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Abstract

This paper outlines the development of a mathe-
matical model that is expected to be useful for ro-

torcraft flying qualities research. A computer model

is presented that can he applied to a range of dif-
ferent rotorcraft configurations. The algorithm com-

putes vehicle trim and a linear state-space model of
the aircraft, The trim algorithm uses non linear op-

timization theory to solve the non linear algebraic

trim equations. The linear aircraft equations consist

of an airframe model and a flight control system dy-
namic model. The airframe model includes coupled

rotor and fuselage rigid body dynamics and aerody-

namics. The aerodynamic model for the rotors uti-

lizes blade element theory and a three state dynamic

inflow model. Aerodynamics of the fuselage and fuse-

lage empennages are included. The linear state-space
description for the flight control system is developed

using standard block diagram data.

Introduction

In the past, rotorcraft flight control system pre-

liminary design used mathematical models which as-

sumed the fuselage to possess six degrees of freedom.

The rotor dynamics were assumed to be substantially

faster than the fuselage dynamics and were subse-

quently approximated as quasi-static. The process
of fine tuning the flight control system was accom-

plished through an extensive flight test program com-

prised of a matrix of control system parameter varia-

tions. While fine tuning of the flight control system is

still accomplished through flight testing the vehicle,

significant improvements in the optimization process
have been realized when high order dynamic rotor-

craft models are utilized during the preliminary flight

control system design stage.

*Presented at Piloting Vertical Flight Aircraft: A Confer-

ence on Flying Qualities and Human Factors, San Francisco,

California, January 1993.

Rotorcraft are now being designed with sophisti-

cated electronic flight control systems. These com-

plex control systems are utilized not only to satisfy
standard flying qualities specifications but also to

meet aerodynamic performance, vibration, and struc-

tural loads criteria. The design of modern rotorcraft

flight control systems now stretches across many dif-
ferent individual disciplines and is indeed interdisci-

plinary. The general trend toward increased reliance

on the flight control system for improving overall sys-
tem performance has lead designers to consider higher

bandwidth systems which rely on high levels of sensor

feedback to yield desired aircraft stability. The main

drawback of this approach is that increased levels of

feedback, which in general improve the low frequency

fuselage dynamic behavior, can destabilize higher fre-

quency rotor blade motion. In order to make mean-

ingful estimates of the impact of a particular flight

control configuration on system requirements it has
been found that a mathematical model which in-

cludes fuselage and rotor rigid body dynamics and

rotor dynamic inflow is necessary [1].

The business of rotorcraft modeling for flight con-

trol system design and analysis support has been an
active research area for many years. Deriving the

equations of motion of a fully coupled fuselage and
rotor system for a reasonably general configuration

quickly becomes unwieldy due to complicated ge-

ometry including many matrix transformations and
intricate logic branching. These complexities have

lead engineers to develop digital computer programs

which more or less relegate model computation to the

computer and free the engineer to focus on analysis
results.

Talbot, Tinling, Decker, and Chen [2] formulated

a helicopter flying qualities model that includes fuse-

lage dynamics and a three degree of freedom tip-path-

plane representation for the main rotor flapping dy-
namics. Some simplifications are made in the anal-

ysis in order to formulate compact, analytical force
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and moment expressions for the rotor forces and mo-

ments. Gibbons and Done [3] derived a numerical

method to automatically generate rotorcraft equa-

tions of motion. The method uses Lagrange's equa-
tions and relies on expressing inertial position vectors

of the rotor blades as a matrix multiplied by the po-
sition vector in blade coordinates plus a term that is

a function of the modal coordinates, time, and span-
wise position. The required differentiations of the

position vector to form the equations of motion are

performed numerically. Miller and White Ill used
concepts from Lytwyn [4] and Gibbons and Done

[3] to automate generation of the equations of mo-

tion for rotorcraft handling qualities analysis. Miller

and White [1] expressed all transformation matrices

in complex variable form and were able to develop a

compact algorithm to analytically obtain long strings
of orthogonal transformation matrices along with all

necessary derivatives to form nonlinear and linearized

dynamic equations. Lagrange's equations were used

in the formulation. Zhao and Curtiss [5] derived a
set of linearized equations by analytic linearization of

a nonlinear model formulated using Lagrange's equa-

tions. The symbolic manipulation computer program
MACSYMA was used in forming the equations. Sub-

sequent work by McKillip and Curtiss [6] has im-
proved and extended the work by Zhao and Curtiss
[5].

The work discussed in this paper derives a rotor-

craft flying qualities model which has been imple-

mented into a FORTRAN computer program. A

fairly generic rotorcraft configuration, consisting of

a rigid fuselage, two rotors, and an arbitrary number

of fuselage fixed external surfaces has been assumed,
as shown in Figure 1. It is important to note that the

type of analysis carried out in this work can accom-

modate any arbitrary number of rotors in the con-

figuration. The number of rotors has been chosen to

be two since the majority of rotorcraft fall under this

category. The fuselage possesses six degrees of free-

dom and the rotor blades have flap, lag, and pitch
degrees of freedom. The rotor aerodynamic models
are based on blade element theory and include three

degree of freedom dynamic inflow. The equations

of motion are formulated using Kane's equations [7].
More importantly, derivatives of transformation ma-

trices are formed using angular velocity expressions
as opposed to numerical or direct differentiation. The

rotor dynamic inflow equations are based on the Pitt

and Peters model [8] and include hub motion pertur-
bations. The residual of the equations of motion and

the residual gradient expressions are derived analyt-
ically and trim is calculated using the residual and
residual gradients in concert with a modified New-

ton's method. The rotor trim variables are the ro-

tor multiblade coordinates. A linear constant coeffi-

cient model of the composite airframe is formulated

using a multiblade coordinate transformation with a

subsequent constant coefficient approximation. The

linear constant coefficient airframe model is coupled
to the linear control system dynamic model to form

the overMl linear model. Linear analysis tools such

as eigen values, eigen vectors, transfer functions, fre-

quency response, and linear simulation are directly
contained within the computer program.

Airframe Dynamic Model

As pictured in Figure 1, the airframe dynamic

model consists of a rigid fuselage with the standard

six degrees of freedom and two fully articulated ro-
tor systems, each with dynamic inflow. The fuse-

lage aerodynamic force and moment components are
obtained in the wind axis from a two dimensional

data table as functions of fuselage angle of attack
and sideslip. The aerodynamic forces exerted on the

external surfaces are obtained using standard lifting
line theory. The rotor geometry details are shown in

Figure 2. Provisions are made in the model to accom-

modate any of the six possible sequences of flap, lag,

and pitch hinges for the rotor blades. Each hinge is

accompanied by a linear torsional spring and damper.
Each blade also has a non linear translational damper
which is attached to the rotor blade from the rotor

hub. Hingeless rotor systems can be approximately
modeled using a virtual hinge representation. The

aerodynamic forces exerted on the rotor blades are

calculated using blade element theory. The blades

on a rotor have identical yet arbitrary geometric and
inertial properties.

The airframe nonlinear dynamic model is obtained

using the flat and non-rotating earth assumption.

Kane's Equations are then written for each degree of
freedom by taking into account the contributions of

the generalized inertia forces, the generalized gravity
forces, the generalized aerodynamic forces, and the
generalized spring-damper forces.

f,(t) = fj,(t) + fc,(t) + + fso.(t),

," = 1,..., nnB (1)

In equation 1, t denotes time and nnB is the number

of generalized speeds. The origin of each term on the

right hand side of Equation 1 is discussed below.

The following nomenclature is introduced for deriv-

ing the generalized inertia forces. Let nnl and nn_
denote the number of blades on rotor 1 and rotor

m

E

Iz-
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2, respectively. Let mF and It, mnl,i and [Rl,i (i =

1,..., nal), and mR2,j and In2,j (j = 1,..., na2), re-
spectively, denote the masses and inertia matrices for

the fuselage, rotor 1 blades, and rotor 2 blades. Let

wE, wm,i (i = 1,..., nR1), and WR2,j (j : 1,..., na_)

represent the individual body axis components of the

angular velocities of the fuselage, rotor 1 blades, and

rotor 2 blades, respectively. Let vr. and aF., VRl,i o

and am,i. (i = 1,...,nR1), and vn2j. and aa2,j.
(j = 1,..., ha2) represent the inertial axis compo-

nents of the c.g. (center of gravity) velocities and ac-

celerations of the fuselage, rotor 1 blades, and rotor

2 blades, respectively. Then the generalized inertia

forces acting on the configuration can be written as,

f_(t) = mY\our] aF.+

""' [ova,,,. )TE mRl i _ OUr aa,,io +
i:I

n.2 :O_a2i._T

_.. ma2,i _ OUr J
_2a2,i*-_-

i=1

OWF_ T

our / {IF_F + S(_V)IF_F} +

°., IO_a_,,_T
i=1

n_" (O_,dR2,i_T

\ Our ) {Ia2,i_m,_ + S(wa_,,)Im,iwm,i},
i=1

r = 1,...,nan (2)

where an overdot denotes differentiation with respect

to time and S(.) is the standard cross product skew-

symmetric matrix operator (Appendix). u is the vec-

tor of generalized speeds. Letting g be the accelera-

tion due to gravity, the generalized gravity forces can
be written as,

ft.(t) =
O(vr.)_

--mEg Our

""' O(vm,i. )3
-- E mR,,ig OUr

i=1

rLR2

- _ r.a_,,ga(va_,,.)_
i=1 OUr '

r = 1,...,nab (3)

The generalized aerodynamic forces are discussed

next. Let VF, and FE and ME be respectively

the body axis components of the velocity and the

aerodynamic force and moment acting on the fuse-

lage aerodynamic center. Let ba,, ba_, and bs,

(i = 1,...,ns) denote the number of elements or

sections on any rotor 1 blade, any rotor 2 blade,

and the ith external surface. Let vm,i,j and Fm,i,j

(i = 1,...,nm,j = 1,...,bin), and va2,k,r and

Fa2,k,t (k = 1,...,na2,1 = 1,...,ba2) be the indi-

vidual body axis components of the section velocity
and the aerodynamic force acting on rotor 1 blades

and rotor 2 blades, respectively. Let vs,,j and Fs,,j
(i = 1,...,ns,j = 1,...,bs,) be the respective body

axis components of the section velocity and the aero-

dynamic force acting on the external surfaces. The

generalized aerodynamic forces acting on the config-

uration can then be written as,

r = 1,...,nan (4)

The generalized spring-damper forces are discussed

next. Figure 2 shows the typical spring-damper at-

tachment geometry for a typical blade. Let vDLi,j

and FffLi,j (i = 1, nR, j = 1, 2), and v D• " " ' ' R2,k,I

and FDa2,k,Z (k = i, • •., na2, l = 1, 2) be the indi-
vidual rotor hub axis components of the velocities

and the forces acting on the translational damper

attachment points for rotor 1 blades and rotor 2

blades, respectively. Let W_l,i,j and M_Li, j (i =

1 nal,J = 1, .,4), and w D and M D
' " " " ' " " a2,k,I Fl2,k,l

(k = 1,...,na2,1 = 1,...,4) denote the individual
body axis components of the angular velocities and

the torsional spring-damper moments acting on the
hub, link i, link 2, and the blade for rotor 1 blades

and rotor 2 blades, respectively. Then the generalized

spring-damper forces can be expressed as,

fsD,(t) "-" ""' 2 ('O,ff,,_j)r-EE k o.r
i=1 j=l

-EE / our ]
i=1 j=I
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\ / M2t,j
i=1 j=l

. = \ _ M_2,j,

r = 1,..., nR_ (5)

The partial derivatives o_ o_and in Equations
2 through 5 are known as partial velocities and par-

tial angular velocities, respectively. The generalized

coordinate vector q and the generalized speed vector
u are defined as follows:

q = {(qr)r, (qm,j T, (qR_,_)r,..., (qR, ,,,) T,

(qR2,t)T,(qa2,2)T,... ' (qR2,,_n2)T}T (6)

" = {(UF)T, (URt,_)T, (URt,2)L..,(_,,,,)r,

(uR2,t)r, (_2,2)T,..., (_,,,_)_ }r (7)

The subscripts F, R1, and R2 refer to fuselage, rotor
1, and rotor 2 variables, respectively. Further,

qF = {*,v,z,¢,a,¢) T

qRl,i = {0_ ,i, Rl,i,_Rt,il _ ,..._riR1

_a(t) _(2) c_(3) IT i=l
qR2,i -= t R2,i, _2t,i_ R2,iJ , s • • •, nR2

UF = {u,v,w,p,q,r} T

¢6(1) .(2) d(3) IT i 1,...,URI,i = "t Rt,i, OlRt,i, Rt,il , = nRt

l&(t) ,_(2) :(3) _T i 1,..UR2,i --" t R2,i,_R2,iJCrR2,i] _ : "JnR2

fuselage axes, THt.i (i = 1 .... , nm) is the matrix
of transformations from rotating hub axes to shaft

axes, T O)m,i(i = 1, • • ., rim) is the matrix of transfor-

mations from link 1 axes to rotating hub axes, T(R2t).i
(i = 1, ..., nR1) is the matrix of transformations from

link 2 axes to link 1 axes, and T (3) (i = 1, nat) isRl,i " • •,
the matrix of transformations from blade axes to link

2 axes. The transformation matrices are expressed as
follows:

TF = [EI(¢)E2(O)E3(¢)] T (14)

TS1 = [Ts_,b(rst,_)Tst.(rst,.)] r (15)

THI,i = [E3(a" -- _)Rl,i)] T (16)

T(Rll)i -- T(RII',i(O_(R_.i) (17)

T(R]),i T_ 3) (a (a)' (19)= Rl,ik Rl,il

In Equation 16, Cmi = f2mt + 2,_ (i- 1), where
_m lS the rotor 1 hub rotatxonal speed. It is as-

sumed that the shaft is inclined with respect to the

fuselage by first a rotation with the angle Fst,_ and
(8) then a rotation with the angle Fst,b. Depending on

the sequence of rotation, Tst,_ and Tst,b are one each(9)
among Et and E2. Et, E2, and E3 are single axis

(10) transformation matrices about x, y, and z axes, re-
spectively (Appendix). Clearly, T(1), T(2), and T (3)

(11) are one each among Et, E2, and E3, depending on
the rotor blade hinge sequence.

(12) The body axis components of the angular velocity

of the fuselage, wF, can be written as,
(13)

The quantities _(t), a(2), and c_(3) are one of lag, flap,

and pitch angles, depending on the rotor blade hinge
sequence.

A brief description of the analysis involved in calcu-

lating the terms on the right hand sides of Equations

2 through 5 is given in the following. For simplicity,
the analysis for the rotor terms will be restricted to

rotor 1; the analysis for rotor 2 terms is analogous.

Generalized Inertia Forces

The six terms comprising the generalized inertia
forces, Equation 2, are discussed here. The orienta-

tion of the fuselage with respect to inertial axes and

the orientation of the rotors with respect to the fuse-
lage can be described using transformation matrices.

Each transformation matrix is composed of one, two,
or three single axis transformation matrices. Refer-
ring to Figure 2, let TF be the matrix of transfor-

mations from the fuselage axes to inertial axes. The

following five matrices are defined for rotor i. Tst
is the matrix of transformations from shaft axes to

_,_ = {p,q,_}T (20)

Using the transformation matrices defined above, the

body axis components of the angular velocity of the
ith rotor 1 blade can be written as,

°JR1 ,i : v t ,,t ),T
T(1 7(2) T(3) ]T

Rl,i'Rl,i*Rl,iJ {0,0,--_RI} T +

IT(2 ,T(3 ) ]T b(l)_,(l )
Rl,i * Rl,i J R1 Rl,i +

RI m,i +

b(3). (3)
RI _ RI,i (21)

vectors _(t)_at,_,(2)_m,and b_ have been intro-The unit

duced to allow a general rotor blade hinge sequence.

For example, if rotor 1 blades undergo a lag, flap,

and pitch rotation sequence, then _m_(_) {0, O, 1} T,

b(2)at= {0, 1, 0} T, and b_ = {1, 0, 0} T. Equation 21
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has been obtained using the concept of simple angular

velocities [7].

The body axis components of the fuselage c.g. ve-

locity are given as,

"o_= {u, "o,w}r (22)

The inertial axis components of the fuselage and

blade c.g. velocities can be written as,

Tvvn (23)

VF. "4-

TFS(WF )eF1 .-[-

TFTslS(wsl)rH1 +

TFTs1THI,iS(WHI,i" _(1))rm +

T T T T O) e_w(1) _f(2)
F S1 Hl,i Rl,iO[ Rl,i) R1 _"

(1) (:) (:) 43)
TFTsl Tm,iThl,,T)U,iS(wm,i)r m +

(24)

In Equation 24, ¢OSl represents the body axis compo-

nents of the angular velocity of rotor 1 shaft, win,i,
¢0O) and w (2)nx,i, nl,i are the individual body axis com-
ponents of the angular velocities of the rotating hub,

link 1, and link 2, respectively. The expressions for

these angular velocities are given as follows:

_s, = [TSl]T wr (25)

¢OHl,i = [THI,i]Twsl+{O,O,--_m} T (26)

= b(1)& (1) (27)Rl,i i UJHl,i -4- Ill Rl,i

Rl,i -- i Rl,i -]- R1 Rl,i

In Equation 24, the vectors _FX, rill r(_), r(_), ;(3)' "R1 '

and fR1 are defined as follows, rrl is the position vec-

tor from fuselage c.g. to a point on shaft 1, expressed

in fuselage axes. rill is the position vector from the
point on shaft 1 to the center of hub 1, expressed

in shaft 1 axes. For any rotor 1 blade, ;(1) is the
"R1

position vector from the center of hub 1 to the first

hinge, expressed in rotating hub 1 axes; _(_ is the po-

sition vector from the first hinge to the second hinge,

expressed in link 1 axes; f(_) is the position vector

from the second hinge to the third hinge, expressed

in link 2 axes; and fR1 is the position vector from the
third hinge to the blade c.g., expressed in blade axes.

Equations 20 through 24 are used to compute the par-

tial velocities and partial angular velocities needed in

Equation 2.

The angular acceleration vectors d;F and &Rt,i

appearing in Equation 2 are obtained by a time-
differentiation of the right hand sides of Equations 20

and 21, respectively. Similarly, the translational ac-

celeration vectors aF- and am,i, appearing in Equa-
tion 2 are obtained by a time-differentiation of the

right hand sides of Equations 23 and 24, respectively.
While the equations for the rotor blade acceleration

vectors are lengthy and omitted here, it is noticed

from an inspection of Equations 20 through 24 that

obtaining these equations is straight forward once the

expressions for the time-derivatives of the transfor-

mation matrices has been obtained. The Appendix

gives the derivation of a formula for calculating the

time-derivative of a matrix in terms of a matrix prod-

uct. Using this formula, the following are obtained:

:FF = TFS(WF) (29)

Tsl = 0 (30)

TH,,, = THI,iS ({O,O,-am} T) (31)

_h(Rll),i T <I)S {bO)a (1) _ (32)= m,i \ m re,i]

7"(_) T (2) S (b(2)a (_) "l (33)
Rl,i --" Rl,i k R1 Ill,i]

T(3) = T (a) S/'(3)'(3) h
m,i m,i k°maRl,i) (34)

Generalized Gravity Forces

The partial velocities _ 0vR_ _- and 0vR_ ,- ob-
Our ' OUr I Our

tained in the computation of generalized inertia forces

are used to compute the generalized gravity forces
given by Equation 3.

Generalized Aerodynamic Forces Due to Fuse-

lage

The first term in Equation 4 represents the gener-

alized aerodynamic forces due to the fuselage. The

quantities comprising this term are obtained as fol-

lows. The body axis components of the velocity of the

fuselage aerodynamic center (a.c.) can be written as,

"OF --" YB "Jr- S(WF)_AC (35)

where _AC is the position vector from the fuselage e.g.

to the fuselage a.c., expressed in body axes. Equation
35 is used to compute the partial velocity

(_t$ r •

For a rotorcraft, the wind-axis components of the

aerodynamic force and moment acting at the fuselage

a.c. are usually given as a function of fuselage angles

of attack and sideslip:

L = Ll(a) + L2(_) (36)

D = DI(a)+ D:(_) (37)

M = M_(a)+ M2(13) (38)
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Y = Yl(a) + Y-_(8) (39)

-- ll(a) Jr" g2(8) (40)

N = NI(_) + N2(8) (41)

These forces and moments are scaled with respect to
the local dynamic pressure and can be in the form

of a two dimensional data table or fitted analytical
expressions to wind-tunnel data. The force and mo-

ment components in the body axes are given as,

FF = {E2(o_)E3(-8) {-D,Y,-L} T (42)

Mr = {E2(a)E3 (-8) {I,M,N} T (43)

The fuselage velocities, for purposes of cMculating the
aerodynamic variables a, 8, and q, include the effect
of rotor 1 downwash:

= vr - Wnl,Ofm (Xm) (44)

where Why,0 is the rotor 1 collective inflow, and _m
is the rotor 1 wake skew angle. In absence of more

sophisticated data, fm assumes the value {0, 0, 1} T
or {0, 0, 0} T, depending on whether the a.c. is within

or outside of rotor 1 wake. XR1 is given as,

= tan-' { (45)
k-Am )

where pal and An1 are, respectively, the rotor 1 ad-

vance ratio and rotor 1 inflow ratio. These quantities
can be determined by computing the relative air ve-

locity components at the rotor hub. Using Equation

44, the aerodynamic variables a, /9, and q can be
readily computed:

a = tan-_ (_)fl = sin-_ ('[_)(46)

1

= _pl_ 12 (47)

Generalized Aerodynamic Forces Due to Ro-
tors

The second term in Equation 4 represents the gen-
eralized aerodynamic forces due to rotor 1. Blade ele-

ment analysis is used to calculate this term. As men-

tioned earlier, the rotor blades are allowed to have

any arbitrary variation of twist, chord length, and

airfoil characteristics along the span. The body axis

components of the blade element velocity are given
as,

YRI,i,j T T T TO ) ,.r,(2) ,7-,(3) ]T

F S1 Hl,i RI,i-LRI,i-LRI,i] V F_ Jr"

[TS1TH1 iT(R11',iT(R2,'iT(R31)i]TS(WF)rF1 "4-

IT TO ) T(2) ,T,(3) ]T

Hl,im,i m,i_m,q S(_s_)_nl+

TO) T(_) ,v(3 ) ]T
RI,i_.,,i'LRI,i] S(°2HI,i )_(R_ +

2) T(3) IT o, (I) ,-(2)

nt,i m,iJ Dt¢°R,,i)rR1 +

RI,i} R1 '_

S(_m,i)_ma (48)

The only new quantity introduced in the preceding

Equation is rm,j (j = 1,...,bnl), which is the po-

sition vector from the root of the blade to the jth

aerodynamic element, expressed in blade body axes.

Equation 48 is used to obtain the partial velocity

at_r •

Figure 3 shows a typical jth element on the ith

blade, and the lift and drag forces acting on it.

(Ym,i, zm,i) are the body axes of the blade, tTm, 1

is the blade twist angle at the jth section. USRl,i,j
and U_l i j are the components of the relative air ve-
locity par'Mid and perpendicular to the zero lift line.

The variables aRl,i,j ' LRI,i,j, and DRI,i,j have ob-
vious meanings. The velocity of the (i, j)th element

with respect to air is given by the following equation,

IT- .T_I) T_2 ) T(a) IT A
YRI,i,j -" URI,i,/ "{- [ HI,, Rl,i Rl,i RI,i] YRI,i,j

(49)
The term vAI,<j arises due to rotor inflow and can be

approximately evaluated as,

A
(VRl,i,j)l = 0

A
(vm i.i)2 = 0
('-'m,<_)a = -Wm,o - [hR1+ (_m,.ih/Rm].

(WRI,1, sin CRI,i + WRl,le cos CRI,i)

(5o)
where

hm- (rm)l + m, +
Rm (51)

Wm,l, and wm,_¢ are the sin and cos components of
the rotor inflow and Rm is the rotor radius. The

radial, tangential, and perpendicular components of

the air velocity at the airfoil can be computed as,

{u_l,ia, , p r-um,<j,um,<i} = E1(Om,j)_m,i,j (52)

Using the air velocity components, the section an-

gle of attack and Mach Number can be calculated as
follows:

gP
O_Rl,i,j = tan-1 ('Rl,i,j

U S
RI,i,j ] ca3)

= +
(54)

=

m

|
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where c is the speed of sound at the altitude where

the aircraft is operating. Airfoil lift and drag coeffi-

cients are usually specified as a function of the angle
of attack and Mach Number. Thus,

ClRl,i,j = ClRl,i,j (_Rl,i,j, ]_Rl,i,j) (55)

= c 1, ,3 (56)
The above data can be either in the form of a two

dimensional data table or in the form of fitted an-

alytical expressions to experimental data. However,

in the absence of any data, simple analytical lift and

drag models can be used. Based on reference [9],

equations were generated for two simple models, one
that ignored stall and compressibility effects and an-
other that included the same. The section lift and

drag forces are computed next:

- I
= q1_l,i,jCl_l,i,jCR1,j(A_R1j)lqI_1,j(57 )

-- d

: qRI,i,jCRI,i,jCRI,j(ArRI,j)I (58)

LR15,J

Dm,i,j

where

I s 2 p 2

qRl,i,j "" _P[(URI,i,j) -_- (URI,i,j ) ] (59)

and cm,j and r/m,j are, respectively, the chord length
and lift efficiency factors at the jth section. The body
axis components of the section aerodynamic force are

given by:

FRl,i,j : El(OlRl,i,j -- ORI,j ){O, DRI,i,j, --LRI,i,j } T

(60)

Generalized Aerodynamic Forces Due to Sur-
faces

The generalized aerodynamic forces due to the ex-

ternal surfaces are derived in much the same way as

those due to the rotors. One difference, however, is
that the radial drag force due to radial flow is consid-

ered here. It is assumed that every surface has a fixed

(invariant with time) orientation with respect to the

fuselage. The orientation can be specified uniquely

in terms of rotation angles about three mutually per-

pendicular axes. In order to have consistency in de-

scribing surfaces with different orientations, the body
axes for any surface are defined as follows. The z axis
coincides with the zero lift line of the root section

and is directed from the trailing edge of the surface

to the leading edge of the surface (see Figure 4). The

y axis is perpendicular to the x axis, passes through
the aerodynamic center of the root section and is di-

rected outboard, z axis completes the right handed
set.

The objective is to evaluate the last term in Equa-
tion 4. For illustration purposes, the mathematical

aS_,j

_Sl ,j

Otst ,j

analysis involved is outlined for surface 1. Let the

surface be oriented with respect to the fuselage by

three successive rotations of angles 7sl, 6s, and es,
about mutually perpendicular axes. The sequence of

rotations can be any of the possible six sequences. Let
the matrices associated with the above transforma-

tions be T (1)S1, r(s_ ), and T (3)s_, respectively. The ma-
(3) (2)

trix TES1 = T), (es,)T) (6s,)T(sl)(Tst) transforms

components of a vector from fuselage axes to surface

1 axes. Let _s, be the position vector from the fuse-

lage c.g. to the surface 1 reference point, expressed

in fuselage axes. Let fst,j be the position vector from

the surface reference point to the aerodynamic cen-

ter of the jth section, expressed in surface axes. Then
the velocity of the jth section can be expressed as,

vs,,j = TESt [VB + S(_F)es, + S(_F)[TEs,]Trst,j]

(61)
This expression is used to obtain the partial velocity

which is needed for evaluating the generalized
OBr

aerodynamic force contribution from surface 1.

For purposes of computing the aerodynamic force,
the resultant section velocity with respect to air in-
eludes the effect of rotor 1 downwash:

1)S, ,j -" 1)Sx ,j -- TESx WRI,OfSx (XR1) (62)

Similar to the case of the fuselage, in a simple anal-

ysis, fst can be taken to be equal to {0,0, 1}T or
{0, 0, 0} T, depending on whether the surface is within
or outside of rotor I wake.

The effect of radial flow on a surface section is in-

cluded in the same way as described in reference [10],
where profile power is computed due to radial flow

at blade sections. Let the free stream velocity at the

jth section be yawed, as shown in Figure 5. An esti-

mate of the normal and radial drag forces is desired,
preferably in terms of the two dimensional sectional
aerodynamic coefficients. It is assumed that the total

viscous drag on the yawed section acts in the same di-

rection as the free stream velocity. It is also assumed

that the yawed section drag coefficient is given by the
two dimensional unyawed airfoil characteristics. The
normal section lift coefficient is assumed not to be

influenced by yawed flow. The angle of attack and
Mach Number for the unyawed and yawed sections

are,

- tan-'

+
c

= tan-1

(63)

(64)

+
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(66)
c

The section lift and drag coefficients are given by:

l
CSt,j =- cIs,,j(ots,,j, MS, j) (67)

c ,,j = j) (68)

As mentioned for the case of rotor aerodynamics, in

the absence of lift and drag coefficient data, simple
analytical models for the coefficients can be used.

The section lift and drag forces are given as,

Ls,,i = Cls,,jCZs,,jcs, j(Afs,,j)2rls,,j (69)

c dDS,,j -" qs,,j S,,jcs,,j(Ars,,j)2 (70)

where

1 2 - 2

qs,,i = ,i)l + (71)
1 - 2

'/S,,_ = _P[(vs,,j)_ + (vS,,_)g + (vSt,jh] (7:0

and rls,,j is the section lift efficiency factor. Finally,
the body axis components of the section aerodynamic

force are given as,

o, h }7"+

(Ds, j/_/('s,,j)_ + (_s,,j)_ + ('s_j)_) .

{-(_s, j)l, -(_s_,j)2, -078,,i)3} T (73)

Generalized Damping Forces Due to Transla-
tional Dampers

As shown in Figure 2, one end of the blade trans-

lational damper is attached to the rotating hub while
the other end is attached to the blade itself. The

damper force is assumed to be given as a function of

the relative speed between it's two ends. The analysis

associated with the first term in Equation 5, which is

due to rotor 1, is developed in the following. The po-
sition vector from attachment point 1 to attachment

point 2, expressed in the rotating hub axes, is given
as,

dRl,i = ('(R_--,R1) dt-

Th(U -(=)
1,irR1 -[-

Rl,i Rl,i R1 Jr"

T(1) ,v(2) ,v(3) z (74)Rl,i "LRl,i _ RI,iCR1

$al is the position vector from the center of the hub

to attachment point 1, expressed in hub axes. [nl

is the position vector from the blade root to attach-

ment point 2, expressed in blade axes. The preceding
equation is used to determine the velocity of attach-

ment point 2 relative to that of attachment point 1,
expressed in hub axes:

= - ,.1)+
T_I) t-,zW(1 ) ,-(2)_

Rl,i'91, Rl,i)rR1 -f-

_1) ,_(2)._, (2),_(z)
Rl,i I RI,iDtWRI,i)rR1 q-

T 0) ,_(2) _(3) _,, _z
Rl,il Rl,il hl,i_(wnl,i),nl (75)

The component of this relative velocity along the
damper arm can be written as,

f_m,i = (1/ [ dnl,i [)(dnl,i)T6m,i (76)

The damper force Fm,i is assumed to be specified as

a function of the above speed. Hence,

FRI,i FRI,i(vRI,i) (77) _:_.

The hub axis components of the forces acting at the
attachment points are given as, i

FDRI,i,I "_ -(Fm,J l dm,i I)dm,_ (78)

F Dre,i,2 = (Fro,i� I dm,i [)dm,i (79)
i

The velocities at the attachment points, expressed
in the hub axes, are:

yD __ i
nl,i,1 -- [TsxTH_,i]T(vs + S(wY)fF1) +

[THI,i]Ts(;dS1 )rill "[-

(80)
uD uDre,i,2 - m,i,l + vm,i (81)

The above two equations are used to calculate the

required partial velocities, _ and _.

Generalized Spring-Damper Forces Due to

Torsional Spring-Dampers

The torsional springs and dampers mounted on the

blade hinges are assumed to possess linear stiffness

and damping properties. They give rise to the third

and fourth terms in Equation 5. The third term in

this equation is due to rotor 1 and is discussed below.

Referring to Figure 2, the following quantities are de-

fined for the ith blade. Mm,i,_ denotes the body axis
components of the moment on acting link 1 due to the

spring-damper at hinge 1. Mm,i,2 denotes the body
axis components of the moment on acting link 2 due

to the spring-damper at hinge 2. Mm,i,z denotes the

body axis components of the moment on acting on
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the blade due to the spring-damper

moments can be expressed as,

_£(1) {k(1) 0_(1)
•_/RI,i,1 = vR1 _ PRI Rl,i

_(2) {k(2) c_(2)
MRI,i,2 = --VR1 \ PRX Rl,i

/,(3) ('k(3) 0¢(3)
MRI,i,3 -_- --_R1 _, Pm Rl,i

at hinge 3. These

k(1) ,;(1) _ (82)
"_ DRt_RI,ij

.(2) • (_) "_
+ ¢D,1 am,i) (83)

k(3) _(3) _ (84)+ Dnl Rl,i)

where kv and k D denote sttifness and damping con-

stants. The torsional spring-damper moments acting
on the hub, link 1, link 2, and the blade, expressed in

their individual body axes, are respectively given as,

MDI,i,1 = -MRI,i,1 (85)

MDRI,I,2 = MRI,i,I-MRI,i,2 (86)

MDI,I,3 = MRI,i,2- MRI,i,3 (87)

MDI,i,4 = MRI,i,3 (88)

The individual body axis components of the angu-

lar velocities of the hub, link 1, link 2, and the blade,

are respectively given as,

coD (89)Rl,i,l "= coHI,i

coO = co(l) (90)
R1,i,2 Rl,i

cod _ co(z) (91)
Rl,i,3 Rl,i

coD (92)Rl,i,4 = coRI,i

The preceding four equations are used to compute

the four partial velocities needed for evaluating the
third term in Equation 5.

Airframe Kinematics

To complete the description of the airframe dy-

namic model, the kinematic relationship between the
vectors q, q, and u needs to be stipulated. Let the

airframe kinematic equations be given as,

fK,(q,q,u)=O, i=l,...,nnB (93)

The elements of the vector fg, are given in detail as
follows:

[ ]• = uF [Tr] r 0

fK6 -- 0 WB qF (94)

I URI'I 1
fK,. } •

.__ URl,nnz --

• UR2,1

KnR B °

UR2,nI_2

qRI,1

qRI,nRI

qR2,1

qR2,nR_

(95)

The matrix WB is given as,

1 0 --sin0 ]
WB = 0 cos ¢ sin ¢ cos 0

0 -sine cos¢cos0

(96)

Multiblade Coordinate Transformation

The airframe dynamic and kinematic models, given

by Equations 1 and 93, respectively, are derived in

the rotating system, with the rotor degrees of free-

dom describing the motion of individual rotor blades.

However, the rotor usually responds as a whole to ex-

citation and for physical insight it is desirable to work

with the degrees of freedom which model the entire
rotor system rather than the individual blades• To

transform the equations of motion with respect to

individual blade coordinates to rotor system coordi-
nates, the method of multiblade coordinates is used

[11]. Considering the example of rotor 1, for like de-

grees of freedom, the kth (k = 1,..., nm) individual
rotor blade degree of freedom is expressed as,

OtRl,k "-- O_R1,0.. I-

(,_m-i)12

E (Otnx,ic cos i¢_ + aRl,is sin iCk)
i=1

for rotors with an odd number of blades and

(97)

(nm-2)/2

OtRl,k _ O_R1,0-- l-

(c_ax,i, cos i¢_ + aal,i, sin i¢_ ) +
i=1

_nl,d(--1) _ (98)

for rotors with an even number of rotor blades.

Let the generalized coordinate and generalized

speed vectors in the multiblade or non-rotating co-

ordinate system be represented by q' and u'. Then

the following substitutions are made in the airframe

kinematic and dynamic model descriptions, given by

Equations 93 and 1, respectively•

q = T(t)q' (99)

u = T(t)q' + T(t)u' (1O0)

it = 7"(t)q' + 2_h(t)u ' + T(t)u' (101)

Then the resulting airframe kinematic and dynamic

equations can be written as,

fg,(q',q',u') = 0, i=l,...,nRB (102)

fi(q',u',w, it',t) = O, i = 1,...,nns (103)
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where the vector w consists of the inflow coordinates

of the two rotors:

W --" (WR1,0 , WRI,ls, WRI,le, WR2,0, WR2,1s, WR2,1c) T

(104)

Rotor Dynamic Inflow Model

The rotor dynamic inflow model used in this work

is based on the Peters and HaQuang [12] model which

is in turn based on the work of Pitt and Peters [8].
The model includes three inflow degrees of freedom

that yield the time-varying induced flow parallel to

the rotor shaft. Based on the small perturbation

potential flow equations, the model accounts for dy-

namic changes in collective inflow and first harmonic

inflow azimuthally. Inflow along the blades varies lin-

early. The inflow distribution is given by Equation

50. For simplicity only the dynamic inflow model for

rotor 1 will be described. The dynamic inflow model

for rotor 2 is similar with obvious changes.
The basic model formulation is carried out in the

rotor wind axis system and is later transformed to the

rotor shaft axis system. The dynamic inflow equa-

tions are forced by the averaged (over rotor revolu-

tion) rotor thrust, rolling moment, and pitching mo-
ment in the shaft axes. The resulting equations can

be written in the form,

/JJR1,0 WRI,O p_rR_

WRI,I, + JAR1] WRI,I, =
P_R 1

WRI,le //3RI,lc M._M_2LL

pxR_

(lO5)
where,

An1 = .An1 (q", U j') (106)

The blade element forces, given by Equation 60, are
vectorially summed over all rotor blades to obtain

the shaft axis components of the rotor thrust, rolling
moment and pitching moment. These forces and mo-

ments are then averaged over the period of revolution

of the rotor and used in Equation 105.

The complete set of dynamic inflow equations for

the two rotors can be functionally represented as,

gi(q',u',w,_o) = O, i - 1,...,nD1 (107)

where nDt = 6 since three state inflow models are

being used for each rotor. It should be noted that

Equation 107 is written using the multiblade or non-

rotating coordinate system.

Trim Algorithm

Trim of an aircraft is defined as an equilibrium
condition where the translational and rotational ac-

celerations of the fuselage are zero. Hence in trim,

i0 = (_ = ÷ = ti = 7) = tb = 0. For straight and

level flight, p= q = r = v = 0 as well. For a fixed

wing airplane this definition is sufficient since one can

generally regard an airplane as a single rigid body
with six degrees of freedom. For rotorcraft the con-

cept of trim is more complicated because the vehicle

is represented as a multibody system consisting of a
fuselage, many rotor blades, and a drive system. By

virtue of the rotor rotational motion, the blades are

always accelerating. For the rotor blade degrees of
freedom, trim is considered to be an operating condi-

tion such that the individual rotor blades follow a pe-

riodic path. This implies that all the first and second
derivatives of the rotor multiblade coordinates must

be zero in triml This will force individual blades to

track the same periodic path each rotor revolution.
However, it Should be noted that for even bladed ro-

tors this condition will not force every blade on a

rotor to follow the same path. This is due to the

warping multiblade coordinate mode for even bladed
rotors.

There are many different methods for obtaining

the trim condition of a coupled rotor and fuselage
combination. Included in these methods are itera-

tive fuselage trim and rotor trim, fully coupled au-

topilot trim, finite elements in time trim, nonlinear
optimization trim, and Galerkin method trim. While

no one method for trim is superior in all settings, all

the methods are sufficiently different to have qualities
which make them more or less attractive in different

settings. In this work a nonlinear optimization trim
technique is used.

In nonlinear optimization, one seeks to minimize or

maximize a certain nonlinear function by iterating on

the independent variables of the problem. Here the

sum of the squares of the dynamic equation residu-

als will be minimized and the independent variables
will be the system states and controls. A modified

Newton's method, sometimes called a damped New-
ton's method or a quasi Newton method, is used as

the nonlinear optimization algorithm to compute the
trim state of the vehicle.

The trim algorithm begins by noting that in trim,
u' = 0 and tb = 0 necessarily. Hence in trim, the

airframe dynamic equations (Equation 1) and the dy-

namic inflow equations (Equation 107) can be written
as,

fi(x,t) = 0, i= 1,...,nnB (108)

gi(x) = O, i = 1,..., r_Di (109)
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where
x = {(q,)T, (u,)T, (w)T}T (110)

Clearly, x is the state vector of the airframe dynamic

model. Equation 108 contains a set of algebraic non-

linear equations which are periodic in time, with a

period of r. 7- is the period of revolution common to

rotor 1 blades and rotor 2 blades. The goal of the

trim algorithm is to minimize the residual of each

equation in Equations 108 and 109 for all values of
time.

A natural scalar function to minimize for trim is,

1
J = - Ef'(t) 2et+ d

T i=1 i=l

_,, f_RB riD1At 2+ (111)
T _

k=l i=1 i=1

where nT is the number of time points chosen for dis-
cretization. The function J is termed the cost func-

tion. Using the discretized form of the cost function,

the gradient and hessian of the cost function can be
formed.

Ogi

= 2 j_k7_ + 22._gi-_-
= i=1 OZj i=1 (YXj

(112)

0(0d)0xt

22xt
,,T +-- -- LT
k=l i=1

I'% D I

,=1 LS_ a_i +g'_J (113)

The minimization problem described above is essen-

tially a least squares problem. It is known that for

least square minimization problems, where the cost

function is small at the solution, the second deriva-

tive terms in the above equations are relatively small

and can be neglected [13]. By definition, this assump-
tion is valid in the trim problem.

In a modified Newton's method, a local optimiza-

tion problem is solved iteratively. A flow chart for

the iteration procedure is given in Figure 6. Using

an initial condition or guess for the trim variables, a

local quadratic model of the cost function is formed,

OJ 1 TO2J
J(z + Ax) = J(x) + _-_zAx + :Ax _Ax (114)

At the local minimum of this approximation to the

actual cost function one must have,

cgJ

OA---_= 0 (115)

For a local minimum of a quadratic function to exist,

hessian matrix of the cost function must be positive

definite. Assuming this is the case,

Ax =-

The vector Ax is called the search direction because

based on this direction a search to reduce the cost

function shall be undertaken. For the local quadratic

model of the cost function, the minimum is given by

z + A x, of course if a minimum exists. A new iteration
on the minimum of the actual cost function can now

be made by with the equation,

x,_ = Zotd + ocAx (117)

The parameter, a, is the step length. It is used be-

cause the local model is only an approximation to

the actual cost. oc = 1 corresponds to a full Newton's

method while a < 1 implies a damped or modified
Newton's method. The parameter a is determined at

each trim iteration and is based on satisfying criteria

for tracking sufficient decrease in the cost function at

each iteration in the overall minimization problem.

The process of determining the step length is called

a step length procedure or line search strategy.

There are many criteria for determining suffi-
cient decrease in the cost function at each iteration.

Armijo's rule is used here which can be stated as,

OJ

Jo - J,_ > -pc_-_x Az (118)

where the constant # is a positive number. A back

tracking strategy is used in the line search strategy.
In this method, one always starts with a = 1 and

tries to use the full Newton's method if possible. If

the current a does not fulfill the Armijo condition,
then a is divided by a factor and retried. Once an

appropriate value for a is obtained, new values for

x are computed. Then a new local quadratic model

is formed and the optimization procedure is again

formed. It should be noted that in solving for the
search direction a linear system must be solved. It is

solved using a modified Choleski decomposition algo-

rithm as described in reference [13].

Linear Model of Airframe Dynamics

Linearized rotorcraft dynamic models are ex-

tremely useful for flying qualities analyses. To this

end, the composite airframe dynamic model consist-

ing of the kinematic, dynamic, and dynamic inflow
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models, given by Equations 102, 103, and 107, re-

spectively, is linearized about an arbitrary trim state,
x0. The linear model can be written as,

Cp(xo, t)_5: = Dp(xo,t)_x (119)

The (2nRB + nDl) X (2nRB -b nDl) square matrices

Cp and Dp are given as,

0 0Cp = 0 _ 0
0 0

atb

Oq I Ou _ Ow

(120)

(121)

where

fK = {fg,,...,fg,nv}T (122)

f = {fl,...,.f_ns} T (123)

g -- {gl,...,gnD,} T (124)

In the ensuing analysis, the 6's in Equation 119 will

be dropped and the perturbation state of the aircraft

will be simply denoted as x_c.

Transformation of the Airframe Linear

Dynamic Equations

The multiblade coordinate transformation should

be accompanied by a transformation of the equa-

tions of motion to the non-rotating coordinate sys-

tem. This step is accomplished by taking linear com-

binations of the equations of motion given by Equa-

tion 119. The operations can be performed by pre-

multiplying the dynamic equations by a transforma-

tion matrix, 7_(t). The fully transformed linear equa-
tions are,

T(t)Cp(t)fc.c = f'(t)Dp(t)x_c (125)

In rotorcraft handling qualities analysis, a linear

time invariant system is most convenient to work with

due to the powerful linear system analysis tools avail-

able. A standard approximation used in rotorcraft

handling qualities work is to neglect the harmonic

content in Equation 125 and hence obtain a linear

time invariant system. This approximation is known

as the constant coefficient approximation and it is
used in the current effort.

The blade pitch control terms can be separated

from the above equations by assuming that the multi-

blade coordinate blade pitch degrees of freedom do

not possess dynamics. Appropriate rows of the dy-
namics matrix are deleted and the associated columns

form the controls matrix. The final form of the air-

frame linear dynamic equations is,

x,c = Ax_c+BO (126)

y_¢ = Czar+DO (127)

where the vector 0 consists of individual rotor pitch
control variables. This system can now be coupled to

the flight control system to form the complete system.

Linear Control System Model

Most aircraft flight control systems are given in
block diagram form and there is no standard struc-

ture. Although for modeling purposes, a generic flight
control system structure could be assumed such that

all or at least a majority of current aircraft flight con-
trol systems could be accommodated, it is felt this
approach may be too restrictive in some cases and

far too general, hence inefficient, in other cases. It is

desirable to have a flight control system modeling ca-

pability which does not assume a structure aprior but
uses the input data deck to generate the model. This

approach allows for greater flexibility and increased

utility of the control system model. With these con-

siderations in mind, a linear state-space flight control
system modeling capability was developed that takes

the basic block diagram data as input.
The flight control system is assumed to be com-

prised of an arbitrary number of filters, given in poly-

nomial form. Each filter is a multi input and single

output filter as shown in Figure 7.

The inputs to each filter can consist of pilot stick

inputs, outputs of other individual filters, aircraft
states, and derivatives of aircraft states. A state-

space realization is computed for each individual fil-
ter in phase variable canonical form. The filters are

then assembled into an overll state-space realization.
The realization can be written as,

ices = Auxc_ + Buvu (128)

Yu = Cux¢, + D,,vt, (129)

The subscript u signifies that the state-space matri-

ces do not account for the filter coupling. A filter
coupling matrix can be computed in the form,

v. = (uy,, + fl_5 + 7ux_, + ¢'.x.c (130)

It should be noted that Equations 128, 129 and 130

can be constructed in a straight forward manner from

the input block diagram data. Substituting Equation
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130into Equations128and129,thecoupledstate-
spacemodelof thecontrolsystemcanbeformed.

Jc_, = Fz_, + G6 + Hza_ + ESc,_ (131)

0 = Pz_, +Q5 + Rza_ + Z,_,,_ (132)

where,

F = A`` + Bu(``S`` (133)

G = B``(``U`` + B``t3`` (134)

H : B``(uVu + B``7_, (135)

E = B``(``Wu + Buo'_, (136)

P = X[C`` + D``(t,S``] (137)

Q = X[Du(``U`` + D``/3``] (138)

R = X[D``G,V``+ D``7``] (139)

Z = X[D``(``W_, + Duo'``] (140)

S,, = [I - D,,(,,] -1C`` (141)

U`` = [I - 0``(``] -1D_,13, (142)

V`` = [I - 0,,(,,] -1 0``7,, (143)

W,, = [I - Du(``]-* D``_`` (144)

The matrix X restricts the overall control system out-

puts to be the aircraft blade pitch angles. It should

be noted that if the matrix [I-D``(``] is singular, then

there is not a valid state-space model for the system

and the system is non-causal. This is due to the fact

that the flight control system output can be written

as,

[I- D``(``]y = C``z_ + D``/9``6+D``7``zac+ D``_``_ac

(145)
For a valid state-space realization the output must

be uniquely determined from the state and control.

Clearly when [I-D``(u] is singular this is not possible.
This observation can be used for detecting input data
errors.

Au = A+ BII (148)

Ax2 = BT (149)

A21 = H+E(A+BII) (150)

A22 = F+ EBT (151)

= sz (152)
B2 = G+EBE (153)

C1 = C+DII (154)

C_ = DT (155)

Dx = D- (156)

II = [I -- ZB] -I (1_ .dr ZA) (157)

T = [I- ZB] -1P (158)

Z = [I- ZB] -I Q (159)

Concluding Remarks

A linear coupled rotor-fuselage-control system dy-

namic model is presented in this paper. The model is

expected to be useful for flying qualities studies, sta-

bility and control investigations, and control design

parametric studies. Efforts are underway to produce
numerical results for the validation of the model.
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Appendix

Skew-Symmetric Matrix Operator

For a vector a = {am, a2, an} T, the matrix S(a) is
defined as,

0 -a3 a2 ]
S(a) = a3 0 -al

--a2 al 0

Single Axis Transformation Matrices

The matrices El, Ez, and E3 represent single axis

transformations about x, y, and z axes, respectively,
and are defined as follows:

[100]E1 (_) = 0 cos _ sin J¢
0 - sin _ cos

E2(,_) = 0 1 0
sin x 0 cos

E3(_) = -sin_ cos_ 0
0 0 1

Time-Derivative of a Transformation Matrix

Consider the time-derivative of a vector v in two

reference frames denoted by A and B. Let the com-

ponents of v in Frame A be denoted by VA and those

in Frame B be denoted by vB. Let the angular ve-
locity of Frame B with respect to Frame A be w and

let the components of to in Frame B be denoted by

a_B. Let T represent the transformation matrix that

transforms vector components from Frame B axes to

components in Frame A axes. The time-derivatives

of v in Frame A and Frame B are related by the fol-
lowing vectorial equation:

A dv a dv
d"-{= d"-'{+ to × v

In matrix-vector format, the preceding equation can
be written as,

bA = Ti_B + TS(WB)VB

Also, since vA = TVB, one gets for T)A the following
expression:

_A = Ti)B + TvB

Comparing the two equations for UA, the following
formula is obtained for T:

= TS(toB)
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