
pitch_angle!
yam angles
pitch_step:
pitch vely
Yaw_step:
Yam_VEI:
time:
10at ¢
,
```

pitch_hi_limity
"itchmaizalarm%
pitch_neuttma!
pitch_lonalarm%
pitch_lo_1imit!
delta_pitr!%
yawhin_imit!
yaw_hi__alermo
yaw_meutram!
yawnIonalarm:
yaw_10_limit%
d"1ta_yaw:
=limit_pitacha

```

I
```

fout
Flost
\&_geim:
float Y-gain!
3:

```
extern struct MAIN
\&
\begin{tabular}{|c|c|c|}
\hline struct & MTF: & ma: \\
\hline struct & MTE & mb) \\
\hline struct & FY & ПY: \\
\hline Etrurt & DESIFED & ds! \\
\hline struet & SETFOINT & Sp: \\
\hline struct & GAIN & ¢ก \\
\hline =truct & OLD & od: \\
\hline ctruct & TOY & jY: \\
\hline 3 & WFTE: & \\
\hline
\end{tabular}
 * arreys for mult moves

extern unsigried int
extern unsigned int
extern unsigned int
Extern umsigned int
extern umsigned int
extern umsigned int
extern unsigned int
extern umsigned int
estern int
Extern int
extern float
Extern flogt
extern float
extern int
extern float
extern int
Extern float
extern int
int: pitch_....pos:
mt _ yaw pose
mt_firal_pitch[.]
mt_rimal_yew[I?
mt steps[]!
mt_counter
mt_pitch_starty
mt_yam_start:
mt_delta_pitch pos[]:
mtwaelte_yaw_pos[]:
mt_piteh_engle[]!
mty yan anglep]:
mt_pitch_step[]:
mt pitch vely
mt yewstep[]s
miv. yaw vel!
mt_time[]:
mt moves:

* arraye for date logging


extern int \(\quad\) log_tach_ a[log rangene]:
extern int logtachmelog ramgeney
extern int \(\quad\) logtorg arlogmrange en
extern jnt log_torgb[log_rangene]!
Extern unsigred int log res cnt arlognange_egu
extern int log respreverlog range_eja
extern unsigned int log_res_ent b[log_range_e];
motern int log_res_revoblog_renge ejs
extern int \(\quad\) lognotor_omd_alog_tange_el!
=xtern int \(\quad\) logmotor modmalograngenelt
extern unsigned int log pitoh pos[log rangeme]:
Extern int \(\quad\) log pitch_vel[log_range_e]
extern unsigned int log yan pos[lograngeme]!
entsrn int log_yaw vel[log_tange_e]:
extern int log desire pitchpos[jog range_e]a
extern int logdesire yaw postog_rengemen

```

    * FILE: NASADEF.H
    * DATE: July 28% 1990
    *
    *
    *
    ```

```

\#\#EFame TRUE I
**EFine FALSE O
/% A/D - D/A -.. I/O control defirutimome */
\#define AD_EASE GMSBO
wGefine AD LDWE OXEQO
HCEFine AD HJEE OxSSD
4define AD ECAN OxEDE
\#cefine ID_OUT OxEEE
\#define IO IN O\&SEE
\#define DAO LDW OXSB4
Hgetine DAO HI OySEE
\#define DAI LOW OMEXG
\#detine DAt HT OxSY7
Howsine AD STATUG OxS区E
\#detime AD CON OxS>9
\#defjnE AD_TIVE OxGEx
\#debjne AD EATN OxSSD
\#define AD CNTFE O OXBG
\#define AD CNTFE 1 OxSEd
\#define ADEDNTE z OxSEE
\#cefine ADC: CON OxQEF
\#mefine GAIN_ O OMO
*defanE GANNEOO OxOZ
*dEFine INT OFF OwSE /*interrupt 㧹 \& offy counter start*/

```

```

\#define Clm'TNT OxOO /*write to status reg only ta Elear*/
\#कefin= LOCGE Oxos /wlock the motor brekese%/
\#defime UNLOCK_E Owoo /wumlowk the motor brakes%/

```

```

\#define TNT MASK OxDO /wmask for mherking EOC Fleg*;
Hde+ine OWEET ONOO
/* A/D chemmel definitions w/
Fdefine AD TACHA OMOO
\#define AD TACH_E OMIL
\#define AD TORG A Ow2z
\#define AD TOFQE OMST
Hdefine AD,RD UA OX44
\#define AD RDUQ OMES
Hdefine ADEDUF 0%66
\#define ADEDUUYY 0\&77

```
\begin{tabular}{|c|c|}
\hline \＃define gase & 6nsoo \\
\hline \＃define Lse & 0x300 \\
\hline \＃define MsE & 0x301． \\
\hline 揓他ine 5 c & \(0 \times 302\) \\
\hline \＃define Err & OnSos \\
\hline Hdefine M A Fi & \(0 \times 30\) \\
\hline 故define M＿B＿Fr & \(0 \times 31\) \\
\hline foefine P Lo & \(0 \times 32\) \\
\hline \＃define F HI & OXS \\
\hline foterne Y Lo & \(0 \times 34\) \\
\hline \＃define Y＿HI & ORS5 \\
\hline fodefine LODF MASK & OxOf \\
\hline \＃define los Mask & \(0 \times 10\) \\
\hline 中define EIT MASK & \(0 \times 20\) \\
\hline
\end{tabular}

\section*{／wshutdown definitions＊／}
\begin{tabular}{|c|c|c|}
\hline 湘define & P＿hindmit & 0x000 \\
\hline frefine & F LOLIMIT & 080002 \\
\hline Wrefine & Y－HI＿LMTT & \(0 \times 0004\) \\
\hline 中⿰define & Y LO LIMIT & 0，0008 \\
\hline \＃define & EESOLUER EFTROF & 080010 \\
\hline \＃ciefine & FESET & \(0 \times 0020\) \\
\hline \＃define & TIME OUT & 040040 \\
\hline \＃define & SOFT LIMITFF & \(0 \times 0100\) \\
\hline \＃derine & SOFT LTMIT．－Y & \(0 \times 0200\) \\
\hline \＃fefine & AD FAIL & \(0 \times 0400\) \\
\hline ＊derine & NOFMAL SHUTDOWN & \(0 \times 8000\) \\
\hline
\end{tabular}
／sppeed of i．oop rate per second \(/\)
\＃define FFEQUENCY ESO

ORIMNA PACE IS
OF POOR QUALITY
／＊defintions for finding the motor drive commandsk／


（128）
\＃GEFiME DECOUFLEDFDGEFRA（－（SCALED FEMOTEFTTCH＋SCALED WEMOTE YAW））
WdETine DECOUFLED＿FOQEFFE（SCAED＿FEMOTEFTTGH－DGALED＿EEMOTE YAW）





HGEFIME DECOUFLED VELEFF E（SCALED VAM VE EFE－GCALED FTTCH VEL EFF）



```


[^0]:    YNOLE DEPTH

[^1]:    FIGURE 32 - Test setup for static measurements of the Hinge Joint drive.

[^2]:    FIGURE 50 - Test setup for Pitch-Yaw Joint drive stiffness measurements.

[^3]:    NASA I.C
    NASA 2.C NASA 3.C NASA 4.C NASA 5.C NASA 6.C NASA 7.C NASA 8.C NASADATA.H EXTDATA.H NASADEF。H

